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Abstract

Guaranteeing Safety Despite Physical

Errors in Cyber-Physical Systems

Jongwoo Han

Department of Computer Science and Engineering

The Graduate School

Seoul National University

This paper considers a cyber-physical system with a so-called “self-looping” node

that repeats the inner-loop for physical situation awareness, i.e., more loops for more

harsh physical situations. Regarding such a self-looping node, we observe the exis-

tence of physical errors that make the looping useless and eventually cause a critical

failure. To prevent such a critical failure despite a physical error, this paper proposes

a novel mechanism by introducing “time wall” and “safety backup”. The time wall

limits the time budget for the self-looping node so as to switch to the safety backup

while still meeting the deadline to prevent critical failure despite physical errors. Our

experiments through both simulation and actual implementation show that the pro-

posed mechanism gives a comparable accuracy with the existing methods in normal

cases while completely preventing critical failure in physical error cases.
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1 Introduction

Most recent cyber-physical systems such as autonomous driving systems include a

complex computational module for physical situation awareness. The NDT (Normal

Distribution Transform) matching module in Autoware [1, 2] (i.e., an open-source

autonomous driving SW based on ROS) is a typical example. The module uses the

current snapshot image sensed from the LiDAR sensor and tries to match it to the

pre-built 3D point cloud map to localize the car’s current position in the map. The

module is programmed to repeat the matching several times with an inner-loop to

find the best possible matching, that is, to find the accurate physical location of the

car. Thus, we call such a module with an inner-loop a “self-looping” module. The ICP

(Iterative Closest Point) algorithm for object tracking is also such an example [3, 4].

Such a self-looping module tends to improve its accuracy by increasing the loop-

ing count, similar to the concept of imprecise computation [5, 6]. However, one fun-

damental difference is that there exist cases where the accuracy never improves even

though we increase the looping count. Such cases happen because it is impossible to

cover all possible physical scenarios in the design phase of the self-looping module.

If we encounter a physical scenario that is not well covered in the inner-loop design,

even if the self-looping module repeats the inner-loop many times, the accuracy can-

not improve above the acceptable threshold, which case we call a “physical error”.

For the example self-looping module of NDT matching, the dashed line in Fig. 1(a)

shows the fluctuation of the actually measured execution times for its 120 periodic

instances while autonomously driving the car from 0 sec to 12 sec. Such fluctuation

is because the loop count necessary for reaching the acceptable accuracy varies de-

pending on the physical situation as shown in Fig. 1(b) for Cases 1 and 2 of Fig. 1(a).
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Figure 1: Cases of NDT Matching

However, for some physical situations like Case 3 of Fig. 1, the self-looping module

never reaches the acceptable accuracy—physical error and hits the time limit with

an unacceptable accuracy. As a result, the localization by NDT matching fails, and

in turn, the car starts moving far beyond the center of the lane as shown by the cen-

ter offset, i.e., the car’s position from the lane center, denoted by the solid line in

Fig. 1(a). This is an example case where a physical error happens because of an un-

expected physical scenario that is not properly covered in the inner-loop design. The

more serious problem is that the self-looping module never notices the physical error,

and hence it continues the looping and may eventually violate a critical deadline.

A simple-minded solution for this is to set a maximum loop count. However, we

do not know how to determine the maximum loop count. More seriously, what if the

accuracy is still not acceptable even after the maximum loop count due to a physical

error?

In order to tackle this challenge, this paper proposes a novel mechanism that

can guarantee the minimal safety of a cyber-physical system despite physical er-

rors using the notions of “time wall” and “safety backup”. Intuitively speaking, for a
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self-looping module, we pre-compute the maximum possible time budget, i.e., “time

wall”, and allow the looping only within the time wall. If the self-looping module

can achieve an acceptable accuracy within the time wall—normal case, the subse-

quent computing modules normally execute and finally actuate the physical system

before the deadline. Otherwise—physical error case, a “safety backup” module ex-

ecutes within the deadline providing only minimal safety despite the physical error

while giving up the advanced feature of the original self-looping module. For the

Autoware example, if the NDT matching module achieves an acceptable accuracy

within the assigned time wall, the subsequent modules make the car follow the opti-

mal path from the car’s current position to the final destination. Otherwise, a vision-

based lane-keeping module, i.e., a safety backup, comes in and actuates the steering

angle to simply keep the center of the lane while giving up the localization-based

path following until the NDT matching module regains acceptable accuracy.

For the proposed mechanism, we have to pre-compute the time wall, i.e., the time

budget for a self-looping module, such that (1) all the subsequent nodes in the DAG

can be completed before the deadline in the normal case and (2) the safety backup

node and its subsequent nodes can be completed before the deadline in the physical

error case. We propose two ways of computing the time wall, one for a pessimistic

but simple budget analysis based on the classic response time bound analysis [7] and

the other for a less pessimistic but more complex budget analysis based on the CPC

(Concurrent Provider/Consumer) method [8]. Our experimental study by simulation

with a synthetic workload shows that our approach completely prevents critical fail-

ures despite physical errors. Also, our actual implementation with Autoware shows

that our approach safely keeps the car inside the driving lane even when the original

3



Autoware makes the car cross over the lane boundary due to physical errors.

The rest of the paper is organized as follows: Section 2 presents related work. In

Section 3, we define the task and resource models and present a motivation example.

Section 4 describes our proposed safety guarantee mechanism against physical errors.

Then, Section 5 explains a simple budget analysis based on classic bound. Section 6

explains an advanced budget analysis based on CPC method. Section 7 extends the

classic bound analysis to model with multiple self-looping nodes. In Section 8, we

report our experiment results. Finally, Section 9 concludes the paper and explains

future work.
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2 Related Work

There have been lots of researches on DAG task scheduling on multicore processors.

Their objective is reducing the makespan and tightening the worst-case analytical

bound [9, 7, 10, 8, 11, 12, 13, 14, 15]. However, all of them assume fixed WCET for

every node in the DAG. Thus, they cannot be directly applied to a DAG task with a

self-looping node whose execution time largely varies depending on the loop count

for different physical situations.

The self-looping node is similar to the concept of imprecise computation [5, 6]

where the computational accuracy improves along with the invested time and hence

the objective is to maximize the overall accuracy within time constraints. However,

imprecise computation does not consider a physical error which makes continuing

the computation useless.

To address the physical error, our proposed idea of switching to a safety backup is

similar to the concept of the simplex algorithm [16, 17]. The simplex algorithm math-

ematically expresses system state space as an n-dimensional ellipsoid. The more com-

plex the control algorithm is, the better the control performance is, but it is vulnerable

to errors, i.e., the ellipsoid becomes smaller. Therefore, the fault can be prevented by

switching to a simpler control algorithm with only basic control performance but

more stable with a larger ellipsoid. However, for general software, it is impossible to

envelop all physical situations with mathematical ellipsoids. Therefore, the simplex

algorithm cannot be a concrete solution for physical errors in general cyber-physical

systems.
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Figure 2: Autonomous Driving Task Example

3 Task and Resource Model

We consider a system with a single DAG task τ = {T,D,G = (V,E)} that peri-

odically executes a DAG as in Fig. 2. T is the period of the task and D is the task’s

relative deadline, which means that every instance of τ released at every period T

should complete the execution of the DAG G before D. The DAG structure is defined

as G = (V,E), where V = {v1, . . . , vn} is a set of nodes and E ⊆ (V × V ) is

a set of directed edges. Each node vi represents a computational module and a di-

rected edge (vi, vj) from vi to vj represents the precedence constraint meaning that

the computation module vi should be completed before starting vj . This task model

well represents a ROS application like Autoware [2, 18, 19].

Without loss of generality, we assume that the DAG G has exactly one source

node vsrc and sink node vsink. Fig. 2(a) shows a simplified view of Autoware, where

the given DAG has ROS nodes, i.e., v1 = vsrc for sensing the surrounding envi-

ronment with LiDAR, v2 for NDT matching based localization, v3 for surrounding
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object detection, v4 for objects’ motion prediction, v5 for global path planning, v6

for local path planning to follow the waypoints of the global path avoiding collisions

with other objects, and v7 = vsink for finally actuating the car along with the local

path planning. Such DAG should be periodically executed to drive the car safely.

For every node vi in G = (V,E), we assume the fixed WCET denoted by ei ex-

cept one node vs called a self-looping node. The self-looping node vs has a largely

varying execution time depending on the looping count necessary for accurate aware-

ness of varying physical situations. In the above Autoware example of Fig. 2(a), the

NDT matching node v2 is a self-looping node that repeats the matching of the cur-

rent LiDAR image to the pre-built 3D point cloud map until the acceptable matching

accuracy can be achieved for accurately localizing the car’s current position in the

map. For such a self-looping node vs, we define the execution time for one loop as

es,1. Therefore, when vs repeats the inner-loop L times for acceptable accuracy, its

WCET is modeled as es = L×es,1. The self-looping node tends to achieve better ac-

curacy by increasing the loop count but “not always”. When it encounters a physical

situation that is not well covered at the design time of its inner-loop, which we call

physical error, the accuracy does not improve by repeating the inner-loop as shown

in Case 3 of Fig. 1. Note that it is totally unpredictable when the self-looping node

encounters a physical error.

For a given DAG G = (V,E), we define its total workload W (V ) as the sum

of WCETs of all the nodes in V , i.e., W (V ) =
∑

vj∈V ej . We also define a path λ

as an ordered set {vsrc, . . . , vsink} which is a sequence of nodes from the starting

node vsrc to the ending node vsink such that (vk, vk+1) ∈ E,∀vk ∈ λ−{vsink}. The

length of a path λ is defined as len(λ) =
∑

vj∈λ ej . Out of all the paths in V , the
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longest one is defined as the critical path λ∗
V . The nodes in the critical path are called

critical nodes, while other nodes are non-critical nodes.

For executing such a single DAG task with a self-looping node, we assume a

computing hardware platform with M identical processors. In order to determine

which nodes should be executed on the M processors when more than M nodes are

concurrently ready while satisfying all of their precedence constraints, we assume

fixed-priority scheduling. In other words, we assume that a fixed priority is assigned

to each node, and when a processor becomes idle, the highest priority node out of all

the ready nodes starts executing on the processor. We allow preemption in Section

5 but disallow preemption for analysis in Section 6 since based analysis needs non-

preemptive scheduling. Fig. 2(b) shows an example of such a schedule when M = 2.

The first instance shows a case where the self-looping node v2 repeats the inner-loop

three times, and hence the DAG completes meeting the deadline. On the other hand,

the second instance shows a case where v2 repeats the inner-loop four times and

eventually misses the deadline.

For this task and resource model, our problem is how to execute the DAG meeting

every deadline while guaranteeing minimal safety even when the self-looping node

encounters a physical error that makes the inner-loop useless. Extension to multiple

self-looping nodes will be explained in Section 7.
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4 Safety Guarantee Mechanism Against Physical Errors

Our proposed mechanism for guaranteeing minimal safety despite physical errors

uses notions of “time wall” and “safety backup”. The time wall is the amount of

time budget allowed for the self-looping node. If the self-looping node finishes with

an acceptable accuracy before hitting the time wall, the subsequent nodes normally

execute. Otherwise, it may be due to a physical error and hence a “safety backup”

executes to guarantee minimal safety.

For this, the safety backup DAG is formally defined as follows: For the case

where the self-looping node vs fails to achieve an acceptable accuracy before hitting

the time wall, a safety backup node vb is introduced. The safety backup node vb

is designed with the objective of guaranteeing only minimal safety and hence has

much simpler logic that can be guaranteed to work in a broader spectrum of physical

situations. For the above Autoware example in Fig. 2(a), the lane-keeping module can

be an example safety backup node for the self-looping node, i.e., NDT matching (v2),

and its subsequent nodes (v4, v5, v6) for the localization-based path following. When

the NDT matching fails in accurately localizing the car’s position, the lane-keeping

module can continue driving only forward while keeping the car at the center of the

lane with a vision-based lane detection algorithm [20]. As we can understand in this

example, the safety backup node replaces the roles of not only the self-looping node

vs itself but also some of its subsequent nodes. The sub-DAG consisting of such

subsequent nodes replaced by the safety backup node is called a dangling DAG of vs

and denoted by Gdangle. Note that the lane-keeping module can also fail in more harsh

conditions as no lane exists on the road. We can make a level of safety and perform

emergency stops when the lane-keeping module fails. For better understanding, this

9



Figure 3: Normal DAG and Safety Backup DAG

paper only introduces the idea just mentioned for the case where vb fails and assumes

that vb does not fail for all physical situations.

For the example normal DAG of Autoware in Fig. 3(a), the sub-DAG consisting

of v4, v5, v6 represented by the dashed box is the dangling DAG of the NDT matching

node v2. This dangling DAG Gdangle will be replaced by the safety backup node vb.

Thus, the safety backup vb has the same predecessors and successors as the dangling

DAG Gdangle. The safety backup node vb does not use the data from vs but may still

use the data from other predecessors. In addition, vb should produce the same format

data compatible with the non-replaced successors. As a result, the safety backup DAG

is formed from the original normal DAG by replacing the dangling DAG Gdangle with

the safety backup node vb. Fig. 3(b) shows the safety backup DAG for the normal

DAG of Autoware example in Fig. 3(a). Note that even in the safety backup DAG,

the self-looping node vs keeps executing, which is necessary for the recovery effort

to regain the accuracy of the self-looping node and roll back to the normal DAG.

With such defined normal DAG and safety backup DAG, our proposed mecha-

nism switches back and forth between the normal mode and safety backup mode as

follows:

• Normal mode: If the self-looping node finishes before hitting the time wall,

10



Figure 4: Normal Case and Physical Error Case

the normal DAG continues executing to the end. The first instance of Fig. 4

shows such a normal mode execution.

• Switch to safety backup mode: If the self-looping node hits the time wall with

an unacceptable accuracy, we give up the dangling DAG Gdangle and execute

the safety backup node vb instead, which is the switch to the safety backup

DAG. The second instance of Fig. 4 shows such a switch.

• Safety backup mode: In the safety backup mode, the self-looping node vs

performs a recovery action1. If the recovery action cannot regain acceptable

accuracy before hitting the time wall, the safety backup node vb and its subse-

quent nodes in the safety backup DAG execute to provide only minimal safety

while giving up the features of the normal DAG. The third instance of Fig. 4

shows such a safety backup mode execution.

• Switch back to the normal mode: After several periods of the safety backup
1For the NDT matching example, we may use the information from the low-quality GPS as the

initial pose and repeat the inner-loop to find the acceptable matching. It may take several retries over

multiple task periods until acceptable accuracy can be regained while the safety backup node is backing

up for minimal safety.
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mode, the self-looping node’s recovery action can regain acceptable accuracy.

In that case, we roll back to the normal mode by executing the dangling DAG

Gdangle and its subsequent nodes to the end, which is the switch back to the

normal DAG. The fourth instance of Fig. 4 shows such a switch back to normal.

For this mechanism to successfully work, the remaining issue is how to determine

the time budget for the self-looping node such that both normal and safety backup

DAGs can be successfully scheduled on M identical processors before the deadline

D. We can reduce the problem of optimizing the budget assigned to the self-looping

node vs to the problem of determining the largest value we can assign to the WCET

parameter of a single node in a given DAG task. We can formally specify the problem

as below:

Definition 1 (The MAX-WCET problem). Given a DAG G = (V,E), a vertex vs ∈ V ,

a number of processors M , and a deadline D, determine the largest value that can

be assigned to es such that the WCRT bound for G upon M identical processors does

not exceed D.

As mentioned in the Section 2, there are many studies that find the WCRT bound

when all WCETs are fixed. But there is no analysis that finds the maximum WCET

when the deadline and remaining nodes’ WCET are given like the Max-WCET Prob-

lem. Therefore, this paper proposes time budget analyses based on WCRT bound

analysis. Section 5 presents an algorithm based on classic bound. Section 6 presents

an algorithm based on CPC bound that mitigates pessimism.

12



Figure 5: Intuition of Classic Bound

5 Classic Bound based Budget Analysis

Our first method to calculate the time budget for the self-looping node is based on the

classic WCRT (Worst-Case Response Time) bound [7]. The classic WCRT bound

gives an upper bound of the WCRT for any work-conserving scheduling of all the

nodes of the given DAG on M identical processors. The classic WCRT bound can be

intuitively explained as follows:

With these definitions, the classic WCRT bound R(V ) is given by Eq. (1).

R(V ) = len(λ∗
V ) +

W (V )− len(λ∗
V )

M
. (1)

This equation most pessimistically considers no overlap between the critical nodes

and the non-critical nodes by sequentially adding the critical path length len(λ∗
V )

and the length for executing non-critical nodes with the M cores, i.e., W (V )−len(λ∗
V )

M ,

as illustrated in Fig. 5. W (V )−len(λ∗
V )

M is an upper bound of the extra delay beyond

len(λ∗
V ) by all the non-critical nodes. This is because even if a non-critical path λ is

longer than W (V )−len(λ∗
V )

M by an amount of ∆ as marked by the left-arrow ∆ in the

figure, it makes the same size hole marked by the right-arrow ∆. Also, such ∆ cannot

be larger than the critical path length len(λ∗
V ). Therefore, Eq. (1) gives a safe upper

bound of the response time.
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Figure 6: Terminology for graphs

5.1 Some Useful Computations on DAGs

Let us first briefly review some basic graph algorithms, beginning with discussing

how the workload W (V ) and length of critical path len(λ∗
V ) may be computed effi-

ciently for any DAG G = (V,E), in time O(|V |+ |E|). It is evident that W (V ) can

be computed in Θ(|V |) time by simply summing the WCETs of all the nodes. Below

we briefly describe a linear-time algorithm for computing len(λ∗
V ).

1. Obtain a topological ordering2 of the nodes in V in Θ(|V |+ |E|) time [21].

2. Compute est : V → N (for earliest start time) by setting est(vsrc) ← 0 for

each source node vsrc and iterating over the remaining nodes in topological

order as follows:

est(vi) = max
{vj | (vj ,vi)∈E}

{est(vj) + ei}

(For an example, see Figure 6.)
2Recall that a topological ordering of the nodes of a DAG is an arrangement of the DAG’s nodes in

a list, such that each DAG edge is from an earlier node in the list to a later one.
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3. Determine ltc : V → N (for least time to completion) by setting ltc(vsink)←

0 for each sink node vsink and iterating over the remaining nodes in reverse

topological order:

ltc(vi) = max
{vj | (vi,vj)∈E}

{ltc(vj) + ei}

4. The len(λ∗
V ) is then computed using either of the following:

len(λ∗
V ) = max

all sinks vi
{est(vi) + ei}

= max
all sources vi

{ltc(vi) + ei}

We can now state a fairly obvious relationship that can be used to determine

whether any node lies on the critical path or not for any vo ∈ V , the maximum

cumulative WCET of any path that includes node vo is computed as follows:

L(vo) = est(vo) + eo + ltc(vo) (2)

If L(vo) = len(λ∗
V ), we can determine vo lies on the critical path.

5.2 Simple Solution

With this classic response time bound R(V ), our goal is to find the maximum pos-

sible time budget es for the self-looping node vs to meet the deadline D. Recall that

len(λ∗
V ) should be the longest path. However, in the case of our system model in-

cluding a self-looping node vs, vs may or may not lie on a critical path depending on

the loop count. If we initially set es to 0 and calculated, three possible cases arise.

• Case 1) Critical path includes vs when es = 0
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Figure 7: Case where a self-looping node can not become a critical path

• Case 2) When es = 0, vs does not lie on a critical path, but if es is allocated as

much as possible, vs belongs to a critical path

• Case 3) No matter how many budgets are assigned to es, vs can not become a

critical path

For Case 1, the total workload W (V ) and the critical path length len(λ∗
V ) can be

rewritten as follows:

W (V ) = es +
∑

vj∈(V−{vs})

ej , (3)

len(λ∗
V ) = es +

∑
vj∈(λ∗

V −{vs})

ej . (4)

With these W (V ) and len(λ∗
V ), the classic WCRT bound in Eq. (1) can be rewritten

as a function of es as follows:

R(V ) = es +
∑

vj∈(λ∗
V −{vs})

ej +

∑
vj∈(V−λ∗

V ) ej

M
. (5)

Since this WCRT bound R(V ) should be less than or equal to D, the maximum

possible time budget es for vs is given as follows:

es = D −
∑

vj∈(λ∗
V −{vs})

ej −
∑

vj∈(V−λ∗
V ) ej

M
. (6)
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Algorithm 1 Classic Bound Based Budget Analysis
Input: G = (V,E),M,D

Output: es

1: Calculate L(vi) for every nodes and len(λ∗
V )

2: if L(vs) == len(λ∗
V ) then

3: Assign es by Eq. (6)

4: else

5: Assign the smaller of the results of Eq. (6) and Eq. (7) to es

6: end if

We can not directly apply Eq. (6) for Case 3. For example, if we assume that vs

always lies on a critical path in Fig. 7, λ∗
V will be {v0, v1, v3, v4} and es is calculated

as es = 20 − 2 − 15/3 = 13. However, if es = 13, WCRT bound is calculated as

R(V ) = 17 + 13/3 = 21.3 which exceeds the specified deadline of 20. For Case 3,

W (V ) is same as Eq. (3) but len(λ∗
V ) is length of the longest path, not like Eq. (4).

Hence, es is calculated as follows.

es = M ×D − (M − 1)× len(λ∗
V )−

∑
vj∈(V−{vs})

ej . (7)

With Eq. (7), es is calculated as 9 and WCRT bound is calculated as R(V ) = 17 +

9/3 = 20 which meets deadline.

For Case 2, Eq. (6) gives a safe bound, and its budget is larger than one from

Eq. (7). So we can assign the budget calculated from Eq. (6). The detailed algorithm

is as follows.

Note that λ∗
V is the longest path includes vs when using Eq. (6). By applying this

budget analysis to both cases of normal DAG in Fig. 3(a) and safety backup DAG
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in Fig. 3(b), we can obtain two budgets denoted by enorms and ebackups . Taking the

minimum of these two, i.e., es = min{enorms , ebackups }, we can finally determine the

time budget es for vs that can meet the deadline D in both normal and safety backup

modes.

5.3 Solution with LP

We now briefly describe our alternative method for solving the Max-WCET Prob-

lem (Definition 1) by first converting it to a linear program (LP) and then solving the

resulting LP via an LP solver. This approach is, in general, computationally less ef-

ficient than the algorithm presented in Section 5.2, but it will prove useful to us later

in this paper (in Section 7.3) when we generalize the model to allow for multiple

self-looping nodes.

Given DAG G = (V,E) in which the WCET ei is a variable for a particular specified

vs ∈ V and given as a constant for the other nodes v ∈ V , we will

• Define two variables W and L to represent the total workload and critical path

length of the DAG, and |V | additional variables to represent the earliest start

times (est(v)) of the nodes v ∈ V .

• For each source node v ∈ V , set est(v) = 0

• Write a constraint for each edge (vi, vj) ∈ E:

est(vj) ≥ est(vi) + ei (8)

• Write a constraint representing W , the total workload of DAG G, as the sum
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of the WCETs of all the nodes in V :

W =
∑
vi∈V

ei (9)

• For each sink node vsink ∈ V , write a constraint representing L, critical path

length of DAG G, according to Eq.( 2):

L ≥ est(vsink) + esink (10)

• Write a constraint that the WCRT bound of Eq. (1) should not exceed the dead-

line parameter D:

D ≥ W

m
+ L×

(
1− 1

m

)
(11)

• Set the objective function to be
(
maximize vs

)
Although it is fairly obvious that this LP does indeed solve the MAX-WCET prob-

lem, we briefly explain the reasoning for the sake of completeness. Constraint 11

bounds the values that may be assigned to the variables W and L; since L is thus

bounded from above, Constraint 10 bounds the value of est(v) for each sink node

v, which, therefore, via multiple instantiations of Constraint 8, bound the value of

est(v) for every node v. This in turn bounds the value that can be assigned to es,

implying that es will be assigned the largest value that it can get without the DAG’s

makespan bound according to Expression 1 exceeding D.

We now illustrate the construction of the LP via an example. For the DAG de-

picted in Figure 7, let us use the steps described above to write an LP representation

of the problem of determining the largest WCET that may be assigned to the node v1.

• Variables: We would have (i) a variable e1; (ii) variables W and L; and (iii) vari-

ables est(vo), est(v1), est(v2), est(v3), and est(v4).
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• Constraints:

est(vo) = 0 (vo is the sole source node)

est(v2) ≥ est(vo) + 0 (Constraint for edge (vo, v2))

est(v1) ≥ est(vo) + 0 (Constraint for edge (v1, v2))

est(v3) ≥ est(v2) + 15 (Constraint for edge (v3, v2))

est(v3) ≥ est(v1) + e1 (Constraint for edge (v3, v1))

est(v4) ≥ est(v3) + 1 (Constraint for edge (v3, v4))

est(v4) ≥ est(v1) + e1 (Constraint for edge (v1, v4))

W = 0 + e1 + 15 + 1 + 1 (Total workload)

L ≥ est(v4) + 1 (Critical Path Length; v4 is the sole sink node)

20 ≥ W
3 + L×

(
1− 1

3

)
(Deadline satisfaction)

• Objective function: maximize e1

It may be verified that the optimal solution sets

est(vo) = est(v1) = est(v2) = 0, est(v3) = 15, est(v4) = 16

so that L = 17, and W = 20 and e1 = 9 which is indeed the desired value (as we

have seen in Section 5.2).
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Figure 8: Abstraction of CPC Method

6 CPC based Budget Analysis

Since the classic response time bound in Eq. (1) is pessimistic, the budget for the

self-looping node obtained in the previous section is quite limited. In order to give

the self-looping node as much budget as possible, in this section, we propose a

more advanced budget analysis based on the CPC (Concurrent Provider/Consumer)

method [8]. Since CPC assumes non-preemptive fixed-priority scheduling, we do not

allow preemption in CPC based budget analysis. It means once a node starts execut-

ing, it continues to the end without being preempted, even if a higher-priority node

becomes ready. The CPC method mitigates the pessimism of the classic bound by

considering the possible concurrent executions among critical nodes and non-critical

nodes. For this, the CPC method partitions the critical path λ∗
V into a sequence of

segments λ∗
V1
, λ∗

V2
, · · · , λ∗

Vn
as in Fig. 8. Each λ∗

Vi
is a subset of the critical nodes in

the critical path and is called a “provider group” that occupies one core for its own

execution while providing M−1 cores to a “consumer group” denoted by V consumer
i ,

that is, a subset of the non-critical nodes that can be concurrently executed with the

provider group. We denote the union of the provider and consumer groups of each

segment by Vi = λ∗
Vi
∪ V consumer

i . We also denote the segment including vs as Vs.
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Figure 9: Calculating Response Time R(Vi) of One Segment Vi

Note that subscript s of vs and Vs may have different values, but for the notational

simplicity, we use the same s wherever there is no confusion. For the details of con-

structing provider and consumer groups, the interested readers are referred to [8].

With this partition of the entire DAG into a sequence of segments, the WCRT

bound R(V ) is given as the sum of the WCRT bound R(Vi) of each segment Vi as

follows:

R(V ) =
n∑

i=1

R(Vi). (12)

In order to explain how the CPC method computes R(Vi), let us use the example

segment in Fig. 9 where v1, v2, v3 is the provider group λ∗
Vi

, i.e., a part of the critical

path λ∗
V , and v4, v5, v6, v7, v8, v9, v10 is the consumer group V consumer

i . The CPC

method computes R(Vi) as follows:

R(Vi) = len(λ∗
Vi
) + extra(λ∗

Vi
). (13)

where len(λ∗
Vi
) is the provider group’s length and extra(λ∗

Vi
) is the delay beyond

len(λ∗
Vi
) by some of the consumer group nodes. More specifically, the CPC method

computes the “finish time bounds” for all the nodes in the DAG and considers the
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consumer group nodes with finish time bounds earlier than or equal to len(λ∗
Vi
) can

be executed in parallel with the provider group. In the Fig. 9(b), v4, v5, and v6 are

such nodes. Only the consumer group nodes whose finish time bounds are later than

len(λ∗
Vi
) can make the extra delay extra(λ∗

Vi
). We denote the set of such nodes by

V extra
i . In the Fig. 9, V extra

i = {v7, v8, v9, v10}. Now, extra(λ∗
Vi
) can be computed

by applying the classic bound, i.e., Eq. (1), to the sub-DAG Gextrai formed by V extra
i ,

e.g., in Fig. 9, v7, v8, v9 and v10 and their associated edges denoted by Eextra
i

3. As

a result, the CPC method computes extra(λ∗
Vi
) as follows:

extra(λ∗
Vi
) = len(λ∗

V extra
i

) +
W (V extra

i )− len(λ∗
V extra
i

)

M
. (14)

Unlike the classic bound, we cannot directly apply the CPC method to our prob-

lem due to the dependency between the time budget of the self-looping node es and

the CPC method’s extra(λ∗
Vi
) formula in Eq. (14). Recall that the CPC method com-

putes the finish time bounds to form the sub-DAG Gextrai for computing extra(λ∗
Vi
).

However, due to the self-looping node vs whose time budget es is not determined yet,

the finish time bounds of vs’s descendant nodes become non-deterministic. There-

fore, for the segment containing vs and all the subsequent segments, their extra delays

extra(λ∗
Vi
)s and also the WCRT bounds R(Vi)s cannot be computed until resolving

the non-determinism.

We tackle this challenge by leveraging the sustainability of the CPC method,

which says that the WCRT bound R(Vi) computed assuming a larger execution time

3When forming the sub-DAG that can make the extra delay extra(λ∗
Vi
), the CPC method considers

a heuristically assigned priority of the nodes to further mitigate the pessimism of the original classic

bound [8].
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of any node v is also a safe upper bound of the response time for all the cases of

a shorter execution time of v. For this, in Section 6.1, we first compute the initial

budget for the self-looping node by applying the CPC formular assuming an upper

limit of es when computing the response time bounds of vs’s subsequent segments.

Then, in Section 6.2, we perform a binary search to enlarge the initial budget under

the deadline constraint maximally.

6.1 Initial Budget Calculation

In order to address the dependency of undetermined es of the self-looping node vs

and its subsequent segment’s response time bounds, we use an upper limit of es to

compute its subsequent segments’ response time bounds conservatively. Such an up-

per limit of es can be given by the fact that the length of the critical path, i.e., len(λ∗
V )

should be less than or equal to D:

∑
vj∈λ∗

V

ej ≤ D.

This is a necessary condition for the DAG G = (V,E) to be completed before D.

Using this necessary condition, an upper limit of es denoted by emax
s can be given as

follows:

emax
s = D −

∑
vj∈λ∗

V −{vs}

ej . (15)

Assuming this emax
s for vs, the CPC method can now conservatively compute the

finish time bounds for all of vs’s descendant nodes and in turn compute the subse-

quent segment’s response time bounds denoted by R(Vi)
max(i > s) as depicted in

Fig. 10(a). With these conservative R(Vi)
max(i > s) values, the initial time bud-

get denoted by R(Vs)
init that can be given to vs’s segment Vs under the deadline D
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Figure 10: Calculating Initial Budget einits

constraint can be given as follows as depicted in Fig. 10(a):

R(Vs)
init = D −

∑
i<s

R(Vi)−
∑
i>s

R(Vi)
max. (16)

Using this conservatively computed initial budget R(Vs)
init for vs’s segment,

now the initial budget einits for vs itself can be computed as follows by pessimistically

applying the classic bound budget analysis, i.e., Eq. (6) to the segment Vs as depicted

in Fig. 10(b):

einits = R(Vs)
init −

∑
vj∈λ∗

Vs
−{vs}

ej −
∑

vj∈V consumer
s

ej

M
. (17)

Regarding this computed einits , we can claim that if the self-looping node executes

shorter than einits , the DAG G = (V,E) can be completed before D as formally stated

in the following lemmas and theorem.

Lemma 1. (Sustainability of the CPC method) If any node vj of a segment Vi ex-

ecutes less than its WCET, Vi’s response time is not greater than R(Vi). Using the

same rationale, the lemma still holds if vj’s finish time becomes earlier, just like vj’s

execution time becomes shorter.

Proof. This sustainability of the CPC method is proven in [8].
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Lemma 2. If the actual execution time vs is shorter than emax
s , the actual response

times of all Vs’s subsequent segments Vi(i > s) is not greater than R(Vi)
max.

Proof. If the actual execution time of vs is shorter than emax
s , the finish time bound

of every vs’s descendent node, say vj , becomes earlier or the same compared with

the one computed assuming emax
s . Thus, the actual response time of the segment

Vi(i > s) containing vj is not greater than R(Vi)
max due to Lemma 1.

Theorem 1. If the self-looping node vs executes shorter than einits , the DAG G =

(V,E) can be completed before D.

Proof. Due to Lemma 2, for all cases of es ≤ einits ≤ emax
s , the response times of all

the Vs’s subsequent segments are not greater than R(Vi)
max(i > s). Thus, the time

budget that the vs’s segment Vs can have within the deadline D is larger than or equal

to R(Vs)
init by Eq. (16). Also, due to Eq. (17), if the self-looping node vs executes

shorter than einits , the vs’s segment Vs takes shorter than R(Vs)
init. Therefore, the

DAG can be completed before D.

6.2 Binary Search for Finding the Optimal Budget

The initial budget einits by Eq. (17) is feasible to meet the deadline D as stated in

Theorem 1 but unnecessarily limited since R(Vi)
max(i > s) for the vs’s subsequent

segments are pessimistically large assuming emax
s . Therefore, there can exist a larger

but still feasible budget es in between einits and emax
s .

In this subsection, we propose a binary search algorithm to find an optimal budget

eopts in between einits and emax
s . Using einits and emax

s , we can compute their corre-

sponding loop counts Linit and Lmax, respectively, as follows:

26



Figure 11: Binary Search for Finding the Optimal Budget

Linit =

⌊
einits

es,1

⌋
,

Lmax =

⌊
emax
s

es,1

⌋
.

Within the integer space of [max{0, Linit}, Lmax], our algorithm conducts a bi-

nary search to find the largest feasible loop count L as depicted in Fig. 11. Al-

gorithm 2 formally states this binary search algorithm. Lines 1 and 2 initially set

Llow = max{0, Linit} and Lhigh = Lmax. The while loop from Line 3 to Line 13

actually conducts the binary search while Llow < Lhigh. In each iteration of the while

loop, Line 4 sets Lmid as ⌊(Lhigh+Llow+1)/2⌋. Line 5 computes the corresponding

execution time es for the self-looping node for Lmid. Using es, Line 6 and 7 use the

CPC method, i.e., Eqs. (12), (13) and (14), to compute each segment’s response time

bound R(Vi) and in turn the overall response time bound R(V ). If such computed

R(V ) is greater than D as in Line 8, it means Lmid and corresponding es are infeasi-

bly large. Thus, we shrink Lhigh to Lmid − 1 in Line 9 to check with a smaller Lmid

in the next iteration. Otherwise, i.e., R(V ) < D, it means Lmid and its correspond-

ing es are feasible but too small. Thus, we enlarge Llow to Lmid in Line 11 to check

with a larger Lmid in the next iteration. After completing this binary search, Llow
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Algorithm 2 Optimal Budget Selection Algorithm
Input: {Vi : 1 ≤ i ≤ n, Vi = λ∗

Vi
∪ V consumer

i }, D

Output: eopts

Llow = max{0, Linit}

2: Lhigh = Lmax

while Llow < Lhigh do

4: Lmid = ⌊(Lhigh + Llow + 1)/2⌋

es = Lmid × es,1

6: calculate R(Vi)(1 ≤ i ≤ n)

R(V ) =
∑n

i=1R(Vi)

8: if R(V ) > D then

Lhigh = Lmid − 1

10: else

Llow = Lmid

12: end if

end while

14: return Llow × es,1

indicates the largest feasible loop count, and hence we return Llow × es,1 for eopts . If

Llow ≥ 1, we can use the returned eopts value as the largest feasible time budget for

vs. Otherwise, we cannot assign a budget to vs since DAG is not feasible even when

es = 0.

According to [8], the CPC method has a time complexity of O((|V | + |E|)2).

Therefore, our binary search algorithm Algorithm 2 can be performed with a time

complexity of O(logN × (|V |+ |E|)2) where N is Lmax −max{0, Linit}.
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Theorem 2 says that Algorithm 2 finds the optimal time budget es for the self-

looping node vs with the condition that the CPC method is used for the feasibility

check and all the nodes vi actually take the WCET ei.

Theorem 2. The time budget obtained through Algorithm 2 is optimal under the

following condition.

1. CPC method is used for a feasibility check.

2. All nodes vi actually take the WCET ei.

Proof. Using eopts = L × es,1 obtained by Algorithm 2, the response time R(V )

calculated by CPC method is less than or equal to D. However, for es = (L +

1) × es,1, the computed response time bound R(V ) by the CPC method is greater

than D. Therefore, eopts is the largest feasible time budget for vs that makes the CPC

based response time bound R(V ) shorter than or equal to D when all other nodes vis

actually take the WCET eis.

As in the classic bound based budget analysis, we apply this CPC based budget

analysis for both normal DAG in Fig. 3(a) and safety backup DAG in Fig. 3(b) to

compute their corresponding budgets enorms and ebackups and take the minimum of

them to finally determine the time budget es for the self-looping node vs to meet the

deadline D in both normal and safety backup modes.
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7 Generalize to Multiple Self-looping Nodes

In Section 7.1, we examine a different example that brings to light some ambiguities

that must be resolved in order to formulate the multiple self-looping nodes problem

formally. In Section 7.2, we suggest one reasonable resolution to these ambiguities

and propose a formal model accordingly. In Section 7.3, we extend the classical anal-

ysis to the multiple self-looping node problem as defined by our proposed formal

model.

7.1 Ambiguity in multiple self-looping nodes

If multiple self-looping nodes are specified in a single DAG, then for each, we need

also to specify a corresponding dangling DAG (of nodes that do not need to execute

upon it flagging a physical error) and a corresponding backup node (that does). Sup-

pose that nodes v2, v4, and v5 in Fig. 2 (reproduced in Fig. 12, bottom right) were

all designated to be self-looping nodes, with the following corresponding dangling

DAGs and backup nodes:

self-looping node dangling DAG back-up node

v2 {v4, v5, v6} vb,2

v4 {v6} vb,4

v5 {v6} vb,5

Upon any invocation of this problem instance, different combinations of the self-

looping nodes may flag physical errors; hence, several different failure scenarios are

possible during any given invocation of the instance:

• No physical errors are flagged (see Fig. 12(a)).
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Figure 12: Ambiguity of Multiple self-looping nodes

• Node v2 flags a physical error; consequently the self-looping nodes v4 and v5,

both belonging to the dangling DAG for v2, do not execute (see Fig. 12(b)).

• One of v4 or v5 flags a physical error (see Figs. 12(c)-(d)).

• Nodes v4 and v5 both flag physical errors.

This last failure scenario presents a dilemma. As described in Section 3, all incoming

edges to the dangling DAG for v4 (the dangling DAG for v5, respectively) should

now be incident on the backup node vb,4 (the backup node vb,5, resp.). But this im-

plies that the edge (v5, v6) be redirected to vb,4, and the edge (v4, v6) be redirected
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to vb,5. However, v4 and v5 have both failed, and hence the outputs that they were

expected to generate are instead generated by vb,4 and vb,5 respectively; this implies

that the redirected edges form a cycle between the backup nodes vb,4 and vb,5! – see

Fig. 12(e).

7.2 Multiple Self-Looping Nodes: A Formal Model

We propose a formal model for instances with multiple self-looping nodes that es-

sentially defines away the problem identified in Section 7.1 above, by requiring the

system developer to explicitly specify the system behavior that is desired in the event

of multiple self-looping nodes flagging physical errors during the same invocation.

That is, the system developer is required to specify different modes corresponding

to combinations of self-looping nodes that may flag physical errors during the same

invocation. To do so, the system developer must specify the following.

• G = (V,E) is a DAG as described in Section 3.

• Vself ⊂ V is the set of self-looping nodes.

• A number of modes is defined. Each mode is specified as a 3-tuple (S, V<dangle,S>, vb,S),

where

1. S ⊂ Vself is a subset of the set of self-looping nodes;

2. V<dangle,S> ⊂ (V \ S), with the additional constraint that each node in

V<dangle,S> is an immediate or transitive successor to each node in S;

and

3. vb,S is a different job (i.e., not in V ), with an associated specified WCET

c(vb,S).
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Figure 13: Resolving Ambiguity in Multiple Self-looping nodes

This mode (S, V<dangle,S>, vb,S) is defined to occur in an invocation when all

the nodes in S flag physical errors during that invocation. In the event of this

mode occurring, none of the nodes in V<dangle,S> need to execute; instead, the

single job vb,S executes. All incoming edges to nodes in V<dangle,S> become

incoming edges to vb,S , and all outgoing edges from nodes in V<dangle,S> be-

come outgoing edges from vb,S .

(We point out that the non-occurrence of any physical error during an invocation may

also be conveniently represented as a mode (∅, ∅, vdud) where vdud is a dummy node

whose WCET is zero.)

The motivating example of Section 7.1 is conveniently represented using the no-

tation introduced above in this section, with Vs, the set of self-looping nodes, equal

to {v2, v4, v5}, and five modes:

1. Mode (∅, ∅, vdud) – this is the mode that is depicted in Fig. 12 (a).

2. Mode ({v2}, {v4, v5, v6}, vb,2) – depicted in Fig. 12 (b).

3. Mode ({v4}, {v6}, vb,4) – depicted in Fig. 12 (c).

4. Mode ({v5}, {v6}, vb,5) – depicted in Fig. 12 (d).

5. Mode ({v4, v5}, {v6}, vb,{v4,v5}) – this mode is depicted in Fig. 13.
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The last mode above is particularly noteworthy – as we saw earlier (Fig. 12 (e)), the

behavior of this example system is ambiguously specified when both v4 and v5 signal

physical errors, without the use of the model we are proposing in this section.

7.3 Multiple self-looping nodes: Computing WCETs

In Sections 5 and 6 we discussed the algorithm for computing the WCET for the

self-looping node when there is only one self-looping node present in a DAG. In

this section, we will represent the problem of determining the WCETs of multiple

self-looping nodes in a single DAG as a Linear Program that generalizes the one in

Section 5.3.

Let us suppose that k distinct modes (including (∅, ∅, vdud), corresponding to the

occurrence of no physical errors) are specified for the instance under consideration.

As we saw from our example in Section 7.1 (also see Figs. 12 and 13), the occurrence

of each of the k modes may require a different DAG to be executed. We now extend

the algorithm presented in Section 5.3 to represent the schedulability conditions for

all these DAGs as a single linear program. In this linear program, there will be one

variable for each self-looping node to represent its WCET. Then for each of the k

DAGs corresponding to the k modes, we will separately

• Have variables to denote its workload W and its critical path length L, and for

each node v in this DAG, its earliest start time est(v)

• Write constraints upon these variables, as well as the (global) variables rep-

resenting the WCETs of the self-looping nodes, to denote the constraints on

earliest start times imposed by the edges in the DAG (analogous to Eq.( 8) for

the case of a single self-looping node).
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• Write constraints analogous to Eqs. (9), (10), and (11), to represent respectively

the workload, the critical path length, and the requirement that the deadline be

met.

For example, the instance considered in Section 7.1, could be represented with

five modes, the DAGs corresponding to which are depicted in Fig. 12 (a)–(d) and

Fig. 13. Note that the DAGs in Fig. 12 (a), Figs. 12 (c)–(d) and Fig. 13 each have 7

nodes and 8 edges, while the DAG in Fig. 12 (b) has 5 nodes and 5 edges.

In representing this instance as an LP, we would therefore have 3 variables to

represent the WCETs of the self-looping nodes, plus (7 + 5 + 7 + 7 + 7 =) 33

variables for the est(·)’s, plus (2×5 =) 10 W,L variables, for a total of 46 variables.

We can similarly count the number of constraints: there is one per source node

(for a total of 5 across all the DAGs) plus (8 + 5 + 8 + 8 + 8 =) 37 instantiations of

Eq. (8) corresponding to the edges plus one per DAG (for a total of 5) instantiation of

Eq. (10) for each sink node plus 1 per DAG (for a total of 5) instantiation of Eq. (9)

plus 1 per DAG (for a total of 5) instantiation of Eq. (11), for a total of 57 constraints.

It is fairly evident that the LP constructed as described above does indeed repre-

sent feasible solutions to the problem of assigning WCET values to the self-looping

nodes in order to ensure that the WCRT bound of Eq. (1) for the DAG correspond-

ing to each mode does not exceed D. It remains to specify an objective function that

maximizes the WCET values that are so assigned. This step is necessarily dictated

by semantic considerations: what form of optimization does the system designer de-

sire? Generally speaking, a rich set of desiderata are expressible with linear objective

functions. For instance, setting the objective function to be the sum of the variables

representing the WCETs of the self-looping nodes would dimension the system max-
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imally but may not assign values equitably across the variables. If the objective is to

maximize the value assigned to each of them, then one would introduce an additional

variable B, add one constraint per self-looping node that its WCET be ≥ B, and set

maximizing B to be the objective function. (One could similarly express a constraint

that the WCET of one self-looping node should be twice as large as that of another

by making requiring that one of these variables be ≥ 2B, and so on.)
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8 Evaluation

This section evaluates the proposed mechanism through both simulation and actual

implementation.

8.1 Simulation with Synthetic DAG Workload

In order to show the effectiveness of our proposed mechanism for various DAG work-

loads, this section conducts a simulation with randomly generated synthetic tasks

assuming M = 4 identical cores.

A synthetic task is randomly generated as follows: (1) For a DAG G, the node

number N is randomly chosen from uniform(30, 50), and the DAG depth is randomly

chosen from uniform(5,8). One node is included in the first layer and another node

is included in the last layer to make a single source and a single sink. Then, all

other nodes are randomly distributed to the remaining layers. Edges are randomly

created to connect a pair of nodes such that every node has at least one path from

the source and at least one path to the sink. One randomly chosen node is marked

as a self-looping node vs and its single loop execution time es,1 is 8 ms. All other

nodes’ execution times eis are randomly chosen from uniform(20 ms, 60 ms) with

the average eavg of 40 ms. (2) The period T and the deadline D are assumed to be the

same. Thus, the task’s density ρ on M = 4 cores is represented by eavg×N
T×M =

eavg×N
D×M .

To make a synthetic task with a specific density ρ, T = D is determined as eavg×N
ρ×M .

In the experiment, we use only feasible DAGs, meaning that they can be sched-

uled on M = 4 cores before D by the fixed-priority non-preemptive scheduling of

CPC [8] when the self-looping node’s loop count L is 1. For such a feasible DAG

G, we choose a set of vs’s descendent nodes as a dangling DAG Gdangle such that
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Figure 14: Self-looping Node Model in Synthetic Workload

Gdangle’s workload is 20% of the total workload of G. For the backup node vb that

replaces Gdangle, its execution time eb is set to a half of Gdangle’s workload.

The self-looping node vs is characterized by the following accuracy function

A(L):

A(L) = 1− e−L/5+ln0.3 − |δ|. (18)

This accuracy function is well illustrated in Fig. 14. In this function, the 1 −

e−L/5+ln0.3 part represents the base accuracy that increases as increasing the loop

count L. In addition to this base accuracy, we subtract the |δ| part to model randomly

happening physical errors. δ follows the normal distribution N(0, σ) and hence our

experiment controls the probability of physical errors with σ, that is, a large σ models

a harsh physical situation with a high probability of physical errors. In our experi-

ment, for each loop of the self-looping node, we increase L by one and then use the

above A(L) function to generate the accuracy value. When the value becomes higher

than the acceptable bar, i.e., 0.95 in our experiment, the self-looping node completes

and produces the result to its descent nodes. Alternatively, the self-looping node may

stop regardless of the accuracy when the loop count L reaches the loop count limit.
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Figure 15: Simulation Result for Synthetic Workload

With this setting, we compare the following four methods:

• Base Small: The basic DAG execution without a safety backup. The self-

looping node has a small loop count limit of 50.

• Base Large: The same as Base Small except that the self-looping node has a

large loop count limit of 100.

• Ours Classic: Our proposed mechanism with a safety backup. The time wall is

based on the classic bound based budget analysis in Section 5.

• Ours CPC: Our proposed mechanism with a safety backup. The time wall is

based on the CPC based budget analysis in Section 6.

With these four methods, we simulate each randomly generated DAG G’s execu-

tion on M = 4 cores for 100 periodic instances. The following results are statistics

for 10,000 DAGs.

Fig. 15(a) shows the statistics (i.e., mean, quartiles, minimum and maximum

value) of the achieved accuracy by the above four methods when the DAG’s den-

sity ρ is 0.4 and standard deviation σ for modeling physical errors is 1.0. For both
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Base Small and Base Large, the mean of the achieved accuracy is higher than the ac-

ceptable bar 0.95 (i.e., dashed line in Fig. 15(a)). Obviously, Base Large shows higher

achieved accuracy than Base Small since the former runs the self-looping node with

a larger loop count limit. However, one thing we have to note is that, even for Base

Large, there exist cases where the achieved accuracy is lower than the acceptable bar,

which can lead to critical failure if there is no safety backup. Ours Classic achieves

relatively low accuracy since the time budget assigned to the self-looping node is

quite limited due to the pessimism of the classic response time bound. On the other

hand, Ours CPC achieves higher accuracy, which is comparable with Base Large.

Moreover, even when the achieved accuracy is lower than the acceptable bar, Ours

Classic and Ours CPC have a safety backup that prevents critical failure, which is not

the case for Base Small and Base Large.

The critical failure can happen (1) when the achieved accuracy is lower than

the acceptable bar or (2) when the DAG execution misses the deadline. Fig. 15(b)

compares the critical failure ratios by the above four methods as increasing the DAG’s

density ρ when σ = 1.0. Base Small shows a non-negligible critical failure ratio

even when the DAG’s density ρ is small. This is because there is a non-negligible

probability that the accuracy is lower than the acceptable bar due to a small limit

of loop count. On the other hand, Base Large shows a very small (even if non-zero)

critical failure ratio thanks to a large loop count limit when ρ is small. However,

as increasing ρ, the large limit of loop count is likely to make the deadline miss and

hence the critical failure ratio also increases. For a better understanding of the reasons

for the critical failures, Fig. 15(c) reports the breakdown of the reasons for the critical

failures of Base Small and Base Large.
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Figure 16: Average Budget for Classic based analysis and CPC based analysis

Unlike Base Small and Base Large, Ours Classic and Ours CPC show zero critical

failure ratio. This is because (1) they allow the self-looping node’s execution within

the time wall to guarantee the deadline in all cases and (2) even if such achieved

accuracy by the self-looping node is lower than the acceptable bar, the safety backup

can always back up within the deadline.

In Fig. 15, Ours CPC uses an optimal budget eopts through binary search in Sec-

tion 6.2. It can allocate more than einits but takes more time due to binary search.

Therefore, we compare einits , and eopts , and the budget obtained through Classic bound

based analysis. The experimental configurations are the same as in the above exper-

iment, but we did not experiment with multiple instances since the budget value is

always the same for the same DAG. Fig. 16 shows the average of the budget obtained

by each method for 10000 DAGs according to density. CPC (initial) means einits and

CPC (optimal) means eopts .

Basically, the larger the density, the shorter the deadline, so the budget tends to
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Figure 17: Autoware’s Normal DAG and Safety Backup DAG in Our Implementation

calculate smaller. eopts is larger than einits since it calculates largest budget between

einits and emax
s . Important point is that einits is always larger than the budget obtained

by classic bound based analysis. It means that even if einits is conservatively obtained,

it gives better results than the classic bound since CPC considers parallelism between

critical and non-critical nodes. So we can justify the need for CPC based budget

analysis.

8.2 Implementation

In this subsection, we implement our proposed mechanism based on Autoware [2].

The DAG structure of the original Autoware, which is the normal DAG, is shown in

Fig. 17(a). The voxel grid filter node filters LiDAR sensing data and gnss calibrator

calculates the car’s rough pose and position based on GPS. They produce the resulting

data to the ndt matching node. The ndt matching node is our self-looping node that

loops the inner loop to find more accurate localization using the data produced by

its preceding nodes. Then, the op global planner and op trajectory generator nodes

perform the global planning and generate the car’s future trajectory to follow the
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Figure 18: es,1 of ndt matching Figure 19: Implementation Stack

global path planning.

On the other hand, the ray ground filter, lidar euclidean cluster detect and imm ukf pda

nodes detect surrounding obstacles and then the op motion predictor node predict the

obstacles’ future behavior relative to the car’s current position. Considering the global

planning-based trajectory and obstacles’ predicted behavior, the op trajectory evaluator

and op behavior selector finds the local path to follow while avoiding collision with

obstacles. Then, the pure pursuit, twist filter, and twist gate nodes eventually actuate

the acceleration and steering angle to drive the car along the local path.

Fig. 17(b) shows our safety backup DAG for the case where the self-looping

node, i.e., ndt matching, fails in achieving an acceptable accuracy before hitting the

time wall. As a safety backup node, we use the LKAS node that runs the Lane-Keeping

Assistance System algorithm to find the driving lane in front of the car from the vision

image and drive the car keeping the center of lane [20]. The LKAS node replaces the

dangling DAG, marked by the dashed box in the normal DAG in Fig. 17(a) until the

ndt matching’s recovery action regains the acceptable accuracy.

Table 1 shows the measured WCETs of all the nodes. For ndt matching, the

measured WCET es can be modeled as a linear function of the loop count L as shown
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Figure 20: Implementation Result

in Fig. 18, that is, es = 8.07× L = es,1 × L.

Fig. 19 shows our implementation stack where the left Linux PC executes the

aforementioned Autoware DAG with T = D = 125 ms and the right Linux PC

runs a real-time simulated car in the simulated physical environment provided by

SVL [22].

Fig. 20 shows the our implementation results. Fig. 20(a) compares the car’s cen-

ter offsets for 14 sec driving by the original Autoware with NDT matching loop count

limit of 30 and also by our modified Autoware applying the time wall and the safety

backup. At time 5.7 sec, by the original Autoware, the car starts moving far from the

lane center and eventually crosses over the lane boundary at 12 sec, which is the criti-

cal failure. This is due to a physical error that makes the ndt matching keep looping

up to the limit but still resulting in unacceptable accuracy and also violating the dead-

line. To verify this, the solid line in Fig. 20(b) shows the measured execution time the

ndt matching of the original Autoware. We can observe occasional large values,

especially at time 5.7 sec, which eventually make the ndt matching completely lose
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the location tracking. On the other hand, with our modified Autoware, the car always

keeps close to the lane center. Also, the execution time of ndt matching—dashed

line in Fig. 20(b) is always below the time wall, i.e., 56 ms by the CPC based budget

analysis. This is thanks to our time wall and safety backup mechanism. Whenever the

ndt matching hits the time wall with unacceptable accuracy, its output is ignored.

Instead, the safety backup, i.e., LKAS, comes in and just keeps the car along the

center of the lane until the ndt matching rolls back. Fig. 20(a) shows such safety

backup duration of [5.7 sec, 7.8 sec] marked as the gray area.
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9 Conclusion

9.1 Summary

In this paper, we propose a novel mechanism for always guaranteeing the dead-

line while ensuring minimal safety despite physical errors in cyber-physical systems.

Our proposed mechanism uses “time wall” and “safety backup” where the time wall

bounds the time budget for the self-looping node so as to switch to the safety backup

within the deadline to prevent critical failure due to a physical error. Our experi-

ments through both simulation and actual implementation show that our approach

completely prevents critical failure despite physical errors.

9.2 Future Work

In this section, we give sketched ideas for extending to multiple DAG tasks. For ex-

tending to multiple DAG tasks, we can assume a node-level non-preemptive multiple

DAG scheduling introduced in [8]. For such scheduling, each DAG task has its own

priority and it can experience both blocking delays by a node of a lower priority

task and preemption delay by nodes of higher priority tasks. For example, in Fig. 21

assuming a single core, when task 2 is released, the node v3,1 of task 3 is running,

and task 2 waits for v3,1 finishes—blocking delay. Then, v2,1 starts but task 1 is re-

leased during v2,1’s execution. Thus, v2,2 is delayed until task 1’s nodes complete—

preemption delay. The equations to compute the maximum blocking delay dblocking

and the maximum preemption delay dpreemption are given in [8]. Therefore, for each

DAG task, by subtracting dpreemption and dpreemption from the original deadline D,

we can compute the effective deadline D′, e.g, D′
2 = D2 − dblocking − dpreemption
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Figure 21: Multiple DAG Tasks

in Fig. 21. Using this effective deadline D′ instead of the original deadline, we can

calculate the time budget of the self-looping node for an individual task with our pro-

posed budget analysis. Generally, the processor does not just run the DAGs we want.

When target DAG is executed together with other processes, we expect that the above

idea can be applied by considering each other process as a DAG. In future work, we

plan to make this sketched idea concrete for extending to multiple DAG tasks.
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Table 1: WCET of nodes

Node name WCET (ms)

voxel grid filter 0.60

gnss calibrator 0.28

ray ground filter 2.16

ndt matching 8.07 (es,1)

lidar euclidean cluster detect 17.05

op global planner 0.11

imm ukf pda 38.13

op motion predictor 5.90

op trajectory generator 1.02

op trajectory evaluator 2.97

op behavior selector 1.30

pure pursuit 0.90

twist filter 0.38

twist gate 0.41

LKAS 58.1
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요약(국문초록)

본 논문은 물리 상황 인지를 위해 내부 루프를 반복하는 자기반복 모

듈(self-looping module)이 있는 사이버 물리 시스템을 고려한다. 자기반복

모듈은더높은정확도를위해내부루프를반복하지만,설계단계에서고려

되지못한물리환경을마주하게되면루프를반복하더라도목표정확도에

도달하지 못하는 물리 에러(physical error) 상황이 발생할 수 있다. 문제는

현재 시스템의 경우 물리 에러 상황에서 자기반복 모듈이 에러를 인지하

지 못하기 때문에 계속해서 루프를 반복하게 되고, 데드라인을 놓치는 등

시스템자체의치명적인오류로이어진다는것이다.본논문에서는물리에

러상황에서도최소한의안전을보장하기위해 ”시간장벽(time wall)”과 ”

안전 백업(safety backup)”을 도입한 새로운 메커니즘을 제안한다. 시간 장

벽은자기반복모듈의최대수행시간으로,자기반복모듈이시간장벽만큼

실행했는데도목표정확도에도달하지못하면안전백업모드로전환한다.

본 논문은 시뮬레이션과 실제 자율주행 소프트웨어인 Autoware에 제안하

는 메커니즘을 적용하여 제안하는 메커니즘이 치명적 오류를 완전히 방지

하면서,실제자율주행소프트웨어에도적용가능함을보였다.

주요어 :물리에러,자기반복모듈,시간장벽,안전백업

학번 : 2021-22896
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