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Abstract

Techno-economic Analysis and
Energy Management System for
Renewable Energy Micro-grid

Under Climatic Variability

Jaehyun Shim

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Micro-grids based on renewable energy resources have become a pivotal

technology to address the growth of global climate crisis. While renew-

able energy is essential for the micro-grids, it has an intermittent nature and

strong uncertainty, thus the climatic variability is a key issue for the micro-

grids. Nevertheless, previous micro-grid’s techno-economic analyses have

rarely taken account of climatic variability, and there have been few studies

related to sizing and energy management of a multi-stack micro-grid. We

exploit big data driven analysis and mixed-integer stochastic energy man-

agement to resolve these issues. Utilizing climate data from 13,488 regions

in 218 countries, climatic variability in techno-economic analysis is inves-

tigated. After preprocessing the data via uniform manifold approximation

and projection, the dimensionally reduced data are clustered using hierar-

chical density-based spatial clustering of applications with noise algorithm,
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and optimal sizes of cluster’s micro-grids are compared to each other clus-

ters according to climate patterns. The effects of climate on the sizes and

costs of micro-grids are revealed based on the climate sensitivity analyses,

which emphasizes the need to take climatic fluctuations into account when

designing micro-grids. To decide structures and sizes of stacks, we propose

mixed-integer stochastic programming that is appropriate for energy man-

agement of a multi-stack micro-grid under climate uncertainty. Validation

of the proposed method’s performance is followed by verification of the

climatic influences on design of a multi-stack micro-grid through each illus-

trative example. In conclusion, it is indicated that climatic variability takes

a significant role in micro-grids based on renewable energy.

The contributions of this thesis can be written as follows: First, the

correlation analysis through unsupervised clustering is carried out to ver-

ify that climatic variability is a factor that determine the design of techno-

economical micro-grids. Mitigating their noise and clustering them via UMAP

and HDBSCAN algorithm, climate data from 13,844 cities in 218 nations

are used to the correlation analysis. Second, the strategies to install and op-

erate a micro-grid during long project’s lifespan are suggested according to

regional climatic features. In third, a mixed-integer stochastic programming

is developed to control a multi-stack micro-grid’s energy distributions. Fi-

nally, it is verified that the climatic effects are noticeable in design of a

multi-stack micro-grid.

Keywords: Micro-grid, renewable energy, big data analysis, techno-economic

ii



analysis, sensitivity analysis, energy management system, mixed-integer stochas-

tic programming, economies of scale

Student Number: 2017-22082
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Chapter 1

Introduction

1.1 Motivation and previous work

Interest in the global climate crisis has growed since a global agree-

ment to limit global warming to 2°C was reached by governments around the

world at the Conference of the Parties in December 2015 [1]. The develop-

ment of industrial technology raises the energy consumption rates, induces

growth of CO2 emissions, and pollutes the environment. Moreover, global

temperatures have risen by 0.18 °C a decade according to the National

Oceanic and Atmospheric Administration [2, 3]. To prevent the expansion

of technology from accelerating the global climate crisis, pro-environmental

power generation has been focused on and technologies related to power

generation or power-to-gas using renewable energy sources have been inves-

tigated [4, 5]. A micro-grid utilizing renewable energy is suitable for eco-

friendly electricity generation and hydrogen production, thus research on it

has increased [6] In a micro-grid system, various combinations of equip-

ment exist and it commonly comprises three types of equipment: electric

generator, electrochemical converter, and storage units. Photovoltaic (PV)

modules, wind turbines, and tidal generators are utilized as an electric gen-

1



erator, electrolyzers and fuel cells perform an main role as electrochemical

reactors, and electrical energy and hydrogen are stored in batteries and hy-

drogen tanks, respectively.

To design an economic micro-grid, previous studies have implemented

techno-economic analysis of a micro-grid using renewable energy. A micro-

grid is categorized according to two criteria: hybrid energy sources or not,

and stand-alone or not. While techno-economical micro-grids based solely

on PV modules have been analyzed, hybrid micro-grids which consist of

two types of electric generators such as PV modules and wind turbines have

also been techno-economically optimized [7, 8, 9]. The problem regarding

stand-alone micro-grid with hybrid renewable energies have been solved to

find optimal sizes [10, 11, 12, 13, 14, 15]. Sizes in a stand-alone micro-

grid have been investigated with rule-based operation in consideration of

pollutant emission, life-cycle cost, and renewable energy penetration[16].

Given structure of a micro-grid, cost effective and secure operations

necessitate energy management system (EMS) or control. Nonlinear pro-

gramming, mixed-integer linear programming, dynamic programming, and

model predictive control have been utilized to develop EMS for micro-grids

[17]. In a smart wind power facility, two different methods, heuristic and lin-

ear programming method, were compared for EMS [7, 8, 9]. Genetic algo-

rithm has been used to solve a pareto optimal problem that minimizes pollu-

tant emission and total cost at the same time [18]. Due to intermittent nature

of renewable energy and variability of load demands, uncertainty should

be considered in EMS of a renewable micro-grid. A micro-grid has been

operated using optimal explicit scheduling which is obtained on off-line in
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advance via parametric programming [19]. SAM-theta-PSO algorithm has

been suggested to manage energy distributions of a renewable micro-grid

under consideration of uncertainty [20]. Two-stage stochastic programming

has been suggested to consider sizes of a micro-grid and optimal operation

strategy based on the scenarios [21].

In spite of assumption that each equipment exists as a single unit in

most studies, multiple stacks of equipment are more realistic and have an

advantageous of operating a micro-grid efficiently under intermittent na-

ture of renewable energy. While the entire equipment should be operated

regularly, a part of the equipment is enough to maintain system and meet

load demands in a certain circumstance. A micro-grid composed of multi-

ple stacks has an ability to cope with intermittency and achieves cost saving

operations via scheduling on-off state of each stack. Researches on EMS of

a multi-stack micro-grid have been investigated. Multi-stack fuel cells have

been scheduled to operate equipment economically and meet load demands

[22, 23, 24]. A multi-stack battery energy storage system comprising dif-

ferent types of batteries has been optimized to lengthen the battery lifetime

[25]. For a multi-stack micro-grid, it is important to consider economies

of scale since the smaller the size of the stack, the more expensive the stack

[26]. Whereas a multi-stack micro-grid achieves cost efficient operations via

more flexible on-off scheduling than micro-grid with single units, it is rather

wasteful when stack’s size becomes overly small (i.e., a trade-off between

economies of scale and efficiency of operations). To maintain a micro-grid

at a best operating level, climatic effects on operations should be consider-

ate and it is reasonable to decide the number of stacks and their sizes based

3



on climate.

Management of energy distributions for a renewable micro-grid has

been studied using robust or stochastic programming to consider climate

uncertainty. Based on the robust optimization, the mixture composed of Ni-

trogen, liquid Petroleum gas, and hydrogen has been managed to maximize

hydrogen injection under uncertainties of wind power [27]. Power generator

and energy storage system have been scheduled their on-off states indicated

as integer variables, and the cost function has been optimized using scenario

based stochastic mix-integer linear programming [28, 29]. Suggesting con-

straints for state-of-charge in the battery as chance constraints, adaptively

constrained model predictive control for a micro-grid has been developed

[30].

Although previous studies have analyzed technical economies and man-

aged energy distributions of micro-grids with various methods, there have

been the lacks of research on design of a micro-grid correlated to climate

variability. In particular, few researches on techno-economic analyses have

been conducted in consideration of uncertainty and intermittent nature of

climates [12, 13, 14, 15], whereas diverse approaches in energy manage-

ment field have mainly focused on climatic variability and widely proposed

robust or stochastic optimization methods [31, 32, 33, 27]. As global cli-

mate change becomes severe [34], the project for a micro-gird is inevitably

affected by climate change due to its long-term lifespan, more than 20 years

in usual, thus it is necessary to integrate climatic variability and the design

of a micro-grid. Additionally, few studies have considered climatic effects

on design of multi-stack micro-grids and investigated relationships between

4



economies of scale and efficiency of operations. To overcome these issues,

we proposed novel approaches to analyze correlations climatic patterns to

the design of a micro-grid and a trade-off between economies of scale and

efficiency of operations under climatic variability.

1.2 Statement of contributions

The main objective of this thesis is to suggest design strategies of a

techno-economic micro-grid in consideration of climate variability. Techno-

economic analyses are investigated under 9 types of climatic patterns, and

sensitivity of techno-economic micro-grids is analyzed for changing the cli-

matic patterns. In addition, a mixed-integer stochastic programming for a

multi-stack micro-grid is suggested to design it under climate variability.

The performance of the suggested method is validated with an illustrative

example, and two multi-stack micro-grids are designed to clarify climatic

effects based on the proposed method. The summary of the two chapters are

below:

• Global analysis of the impact of climatic patterns on economic de-

signs of micro-grids through unsupervised clustering.

• Energy management and design of multi-stack micro-grid under cli-

matic uncertainty using mixed-integer stochastic programming.

The first work is the techno-economnic analysis of micro-grid systems

through unsupervised clustering. There is a direct correlation between the

amount of renewable energy sources available in a region and the amount
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of electricity generated, which relies on regional climatic characteristic. As

a consequence, climatic patterns in the region influence techno-economic

analysis of a micro-grid with renewable energy. We cluster climate-similar

locations based on their climate data to separate climatic variability. Com-

paring techno-economic designs of micro-grids and climatic patterns, the

correlations of them are evaluated, and it is determined which design would

be advantageous in a particular climate pattern. Based on climate pattern

changes, we also perform a sensitivity analysis of each group. The use of

this information derived from big data is relevant to micro-grid design in

actuality.

The second part is the mixed-integer stochastic programming for en-

ergy management and design of a multi-stakc micro-grid under climate vari-

ability. Suggested mixed-integer stochastic programming contains chance

constraints for boundaries of state-of-charge in battery system, which han-

dles stochastic effects of climate on a micro-grid. To take advantages of

computational efficiency, chance constraints are converted to deterministic

hard constraints with relaxation of joint chance constraints and assump-

tions that climate uncertainty is zero mean, independent, and identically

distributed random variables. The overall method is applied to case study

of scheduling a multi-stack micro-grid with real irradiance data in Wash-

ington, United States. Is is shown that the proposed method outperforms

deterministic method. At last, the number of stacks and their sizes are de-

cided via grid search based on the proposed method for two regions, and the

importance of climatic effects on the design is verified.
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1.3 Outline of the thesis

The remainder of the thesis is organized as follows. In Chapter 2, the

background on the algorithms for unsupervised clustering of climate data,

and the model and cost equations of equipment in a micro-grid are in-

troduced, and the overview of the stochastic model predictive control and

stochastic tube method are provided. In Chapter 3, micro-grids are opti-

mized to conduct techno-economic analysis and correlations between op-

timal design and climatic patterns are discussed. In addition, sensitivity

analysis of techno-economic designs is investigated with changing climatic

patterns. Chapter 4 proposes a mixed-integer stochastic programming to

manage energy distributions of a multi-stack micro-grid under climate un-

certainty, and verifies effects of climatic patterns on a trade-off between

economies of scale and efficient operations. Lastly, general concluding re-

marks and possible directions for further study are given in Chapter 5.
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Chapter 2

Background and preliminaries

2.1 Uniform manifold approximation and projection

Uniform manifold approximation and projection (UMAP) is widely

used across the fields and is known for its nonlinear dimensionality re-

duction, which prevents features from overlapping and efficiently visual-

izes data. It has a lower computational cost than t-distributed stochastic

neighborhood embedding (t-SNE), allowing it to extract features from very

large or high-dimensional datasets [35, 36, 37]. UMAP constructs a high-

dimensional data topology and discovers its low-dimensional representation

by retaining topological linkages of the data [38]. Prior to reducing a dimen-

sion with UMAP, four parameters must be determined: the number of neigh-

bors, minimum distance, number of components, and metric. When attempt-

ing to comprehend the complex structure of data, the number of neighbors

represents the number of the local neighborhood. The fewer neighbors that

are evaluated, the more localized components of the structure. Minimum

distance is a numeric value between 0 and 1 indicating the minimum dis-

tance that low-dimensional points should be apart. The lower this value, the

more dispersed the dots with low dimensions. Dimensionality of reduced
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dimension space is determined by the number of components. Euclidean,

Manhattan, and Chebyshev metrics are utilized to calculate the distances

between points in high and low dimension space. Low dimensional repre-

sentation varies based on these characteristics

2.2 Hierarchical density-based spatial clustering of ap-
plications with noise

Hierarchical density-based spatial clustering of applications with nois

(HDBSCAN) is a density-based clustering approach that has been widely

applied to climate and geographical data clustering [39, 40, 41]. Using mu-

tual reachability distance to build a dendrogram for clustering, HDBSCAN

method divides the data into several hierarchies. Then, clusters are identified

by comparing each hierarchy based on a set of criteria, which is determined

by the minimum cluster size and the minimum samples. Minimum clus-

ter size refers to the smallest group deemed to be a cluster. Increasing the

minimum cluster size increases the number of points contained in a clus-

ter while decreasing the number of clusters. Minimum samples specifies the

minimum number of neighbors around the cluster’s center; the greater this

value, the greater the number of points that are eliminated as noise.

2.3 Equipment’s models used in micro-grid

Fig. 3.1 shows a diagram of a micro-grid to be dealt with in this study.

To simulate each unit, a simple linear model was employed as opposed to

a sophisticated nonlinear dynamic model. Researches for techno-economic
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analysis of micro-grid have implemented size optimization based on a sim-

ple linear model or Hybrid Optimization of Multiple Energy Resources

(HOMER) Pro which also uses a simple linear model [11, 42, 14]. In this

work, computational efficiency is crucial because the total number of opti-

mization problems to be solve is 55,376, which was accomplished through

the use of linear models. The optimization problem was formulated using

mixed-integer linear programming (MILP), where the unit sizes are the de-

sign variables [10, 11, 42] and Table 3.2 lists the parameters for the model

equations.

2.3.1 PV module

We assume one PV module exists in the P2G network, where the power

is generated by sunlight. The hourly power output of the PV module depends

on solar irradiance and temperature as follows [10]:

PPV (t) =
G(t)

GSTC
P rat
PV ηPV [1− β (TC − TC,STC)] (2.1)

where PPV is the output power from the PV module, G(t) is the solar irra-

diance, GSTC is the solar irradiance under standard test conditions (STC),

PV rat
PV is the rated power of the PV module, ηPV is the power reduction

factor, β is the temperature coefficient of the PV module, TC is the PV cell

temperature, and TC,STC is the PV cell temperature under STC.
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2.3.2 Wind turbine

The power generated from the wind turbine is given as a conditional

function of the wind speed as follows [11]:

PWT (t) =


0, if v ≤ vcut−in or v > vcut−out

P rat
WT

(
v3−v3cut−in

v3r−v3cut−in

)
, if vcut−in < v ≤ vr

P rat
WT , if vr < v ≤ vcut−out

(2.2)

where PWT is the output power from the wind turbine and P rat
WT is the

rated power of the wind turbine at its rated wind speed. v, vr, vcut−in, and

vcut−out represent the current wind speed, rated speed, cut-in speed, and

cut-out speed, respectively.

The first conditional equation represents situations in which the oper-

ation is halted due to insufficient wind speed or to prevent damage from

operating outside of the permissible range.

2.3.3 Electrolyzer

The water electrolyzer, which splits water into hydrogen and oxygen, is

a viable and commonly employed process unit for hydrogen production. In

commercial markets, an alkaline or proton-exchange membrane electrolyzer

is often preferred. In a simple linear model, the electrolyzer’s hydrogen gen-

eration rate is proportional to the input power, and its conversion equation

is [12]:

11



PEZ =
ṁH2HHV H2

ηEZ
(2.3)

where PEZ is the input power consumed in the electrolyzer, ṁH2 is the

electrolyzer’s hydrogen production mass flow rate, HHV H2 is the higher

heating value of hydrogen, and ηEZ is the electrolyzer efficiency.

2.3.4 Fuel cell

A fuel cell converts hydrogen into electricity, and due to its physical

simplicity, solid oxide fuel cells (SOFC) are commonly preferred for P2G

systems. The generated power of SOFC is proportional to the amount of

hydrogen used as follows [42]:

ηFC =
PFC

ṁH2HHV H2

(2.4)

where PFC is the output power produced by the fuel cell, ṁH2 is the hydro-

gen production mass flow rate entering the fuel cell, and ηFC is the fuel cell

efficiency.

2.3.5 Energy storage - battery and hydrogen tank

The electric power generated in the micro-grid can be stored in bat-

teries or tanks, as either electricity or hydrogen. The simplest battery model

considers only charge and discharge rate and expresses state-of-charge (SoC)

as the quantity of power charged within the battery. The SoC is a function
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of the input current as follows [42]:

SoC(t) = SoC(0) +
1

C

∫ t

0
(ηcharIchar − ηdisIdis) (t

′)dt′ (2.5)

where C represents the capacity for batteries, Ichar represents the charge

current, and Idis represents the discharge current. ηchar and ηdis represent

the charge and discharge efficiencies of a battery in relation to energy loss.

To simulate the amount of hydrogen stored in a tank, a simple model

that defines state-of-hydrogen (SoH) as an expression for ratio stored hy-

drogen to a tank capacity is used [12]:

SoH(t) = SoH(0) +
1

CH2

∫ t

0

(
ηstoḢ2sto − ηrelḢ2rel

)
(t′)dt′ (2.6)

where CH2 is the capacity of the hydrogen tank, Ḣ2sto is the flow rate of

stored hydrogen, and Ḣ2rel is flow rate of released hydrogen. The store and

release efficiencies for hydrogen tank are denoted by ηsto and ηrel, respec-

tively.

2.4 Net present cost

The objective of micro-grid design is to minimize the overall cost of

installation, operation, and maintenance for a particular climate (i.e., irradi-

ance and wind speed) and energy source requirements (i.e., hydrogen and

electricity).
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Net present cost (NPC) is the most widely used metric for techno-

economic assessment of micro-grid. HOMER Pro optimizes P2G process by

minimizing NPC [43] and is commonly used in the field to analyze micro-

grid architecture [44, 45]. NPC includes costs and salvages incurred over

the lifetime of the project [12, 13].

Assuming that each unit is depreciated linearly and salvage value is

dependent on replacement cost, the NPC of a micro-grid is calculated as:

NPC = Ccap +

N∑
n=1

id · COM + iNd

(
CrepInteger

(
N

Rep

)
− S

)
S = Crep

Rem

Rep

id =
1

(1 + ir)
n

iNd =
1

(1 + ir)
N

ir =
in − f

1 + f

(2.7)

where N is the project lifetime in years, Ccap is the capital cost of a

unit, COM is the operation and maintenance (O&M) cost of a unit, Crep is

the replacement cost of a unit, S is the salvage value of a unit, Rep is the

lifetime of a unit, Rem is the remaining lifetime at the end of the project,

id is the discount rate, ir is the annual real interest rate, in is the nominal

interest rate, and f is the annual inflation rate. Depending on geological

area and operational conditions, the costs and lifetime of process units vary.

These values were determined in our study using the same specifications as

in prior studies [12, 13, 46] (Table 2.1).
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Table 2.1: Specifications of micro-grid

Capital cost O&M cost Replacement cost lifetime
PV module 3000 $/kW 10 $/kW/year 3000 $/kW 25 years

Wind turbine 2000 $/kW 20 $/kW/year 2000 $/kW 20 years
Electrolyzer 2000 $/kW 10 $/kW/year 2000 $/kW 15 years

Fuel cell 3000 $/kW 10 $/kW/year 3000 $/kW 4.5 years
Battery 450 $/kWh 5 $/kWh/year 450 $/kWh 15 years

Hydrogen tank 1500 $/H2 kg 10 $/H2 kg/year 1500 $/H2 kg 25 years
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2.5 Stochastic model predictive control

Stochastic model predictive control (SMPC) is an MPC methodology

that includes a model, objective function, and constraints with stochasticity.

The optimization problem of SMPC is shown in Equation 2.8a. Equation

2.8a represents the expected value of the quadratic objective function for

a given disturbance realization. Equation 2.8a represents the linear time-

invariant model with additive disturbance. Equation 2.8a indicates the con-

straints of the optimization problem. The constraints applied to the state

xk+i+1|k are chance constraints that limit the probability of a violation. The

probability of violation can be tuned by adjusting the risk parameter β. The

stochastic components of SMPC optimization problem should be reformu-

lated into a form usable by conventional optimization solvers.

min
U

E

[
N−1∑
i=0

(
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

)
+ xTk+NPxk+N

]
(2.8a)

s.t. xk+i+1|k = Axk+i|k +Buk+i|k +Dwk+i|k (2.8b)

Pr
[
Hxk+i+1|k ≤ h

]
≥ β, uk+i|k ∈ U, xk|k = x(k) (2.8c)

∀i ∈ 0, ..., N − 1 (2.8d)
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2.5.1 Stochastic tube model predictive control

The SMPC can be formulated as a stochastic tube MPC to approximate

the stochastic model, objective function, and chance constraint into deter-

ministic form. The optimization problem of stochastic tube MPC is shown

in Equation 2.5.1. Stochastic tube MPC separates the stochastic term by di-

viding the state xk+i+1|k into a deterministic term zk+i+1|k and a zero-mean

disturbance term ek+i+1|k. Also, it separates the stochastic term by dividing

the input uk+i+1|k into a static feedback term −Kxk+i|k and input vk+i+1|k.

Equation 2.9a represents the reformulated quadratic objective function. The

expectation term disappears by the assumption that ek+i|k has a zero-mean

distribution. Equation 2.9b represents deterministic model and Equation 2.9d

represents disturbance propagation, where K is LQR gain. Equation 2.9e

represents the reformulated chance constraints using Fk+i+1|k, the cumula-

tive density function of Hzk+i+1|k − h.

min
U

N−1∑
i=0

{zTk+i|kQzk+i|k + vTk+i|kRvk+i|k}+ zTk+NPzk+N (2.9a)

s.t. zk+i+1|k = Azk+i|k +Bvk+i|k (2.9b)

uk+i|k = −Kzk+i|k + vk+i|k (2.9c)

ek+i+1|k = (A−BK)ek+i|k +Dwk+i (2.9d)
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Hzk+i+1|k ≤ F−1
k+i+1|k(1− β) (2.9e)

uk+i+1|k ∈ U, zk|k = x(k), ek|k = 0 (2.9f)

∀i ∈ 0, ..., N − 1 (2.9g)
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Chapter 3

Techno-economic analysis of micro-grid system
design through climate region clustering 1

3.1 Introduction

The expansion of industrial technology raises the rate of energy con-

sumption and CO2 emissions. Consequently, interest in the global climate

crisis is growing, and in December 2015, at the Conference of the Parties,

governments from around the world resolved to limit global temperature

rise to 2°C [1]. According to the NOAA (National Oceanic and Atmo-

spheric Administration), 2019 was the second warmest year on record, and

the world annual average temperature has risen at a rate of 0.18 °C each

decade, which is twice as fast as before 1981 [2, 3]. Hydrogen has emerged

as a green fuel, and research on eco-friendly power generation utilizing re-

newable energy has increased [4, 5]. To produce hydrogen without polluting

the environment, the micro-grid utilizing renewable energy has been inves-

tigated [6]. For micro-grid system, there are three types of process units:

electric generator, electrochemical converter, and storage units. Common
1This chapter is an adapted version of J. H. Shim, D. D. Park, H. T. Chung, H. C. Ryu,

G. B. Choi, and J. M. Lee, “Techno-economic analysis of micro-grid system design through
climate region clustering," Energy Conversion and Management, 274, 116411.
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electric generators include photovoltaic (PV) modules, wind turbines, and

tidal generators. Electrolyzers and fuel cells are the main electrochemical

reactors of micro-grid systems. The electrolyzer converts electricity into

hydrogen through the electrolysis of water, whereas the fuel cell produces

power from hydrogen through the inverse reaction. Batteries and hydrogen

tanks are used to store electrical energy and hydrogen, respectively. Previous

studies have investigated the optimal sizes for these units. Hybrid micro-

grids comprising PV module, wind turbine, diesel generator, electrolyzer,

fuel cell, and a load have been optimized [7, 8, 9]. The problem of sizing

a stand-alone micro-grid with hybrid renewable energy sources has been

solved [10, 11, 12, 13, 14, 15]. There have been also studies on managing

energy distributions for the efficient and secure operation of a micro-grid. A

comparison was made between heuristic and linear programming methods

for energy management in a smart wind power facility [7, 8, 9]. A pareto

optimal problem has been solved using a genetic algorithm in order to find

an optimal scheduling that minimizes total cost and pollutant emission si-

multaneously [18]. Considering sizes of a micro-grid and optimal operation

strategy, two-stage stochastic programming based on the scenario has been

calculated [21]. Energy management systems have been developed via vari-

ous methods such as nonlinear programming, mixed-integer linear program-

ming, dynamic programming, and model predictive control [17].

Climates have strong uncertainty and intermittent nature, hence cli-

matic variability should not be overlooked in renewable energy research.

While energy management problems have widely adopted robust or stochas-

tic optimization methods to handle the variability [31, 32, 33, 27], the vast
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majority of techno-economic analyses were conducted based solely on a

single year’s worth of weather data, such as irradiance and wind speed data

for a specific region, thereby ignoring climatic variability [12, 13, 14, 15].

Incorporating climatic variability into the design of a micro-grid system be-

comes crucial as the severity of climate change increases [34]. Given that

the average project lifespan is greater than 20 years, climate change is in-

evitable during the project’s lifetime and it is crucial to build for it from the

outset Only when sufficiently different data are available can climatic vari-

ability be characterized, which is often not the case when focusing on data

from a single region.

To overcome these issues, we offer a novel approach that clusters climate-

similar locations and integrates their climate data to evaluate climatic vari-

ability. Global climate data were gathered from the Prediction of Worldwide

Energy Resource (POWER) Project’s Hourly 2.0.0 version on 2022/01/21.

[47]. The collection includes hourly data for 13,844 regions in 218 countries

for a period of one year. The optimal sizing is then conducted for each clus-

ter and its dependence on climate patterns is analyzed. As opposed to exam-

ining each region individually, 13,844 regions were clustered into different

groups based on climate patterns and their relationships with optimization

results were evaluated . Clustering and analysis consist of two steps. We

use uniform manifold approximation and projection (UMAP) [38] to extract

two characteristic features from high-dimensional climate data, followed by

the hierarchical density-based spatial clustering of applications with noise

(HDBSCAN) algorithm [48, 49]. We determine the climatic features and

which regions are included based on the clustering . Comparing the geo-
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graphical location, climate characteristics and optimal sizes, the climatic

factors affecting the optimal design were derived and the design that would

be advantageous in a given climate pattern was identified. A climate sen-

sitivity analysis of the optimal design has also been conducted. Instead of

conducting an analysis with pointless and tiresome tweaks, we recognized

a pattern in climate change of each group and conducted a sensitivity anal-

ysis that reflected it. Through this approach, we confirmed the patterns of

sizing process units based on climate, identified areas vulnerable to climate

change, and proposed new strategies for climatic variability. This informa-

tion derived from big data is pertinent to the actual design of P2G systems

when project lifespan is considered.

In Sections 2.3 and 3.2.3, modeling and optimization for micro-grid

systems were formulated. Section 3.1 offers information on how to execute

dimensionality reduction and clustering of the data and climate patterns for

each group. Comparing the optimal sizes of each cluster to the climate, we

uncover their relationships in Section 3.2. In Section 3.3, we figure out the

effects of regional climatic variability on optimal sizes and analyze the cli-

mate change sensitivity of each cluster.

3.2 Methods

3.2.1 Climatic feature extraction by UMAP

For design of hybrid micro-grids with PV module and wind turbine, we

collected irradiance and wind speed data for 8,760 hours by scraping open

sources in National Aeronautics and Space Administration (NASA) Lang-
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ley Research Center and implemented clustering based on the data. 13,844

regions in 218 countries were covered, and the country names are described

in the Appendix. While 8,760 hours data were used for the optimization

problem, they are too noisy to be used for clustering without preprocessing.

In order to reduce the effect of noise, 8,760 hours data were smoothed and

turned into 365 days of data for irradiance and wind speed with each data

point derived from the daily average of 24 hours of data. Given two distinct

types of data, the feature vector has a dimension of 730. In order to reduce

the computational cost of clustering and visualization, the core features of

the data was first extracted via UMAP. By lowering the dimension of the

data in the clustering the curse of dimensionality is also avoided.

UMAP is widely used across the fields and is known for its nonlinear

dimensionality reduction, which prevents features from overlapping and ef-

ficiently visualizes data. It has a lower computational cost than t-distributed

stochastic neighborhood embedding (t-SNE), allowing it to extract features

from very large or high-dimensional datasets [35, 36, 37]. UMAP constructs

a high-dimensional data topology and discovers its low-dimensional repre-

sentation by retaining topological linkages of the data [38]. Prior to reducing

a dimension with UMAP, four parameters must be determined: the num-

ber of neighbors, minimum distance, number of components, and metric.

When attempting to comprehend the complex structure of data, the number

of neighbors represents the number of the local neighborhood. The fewer

neighbors that are evaluated, the more localized components of the structure.

Minimum distance is a numeric value between 0 and 1 indicating the min-

imum distance that low-dimensional points should be apart. The lower this
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value, the more dispersed the dots with low dimensions. Dimensionality of

reduced dimension space is determined by the number of components. Eu-

clidean, Manhattan, and Chebyshev metrics are utilized to calculate the dis-

tances between points in high and low dimension space. Low dimensional

representation varies based on these characteristics; hence, a grid search was

conducted to obtain a low-dimensional structure that accurately depicts the

relationship between data, with the exception of the number of components,

which was fixed at 2. Table 3.1 displays the change range and interval for

the parameters.

3.2.2 Clustering climate groups by HDBSCAN

To cluster and handle a characteristics of climatic data, density-based

clustering algorithm has been used in the previous studies [50, 51, 52, 53].

HDBSCAN is a density-based clustering approach that has been widely ap-

plied to climate and geographical data clustering [39, 40, 41]. Using mu-

tual reachability distance to build a dendrogram for clustering, HDBSCAN

method divides the data into several hierarchies. Then, clusters are identified

by comparing each hierarchy based on a set of criteria, which is determined

by the minimum cluster size and the minimum samples. Minimum clus-

ter size refers to the smallest group deemed to be a cluster. Increasing the

minimum cluster size increases the number of points contained in a clus-

ter while decreasing the number of clusters. Minimum samples specifies the

minimum number of neighbors around the cluster’s center; the greater this

value, the greater the number of points that are eliminated as noise. Due

to the fact that the validity of clustering also differs based on two param-
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eters, grid search was utilized to cluster the climate data characteristics so

that they are correctly separated. Table 3.1 displays the change range and

interval for the parameters.

Density Based Clustering Validation (DBCV) is suited for density-

based clustering algorithms since it captures the shape attribute of clusters

via densities rather than distances. A weighted sum of cluster validity index

values ranging from -1 to 1 is calculated [54]. Close to 1 implies a superior

clustering result, and DBCV is used to evaluate grid search outcomes.
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Figure 3.1: Diagram of a micro-grid.
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Table 3.1: Parameter tuning for UMAP and HDBSCAN

Parameter Min Max Interval
Selected
parameter

HDBSCAN
Minimum cluster size 100 1000 100 400

Minimum samples 100 1000 100 100

UMAP
Number of neighbors 100 1000 100 800

Minimum distance 0.0 0.9 0.1 0.0
Metric euclidean, manhattan, chebyshev euclidean

27



Table 3.2: Parameters for models in a micro-grid

Parameter Value
GSTC 1000 W/m2

TC 25 °C
TC,STC 25 °C
vr 20 m/s
vcut−in 2.8 m/s
vcut−out 25 m/s
HHVH2 39.4 kWh/kg
ηEZ 0.7
ηFC 0.55
ηchar 0.95
ηdis 0.95
ηsto 0.95
ηrel 0.95
SoCmin 0.1
SoCmax 0.9
SoHmin 0
SoHmax 0.95
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3.2.3 Problem formulation

The objective of micro-grid design is to minimize the overall cost of

installation, operation, and maintenance for a particular climate (i.e., irradi-

ance and wind speed) and energy source requirements (i.e., hydrogen and

electricity). The design variables are the unit sizes of the micro-grid. The

unit sizes of the micro-grid are optimized using the model equation of each

unit above (Equations 2.1- 2.6), the objective function and constraints to be

describe following.

3.2.3.1 Objective function

Since the optimization problem is implemented with a one-year time

horizon as opposed to the entire project’s lifetime, the cost of the each unit

must be annualized for a fair comparison between components with varied

capital and operating costs [43]. The annualized cost (AC) of a component

can be calculated with the capital recovery factor (CRF) as follows [14]:

AC = NPC · CRF

CRF =
i (1 + ir)

N

(1 + ir)
N − 1

(3.1)

Note that above costs are defined as the cost per unit size, therefore, the

objective function J is the sum of the size of each unit multiplied by AC.
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J = P rat
PV ACPV + P rat

WTACWT + P rat
EZACEZ

+P rat
FCACFC + C ·ACBa + CH2 ·ACHT

(3.2)

where ACPV , ACWT , ACEZ , ACFC , ACBa, and ACHT are the an-

nualized cost of PV module, wind turbine, electrolyzer, fuel cell, battery, and

hydrogen tank respectively. The sizes of each unit, P rat
PV , P rat

WT , P rat
EZ , P rat

FC ,

C, and CH2 , are variables for optimization and determined to minimize the

cost while satisfying the constraint conditions.

3.2.3.2 Constraints

There are several constraints to design a realistic micro-grid. First, the

physical limitations of each process unit should be considered as follows

[10, 46]:

SoCmin ≤ SoC(t) ≤ SoCmax

SoHmin ≤ SoH(t) ≤ SoHmax

Pmin
EZ ≤ PEZ(t) ≤ Pmax

EZ

Pmin
FC ≤ PFC(t) ≤ Pmax

FC

(3.3)

where SoCmin and SoCmax are maximum and minimum SoC for bat-

tery, SoHmin and SoHmax are maximum and minimum SoH for hydrogen

tank, Pmin
EZ and Pmax

EZ are maximum and minimum consumed power for

electrolyzer, and Pmin
FC and Pmax

FC are maximum and minimum produced
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power for fuel cell. Pmin
EZ and Pmin

FC are set to zero indicating that the device

is powered off. Pmin
EZ and Pmin

FC are set to P rat
EZ and P rat

FC respectively as a

definition of rated power.

One of the objective of micro-grid design is to meet energy require-

ments, and is achieved as constraints instead of including it in the objective

function.

∥EL(t)− ELSP (t)∥≤ ϵ

∥HL(t)−HLSP (t)∥≤ ϵ

EL(t) = −PEZ(t) + PFC(t)− C (ηcharIchar − ηdisIdis)

+PPV (t) + PWT (t)

HL(t) = ṁEZ
H2

− ṁFC
H2

− CH2 (ηstoṁH2,sto − ηrelṁH2,rel)

(3.4)

where EL(t) and ELSP (t) are a electricity production rate to load demand

and its set point, HL(t) and HLSP (t) are a hydrogen production rate to

load demand and its set point, and ϵ is a threshold for load demands with a

small value.

Using the Big M approach, a conditional function of a wind turbine

is expressed as a linear combination of two binary variables to generate a

mixed-integer linear program.
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PWT (t) = z1P
rat
WT

(
v3 − v3cut−in

v3r − v3cut−in

)
+ z2P

rat
WT

(z1 − 1)M ≤ (v − vcut−in + ϵ) (vr − v + ϵ) ≤ z1M

(z2 − 1)M ≤ (v − vr − ϵ) (vcut−out − v + ϵ) ≤ z2M

(3.5)

where M is a very large positive value for Big M method and z1 and z2 are

two binary variables. If v is between vcut−in and vr, then z1 is 1, z2 is 0, and

PWT (t) equals to P rat
WT

(
v3−v3cut−in

v3r−v3cut−in

)
. If v is between vr and vcut−out, then

z1 is 0, z2 is 1, and PWT (t) equals to P rat
WT . If v is below vcut−in or above

vcut−out, z1, z2, and PWT (t) becomes 0.

3.2.3.3 Load demands

Electricity and hydrogen load requirements were taken into account. In

general, their values are described as random variables whose patterns in-

clude a decrease at night and an increase during the day, as well as seasonal

and geographic variation in demand [55, 56, 57]. To examine the climate

effect, we assumed that the demand for energy and hydrogen is the same in

all places and only considered a specific pattern within 24 hours, ignoring

seasonal and regional patterns. The load requirements were arbitrarily gen-

erated by adding white noise to a sine function. The range of the electricity

load demand was between 0.5 and 5 kW/hr and the range of the hydrogen

load demand was between 1 and 2 kg/hr.
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3.3 Result and discussion

3.3.1 Feature extraction and clustering of regional cli-
mate

Before clustering via HDBSCAN, to verify that HDBSCAN is proper

to cluster and manage climatic data according to their characteristics, clus-

tering results using various clustering algorithms were compared to each

other. Clustering algorithms are largely divided into partitional clustering,

hierarchical clustering, and density-based clustering, and representative al-

gorithms were selected for each type clustering respectively: K-means clus-

tering as a partitional clustering, Agglomerative clustering as a hierarchical

clustering, and the OPTICS algorithm as a density-based clustering. Grid

searches were performed for entire algorithms while changing the parame-

ters of UMAP and each algorithm. Silhoutte coefficients were used to assess

the cluster’s separability. According to [58], the Silhoutte coefficient repre-

sents the relative distance between points classified as belonging to the same

cluster and points classified as belonging to a different cluster. A value close

to 1 indicates that the cluster is distant from other clusters, while a value

close to -1 indicates the clusters are intermingled. To cluster feature data us-

ing the algorithms, parameters should be determined in advance: the number

of clusters should be determined for K-means clustering and Agglomerative

clustering, and the minimum samples and metric for OPTICS algorithm.

For each clustering method, grid search was implemented while changing

the parameters, and the parameter with the highest Silhoutte coefficient was

selected. K-means clustering separated features into 7 groups and its Sil-
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houtte coefficient is 0.63, Agglomerative clustering divided features into

5 groups and its Silhoutte coefficient is 0.62, and OPTICS algorithm clus-

tered features into 7 groups and its Silhoutte coefficient is 0.42. According to

the Silhouette coefficient, K-means clustering and Agglomerative clustering

seemed to separate features reliably whereas OPTICS algorithm was failed.

However, K-means clustering and Agglomerative clustering also show lim-

itations in separation. As shown in Fig. 3.2, two algorithms separated same

feature data, i.e., their clustering results are based on the same UMAP pa-

rameters. Agglomerative clustering did not classify the climates enough to

characterize their patterns, and in particular, it seems reasonable to separate

group 1 of the Agglomerative clustering into two groups: group 2 and group

5 of the K-means clustering. For K-means clustering, the boundary divid-

ing Group 3 and 7 doesn’t seem reasonable since there is a lack of basis

for separating the data near the boundary by a line, which is the limitation

of partitional clustering. Therefore, the algorthms identified above are in-

adequate for clustering climate data, and more complex method need to be

applied: the HDBSCAN was used in this study.
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(a)

(b)

Figure 3.2: Feature maps of regional climate data, (a) clusterd features using
K-means clustering, (b) clusterd features using Agglomerative clustering.
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As shown in Table 3.1, we searched 30,000 cases using a grid search

and initially excluded results divided into fewer than five, as climates in

the world would be heuristically divided into at least five regions: near the

equator, mid north latitude, high north latitude, mid south latitude, and high

south latitude. Then, cases with a DBCV score below 0.5 were eliminated.

The final instance was selected heuristically from the remaining cases based

on the climate graph of each cluster. Table 3.1 shows the selected case

parameters for UMAP and HDBSCAN. The cluster separability is reliable

given that the validation value of the clustering result was 0.61. Figs.3.3a

and 3.3b show the results of applying UMAP and HDBSCAN with the se-

lected parameters. Each point in Fig. 3.3a represents a region and its position

coordinate value is a 2-dimensional feature of irradiance and wind speed in

the region. When points are close together and in the same cluster, they have

comparable climates, and when they are far apart and in a separate cluster,

they have diverse climates. The regions are clustered into nine groups and

climate and regional characteristics for each group were evaluated.
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(a)

(b)

Figure 3.3: Feature maps of regional climate data, (a) two-dimensional ex-
tracted features using UMAP, (b) clusterd features using HDBSCAN.
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Table 3.3: Top 3 countries in each group and the number of regions in each
country.

Group Country Number of regions

1
China 809
Japan 189

South Korea 45

2
India 628

Mexico 256
Indonesia 144

3
Brazil 844

Australia 497
Argentina 265

4
France 376

United States 364
Russia 352

5
United States 464

Iran 146
Turkey 88

6
United States 1526

Canada 278
Japan 23

7
United States 853

China 54
Mexico 27

8
Spain 230
Italy 133

Portugal 61

9
Italy 109

France 45
Bulgaria 37
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Table 3.3 shows the top three nations in each group, as well as the num-

ber of regions in each nation. As a result of climate similarity, neighboring

countries are grouped together; for example, the United States and Canada

are in Group 6. If the latitudes are comparable, locations on different con-

tinents are classified into the same group, for instance, India and Mexico

are both in Group 2. Some nations such as the United States are included

in multiple groups, indicating that their climates are diverse. The clustered

features indicate geolocational climate characteristics such as annual mean

values and graph shape (see Fig. 3.4 and 3.5). Group 1 consists of loca-

tions in China, Japan, and South Korea, all of which have a rainy season.

The rainy season around June generates a plateau-like pattern in the an-

nual irradiance. In Group 2, India, Mexico, and Indonesia are located close

to the equator. Group 2 has a relatively high and consistent yearly irradi-

ance, which is characteristic of climate patterns around the equator. Group 3

comprises the majority of regions in the Southern Hemisphere (e.g., Brazil,

Australia, and Argentina), and has a typical pattern of irradiance that is low

around June and high at the end and beginning of the year. Group 5 has

a typical Northern Hemisphere irradiance pattern, which is shared by the

subsequent groups. They are classified by annual average or annual differ-

ence of irradiance and wind speed patterns. The Group 4 and Group 6 re-

gions have an annual wind speed of over 6 m/s and low irradiance; their

geographic locations include Russia and Canada at high northern latitudes.

Despite having comparable magnitudes and patterns of wind velocity, their

annual average irradiance differs significantly, classifying the regions into

two distinct groups (see Fig. 3.5 and Table 3.4).
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(a) (b)

(c) (d)

Figure 3.4: Irradince in a year of each group, (a) Group 1, (b) Group 2, (b)
Group 3, (b) Group 5.
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(a)

(b)

Figure 3.5: Climate data in a year of each group, (a) Group 4, (b) Group 6.
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(a) (b)

(c) (d)

Figure 3.6: Optimal sizes of each unit mapped on the feature map of regional
climate data, (a) PV module, (b) Wind turbine, (c) Electrolyzer, (d) Fuel cell.
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3.3.2 Optimization of micro-grid considering climate
variations

Letting project’s life time 25 years, the sizes of a micro-grid system

was optimized and the results are mapped on the feature map as shown in

Fig 3.6. It was found that each cluster has the characteristic given by the

optimal unit size. Each point in Fig. represents optimal unit size for each

region as Fig. . As depicted in Figs. 3.6a and 3.6b, Groups 2 and 3 have

dark points for wind turbines due to their small scale, whereas Group 9 has

bright points for PV modules, indicating that it has large-scale units. Group

3 is also characterized by dark points for electrolyzer and fuel cell compared

to the other groups (see Figs. 3.6c and 3.6d). While certain groups are

distinguished by the size of each unit, regions in Group 4 and 6 exhibit a

wide size variability, particularly for PV modules and wind turbines. This

indicates that climatic conditions have a significant impact on the optimal

unit sizes for Group 4 and 6, i.e., that they are sensitive to climate change.

Despite regions belonging to the same country, the form of optimal

micro-grid is different since a climatic diversity exists in the country as men-

tioned in Section 3.3.1 Fig. 3.7 show 20 random samples from Groups 5 and

6 to investigate how optimal sizes were determined for each region. Most of

the regions in both groups are located in the North America. Group 5 utilizes

PV modules as their primary source of electricity, whilst Group 6 uses both

types of generators. The regions with PV modules have wind turbines of rel-

atively small size, and the unit sizes appear to have particular correlations.

The unit sizes of the electrolyzer and fuel cell increase in proportion to the
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size of the PV module as shown in Fig. 3.7a. Such a relationship between

PV modules and other units has been identified as a significant component

in the increase of the overall cost, as PV module and other unit sizes increase

simultaneously. As illustrated in Fig. 3.7b, it is difficult to identify a trend in

the sizes of the units in regions with wind turbines due to the simultaneous

use of both electric generators. The results indicate that a design for micro-

grid should consider climates in the region. To identify trends of optimal

micro-grids regarding climatic patterns, the climatic characteristics and the

optimization results of each group were compared.
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Figure 3.7: Unit sizes of 20 sample regions in each group, (a) Group 5, (b)
Group 6.
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(a) (b)

(c) (d)

Figure 3.8: Optimization results, (a) optimal sizes of PV module (b) optimal
sizes of wind turbine, (c) optimal sizes of battery, (d) total costs.
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Table 3.4: Climate data in each group

group
Climate

irradiance
(W/m2)

wind speed
(m/s)

1
mean 156.23 4.89

standard deviation 25.46 1.04

2
mean 214.61 4.09

standard deviation 32.83 1.50

3
mean 213.25 5.41

standard deviation 39.57 1.53

4
mean 136.44 6.25

standard deviation 24.06 1.27

5
mean 224.19 4.75

standard deviation 25.55 1.06

6
mean 177.50 6.88

standard deviation 28.34 0.79

7
mean 188.77 4.62

standard deviation 20.03 0.80

8
mean 195.96 5.51

standard deviation 16.73 0.84

9
mean 167.25 3.54

standard deviation 19.74 0.76
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The optimal size distribution of units in each group is depicted as a

graph of rain clouds in Fig. 3.8. In the graph, the length of a rain cloud

represents the variance of the distribution, and each rain cloud belongs to

a distinct group. Only the distribution graph for optimal sizes of PV mod-

ule, wind turbine, and battery and total cost in each group to be analyzed

intensively is shown in Fig. 3.8, and overall distribution graphs are shown

in the Appendix. There is a difference in the average size of each group

and the wideness of the distribution also differs from each group. PV mod-

ule and wind turbine are electric generators, and the optimization results

of each group were substantially divided into two categories based on the

electric generator that was mainly used. PV modules are the primary elec-

tric generator for Groups 1, 2, 3, 5, 7, and 9, while wind turbines are the

primary generator for Groups 4, 6, and 8 (see Fig. 3.8a and 3.8b). Such a

result appears to be a result of the variance in annual wind speed; the lat-

ter groups that use wind turbines as the main generator exhibit the highest

annual wind speed (refer Table 3.4). The wind speeds of the former groups

that use PV modules as the main generator are likewise determined to be

below the cut-in speed. As shown in Fig. 3.8c, the battery unit is essential

for the former groups. Solar power generation cannot be utilized when there

is less sunlight (e.g., long night time or rainy season), so the comparatively

large-sized battery serves as a buffer.

The optimal unit sizes are found to depend on climatic characteristics.

The results of Groups 1, 5, and 7 indicate that the PV module size decreases

as the yearly average irradiance increases. They have comparable yearly av-

erage wind speeds, around 4.7 m/s, but differing annual average irradiances.
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Due to the rainy season, Group 1 has the lowest annual average irradiance at

156.23 W/m2, followed by Group 7 at 188.77 W/m2 and Group 5 at 224.19

W/m2, the highest value among them. The optimal size of PV module was

smaller in the order of Groups 5, 7, and 1 (see Fig. 3.8a and Table 3.4), in-

dicating an inverse relationship between yearly average irradiance and PV

module size.

When there is no significant difference between yearly average irradi-

ance, the annual irradiance difference has a bigger impact on optimal size

for Groups 2 and 5 than for the average. The average annual irradiance is

larger in Group 5, but the sizes of PV module are also larger (see Fig. 3.8a

and Table 3.4). As illustrated in Fig. 3.4b and 3.4d, the reason for this result

was determined to be the yearly irradiance difference. If annual irradiance

is nearly constant, PV modules provide electricity consistently. Otherwise,

if irradiance varies over the course of a year, PV modules cannot match load

needs when irradiance is low. In order to generate sufficient power even

during periods of low irradiance, the optimal size of PV modules should be

increased. In terms of cost, the larger the PV module size and the greater

the cost, the lower the yearly average and the greater the annual variance.

Group 2 had the lowest annual difference and the highest average annual

irradiance, resulting in the lowest total cost as shown in Fig. 3.8d.

In certain regions, it is possible to avoid the optimal size of PV module

from becoming excessively large by adding wind energy. In accordance with

Fig. 3.8a and Table 3.4, the optimal PV module sizes for Group 9 are greater

than those for Group 5, validating the above study, i.e., the lower the yearly

average irradiance, the larger the PV module size. Group 9 should employ
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PV modules that are twice as large as Group 5 due to their lower annual

irradiation and wind speed. In particular, the wind turbine cannot be used

as a power generator due to the low wind speed. Despite the lower annual

irradiance, the optimal PV module dimensions for Group 8 are comparable

to those for Group 5. This is because the wind turbine was utilized to subsi-

dize solar energy production in Group 8. In lieu of increasing the size of the

PV module, efficient power generation was achieved by installing a wind

turbine of the same size. As shown in Table 2.1, wind turbines are less ex-

pensive than PV modules, and Fig. 3.8d demonstrates that the total costs of

Group 9 were significantly higher than those of Group 5, whereas the total

costs of Group 8 were comparable to those of Group 5, indicating that the

costs of micro-grids in Group 8 were economical. Group 8 includes Spain

and Italy, which are favorable regions for hybrid power generation.

When a wind turbine is employed as the primary electric generator,

overall sizes of micro-grid are susceptible to climate change and the total

cost of micro-grid is likely to be significant. As indicated in Table 3.4, the

wind speeds in Groups 4 and 6 are the highest, and a wind turbine was cho-

sen as the primary power generator for those groups. Since the power output

of wind turbines is nonlinear to wind speed (see Equation 2.2), wind speed

has a considerable effect on the sizes of wind turbines in Group 4 and 6,

which have a wide range of sizes. In particular, the average size of the wind

turbines in Group 4 was greater than that of the other groups, and the largest

wind turbine was also included in Group 4 to supplement the insufficient

solar power generation due to the lowest annual average irradiance, 136.44

W/m2, as shown in Fig. 3.8b and Table 3.4. Consequently, the utilization of

50



a wind turbine is contingent upon both wind speed and irradiance. Addition-

ally, wind speed impacts the size of a PV module in Group 4. PV module

becomes a primary power generator when wind power is inefficient, and

wind speed of Group 4 lies on the boundary between efficient and ineffi-

cient wind power, resulting in a wide range of PV module sizes. The total

costs for Group 4 were the highest as shown in Fig. 3.8d. The results indicate

that micro-grid, which relies mainly on wind power due to low irradiance,

is economically inefficient.
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(a)

(b)

Figure 3.9: Optimization results for a single type of power generator, (a) a
case using only wind turbine, (b) a case using only PV module.
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Assuming a single type of power generator rather than a hybrid, i.e.,

PV module or wind turbine, optimization was performed and compared to

a hybrid micro-grid. When a wind turbine is an unique power generator,

every group has a large variance of sizes in wind turbines as well as total

costs (see Fig. 3.9a). Resulting in similar optimal designs across the entire

groups, the sizes of wind turbines exceed up to 75,000kW and the total

costs are more than up to 20,000k$, which also indicates that a micro-grid

based solely on a wind turbine is uneconomical. As shown in Fig. 3.9b,

a micro-grid only utilizing a PV module is similar to a hybrid micro-grid

except for Group 4 and 6. Groups 4 and 6 are climatically inefficient to

rely solely on PV modules. Group 8 also has larger sizes in PV modules

and higher total costs than hybrid cases since wind turbines do not exist

as auxiliary power generators. The other groups, which mainly depends on

PV modules in the cases of a hybrid micro-grid, shows similar sizes in PV

modules and total costs. Through these two scenarios, it was confirmed that

climatic characteristics of the region should be considered and the design of

a micro-grid suitable for climates is necessary.

3.3.2.1 Intensive analysis for South Korea’s climate and
optimal results

As aforementioned, Group 1 has a distinctive pattern in the annual ir-

radiance and South Korea’s regions have also the pattern. However, not all

regions in South Korea fall into Group 1, and two regions in South Korea are

included in Group 6: Busan and Jeju. To identify factors that divided the two
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regions and the other regions in South Korea into different groups, the cli-

mate of the Korean region belonging to Groups 1 and 6 was compared with

the climate of the other regions. Figure 3.10 shows results of comparing the

climate of South Korean regions in Group 1 and other regions in Groups 1

and 6. Both patterns of irradiance and wind speed of South Korean regions

in Group 1 are more close to those of Group 1 than Group 6. On the other

hand, in the case of South Korean regions in Group 6, pattern of irradiance is

more close to that of Group 1 than Group 6, whereas pattern of wind speed

is more similar to that of Group 6 than Group 1 as shown in Figure 3.11.

Since irradiance pattern of Busan and Jeju is similar to Group 1, not Group

6, the factor that made the two regions belong to Group 6 is the pattern of

wind speed. Normalized root mean square error (NRMSE) metric was used

to numerically confirm the degree of similarity between the climates. As in-

dicated in Tables 3.5 and 3.6, for South Korean regions in Group 1, both

NRMSE values compared to other regions in Group 1 are smaller than those

compared to other regions in Group 6, resulting the regions fall into Group

1. For South Korean regions in Group 6, however, NRMSE value of irradi-

ance compared to other regions in Group 1 is smaller than that compared to

other regions in Group 6, whereas NRMSE value of wind speed is the oppo-

site. Nevertheless, difference of NRMSE value of wind speed compared to

other regions in Group 1 is much larger than that compared to other regions

in Group 6, and hence, the regions fall into Group 6.
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(a)

(b)

Figure 3.10: Climate of South Korean regions in Group 1 and other regions
in Groups 1 and 6, (a) irradiance, (b) wind speed.
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(a)

(b)

Figure 3.11: Climate of South Korean regions in Group 6 and other regions
in Groups 1 and 6, (a) irradiance, (b) wind speed.
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Table 3.5: Normalized root mean square error of irradiance.

South Korea
Group 1 Group 6

Other regions
Group 1 3.04 3.56
Group 6 6.71 9.66
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Table 3.6: Normalized root mean square error of wind speed.

South Korea
Group 1 Group 6

Other regions
Group 1 2.51 3.51
Group 6 21.04 5.87
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Based on the results of comparing climate data, we investigated the re-

sults of South Korean techno-economic analysis. First, in the case of Group

1, the average annual irradiance is high, thus the size of the PV module is

smaller than the average in other regions. The average annual wind speed

is also high, but it is still not economical to use wind power, and most of

them focus on solar power generation. However, the sizes of the equipment

or the total cost is almost on the average of other regions, These results in-

dicate that the corresponding South Korean regions have typical climates of

Group 1, resulting the regions have typical micro-grid structures. Next, in

the case of Group 6, the average annual irradiance in South Korea is lower,

but the average annual wind speed is higher than the other regions. Since

the average annual irradiance is lower, the size of the PV module should be

increased, however, higher wind speed induces sufficient wind power gen-

eration that compensates for this and prevent PV module from enlarging.

Moreover, since wind power is proportional to the cube of the wind speed,

it is possible to generate sufficient power with smaller wind turbine, and

overall cost is also less compared to the other regions. As a result, South

Korean regions of Group 6 are able to design and operate micro-grids that

are economically advantageous.

3.3.3 Sensitivity analysis on the optimal unit sizes to
climate variability

Variations in irradiance and wind speed were subjected to a sensitiv-

ity analysis to determine their effect on the optimal sizes of process units.
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In general, sensitivity analysis is conducted for both positive and negative

input variable changes. However, after completing sensitivity analysis, in-

put changes in the opposite direction only result in output changes with the

opposite sign, and the sensitivity scale is similar in both directions. Con-

sequently, it would require a long analysis with comparable explanations

to demonstrate all four outcomes: irradiance increase, irradiance decrease,

wind speed increase, and wind speed decrease. Instead of using these typ-

ical climate changes, the actual climate changes of each group were taken

into account for sensitivity analysis, and the results are anticipated to pro-

vide realistically applicable information for planning and operating the P2G

process.

Based on 11 years of climate data from 2010 to 2020 for each group,

the amount and direction of climate change were determined. The standard

deviation of yearly irrandiance and wind speed was calculated, and climates

were shifted by 10% of the standard deviation. The direction of the change

was determined by the trend of climate changes over 11 years; for example,

the climate was shifted in a negative direction if the trend line of the average

annual climate for 11 years derived using linear regression slopes down-

ward. Table 3.7 displays the magnitude and direction of climate change for

each group. On the basis of the shifted climates, the optimal sizes of process

units in each group were determined and nine groups were classified into

four types based on their sensitivity to climate change and the direction of

the change: climate-sensitive with the same direction (Type S+), climate-

sensitive with the opposite direction (Type S-), climate-insensitive with the

same direction (Type I+), and climate-insensitive with the opposite direction
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(Type I-). The term "climate-sensitive" refers to the sensitivity of optimal

unit sizes to climate changes. Same direction shows that the annual irradi-

ance and wind speed vary in the same direction, whereas opposite direction

suggests the contrary. Table 3.7 shows which type each cluster belongs to.

Climate change shift the optimal sizes of micro-grid, and a decrease in cli-

mate generally leads to an increase in unit size because, for instance, a larger

PV module is required to generate sufficient power with reduced irradiance

to meet both types of load demands. In this work, since the climate shift

directions for each cluster are distinct, we analyzed sensitivity using the

absolute value of the changes to compare the rates of changes in different

directions.
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Table 3.7: Shift ratio and direction of each group

group
Shift ratio (%) Shift direction

Type
irradiance wind speed irradiance wind speed

1 2.13 4.21 increase decrease I-
2 1.20 3.38 increase decrease I-
3 1.49 3.44 increase decrease I-
4 2.08 3.98 increase increase S+
5 1.10 4.27 increase decrease I-
6 1.86 3.91 decrease decrease S+
7 1.83 3.71 decrease decrease I+
8 1.38 4.55 increase decrease S-
9 1.71 4.62 increase increase I+
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(a) (b)

(c) (d)

Figure 3.12: Sensitivity results, (a) PV module, (b) wind turbine, (c) battery,
(d) total cost.
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As shown in Fig. 3.12, Type I+/- exhibits less unit size variation than

Type S+/-. When annual irradiance increases between 1.10–2.13% and an-

nual wind speed falls between 3.38–4.27%, only the size of the PV mod-

ule is reduced by 3.60±0.03% in Type I-. Type I+ demonstrates a change

in PV module size of 5.46±0.08% and a modest change in wind turbine

size of 2.02±0.28%. Therefore, the overall size of the micro-grid in Type

+/- is insensitive to climate change because they did not deploy wind tur-

bines or there was minimal change in wind turbines. In Type S+/-, however,

the PV module and, in particular, the wind turbine were modified, leading

in major modifications to the unit sizes of the process. Type S+ requires

a 6.79±0.13% increase in PV module size and a 13.02±0.15% increase

in wind turbine size when annual irradiance decreases between 1.86 and

2.08% and annual wind speed falls between 3.91 and 3.98%. As depicted

in Fig. 3.12a and 3.12b, the modifications are two to four times that of

the other categories. Moreover, while both the original unit sizes and the

sensitivity to climate change in Type S+ were substantial, the adjustments

to the scale were the most important. According to Tables 3.3 and 3.7,

nations such as the United States and Canada are Type S+, therefore cli-

mate variability must be taken into account while developing and managing

micro-grid systems.

Even though the size of the PV module and wind turbine changed

by 2.91±0.14% and 17.90±1.74%, respectively, in Type S-, the total cost

change was the smallest of all kinds, as shown in Fig. 3.12d. This is due to

the fact that Type S- micro-grids employ a trade-off between PV modules

and wind turbines to offset the overall changes, which other types of micro-
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grids could not achieve. When the bulk of the annual wind speed falls below

the cut-in wind speed, the wind turbine cannot generate sufficient and effi-

cient power. Therefore, it is reasonable to replace wind turbines with photo-

voltaic modules as the primary source of energy. This trade-off is intensified

when yearly irradiance increases. Sharp changes of the battery in Type S-

indicate the existence of a trade-off (see Fig. 3.12c), as the battery is a nec-

essary unit as a buffer when the PV module is the only power producer. The

cost savings of wind turbines offset the cost increases of PV modules and

batteries, resulting in the smallest rise in total cost. Due to the identical shift

direction of annual irradiance and wind speed, the ratio of cost change was

bigger in Type S+ and Type I+ regions than in Type S- and Type I- regions,

indicating that the trade-off is unachievable. Due to the identical shift orien-

tation and utilization of wind turbines, Type S+ has the greatest cost costs.

Type I+ has fewer cost transitions than Type S+ due to the infrequent use of

wind turbines, while Type I- has even fewer cost transitions because there

is no change in wind turbine size (see Fig. 3.12b). Although cost-effective

micro-grid systems can be attained through Type S- trade-offs, the abrupt

differences in unit sizes make it difficult to identify a suitable design and to

maintain it for years. Therefore, the Type S- regions should be handled with

care. For example, when the battery is modularized in a structure consisting

of small modules connected in series as opposed to one large module, it can

accommodate both small and large battery cases. European regions near the

Mediterranean are of Type S- as indicated in Table 3.3 and 3.7.
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Chapter 4

Energy management and design of multi-stack
micro-grid under climatic uncertainty

4.1 Introduction

The NOAA (National Oceanic and Atmospheric Administration) noted

that Global temperatures have risen at a rate of 0.18 °C each decade since

1981, which is twice as fast as before and it was the second warmest year on

record in 2019 [2, 3]. Due to the growing interest in the global climate cri-

sis, research on power generation or power-to-gas using renewable energy

has been implemented [4, 5] and research on the micro-grid utilizing renew-

able energy has increased [6]. Techno-economic analysis of a micro-grid has

been investigated and the sizes of the equipment such as photovoltaic (PV)

modules, electrolyzers, and fuel cells in a micro-grid have been optimized.

For instance, the sizing problems for micro-grids that consist of PV mod-

ule, wind turbine, diesel generator, electrolyzer, fuel cell, and a load have

been solved [7, 8, 9]. A stand-alone micro-grid based on hybrid renewable

energy sources has been optimized [10, 11, 12, 13, 14, 15]. Considering

life-cycle cost, renewable energy penetration, and pollutant emission as the

objective function, the sizes in a stand-alone micro-grid have been optimized
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based on rule-based operation [16]. Research on energy management system

(EMS) have been conducted to facilitate the efficient and secure operation

of a micro-grid. EMS has been developed through model predictive control,

dynamic programming, mixed-integer linear programming, and nonlinear

programming [17]. In particular, EMS of a micro-grid with renewable en-

ergy sources has considered uncertainty of renewable energy due to vari-

ability and intermittent nature in the renewable energy. Two stage stochas-

tic programming has been formulated based on scenario-method, consid-

ering optimal sizing and operations simultaneously [21]. With parameter-

ized renewable power, optimal explicit rule has been obtained on off-line in

advance to operate a micro-grid [19]. Energy management of a renewable

micro-grid has been optimized using SAM-theta-PSO algorithm to consider

uncertainty [20]. There are micro-grids composed of multi-stack equipment

and their EMS has also been developed. A multi-stack micro-grid has ad-

vantage of reducing operation and management costs and saving lifetime of

equipment via scheduling on and off of each stack. The usage of multi-stack

fuel cells has been scheduled to minimize costs of equipment and meet load

demands [22, 23, 24]. Different types of multiple batteries in a micro-grid

have been operated to minimize battery life consumption and meet load de-

mand [25]. It is necessary to consider a trade-off between economies of scale

and efficiency of operations when deciding the number of stacks and their

sizes. When equipment is divided into multiple stacks and a size of a stack

becomes smaller, costs of equipment increase due to failure of economies of

scale [26]. At the expense of economies of scale, a multi-stack micro-grid

can be more economic through efficient operations especially when oper-

67



ating a micro-grid at best operating level. Operations of a micro-grid with

renewable energy sources depend on climatic condition, thus the number of

stacks and their sizes should be decided according to climatic influences for

efficient operations and equipment’s safety.

There have been studies on managing energy distributions for a micro-

grid with robust or stochastic programming, which considers climate un-

certainty. A robust optimization considered uncertainties of wind power to

manage the mixture composed of hydrogen, liquid Petroleum gas, and Ni-

trogen and maximize hydrogen injection [27]. Adopting integer variables

to describe on-off state of power generator and energy storage system, sce-

nario based stochastic mix-integer linear programming has optimized the

cost function [28, 29]. Adaptively constrained model predictive control for

a micro-grid has been suggested with chance constraints for boundaries of

state-of-charge in the battery [30]. Despite diverse approaches to handle un-

certainty in a renewable micro-gird with stochastic optimization, there have

been the lacks of research on a micro-grid with multi-stack units. In addi-

tion, few studies have considered climatic effects on design of multi-stack

micro-grids and investigated relationships between economies of scale and

efficiency of operations. Although a study has optimized cost by size of the

battery and EMS of a hybrid renewable energy system at the same time us-

ing two-stage stochastic decision problem [59], a micro-grid was composed

of single equipment and economies of scale were disregarded.

To address these issues, we suggest a novel mixed-integer stochas-

tic programming (MISP) to simulate a multi-stack micro-grid under cli-

mate uncertainty. Stochastic optimization includes probabilistic constraints
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which are transformed into a deterministic form with algorithms such as

stochastic tube method, scenario-based method, and scenario-tree method

[60]. When a micro-grid comprises multiple equipment, decision variables

in EMS increase, thus it is improper to use scenario-based stochastic opti-

mization or scenario-tree method which already conducts scenario reduc-

tion algorithms to decrease computational burdens [61]. Therefore, MISP in

this paper was formulated using stochastic tube method to prevent compu-

tational costs from enlarging excessively. We evaluate performance of the

proposed method compared to mixed-integer programming which is uncon-

cerned about uncertainty. To analyze a trade-off between economies of scale

and efficiency of operations under climatic variability, design of multi-stack

micro-grids were determined via grid-search among the candidates using

real climate data and the suggested MISP. Through this approach, we vali-

dated the better performance of the suggested MISP for a multi-stack micro-

grid, confirmed importance of considering climatic variability when a de-

sign of renewable micro-grid covers multiple stacks of equipment, designed

multi-stack micro-grids in two different cities, and verified climatic effects

on the trade-off.

In Section 4.2.1, modeling and stochastic programming for a multi-

stack micro-grid system were formulated, and we figured out regional cli-

matic variability influence the trade-off between economies of scale and

efficiency of operations in Section 4.3.1
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4.2 Method

4.2.1 Objective function

Although the project’s lifetime in the techno-economic analysis of a

micro-grid is over 20 years, operating time in our EMS is in hours, thus the

costs are converted to an hourly rate instead of using the annualized costs.

EMS performs on-off scheduling to make a micro-grid costly efficient,

reducing O&M costs and delaying replacements of units. The cost saving

operation is accomplished through reflecting ratio of actual operated time to

the entire period on the O&M cost, replacement cost, and salvage value with

binary variables which indicates the on-off state of each unit. Thus Equation

2.7 is modified as:

NPC = Ccap +
N∑

n=1

id · COM
zn
N

+ iNd

(
CrepInteger

(∑N
n=1 zn
Rep

)
− S

)

S = Crep
Rem

Rep

id =
1

(1 + ir)
n

iNd =
1

(1 + ir)
N

ir =
in − f

1 + f

(4.1)

where zn denotes the on-off state of each unit at time n.

In addition, economies of scale should be considered when a single

unit is divided into multi-stacked unit. The costs for multi-stacked units are
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measured using the ".6 rule" as a capacity of each unit decreases [26].

C2

C1
=

(
X2

X1

)0.6

(4.2)

where C1 and C2 are the costs of two units and X1 and X2 are the capacities

of them respectively.

4.2.2 Irradiance and load demands

For simulation of EMS, irradiance data in Washinton, United States

consist of hourly data with about 4000 days from 2010 to 2020 and were

collected from the Prediction of Worldwide Energy Resource (POWER)

Project’s Hourly 2.0.0 version on 2022/01/21 [47]. Randomly selected dates

compose irradiance scenario that is assumed as real irradiance distribution.

As the prediction data, 1000 pieces of data similar to the real irradiance ob-

served up to the present are estimated and one of them is randomly selected

at every time step. Fig. 4.1 shows an instance of real and predicted irradi-

ance. Global climate data were gathered from the Prediction of Worldwide

Energy Resource (POWER) Project’s Hourly 2.0.0 version on 2022/01/21.

[47]. For design of hybrid micro-grids with PV module and wind turbine, we

collected irradiance and wind speed data for 8,760 hours by scraping open

sources in National Aeronautics and Space Administration (NASA) Langley

Research Center and implemented clustering based on the data. Electricity

and hydrogen load requirements were taken into account. In general, their

values are described as random variables whose patterns include a decrease

at night and an increase during the day. The load requirements were arbi-
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trarily generated by adding white noise to a sine function for simulations.

The range of the electricity load demand was between 0.5 and 5 kW/hr and

the range of the hydrogen load demand was between 1 and 2 kg/hr.
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Figure 4.1: Real irradiance and predicted irradiance.
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4.2.3 Mixed-integer stochastic programming for a multi-
stack micro-grid

Assuming equipment of a micro-grid consist of multiple stacks except

for PV module, modeling was implemented for on-off scheduling of the

micro-grid. Suggested model includes binary variables for each unit’s on-

off state and continuous variables for power and hydrogen flows and control

inputs, which means mixed-integer formulation. State of a micro-grid is the

ratio of charged power in each battery to its capacity and the ratio of the

volume of stored hydrogen to the tank’s size. Batteries have a role to buffer

power generated from PV module, thus the power flows from PV module

to battery at first and is delivered to other units by discharging the battery.

While battery’s SoC is fluctuated through charging from PV module and

fuel cell and discharging to electrolyzer and electricity load, hydrogen tank

stores hydrogen produced from electrolyzer and releases it to fuel cell and

hydrogen load.

dP i
ba,t = P i

pv,t +

Nfc∑
l=1

P il
fc,t −

Nez∑
k=1

P ik
ez,t − P i

el,t

SoCi
t+1 = SoCi

t +
ηba
Ci

dP i
ba,t

∀i ∈ 1, ..., Nba

(4.3)
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dḢ2
j
t =

Nez∑
k=1

Ḣ2
jk
ez,t − Ḣ2

j
hl,t −

Nfc∑
l=1

Ḣ2
jl
fc,t

SoHj
t+1 = SoHj

t +
ηht

Cj
H2

dḢ2
j
t

∀j ∈ 1, ..., Nht

(4.4)

The power consumption of electrolyzer and power generated from fuel

cell are limited by equipment’s size and powers should be zero if the equip-

ment is off. Consequently, the optimization problem for on-off scheduling

is formulated as follows:

minE [NPC in Equation 4.1]

s.t. model in Equations 2.1-2.4 and 4.3-4.4

SoCmin ≤ SoCi
t ≤ SoCmax

SoHmin ≤ SoH i
t ≤ SoHmax

−ziba,tM ≤ dP i
t ≤ ziba,tM

−zjht,tM ≤ dḢ2
j
t ≤ zjht,tM

∀i ∈ 1, ..., Nba

∀j ∈ 1, ..., Nht

P sp
el,t − ϵ ≤

Nba∑
i=1

P i
el,t ≤ P sp

el,t + ϵ

Ḣ2
sp
hl,t − ϵ ≤

Nht∑
j=1

Ḣ2
j
hl,t ≤ Ḣ2

sp
hl,t + ϵ

(4.5)
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where ziba,t and zjht,t are binary variables that denote the on-off state of bat-

tery and hydrogen tank respectively, and SoCmin and SoCmax represents

the minimum and maximum values of SoC, SoHmin and SoHmax repre-

sents the minimum and maximum values of SoH, P sp
el,t and Ḣ2

sp
hl,t are the

load demands of electricity and hydrogen at time t, and M is a large posi-

tive real value for big-M method.

Since uncertainty of irradiance makes PV module’s power output stochas-

tic, it directly influences SoC of each battery. Converting boundaries of SoC

in Equation 4.5 to chance constraints, Equation 4.5 becomes stochastic pro-

gramming to handle the uncertainty. The chance constraints that satisfies the

boundaries with a probability of 1-β is as follows.

Pr
[
SoCmin ≤ SoCi

t ≤ SoCmax

]
≥ 1− β, ∀i ∈ 1, ..., Nba (4.6)

To relieve correlations between chance constraints of SoC, P i
pv,t is as-

sumed as independent and identically distributed random variable (i.i.d.).

Still, the chance constraint for each battery in Equation 4.6 is a joint chance

constraint, thus stochastic tube method is inapplicable. The joint chance

constraints were relaxed into single chance constraints using Bonferroni in-

equality.

Pr
[
SoCmin ≤ SoCi

t ≤ SoCmax

]
≥ Pr

[
SoCi

t ≥ SoCmin

]
+ Pr

[
SoCi

t ≤ SoCmax

]
− 1

Therefore, Equation 4.6 is satisfied if the following equation is satis-
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fied:

Pr
[
SoCi

t ≥ SoCmin

]
+ Pr

[
SoCi

t ≤ SoCmax

]
≥ 2− β

∀i ∈ 1, ..., Nba

(4.7)

and Equation 4.7 can be divided into two inequalities, converting a joint

chance constraint into two single chance constraints.

Pr
[
SoCi

t ≥ SoCmin

]
≥ 1− β1

Pr
[
SoCi

t ≤ SoCmax

]
≥ 1− β2

β = β1 + β2, ∀i ∈ 1, ..., Nba

(4.8)

P i
pv,t must be zero mean random variables in order to use stochastic

tube method, thus P i
pv,t is substracted by its expectation value. Since P i

pv,t

is assumed as i.i.d., expectation of P i
pv,t equals to fraction of the expected

whole PV module’s power output which is the averaged values obtained

through Monte Carlo sampling based on real climate data set.

P̂ i
pv,t = αi

tP̂pv,t

P̂pv,t =
1

Ns

Ns∑
s=1

Ppv,t,s

P̃ i
pv,t := P i

pv,t − P̂ i
pv,t

(4.9)

where P̂ i
pv,t and P̂pv,t represent the averages of P i

pv,t and Ppv,t, P̃ i
pv,t repre-

sents the error of P i
pv,t that is a zero mean random variable, and Ns is the

77



number of samples for Monte Carlo sampling.

According to stochastic tube method, Equation 4.9 is reformulated to

hard constraints with inverse cumulative density functions of P̃ i
pv,t as:

Pr
[
SoCi

t ≥ SoCmin

]
≥ 1− β1

⇒ SoCmin − SoCi
t ≤ F−1 (β1)

Pr
[
SoCi

t ≤ SoCmax

]
≥ 1− β2

⇒ SoCmax − SoCi
t ≥ F−1 (1− β2)

where F is the cumulative density function of P̃ i
pv,t.

F−1 (β1) and F−1 (1− β2) are decided by the approximated inverse

cumulative density function through Monte Carlo sampling as shown in Fig.

4.2.

78



0 200 400 600 800 1000
Irradiance (W/m2)

0

200

400

600

800

1000
Nu

m
be

r o
f s

am
pl

es
Cumulative distribution

Figure 4.2: Cumulative distribution function of irradiance.
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4.3 Result and discussion

4.3.1 Size decision of a multi-stack micro-grid under
climate uncertainty

A multi-stack micro-grid is operated at a best operating level based on

EMS with MISP, thus a trade-off between economies of scale and effective

operations is considered to determine the number of stacks and their sizes.

For case study, total sizes of process units are given as 500kW for a PV

module, 2000kW for an eletrolyzer, 1000kW for a fuel cell, 2000kWh for a

battery, and 1000kg for a hydrogen tank. It is assume that each unit except

PV module can be divided into maximum 4 parts, i.e., a large single unit,

two units of 3:1 or 1:1, three units of 2:1:1, and four equal size units. The

costs of small size stacks are calculated with Equation 4.2 based on the

total sizes. Since each equipment has 5 types and there are four kinds of

equipment in a micro-grid, the total number of possible micro-grid’s types is

625. Simulating each type of micro-grid for 10 iterations, the most economic

type is selected among them. In addition, simulations were conducted and

their results were compared based on data from two different regions in

order to verify the influence of climatic patterns on the trade-off between

economies of scale and effective operations.
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Table 4.1: Specifications of multi-stack micro-grid

PV module Electrolyzer Fuel cell Battery Hydrogen tank

Pingliang,
China

500 kW

500 kW
500 kW

1500 kWh
500 kg

500 kW
500 kW 250 kW 250 kg
500 kW 250 kW 500 kWh 250 kg

San
Bernardino,

United States
500 kW

500 kW
500 kW 1000 kWh

250 kg
500 kW 250 kg
500 kW 250 kW 500 kWh 250 kg
500 kW 250 kW 500 kWh 250 kg
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Figure 4.3: Daily irradiance, (a) Pingliang in China, (b) San Bernardino in
United States.
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Figure 4.4: size decision of multi-stack micro-grids in two regions, (a) Total
cost for single unit micro-grids, (b) Total cost for multi-stack micro-grids,
(c) Ratio of saving total cost for multi-stack micro-grids, (d) Ratio of saving
operation and management cost for multi-stack micro-grids.
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As shown in Fig. 4.3, irradiance data from Pingliang in China and San

Bernardino in United States were used to find the most economic multi-

stack structure, and their climate are different noticeably. Pingliang in China

has a more intermittent irradiance than San Bernardino in United States. The

total cost of a single unit micro-grid for each region is shown as in Fig. 4.4a

and similar each other with slight dispersion. Through a grid search across

625 candidates, the minimum multi-stack structure at every iteration was

determined and their distributions of total cost are shown in Fig. 4.4b and the

structure was indicated in Table 4.1. A multi-stack micro-grid in Pingliang

has less divided structure, thus has the advantage of economies of scale.

In spite of the initial similar distribution, the total cost of optimal struc-

ture was different in each region, which means climatic characteristics af-

fects a trade-off between economies of scale and advantages of flexible

operations. Fig. 4.4c indicates that a multi-stack micro-grid under climate

of Pingliang in China achieved more economical benefits from separat-

ing equipment into multi-stacks. Comparing cost saving ratio, while the

micro-grid in San Bernardino still saved more than 80%, the micro-grid

in Pingliang cut down expenses almost 90%, and 1-quantile of total cost of

Pinglinag’s micro-grid is higher than 3-quantile of that of San Bernardino’s

micro-grid.

Nonetheless, the micro-grid in Pingliang did not achieve the economic

strategy from efficient scheduling. Cost saving ratios by operations are sim-

ilar in both micro-grids, indicating the micro-grid in San Bernardino sur-

mounted economies of scale via more flexible scheduling (see Fig. 4.4d).

Variance of cost saving ratio by operations in Pingliang is larger than that
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in San Bernardino due to climate variability. Although two regions saved

operating costs at the similar level, economies of scale made the micro-grid

in Pingliang save more total cost. Still, two regions attained more than 80%

of cost saving in average, and we confirmed economic advantages of multi-

stack micro-grids regarding to single unit micro-grids. In addition, climatic

variability has a considerable influence on design of a multi-stack micro-

grid.
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Chapter 5

Concluding remarks

Plentiful renewable energy sources are essential to construct, operate,

and manage renewable energy micro-grids, and the amount of renewable

energy has an intermittent nature, therefore, climatic variability is a pivotal

issue for a micro-grid system. Nonetheless, previous studies have rarely in-

vestigated influences of climatic variability on techno-economic analysis of

a micro-grid, and size decision and energy management of a multi-stack

micro-grid. Big data driven analysis and mixed-integer stochastic energy

management are exploited to resolve these limitations.

The special features can be written as follows: First, the correlation

analysis through unsupervised clustering is carried out to verify that climatic

variability is a factor that determine the design of techno-economical micro-

grids. Mitigating their noise and clustering them via UMAP and HDBSCAN

algorithm, climate data from 13,844 cities in 218 nations are used to the cor-

relation analysis. Second, the strategies to install and operate a micro-grid

during long project’s lifespan are suggested according to regional climatic

features. In third, a mixed-integer stochastic programming is developed to

control a multi-stack micro-grid’s energy distributions. Finally, it is verified
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that the climatic effects are noticeable in design of a multi-stack micro-grid.

5.1 Summary of the contributions

In this thesis, strategies for design of a micro-grid are discussed to sug-

gest techno-economical structures and operations under climate variability.

The climate data are gathered from the Prediction of Worldwide Energy

Resource (POWER) Project’s Hourly 2.0.0 version on 2022/01/21, which

means is relevant to the actual design of P2G systems.

The first part is to analyze techno-economical micro-grid systems via

unsupervised clustering. Climate-similar locations are clustered and their

optimal structures of micro-grids have characteristic depending on the cli-

matic patterns. While some locations are aparted from, but still in the same

group due to similar latitude, others are classified into different groups de-

spite being nearby, and their optimal designs are also disparate. It is verified

that techno-economical micro-grids are correlated to climatic patters across

clustered regions via unsupervised learning. According to sensitivity anal-

ysis, we clarify that the majority of the locations surrounding the equator,

the Far East, and the Southern Hemisphere, including China, India, Mexico,

and Brazil are insensitive to climatic pattern changes, thus have an advanta-

geous of operating renewable micro-grids. Meanwhile, regions in the high

latitudes of the Northern Hemisphere, including 1,890 regions in the United

States, Canada, and Russia, are the most sensitive to climate changes, and

hence should be cautious about climate change. The strategies for design of

a micro-grid are established for actual countries and directly applicable to
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the actual design of P2G systems.

In the second part, we decide the structures of multi-stack micro-grids

in the presence of climatic variability. There is a trade-off between economies

of scale and efficiency of operations and climatic variability is inevitable

part of operating a micro-grid efficiently. We suggested the mixed-integer

stochastic programming for multi-stack micro-grids since few researches

have investigated to control the micro-grids under climate uncertainty. Re-

laxing joint chance constraint and assuming that climate uncertainty is zero

mean, independent, and identically distributed random variables, the sug-

gested method successfully manages the energy distributions of the micro-

grids as illustrated via a case study. Based on the suggested method, case

study is conducted to find a suitable multi-stack structure in two regions. In

the climate of Pingliang, China, micro-grids have more economic benefits

with fewer stacks than micro-grids in the climate of the San Bernardino,

United States. As a consequence, we identified that the designs of multi-

stack micro-grids are related to climatic variability.

5.2 Future works

The overall analyses are restricted to linear micro-grid models and the

assumptions such as deterministic load demands, no degradation of equip-

ment, and ambient temperature. Even though the linear models and such

assumption are widely exploited in the techno-economic analysis fields, it

is still less realistic to limit micro-grid models into the simplified settings.

Nonetheless, it is rational to use the simple models since big data analysis is
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fatal to nonlinear models which send computational costs soaring. Utilizing

linear models, computational efficiency is secured for big data analysis in

Section 3.3.2 and grid search in Section 4.3.1, Still, despite the feasonable

choice, it is necessary to make an effort to apply the nonlinear model in or-

der to increase the realities of the analyses. Therefore, future works should

propose a more realistic analysis by constructing mixed-integer nonlinear

programming rather than mixed-integer linear programming. Accordingly,

the second direction is to develop the method for managing a multi-stack

micro-grid with nonlinear models. The methodology proposed in Section

4.2.3 can be applied to other stochastic programmings, however, it is im-

possible to extend it to a non-linear problem since stochastic tube method

currently is applicable to linear programming. To analyze correlations cli-

matic variability to micro-grids based on nonlinear models, scenario-based

method or scenario-tree based method is essential among stochastic pro-

gramming approaches [60]. In this case, the number of variables increases

rapidly with the number of the stacks, thus an algorithm should be ensure

the efficient computations.

In addition, it is necessary to implement a design that reflects the fac-

tors caused by technological advancement since the performance of equip-

ment used in the micro-grid is rapidly developing. For instance, the perfor-

mances of batteries such as energy density, lifetime, and safety affect eco-

nomic feasibility and structure of a micro-grid, thus these factors should be

considered in the design problem of the micro-grid. Energy density, espe-

cially energy density per price, is related to the specifications of equipment,

and it influences on the NPC of each equipment. Instead of using fixed spec-
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ifications, the energy density advancement can be taken into account in the

objective function by reflecting the change in specifications according to the

annual energy density development. An increase in the lifetime of the equip-

ment also causes a change in the replacement cycle, resulting in a change in

NPC. As with energy density, this can be considered via an objective func-

tion that reflects the equipment’s changing lifetime over the years. Battery’s

safety has an effect on the operational strategy, and it can be reflected in

the constraints. For example, the battery’s SoC has more marginal allow-

able range, or the constraints that prevent sudden fluctuations in the SoC

becomes unnecessary. For other devices, Modifying the objective function

or constraints in the same way, it is possible to design a microgrid consider-

ing technological development.

At last, economic size decision of multi-stack micro-grids should be

conducted in more variety of regional climates rather than two regions to

clarify climatic effects on a best operating level and narrow the search range

of grid search. In addition, extending simulation time up to a year, techno-

economic analysis integrated with EMS should be implemented to consider

scheduling of a multi-stack micro-grid and climatic variability simultane-

ously.
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초록

전세계적인 기후 위기의 증가를 대처하기 위해서 재생가능한 에너

지원을기반으로하는마이크로그리드 (micro-grid)는중심기술이되고

있다. 재생 에너지는 마이크로 그리드에 필수적이지만 간헐적인 특성과

강한 불확실성을 가지고 있어 기후 변동성이 마이크로 그리드의 핵심 문

제이다.그럼에도불구하고,기존의마이크로그리드의기술경제성분석

들은 기후 변동성을 거의 고려하지 않았으며, 다중 스택 (multi-stack) 마

이크로그리드의에너지크기조정및에너지관리와관련된연구는거의

없다.우리는이러한문제를해결하기위해빅데이터기반분석과혼합정

수확률론적기반의 (mixed-integer stochastic)에너지관리를활용하였다.

218개국 13,488개지역의기후데이터를활용하여기술경제분석의기후

변동성을 조사하였다. 균일한 매니폴드 근사 및 투영 (uniform manifold

approximation and projection)을통해데이터를전처리한후노이즈를사

용한계층적밀도기반공간클러스터링 (hierarchical density-based spatial

clustering of applications with noise) 알고리즘을 사용하여 차원 축소된

데이터를 클러스터링하고, 기후 패턴에 따라서 클러스터의 마이크로 그

리드의최적크기를서로비교하였다.기후민감도분석으로마이크로그

리드의 규모와 비용에 기후가 미치는 영향을 밝혀냈으며, 이는 마이크로

그리드의설계시기후변동을고려할필요성을강조한다.다중스택마이

크로 그리드의 구조와 스택의 크기를 결정하기 위해서 우리는 기후 불확

정성의 존재하에서 다중 스택 마이크로 그리드의 에너지 관리에 적합한

혼합정수확률프로그래밍 (mixed-integer stochastic programming )를제

안하였다.각각의예시문제를통해서제안된방법이유효한것을확인한
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이후에 다중 스택 마이크로 그리드의 설계에 기후가 영향을 미치는 것을

입증하였다. 결과적으로, 이는 재생 에너지 기반의 마이크로 그리드에서

기후변동성이중요한역할을하는것을시사한다.본학위논문이제시하

는분석및방법의특징은다음과같이요약할수있다.우선,기후변동성

이기술경제적인마이크로그리드의설계의결정요인중하나라는것을

확인하기 위해서 비지도학습 클러스터링 (unsupervised clustering) 을 이

용한관계성분석을시행하였다.균일한매니폴드근사및투영과노이즈

를 사용한 계층적 밀도 기반 공간 클러스터링 알고리즘을 사용하여 218

개국가의 13,844개 지역의 기후 데이터의 노이즈를 완화시키고 클러스

터링을 진행하였다. 다음으로, 지역적인 기후 특징을 바탕으로 마이크로

그리드의 설치와 장기적인 운영을 위한 전략을 제안하였다. 세번째로는,

다중 스택 마이크로 그리드의 에너지 분배를 제어하기 위해서 혼합 정수

확률 프로그래밍 방법론을 개발하였다. 마지막으로, 다중 스택 마이크로

그리드설계에서기후영향이두드러짐을확인했다.

주요어 : 마이크로그리드,재생가능한에너지,빅데이터분석,기술경제

성 분석, 민감도 분석, 에너지 관리 시스템, 혼합 정수 확률 프로그래밍,

규모의경제

학번 : 2017-22082
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