creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

FAdE: Privacy-preserving Targeted
Advertising System using Functional

Encryption

Functional Encryption< ©]-&
Zelo|HA] H o 22191 Bl gl AJA

s
A

12}
1

2023 A 2 4



Functional Encryption< ©]-83t
smatolu|A] T ekl B Bl A~
FAdE: Privacy-preserving Targeted Advertising

System using Functional Encryption

[\
o
[\
[\
i
—_
—_
i

9 9 o] 3 2
29190 Rk
9 4 5 % 2




Abstract

FAdE: Privacy-preserving Targeted Advertising

System using Functional Encryption

Jaehyun Lee
Department of Computer Science

The Graduate School

Seoul National University

As interest in protecting user privacy began to surge, the online advertising
industry, a multi-billion market, is also facing the same challenge. Currently,
online ads are delivered through real-time bidding (RTB) and behavioral
targeting of users. This is done by tracking users across websites to infer
their interests and preferences and then used when selecting ads to present
to the user. The user profile sent in the ad request contains data that
infringes on user privacy and is delivered to various RTB ecosystem actors,
not to mention the data stored by the bidders to increase their performance
and profitability. I propose a framework named FAdE to preserve user
privacy while enabling behavioral targeting and supporting the current RTB
ecosystem by introducing minimal changes in the protocols and data

structure. My design leverages the functional encryption (FE) scheme to



preserve the user’s privacy in behavioral targeted advertising. Specifically, 1
introduce a trusted third party (TTP) who is the key generator in my FE
scheme. The user’s profile originally used for behavioral targeting is now
encrypted and cannot be decrypted by the participants of the RTB
ecosystem. However, the demand-side platforms (DSPs) can submit their
functions to the TTP and receive function keys. This function derives a
metric, a user score, based on the user profile that can be used in their
bidding algorithm. Decrypting the encrypted user profiles with the function
keys results in the function’s output with the user profile as its input. As a
result, the user’s privacy is preserved within the RTB ecosystem, while DSPs
can still submit their bids through behavioral targeting. My evaluation
showed that when using a user profile bit vector of length 2,000, it took less
than 20ms to decrypt the encrypted user profile and derive the user score
metric through the inner-product function. This is much smaller than my
criteria of 50ms, which is based on the typical bidding timeframe
(100-1,000ms) used in the ad industry. Moreover, my result is smaller than
the state-of-the-art privacy-preserving proposals using homomorphic
encryption or multi-party computations. To demonstrate the potential for
real-world deployment., I build a prototype implementation of my design
that consists of a publisher’s website, an ad exchange (ADX), the DSP, and
the TTP.

Keywords: Online Advertising, Real-time Bidding (RTB), Functional
Encryption (FE), User Privacy, Encryption
Student Number: 2021-24027
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Chapter 1

Introduction

Online advertising is a $189 billion industry [1], and a primary revenue stream
for publishers. By allowing advertisers to promote their products and services
to potential customer form the Internet, it enables users to enjoy most web
contents free of charge. To most tech giants that provide web services, online
advertising revenue is the main source of income. According to Statista [2],
Meta and Google, rely on advertising for about 97% and 81% of their sales,
respectively, and Apple recently announced the expansion of its advertising
business [3].

Online advertising exists in numerous forms and methods. Traditionally,
advertisers would buy certain keywords to promote their products and ser-
vices when a user enters that keyword on a search engine, this is also known
as sponsored search. Another form of advertising is conteztual advertising, here,
publishers display ads that are relevant to their online contents, which pre-
sumably is linked to the interest of visitors. Publishers sell ad spaces on their
webpages to the advertising network, and advertisers use rich media environ-

ments such as video, audio, and interactive contents that utilizes the visitor’s



device, geographical location, and more. Lastly, there is behavioral advertising,
or targeted advertising, where the ads are based on the user’s profile. A profile
consists of the user’s personal information, browsing behavior, unchecked out
carts from online stores, and more. These are collected throughout the user’s
online browsing lifespan through cookies and user tracking.

In recent years, with growing emphasis on user privacy protection, concerns
have risen regarding storing and sending user profile for advertising purposes.
Regulations such as General Data Protection Regulation (GDPR) [4] ]| and
California Consumer Privacy Act (CCPA) [5] are beginning to enforce the
web service industry and in some cases tech companies were fined for not
complying with privacy protection regulations [6, 7]. In response, companies
such as Google and Apple are taking measures to protect user information in
ways such as Privacy Sandbox [8] and ATT [9], going even further to blocking
third-party cookies from their browsers. This resulted in severe cut in revenue
[10, 11] since storing and utilizing user’s private data is closely linked to the
performance and profitability of their ad revenue stream.

My research focuses on preserving user’s privacy in targeted advertising,
while maintaining the current online advertising ecosystem that is based on
Real-time Bidding (RTB) targeted advertising, while maintaining the current
online advertising ecosystem that is based on Real-time Bidding (RTB) [12].
RTB, which will be described in detail in Chapter 2, is a mechanism used
in both behavioral and contextual advertising. It occurs on-demand when the
publisher requests an ad, and an auction is held for the targeted user /webpage.
The highest bidding advertiser gets to post his or her ad as shown in Figure 1.1.
The RTB ecosystem unleashed a battlefield where the advertising platforms
used user data to their full potential to select ads that are highly targeted
and personalized. With modern machine-driven algorithms and automations,

optimizing profit through precise user targeting is crucial to their business,
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Figure 1.1: A concept of Real-Time Bidding

which lead to more user tracking and syncing [13].

In this thesis, I propose a framework named FAdE to preserve user privacy
that is leaked and unknowingly spread through the ad network by applying
functional encryption to user profile in Ad/Bid Requests. Functional encryp-
tion (FE), along with homomorphic encryption (HE), has attracted increasing
attention and interests as of recently. For example, there is a study that uses
FE to predict breast cancer while protecting sensitive medical information of
an individual [14], and a study that uses FE to trace contact for COVID-19,
where the suspected contacts of infected patients can be retrieved without
privacy breaches [15]. Similar to HE, FE also evaluates a function over an en-
crypted data but differs in terms of key management. The public and private
key pairs in HE are generated by the owner of the data. However, in FE, the
keys (i.e., public key, private key, and function keys) are generated by a trusted
third-party (TTP) who is trusted by the participants of the network. Another
key difference between FE and HE is that the former computes the plaintext
result of f(z) given the encrypted data enc(x), while the latter computes the
encrypted result of f(z) which needs to be decrypted from the data owner

through the previously issued private key. In other words, the actor in the
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world of HE performing the computation on the encrypted data is unable to
learn the result. However, the actor embracing FE can obtain the result while
preserving user privacy.

The contributions of this work are:

- It is said that behavioral targeting conflicts with privacy. In other words,
if privacy is to be preserved then targeted advertising becomes unfeasible.
However, I propose a framework named FAdE where targeted advertising is
supported without compromising user privacy using modern cryptography,
i.e., functional encryption.

- FAdE does not aim to replace the existing online advertising infrastructure
based on RTB and the OpenRTB protocol, but rather enhance it by preserving
privacy of users and at the same time providing the same level of behavioral
targeting.

- I also define criteria for time and file size so that my proposal of using FE with
RTB is applicable for real-world usage. My evaluation shows the feasibility and
scalability of the proposed framework.

The rest of this thesis is organized as follows. Chapter 2 presents an in-
depth overview of online advertisement including the main actors/entities and
notions involved, as well as the OpenRTB protocol. Also, I introduce functional
encryption, the main cornerstone of the framework, and layout the prelimi-
naries to better understand my design. In Chapter 3, I describe FAdE and
its detailed components, as well as modifications to the OpenRTB protocol
for FAdE to work alongside the current ad network. Chapter 4 presents my
evaluation and findings from exploring various functional encryption schemes
as well as my prototype implementation. Chapter 5 reviews related works on
privacy preserving online advertising compare to FAdE. Finally, I summarize

my thesis in Chapter 6.



Chapter 2

Background

In this chapter, I introduce online advertising and functional encryption (FE)
to help explain my proposed framework. Specifically, I give an overview of real-
time bidding (RTB) and explain the key players in the ecosystem and then
illustrate the bidding and ad delivery mechanism. Next, I present an overview
of FE, its difference compared with fully homomorphic encryption (FHE), in-
formation leakage, and then I introduce inner product functional encryption

schemes which FAdE is built upon.

2.1 Online Advertising

Online advertising has been around for more than a decade. Starting from
sponsored search which allowed advertisers to buy certain keywords to pro-
mote their services or products when users searched for such terms. It has
greatly contributed to search engines to provide their services for free [13].

Online advertising can be also found in publishers’ websites in the form of



contextual advertising where publishers sell blocks of space on their webpages,
and contextual advertising platforms provides richer media (e.g., video, audio)
advertisements based on the context of the webpage or the application that
is requesting the ad. To increase the user’s interest on the displayed ad and
impose further actions such as visiting the advertiser’s website or finalizing
a purchase order, advertising platforms now use techniques known as behav-
ioral targeting. Intuitively, users’ information and identifier are delivered to
the advertising platforms where in conjunction with user tracking and cookie
synchronizing methods, their interests are inferred from data such as visited
web pages, search queries, and online purchases. Based on these data, ad-
vertisements are selected through campaign-specific machine learning models
that predict users’ responses to advertisements. In order to increase bid prof-
itability and accuracy of user targeting, the advertising industry focused on

collecting more and more user data which raised concerns of user privacy.

2.1.1 RTB Ecosystem

Real-Time Bidding (RTB) facilitates real-time auctions of advertising space
[16] through marketplaces called AD eXchanges (ADX), allowing buyers to
determine bid values for individual ad impressions. Since advertisers may not
have the expertise to accurately estimate impression values using machine
learning models, Demand Side Platform (DSP) supports advertisers and ad
agencies by bidding for their campaigns. Similarly, Supply-Side Platform (SSP)
supports publishers in optimizing their yield.

The main actors of RTB shown in Figure 2.1 is as follows:

e Advertiser: A company or institution that wants to pay for and pro-

mote advertising to users in an RTB environment.

e Publisher: A website or application that sells advertising space to ad-
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Figure 2.1: Structure of the real-time bidding protocol

vertisers and earns the profits.

e User: End user who visits the publisher’s site. When a user accesses a
publisher’s site including an advertisement space, a series of RTB pro-
cesses are performed, and the advertiser’s advertisement is finally ex-
posed to the user, and the user obtains promotional information from

the advertiser by viewing or clicking the advertisement.

e SSP: The Supply Side Platform provides services to publishers by reg-
istering their inventories (impressions) from multiple ad networks and
accepting bids and placing ads automatically. The SSP also collects user

information and provides it to the RTB network.

e DSP: The Demand Side Platform provides services as an agency for
advertisers. Advertisers entrust the DSP to decide on advertisement tar-
gets and whether to bid for advertisements. That is, DSP determines the

bid amount for each ad request and bid.

e AD Exchange: The AD eXchange combines multiple ad networks to-
gether [17]. In essence it connects SSPs and DSPs, providing DSP with
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information necessary for bidding. Next, it collects biddings from mul-
tiple DSPs and determines the winning bid which is delivered to the
SSP.

Figure 2.1 also illustrates how RTB works with behavioral targeting, starting
with a user visiting a website, a bid request sent, to the display of the winning
ad. @ & @ Publisher and SSP code makes a bid request to an ad exchange.
Bid request includes details about the ad placement as well as details about
the user. @ Ad exchange forwards the request to multiple DSPs. DSPs, using
information from the publisher and of the user will place a bid to show their
ad. The bid can come from any advertiser active on the DSP at the time of the
bid. @ After some time, the ad exchange will take the bids it has received and
select a winner based on exchange and publisher bidding rules. ® & ® The
winning ad is sent to the user’s browser and loads from the user’s browser. D

The ad server which served the ad records this using data from the browser.

2.1.2 OpenRTB

OpenRTB is the communication protocol that enables real-time bidding. It was
a pilot project [18] created in 2010 by three DSPs (DataXu, MediaMath, Turn)
and three SSPs (Admeld, PubMatic, the Rubicon Project). It was designed to
spur growth in RTB marketplaces by providing an open industry standard for
communication and interoperability between buyers and sellers in the digital

advertising industry [16].

Bid Request

When a user visits the publisher site/application, the publisher creates and
transmits an Ad Request using the information required for advertisement bid-
ding. In response to each Ad Request, a Bid Request is broadcast to multiple

DSPs (bidders). An example bid request can be found in Appendix A.1. Here,
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various information that can be used by the DSP in making an advertisement
bidding decision is delivered. These include: the current website address (line
35), the size of the advertising space (lines 16-17), the information of the user

(lines 49-75), and the device (lines 45-48).

Bidding Process

The bidding process starts from the time the user accesses the publisher’s site
including the advertising space. SSP transmits Bid Request to DSP through
ADX. The DSP receives the Bid Request and determines whether the corre-
sponding user is a suitable user for the advertisement they want to provide.
The bidding function is performed using the context information of the pub-
lisher site, the user’s profile, and information such as the type and size of the
advertisement space, and as a result, it determines whether to bid for the bid
request and the bid price to participate in bidding. After the DSP receives the
bid request, a series of processes participating in bidding generally takes place
within several hundred ms [19, 20]. RTB Exchange (ex. ADX) receives bids
from multiple DSPs and determines win bid with high bid prices. Win bid is

delivered to the user along with a link to the advertisement.

2.2 Functional Encryption

Functional encryption (FE) is a generalization of the traditional public key
cryptography that enables a fine-grained access control for encrypted data
[21]. In this section, I first give an overview on FE. Then, I discuss major
differences between FE and fully homomorphic encryption (FHE) as well as
information leakage. Finally, I present the inner-product functional encryption
(IPFE), which is the main cryptographic primitive I use in FAdE. In partic-

ular, I introduce two IPFE algorithms based on two computational hardness



assumptions. Namely, the Decisional Diffie-Hellman (DDH) assumption and

the Learning with Errors (LWE) assumption.

2.2.1 Overview of FE

FE is a generalization of the traditional public key cryptography, in which
the public key is used to encrypt a plaintext and create a ciphertext, and
the matching private key is used to decrypt the ciphertext and retrieve the
plaintext. Similarly, in FE, the public key, or the master public key (M PK),
is also required to encrypt plaintexts. However, instead of the private key, FE
offers the possibility to partially decrypt ciphertexts with fine-grained control
through the use of function keys or secret keys.

FE requires a new actor, the key authority or key generator, who is responsible
for generating the keys. In this thesis, I assume that a trusted 3'® party (TTP)
takes this role, which is depicted as Tom in Figure 2.2. Tom is trusted by Alice
and Bob and generates/manages the master secret key (M SK) and the M PK.
Alice is the owner of the data (e.g., health data that includes not only her
height and weight but also other sensitive medical information) that requires
privacy preservation, and Bob uses Alice’s data to provide services such as a
diet program based on her Body Mass Index (BMI). However, by doing so,
Bob gains sensitive other sensitive data in the process. In FE, Alice encrypts
her medical data, and unlike public key cryptography, when Bob decrypts the
data using the secret key provided by Tom, the result is not Alice’s medical
data, but only the BMI value of Alice which Bob actually needs. The M SK is
used to derive the secret key (sky) that is associated with a function f through
the key generation algorithm. As shown in Figure 2.2, Tom sends the M PK
to Alice, and she encrypts her data/message = and gets ¢, the encryption of
the data/message z. On the other hand, Bob sends the function that he would

typically use on Alice’s data to Tom. Here, Tom uses his M S K and derives the

10 2 8-



secret key sky. The secret key is sent back to Tom, and When Tom receives ¢
from Alice, he computes the decryption algorithm with sk; and c as inputs,
which gives f(z) as an output. Due to this property of “partial decryption”
or giving an unencrypted output of an evaluation of the function f over the
original message, this design makes it well suited for purposes such as cloud

computing [21] or verifiable computation [22].

TTP

ﬂ

MPK Tom skg
(MSK, MPK)
f

—
Alice c Bob
enc(MPK,x) =c¢ dec(skg,¢) = f(x)
Figure 2.2: An overview of Function Encryption system with a

trusted 3" party as the key authority

2.2.2 Difference between FE and FHE

Alongside FE, fully homomorphic encryption (FHE) [23, 24, 25] is also a gen-
eralization of traditional public key cryptography. Both enable to compute
algorithms over ciphertexts, however, while the output of the FE’s decryption
algorithm is unencrypted, the output of FHE remains encrypted. Without re-
quiring an additional trusted authority within the system, FHE works as a
traditional public key system with two additional algorithms: addition and

multiplication of ciphertexts. The former takes two ciphertexts ¢y and ¢; from

11 ; ’H e ‘-'-H "‘-‘]r
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corresponding plaintexts mg and m1, and outputs a new ciphertext cg41, which
is the encryption of mg + my. Similarly, the latter outputs cyx1, which is the
encryption of mg X my. In other words, in FE, the system/actor who com-
putes the algorithm over the ciphertext have access to the results, while the
actor/system of FHE only computes and never have access to the data.

Regarding the keys used in the two systems, FHE follows the traditional pub-
lic key cryptography with a public key and a secret key created by the data
owner. But in FE, the aforementioned authority or the TTP creates the M SK,
M PK pair, and the M SK is used to generate the secret keys associated with

some functions which is then distributed to the function owners.

2.2.3 Information Leakage in Functional Encryption

FE provides partially decryption of ciphertexts with fine-grained control com-
pared to the all-or-nothing decryption in traditional public key cryptography.
Given a plaintext, it is possible to build functions that partially reveals the
original message, and when combined as a whole, reveals the plaintext. Also,
when different ciphertexts encrypted with different M P K's, have identical out-
puts when computed with some set of secret keys. I can presume that the
original plaintexts share some similarities or even identical.

Prevention of information leakage is out-of-scope from the perspective of this
thesis. [26] and [27] have analyzed information leakage in FE, and recent re-
search such as [28] proposes leakage-resilient IPFE scheme. I identify the TTP
to be responsible for inspecting, regulating, and setting up the guidelines on
the functions sent in to derive the secret keys. So that the function by itself

nor the group of functions do not reveal the entire plaintext.
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2.2.4 Inner Product Functional Encryption (IPFE)

FE schemes that enable the evaluation of inner products [29, 30] are called
inner product functional encryption (IPFE) or inner product encryption (IPE).
In IPFE, secret keys are associated with inner product functions. Given v, w
vectors, sk, is the secret key associated with the inner product function, and
C, is the encryption of v. The decryption algorithm with sk,, and C, as inputs,
outputs (v-w), the inner product of two vectors. [29] proposed constructions for
the inner product encryption schemes satisfying standard security definitions,
under well-understood assumptions: the Decisional Diffie-Hellman (DDH) and
Learning with Errors (LWE). However, they only proved their schemes to be
secure against selective adversaries. [30] upgraded those schemes to provide
them a full security, security against adaptive attacks. Its detailed algorithm
can be found in Appendix A.2. In this thesis, I focus on the fully secure IPFE
under the DDH and LWE assumptions from [30].

13 2 8-



Chapter 3

Design

FE can be utilized in AI/ML as in [31, 32]. I present a method to transform
user profile to a feature vector which can also be used as an input to a AI/ML
model. In the scope of this thesis, I use the inner-product functional encryp-
tion (IPFE) scheme on targeted advertising. Figure 3.1 shows the overview of
FAdE. And the notations and their corresponding descriptions are outlined in
Table 3.1

A trusted 3" party (TTP) is newly introduced, which is the key author-
ity responsible for generating, managing, and providing the keys used in my
scheme. The browser(user) receives the encryption key from the TTP and en-
crypts user data. The DSP sends its inner-product function to the TTP who
derives the function key and sends back to the DSP. By decrypting the en-
crypted user data with the function key, the DSP could use this result for
bidding while preserving user privacy. For the remainder of this chapter, I will
first discuss my approach to preserving privacy, then, I explain the setup phase
and the workflows executed by the TTP, user browser, and the DSP. Finally,
I present the bidding phase of FAdE.

14 -"x_g — _..
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Figure 3.1: Privacy-preserving RTB using Functional Encryption

Notation Description

MSK Master secret key

MPK Master public key (encryption key)
hashene Hash of encryption key

funcy User scoring vector

feKeya Function key (decryption key)

Xuser Plain user profile vector

Cuser Encrypted user profile (ciphertext)
SCOT€yser User score result for bidding function
find_key() Find matched feKey using hashen.

bidding_function() Calculate bid price (trade secret)

Table 3.1: Notations used in this thesis

3.1 The approach to preserving privacy

3.1.1 Encrypted user profile using FE

User profile contains user information as shown in Table 3.2 and Table 3.3, and
these were traditionally used for behavioral targeting. I design a user profile in

the form of bit vector, that is a group of bits where the values are either true (1)
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bit or false (0). The length of the bit vector is set at 2000. Currently, behavioral

targeting utilizes few hundreds to thousands of categorized information, of

which including user privacy related information. Google defined nearly 6,000

codes for ad targeting [33] and I found that around 600 codes are user related.

IAB defined around 1,500 Audience Taxonomy which can be used for user

description [34]. My survey on Google Ads API and TAB Audience Taxonomy

can be found in Table 3.2 and Table 3.3. Based on my findings, I determined

that bit vector of length 2,000 is sufficient for FAdE, and I expand on this in

my evaluations.

Category Description Examples # of features

Affinity Valid affinity categories Beauty / TV Lovers / Public Transit Users / ... 251

Age ranges Age ranges 18t024 / 25t034 / 35to44 / ... 7

Genders Genders Male / Female / Undetermined 3

Parental status  Parental status values Parent / Not a Parent / Undetermined 3

Income ranges  Income percentile ranges Undetermined / 0%-50% / 50%-60% / ... / 90%+ 7

Languages Languages available for targeting Arabic / Bengali / Bulgarian / Catalan / ... 51

Country Country codes Afghanistan / Albania / Algeria / ... 246

Life event Life event values Recently Married / Graduating Soon / ... 40
Total 608

Table 3.2: Google Ads API Codes.
Category Description Examples # of feature
Demographic Quantifiable characteristics of the audience Age Range(14) / Education(32) / Gender(5) / 197
Household Data(103) / Personal Finance(35) / ...
Intorest Medinm and long term interests Academic(36) / Entertainment(26) / Hobbies(35) / 197

Purchase intent

Music(41) / Sports(69) / Technology(19) / ...

. . Consumer Electronics(30) / Consumer Packaged
Current in-market purchase intent 864
Goods(396) / Sporting Goods(31) / Travel (27) / ...

Total 1558

Table 3.3: IAB Audience Taxonomy

There is an example of the bit vector. Assume a user [Male, age 33, sin-

gle, likes football and comedy movies, plans to buy a new car|. Based on IAB

Audience Taxonomy, this user can be represent by indexes that corresponds
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to the information, 30-34(6), Male(50), Single(162), Comedy Movie(470), Soc-
cer(663), New Vehicles(806). Here, as illustrated in Figure 3.2, I perform binary
encoding and create a user profile (bit vector) where the values of the match-

ing indexes are 1 and others 0.

&V.“.D.s
©
CH

Comedy

Age 30-34 Male Single ot Soccer New Vehicle
Index 0 1 6 .. | 50 | ... [162| ... |470| ... | 663 | ... | 806 | ... [1999 D Binary
Value 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 Encoding

User Profile

(Bit Vector) 00000010000...00100...00100...00100...00100...00100...00

Figure 3.2: Example of Binary Encoding Process for example user

The user profile (X, s¢r) is encrypted to Cyser using the M PK and included

in the user object of the bid request as shown in Figure 3.3.

“user” : [
"user* : { {
"id": "ffffffd5135596709273b3ala07e466ea2bf4fff", “ttp”: “ttp.example.com”
"yob" : 1984, “keyhash” : “0e4700076e3c3db6bef8967¢9107b55fb4f8dd3a™
"gender" : "M, “profile” : “41485965103221532195365900305702960391...”
“keywords™ : [...], bo
“data”: [...], -
“customdata” : [...], “ttp”: “ttp2.example.com”
“geo”: { ...} “keyhash” : “8967¢9107b55fb48dd3a0e4700076e3c3dbbbef”

} “profile” : “36590030570296039141485965103221532195...”
b
]

Figure 3.3: Modified user object in Bid Request
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3.2 Setup phase
3.2.1 TTP

The TTP, as the name implies, is trusted by the actors of the RTB. Major
platforms such as Google, Meta or large Certificate Authorities (CAs) from
web public key infrastructure (PKI) could take this role. In FAAE, TTP cre-
ates, manages, and delivers the keys used in the IPFE scheme. Its role consists
of the following;:

- Creation of the pool of master key pairs (M SK, MPK).

- Manages the validity of each key pairs, creates overlapping key pairs, and
calculates hash as an identifier for each key pairs.

- Receiving a request from the browser (user), it provides the pool of currently
valid M PKs and their hashes.

- When the DSP sends an inner-product function. It derives the feKey using
the currently valid M SKs and provides them to the DSP.

3.2.2 User Browser

In current RTB ecosystem, the browser caches the user’s information and
interests and use them during ad request. When the user loads the publisher’s
website, the browser executes the embedded code and creates the bid request.
During the setup phase of FAdE, the browser (1) retrieves the pool of valid
MPKs (2) performs binary encoding of user profile data to create the bit

vector.

Key Storing

The retrieval of M PKs can be implemented in following methods. First, during

an installation/update or a security patch of the browser, the developer of the
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browser packages the current pool of M PKs along with their hashes. Or,
the browser can self-monitor the pool of M PKs and request TTPs directly
for an updated pool of M PKs. The upper portion of Figure 3.4 depicts the

interaction between the user and the TTP.

Encryption

The browser uses the valid list of M PK's to encrypt the bit vector of the user
profile, and saves them locally through the process shown in the lower portion
of Figure 3.2. If there is a change in the user profile, it could re-encode the bit
vector and update the list of encryptions. The encryptions are paired with each

MPKs (and their hashes) and are used during the real-time bidding phase.

<User/SSP> <TTP>

(Browser)
Generate Master Key Pairs

Algorithm Generate MPK, MSK

Request encryption key to associated TTP

1: choose a cyclic group G of prime order

q > 2* with generators g,h € G
2:foralll <i<mdo
3: st RZ
Encrypt user profile : whioly

4: h; < g% -ht

Xyser=10,0,1,1,0,0, ...} 5:MPK < (G, g, b {h}1<im)
6: MSK < ({shzizm {thzi=m)
7:return (MPK, MSK)

Algorithm Encrypt User Data (MPK, X, .,)

1: MPK < (G, g, b, {hi}1<i<m)
2: Xyser = (V1,07 V) € L

3riz MPK, hash
4:C « ;’, D« h"  MasTapk Response encryption key and hash
S:foralll <i<mdo MPK

6 B =g h _
7516t Cyser (€D, (Ehrciem) hashupic = hash(MPK)

Figure 3.4: Workflow between User(browser) and TTP

3.2.3 DSP

In the setup phase, the DSP creates a scoring function (inner-product func-
tion) for measuring a user score from the bid request, based on the individual

ad campaign. The role of the scoring function is to find how closely the user

¥ [
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profile matches the target demographic of the ad campaign. Assuming the bit
vector length is 2,000, the length of the scoring function vector should also be
2,000.

The DSP sends the scoring function to the TTP(s), where the feKeys are de-
rived. Each feKey should be mapped with the corresponding M PK's hash so
that the DSP could select the correct feK ey when decrypting the bid request.
This process is depicted in Figure 3.5.

<DSP> <TTP>

(New Ad Campaign: Advertisement,)

Write user score function func,
funcy, ={1,0,0,1,0,0, ..., 1}

Derive function key

funcy

Algorithm Derive Function Key (MSK, func,)

Register func, to TTP
1:MSK < ({sihizizm {tih1<izm)
2: func, = (Wy,wp, -+, Wy,) € L'
3: Sfunc, < Li=1Si " Wi

Aitpune, © Dizitit Wi

5:return feKey, < (Sfunc,r trunc,)

Store feKey, and hashypyg feKeyq, hashypk

Response feKey,. and hashypk

Figure 3.5: Workflow between DSP and TTP

3.3 Bidding Phase

Figure 3.6 presents the complete workflow during the bidding phase. The ADX
manages the real-time auction between the browser and the DSPs, which is
no different from the current RTB. I describe the actions performed in the

browser and the DSPs in detail.
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<User/SSP> <ADX> <DSPs>
Visit publisher site
Bid Request Find matched decrypt key using hash
id Request — N
Ad Request (user, context, ..) feKeyq = find_key (hashypk)
Create Ad request >
Calculate user score
Scoreyser = decrypt(Cyser, feKey, . funcy)
AdRequestyger
{ Algorithm Decrypt User Score
Content: {...}, (MPK, func,, feKey,, Cyser)
Device: {...}, LMPK < (G, g.h (hhicicn
User: [{ 2 func, = (wy, Wy, Wy,) € L'
ttp: “ttpl.name.com”, . 3: feKeYo < (Sfuncy tunc,)
keyhash: {{hashupil}s Real-Time 4 Cer = (€D, Eibsctzn)
profile: {{Cyser}} Auction 3
[T
} 6:5C0Te 50 < logy E
7:return score, g,
Bid Response . .
. Win Ad (bid pricc, ad link, .y | . Make Bidding price
Display Ad " Bid price: bidding_function (context, scoreyser)

Figure 3.6: Workflow during the Real-time Bidding Process

3.3.1 Browser (User)

When the browser visits the publisher’s website that includes an ad space, it
creates an ad request. The ad request includes the user object from Figure 3.3.
If the publisher’s website indicates multiple TTPs, then the browser creates
multiple user objects with Cser that match the provided TTPs information.
In addition to Cyser (profile) and ttp, the user object also includes the hashen,
(keyhash), so that the DSPs could select the correct feKey to decrypt the
Cluser Within the object.

After the real-time auction, the winning bid is determined, and the URL of

the ad is delivered to the browser and displayed to the user.

3.3.2 DSP

During the bidding phase, based on the user and contextual information, the
DSPs decide on their bidding price. The user information is the aforementioned
Cluser, the encrypted user profile. And the contextual information is those
related to the target webpage and details regarding the ad space.

Since, the same user profile could have multiple encrypted ciphertexts, the
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DSP uses the ttp and keyhash to find the correct feKey to decrypt the Cyger.
The result of the decryption is the inner-product between the user’s bit vector
and the DSP’s inner-product function, that is, the user score value. Finally,
using the user score and other contexts the DSP determines the bid price

which is sent to the ADX for auction.

Scoring function

The DSPs use the encrypted user profile in the bid request to calculate the user
score. In FAdE, the user score gives some idea of similarity between the user
and the target demographic of the ad campaign. Using this as a parameter for
the bidding function, the DSP calculate their actual bidding price. I believe
that the specific algorithm for deciding the bidding price is a trade secret for
the DSPs. However, I should preserve user privacy so that the user profile is not
available to other actors of RTB. The scoring function is the main enabler.
By splitting the previous bidding algorithm into two, the foremost part of
assessing the user is now done through the scoring function in FAdE, and the
latter part of deciding whether to bid and determining the price can still be
kept confidential. Note that the scoring function func, is sent to the TTP,
where its function key feKey, is derived.

Figure 3.7 shows an example of calculating the user score (scoreyse,) from the
user’s bit vector and two different scoring functions. The values of the scoring
function vector indicate the weight or the level of priority of the matching

feature (e.g., gender, interests, ...).

o - I | -
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Vector
User Profile  |[[0101 0010 1101 1100

Inner Product

Vector SCOT€yser
func, 0032 0021 0123 2402 14
funcg 0123 0132 0432 2210 17

Figure 3.7: Simple example of user scoring. Inner product C ., func
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Chapter 4

Evaluation

In this chapter, I verify the feasibility of the FE scheme to be applied to FAdE.
I define criteria suitable for the characteristics of FE RTB and present mea-

surement results of usable FE scheme.

4.1 Criteria
4.1.1 Time

In RTB, in order to support real-time auction, there is a maximum time limit
for the DSP to respond to a bid for each AD Network. This is for the pur-
pose of ensuring quick bid participation and quick ad exposure, usually within
100-1,000ms [19, 20]. DSPs perform three main operations within this time
limit after receiving the Bid Request [13]. 1) Determination of suitable adver-
tisement type 2) Determination of suitability with users 3) Set final bid and
participate in bidding through internal bidding function. In FAdE, as shown

in Figure 3.6, the bidding function is performed using the user score obtained
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through FE decryption to obtain the final bid price. Therefore, FAdE affects
the part that judges suitability with the user. I defined the time criteria as
50ms, which is shorter than the allowable time in general RTB, and confirmed
the overload in actual application.

Each of the four sections of FE (Setup, FeKey Derivation, Encryption and
Decryption) were measured, and among them, only Decryption, which should

be processed in real time for Bid request, is subject to the time criteria of 50ms.

4.1.2 File size

The size of the files created and used in FAdE also affects storage space and
transfer time. So I have to distinguish which files are used and consider their
size. The purpose and transmission information of each file used in FAdE are
as follows.

- MSK: Inside TTP only / No transmission

- MPK: Key for encryption / TTP to User (only once)

- func: DSP’s scoring function / DSP to TTP (per ad campaign)

- feKey: Key for decryption / TTP to DSP (per function)

- Xuser: Plain user profile / No transmission

- Cyser: Ciphertext of user profile / User to DSP (per bid request)

Among them, the size of Cyser transmitted when requesting an advertisement
is based on the size that can be transmitted within 10ms assuming a generally
fast network between ADX and DSP. To reduce latency and latency volatility,
vendors use fast transport environments in ways such as network peering [35].
Therefore, it is assumed that the maximum allowable size is about 12.5 MB

based on the 10 Gbps environment.

2] O 1] &L -
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4.2 Environment

4.2.1 Testbed

The experiments were run in an Amazon cb.4xlarge instance 64-bit Ubuntu
server 20.04 which has 32GB of RAM and 16 vCPU 3.00GHz Intel(R) Xeon(R)
Platinum 8124M. The result are averaged over 10 runs for each test.

For each test, new input vectors X,s, and func consisting of single-digit
random values were generated. X,se represents a user’s profile, and func
represents a weighting function that is calculated on the user profile to obtain
a user score in DSP. The measurement was carried out by increasing it up to
the 2,000 vector size, which is FAJE design size. For a specific scheme I tested

further to the extent that it exceeded the design size.

4.2.2 FE Library

A FE cryptographic library, named CiFEr [36] by the project “Functional
ENcryption TEChnologies” (FENTEC for short) is used, which is an open-
source encryption algorithm library, which contains the implementations of the
functional encryption algorithm proposed by [30]. Two schemes, cfe_damgard
and cfe_lwe_fs, are chosen for the inner product of FAdE. Both are based on pa-
per by [30] and satisfy adaptive security under chosen-plaintext attacks (IND-
CPA security). cfe_damgard and cfe_lwe_fs are schemes that provide full secu-
rity under the DDH assumptions and LWE assumptions, respectively. From

the result section, each schemes are denoted as DDH and LWE.

4.3 Result

4.3.1 FAdE design

The results measured based on a user profile vector of a maximum size of 2,000
are shown in the Figure 4.1. In all measurements, it was confirmed that the

¥
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execution time increased linearly with the increase of the vector size. Setup
and derivation, which showed a large time difference between DDH and LWE,
were expressed in log scale y-axis, and encryption and decryption that did not

show a large time difference were expressed in linear scale y-axis.

First, in the case of (a) Setup, based on the 2,000 size, the LWE scheme
took 70 minutes and 6 seconds, and the DDH took 11.52 seconds. The Setup
section is an operation to create an MSK and M PK pair. It is performed in
TTP and is not time critical because it has a low execution frequency (ex. key
update). (b) feKey derivation was observed at 6.66s and 0.39ms in LWE and
DDH, respectively. This section is an operation performed in the TTP when
the DSP requests the TTP to register a new advertising campaign. Similarly,
it is not Time Critical, but it is confirmed that DDH is more advantageous
than LWE. (c¢) Encryption is an operation performed by the browser when a
change in user profile or update of a key is detected in the user’s browser. LWE
was measured at 0.53s and DDH at 5.78s. This section is also an operation
performed in advance before the advertisement request and is not time-critical.
Interestingly, it was confirmed that LWE was processed in a short execution
time without much effect on the vector size. (d) Decryption is an operation
performed by DSP when a user accesses a publisher’s site and requests an
actual advertisement. As a section that must satisfy the time criteria of 4.1.1,
20ms for DDH and 5ms for LWE, both schemes confirmed a sufficiently smaller
value than my criteria 50ms. In particular, LWE shows results that are not

significantly affected by the increase in vector size.

Based on the vector size of 2,000, the file size created in each of the
two schemes is the same as Table 4.1. In the result, the size of the file was

recorded as a text file after saving the output result using cfe_vec_print() and
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Figure 4.1: Vector length from 100 to 2,000
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Figure 4.1: Vector length from 100 to 2,000 (cont.)
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MSK MPK func feKey Xuser Cluser
DDH || 247MB | 1.24MB || 6.00KB | 1.24KB || 6.00KB | 1.24MB
LWE || 1.34GB | 29.72MB || 6.00KB | 2.27TMB || 6.00KB | 3.91MB

Table 4.1: Result of file size when vector length is 2,000

cfe_mat_print() of CiFEr library for the same standard for each scheme.

As shown in the 4.1.2 file size criteria above, data transmitted at the time of
real-time advertisement request is only Cyser, and other files are not trans-
mitted at that time. As in the measurement result, in both schemes, Ci e
increased hundreds of times compared to the existing X, q.,. However, assum-
ing a high transmission speed between ADX and DSP (generally at the level
of 10Gbps), both schemes satisfy the criteria with a small size that can be
transmitted in less than 5ms.

When measured with FAdE design, a 2000-length vector size, the LWE scheme
has a very fast Encryption / Decryption time, but a relatively slow setup time
and a large file size. On the contrary, the DDH scheme is relatively slow in
Encryption / Decryption, but it is confirmed that it is still within the range
of my tight criteria. In particular, in the case of DDH, it was judged that it
would be more advantageous in the TTP structure that supports multiple key
pairs because the setup time and the file size to be generated and transmitted

are small.

4.3.2 Extra test

For additional scalability of the user profile, additional feasibility check was
performed with a larger vector size than FAdE design. It proceeded up to
10,000 in units of 1,000 and measured in the same way as before. However,

the LWE scheme did not proceed with the measurement due to the very large
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time required and memory usage starting from the size of over 2,000.

Each section showed the same result as Figure 4.2 based on the size of 1,000
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Figure 4.2: Vector length from 1,000 to 10,000

a1 % ,ﬁ A I” &k



(98]
D
J

28.71s

— — [\ \) W
S W S W (e 5 e
1 1 1 I

Elapsed time (sec)

5.78s

QO O N N O N N LD
F T T T T T 0T O S
\Q %Q ,\,)Q N ‘)Q (OQ N OOQ QQ \QQ

Feature length (vector size)

(c) Encryption

100~
90 A
80 A 77ms
70 A
60 A

50 o

30 A
20 1
10 1
0 — T T T T T T T T T

Q N N O O N O N QD
O T T N T TS S
\Q q/Q ,\)Q N (,)Q SO OOQ QQ \QQ

20ms

Elapsed time (msec)

Feature length (vector size)
(d) Decryption

Figure 4.2: Vector length from 1,000 to 10,000 (cont.)

to 10,000 vector. In the case of decryption, it was not satisfied with my tight
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MSK

MPK

func

feKey

X’U,SET‘

Cuser

DDH

12.37MB

6.19MB

30.00KB

1.24KB

30.00KB

6.19MB

Table 4.2: Result of file size when vector length is 10,000

criteria of 50ms, but if I use a faster computing environment than mine, I
expect that the size of 10,000 is also performed within the criteria and is still
applicable. In case of file size, Cyser increased in proportion to the increase
of Xyser, and it still shows the size of 6.19MB that can be transferred within

10ms.

4.4 Prototyping

The prototype shows that targeted advertising is possible using an encrypted
user profile. It consisted of 1 TTP, 3 DSP, 1 ADX and 2 simulated users. TTP
generates a key and provides the keys to each player, and ADX delivers a bid
request and proceeds with an auction to deliver a win ad to the user. The
three DSPs have different advertisements (car promotion, child product and
furniture), define target users for each advertisement, and create user score
functions for each. Two simulated users, Jeff(Figure 4.3) and Zoe(Figure 4.4),
each have a user profile composed of different bit vectors according to personal
information and interests.

When access the publisher site, the user’s encrypted profile(Cyser) is delivered
to the DSPs, and the DSPs participate in bidding by obtaining a score using
Cluser and the score function. In this prototype, the more suitable users for the
advertisement, the higher the probability of submitting a high bid price with
a high score. Figure 4.5 shows that ADX looks at the bids from the DSPs,

determines the win bid, and delivers the advertisement to the user.
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@ Publisher
<« C @ localhost:

E-RTB (Publisher Site)
Index Table Log
[FE-RTB/USER] 'Jeff' visits Publisher Site

index|...| 6 |..| 23 |..| 50 162 470 806
Age| |Edu.| [Male| [single| |Comedy| |NewcCar

[FE-RTB/USER] Encrypt User Profile ... Done!

Value 1 1 1 1 1 1 - Encryption Key: 2679398570988369727970627015308757408956958
230065954231394406927953493053027356333087860221505756213. . .
- User profile : 000000 1000000000000000
One-Hot Vector ( X,.., ) P1060001000000000000000000000 ...

©0000010000000000000000100001000080
©P00000000000000100000000000000000 [P Cipher: 19760133736617703149266298521611100789701014570599
PePeOPOPO10PO0POO0OOPO0POPOPE0P00000000 0 [33678128200549867861773985008011904369046114956798. . .
0000000000000 000000000010000010080
0100000000000 ...

[FE-RTB/USER] POST "/adReqeust” ... Done!
. , - Cipher : 19760133736617703149266298521611100789701014570599
Ciphertext ( Cu.r )
33678128200549867861773985008011904369046114956798.. . .
197601337366177031 16111007897010145' 9! 5.

61773985008011904369046114956798278897290100736987660525389985897977
05383728426786739346630162704641246096447964472778357206464766760223
04730625685914148651915733204015041770075516800533733506457301082934.
0874124075841759824811549191. . .

P> Received Ad Link: https://fe-rtb-usel.s3.amazonaws.com/adv

ertisement-car.png

[FE-RTB/USER] Display Ad Image in Ad Space Done!

Ad Space

Figure 4.3: FAdE Prototyping - Simulated user ‘Jeff’

@ Publisher Site X+
<« C @ localhost8080 [ SRS

E-RTB (Publisher Site)
Index Table Log
.| |[[FE-RTB/USER] ‘Zoe' visits Publisher Site

index|...| & 49 .| 98 [..| 161 |.| 490 |..[1346
Age| |Female| |Parent| |Married| |Classic| |Baby
[FE-RTB/USER] Encrypt User Profile ... Done!
value |...| 1 E IR 1P T ) ) W (R | 1 |«| | Encryption Key: 2679398570988369727970627015308757408956958
230065954231394406927953493053027356333087860221505756213 .
~ - User profile : 00000100000000000000180
&m One-Hot Vector ( X,..,) P000O00000000000000000000001 ...
i‘ ©060001000000000000001000060000000080

0000000000000 01000000000000000000 [> Cipher: 75354494117043938432774378331706846755070517615543
N eooPPOPEROROOPPOPPOROO0000PRPRPREERE 1000 [21179233990093386981149882886839712040598327870129. ..
LB - I N - - - N - - -
- - - - - - -
[FE-RTB/USER] POST "/adRegeust” ... Done!
- Cipher : 75354494117043938432774378331706846755070517615543

Ciphertext ( Ci. )

21179233990093386981149882886839712040598327870129.. . .
75354494117043938432774378331706846755078517615543211792339900933869
81149882886839712040598327870129516244654178145682565117512820040517
14357946607237 5110367981007869943487201735802540383
27301732307700621817613102456353757184773092500311615332199722422062
0010228385083011909768397033.

> Received Ad Link: https://fe-rtb-usel.s3.amazonaws.com/adv

lertisement-baby.png

[FE-RTB/USER] Display Ad Image in Ad Space ... Done!

MUST-HAVES
FOR YOUR BABY
SHOP FOR
BABY CARE PRODUCTS

Figure 4.4: FAdE Prototyping - Simulated user ‘Zoe’
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X] RTB Exchange
] POST "/adRequest"

X] Forward Bid Request to DSPs
19760133736617703149266298521611100789701014570599336781282005498 61773985008. ..

[FE-RTB/ADX] Bid R s from DSPs
S Bid Pr 2 AdL1 https
rtisement-baby.png
advertisement-funiture.
[FE-RTB/ADX] Win B1id Decision
by win Bid: https:/ rtb-usel.s3.amazonaws.

[FE-RTB/ ] POST "/adRequest"

] Forward Bid Request to DSPs
32774378331706846755070517615543211792339900933869811498828

DSPs

41 AdL1ink -
).73 AdL1ink: : .amazonaws .com

ly wWin Bid: https o WS . rtisement-bab

[FE-RTB/DSP] POST "/bidRequest"
- Cipher: 19760133736617703149266298521611100789701014

[FE-RTB/DSP] Calculate User Sc/ [FE-RTB/DSP] POST "/bidRequest™
- Cipher: 19760133736617703149 - Cipher: 19760133736617763149266298521611100789701014¢
- FeKey : 12717026647448151374
-y 192121660221 [FE-RTB/DSP] Calculate User Sc [FE-RTB/DSP] POST */bidRequest"
- Cipher: 19760133736617703149 - Cipher: 19760133736617703149266298521611160789701014%
b user Score: 35 - FeKey : 73901101925220275745
-y :31031736021 [FE-RTB/DSP] Calculate User Score
[FE-RTB/DSP] Run Bidding Funct - Cipher: 19760133736617703149266298521611100789701014%
- User Score: 35 by User Score: 19 - FeKey : 10793732892842453648210876652611537202258354%
-y :0220011333233033021001:7
ly Bid Price: 0.92 [FE-RTB/DSP] Run Bidding Funct
- User Score: 19 by User Score: 13
[FE-RTB/DSP] POST "/bidReques
- Cipher: 75354494117043938432 Ly Bid Price: 0.66 [FE-RTB/DSP] Run Bidding Function
- User Score: 13
[FE-RTB/DSP] Calculate User Sci [FE-RTB/DSP] POST "/bidReques
- Cipher: 75354494117043938432 - Cipher: 75354494117043938432 L Bid Price: 0.57
- FeKey : 12717026647448151374
-y 192121660221 [FE-RTB/DSP] Calculate User Sc [FE-RTB/DSP] POST “/bidRequest"
- Cipher: 75354494117043938432 - Cipher: 75354494117043938432774378331706846755070517¢
ly User Score: 23 - FeKey : 73901101925220275745
-y :31031736021 [FE-RTB/DSP] Calculate User Score
[FE-RTB/DSP] Run Bidding Funct - Cipher: 75354494117043938432774378331706846755070517¢
- User Score: 23 by User Score: 50 - FeKey : 107937328928424536482108766526115372022583547
-y :0220011333233033021001:
Ly Bid Price: 0.91 [FE-RTB/DSP] Run Bidding Funct
- User Score: 50 by User Score: 17

Ly Bid Price: 1.41 [FE-RTB/DSP] Run Bidding Function
- User Score: 17

ly Bid Price: 0.73

Figure 4.5: Bidding process on ADX and DSPs



Chapter 5

Related work

There have been several works on privacy-preserving advertising from dif-
ferent sectors. Particularly, from the tech industry, I notice the Improving
Web Advertising Business Group (WebAdvBG) [37] and the Private Adver-
tising Technology Community Group (PATCG) [38] from the World Wide Web
Consortium (W3C). They are putting a lot of effort on developing new web
platform features to support web advertising and provide users with privacy
guarantees with a strong technical basis. Notable ideas and proposals from this
groups are FLoC: Federated Learning of Cohorts [39], which has now been re-
placed by Google’s Topics API [40], and Google’s Fledge [41] implementation
from the TURTLEDOVE proposal, the successor of PIGIN. For other propos-
als and detailed information, refer to the GitHub repository of the WebAdv
BG [42].

For the remainder of this thesis, I focus on literatures of academia that cover
complete advertising pipeline like FAdE. Table 5.1 compares the targeting
accuracy, privacy leakage, trusted third party, RTB support, and practicali-
ty/scalability of FAdE to other proposals.
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Targeting Accuracy Privacy Leakage Trusted 3rd Party

Supports RTB Scalable / Practical

Adnostic [43]  Contextual Contextual No No No

Privad [44] Limited targeting Broad interests Yes (Dealer) No Yes

ObliviAd [45] Fully targeted None (TEE) Yes (TEE) No No

AHEad [46] Fully targeted None No Yes No (> 100s per bid)

BAdASS [47]  Fully targeted None No* Yes Yes (< 30ms per bid)

Pri-RTB [48]  Fully targeted None No Yes No

Themis [49] Fully targeted None Yes (PoA Blockchain) No N/A

Adveil [50] Fully targeted None Yes (Tor network) No No (use of Tor)

FAdJE Fully targeted None Yes (IPFE Key Master) Yes Yes ( < 20ms for user score)

“BAdASS splits trust among DSPs. A single malicious DSP can disrupt the correctness of the protocol.

Table 5.1: Comparison of FAdE to other proposals

Adnostic [43] is a browser extension that preserves privacy by perform-
ing targeting locally on the client, this is already a departure from the RTB
ecosystem. In addition, Adnostic only uses contextual features during target-
ing which is insufficient to provide well-chosen ads to the user. To ensure
accurate accounting between advertisers, publishers, and ad-networks without
compromising user privacy, Adnostic utilizes homomorphic encryption (HE)
and zero-knowledge proofs (ZKP). However, this is a bottleneck to the entire

system and not appropriate for real-world usage.

Privad [44] provides targeting based on broad interest categories that
are locally determined by the client. Privad introduces an anonymizing proxy
called the Dealer, to provide user privacy and enforce fraud prevention. The
Dealer is assumed not to collude with the broker, who brings together adver-
tisers, publishers, and users in the current model (e.g., Google). The Dealer
provides user privacy by managing communication between the user and the

broker.

ObliviAd [45] is a provably secure architecture for privacy preserving on-

line behavioral advertising (OBA) by heavily relying on a Trusted Execution
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Environment (TEE) which is a secure remote co-processor (SC) and Oblivious
RAM (ORAM). The TEE is used in all stages of the advertising pipeline, from
ad targeting to unlinkability of reports and fraud prevention. The user first
sends his or hers encrypted behavioral profile to the SC which then selects
the ads that match best based on the algorithm. To prevent the ad network
from learning which ads are selected, they leverage an ORAM scheme. This
architecture is not practical since the ORAM can only serve a single client re-
quest at a time and concurrent accesses would require a replica of the ORAM
instance per-request. In addition, TEEs have seen a series of powerful attacks

since ObliviAd was published.

BAdASS [47] and AHEad [46] are both designed to be compatible with
the RTB ecosystem, which is similar to my approach. This enables behavioral
targeting based on highly detailed user profiles. BAdASS leverages the highly
fragmented nature of the RTB landscape to distribute trust among DSPs and
uses a multi-party computation (MPC) protocol to preserve user privacy. The
authors claim that BAdASS is the first protocol to allow sub-second behavioral
targeting of advertisements while preserving user privacy can obtain sensitive
information. On the other hand, AHEad uses threshold homomorphic encryp-
tion to preserve privacy within the RTB model. The authors also agreed in
BAdASS that the use of expensive cryptographic schemes results in large com-
putational costs and the amount of time it spends for calculating a single bid

(more than 100 seconds) is nowhere close to practical.

Pri-RTB [48] claims to support the RTB ecosystem, and similar to AHEad,
uses additively homomorphic encrypted user profiles. However, the suggested
protocol requires additional communication between the browser (user) and

the ADX which adds round trip times (RTTs) and increase the overall latency.
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Moreover, by using computationally expensive HE, Pri-RTB is practically un-

usable in current RTB ecosystem.

Themis [49] is a Brave browser’s contribution to privacy-preserving tar-
geted advertising. It replaces the role of the Broker with a permissioned
blockchain run by Publishers or foundations such as the Electronic Fron-
tier Foundation (EFF). Themis additionally supports payment to users for
their interaction with ads. Privacy for payments, metrics, and auditing of the
blockchain is based on a Proof of Authority (PoA) protocol. In addition to
the removal of the Broker, both targeting, and delivery is performed locally
by the clients. As a result, all users must download both the targeting model

and the entire database of ads and ad features to their local device.

AdVeil [50] proposes a modular privacy-preserving advertising ecosystem
with formal guarantees for end users. To preserve privacy in targeting, it uses a
single-server PIR protocol and a locality-sensitive hashing mechanism to allow
the users to learn which ads to fetch from the broker. Both the ad retrieval and
the reporting scheme rely on an anonymizing proxy to ensure the unlinkability
between the user’s preferences and the queries issued to the ad broker. Using
anonymous proxies correctly such as Tor is not trivial for average web users. In
addition, many ISPs and private networks block access to such networks, which

effectively prevents AdVeil users from successfully fetching and displaying.
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Chapter 6

Conculsion

In this thesis, I introduced the privacy issues of the existing Real-time Bid-
ding ecosystem for targeted advertising and suggested a novel approach, FAdE,
which is the introduction of Functional Encryption in RTB to solve these pri-
vacy issues. In doing so, I defined a reasonable size and encoding method of
the user profile and designed the role and behavior of each player in the RTB,
such as Browser, DSP, and TTP. I evaluated the performance and criteria of
the FE schemes, DDH and LWE, and the file size. Also, I presented a pro-
totype that delivers targeted advertisements using an encrypted user profile.
My results show the practical feasibility of FAdE to provide user privacy in
targeted advertising. I hope to see further work on this topic to improve user

privacy in online targeted advertising.
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Appendix A

A.1 Bid Request Sample (OpenRTB 2.5)

1 {

10
11
12
13
14
15
16
17
18
19
20
21

22

"id":"123456789316e6ede735£123e£6e32361bfcTb22",
TaEl %,
"cur": [
"USD"
P
"imp": [
{
"id":"1",
"bidfloor":0.03,
"iframebuster": [
"vendorl.com",
"vendor2.com"
1
"banner": {
"h':250),
"w":300,
"pos":0,
"battr": [
13
1

"expdir": [
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23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

¥
1,

"site":
Ilid" .

"cat":

{

"102855",
[

"IAB3-1"

1,

"domain":"www.foobar.com",

"page":"http://www.foobar.com/1234.html",

"publisher":{

nig"."g8953"

"name":"foobar.com",

"cat": [

1,

"IAB3-1"

"domain":"foobar.com"

}
b

"device":{

"ya"

"ip" .

s

"user":

nidn:

"123.145.167.10"

{

"55816b39711f9b5acf3b90e313ed29e51665623f",

"buyeruid":"545678765467876567898765678987654",

"yob":1984,

"gender" UMM,

"data": [

{

Ilidll:"6ll’
"name":"Data Provider 1",

"segment": [

{

"id":"12341318394918",

"name":"auto intenders"

49

.13 (KHTML, like Gecko) Version/5.1.7 Safari/534.57.2",

:"Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_6_8) AppleWebKit/537

n



62

63

64

65

66

67

68

69

70

71

72

{
"id":"1234131839491234",
"name":"auto enthusiasts"

b

{
"id":"23423424",
"name":"data-providerl-age",
"value":"30-40"

¥

A.2 Functional Encryption Algorithm

Algorithms based on “Fully secure functional encryption for inner products,

from standard assumptions. Agrawal et al. CRYPTO 2016”

With DDH Assumption

Algorithm Setup(1?,1%)

1
2
3
4
5:
6
7
8

: choose a cyclic group G of prime order ¢ > 2* with generators g, h € G
: for alll <i<ldo
sample s;,1; <= Z4
h; + g% - hti
end for
i MPK <« (G,g,h,{hi}1<i<i)
: MSK + ({si}i<i<is {ti}i<i<t)
: return (MPK, MSK)
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Algorithm Keygen(MSK,w)

1:

MSK «+ ({sit1<i<i, {tit1<i<t)

tw o= (wi,wa, -, wy) € Z
D Sw — Eizlsi-wi

2
3
4:
5

tw Eé:lti - Wy

: return skw < (Sw,tw)

Algorithm Encrypt(MPK,v)

: MPK « (G7g7h7 {hl}lglgl)

v = (/U17’U27...7/Ul) ezé

: sample r <= Z4

Cg",D« h"

: for alll1 <i:<Ildo

E; =g -h

: end for

: return Cy < (C, D, {E;}1<i<i)

Algorithm Decrypt(M PK,w, skw,Cy)

1:

2
3
4:
5

MPK <+ (G, g,h, {hi}1<i<1)

w = (wi, w2, ,w) € Zlq
: skw < (Sw,tw)
Cv «+ (C,D,{Ei}1<i<i)
: compute
! w;
5] Cfﬁ
i=1
: return logg F

With LWE Assumption

Algorithm Setup(1”,1¢, P, V)

1: set integers m,q > 2, a real a € (0,1) and a distribution 7 over Z!*™
2: set K =PV

3: sample A > Z™M*"™ and Z <> T

4:
5
6
7

compute U=Z-A € ZZX"

: MPK « (A,U,K,P,V)
. MSK « (2)
: return (MPK, MSK)
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Algorithm Keygen(MSK,w)

1: MSK « ({sit1<i<is {titi<i<i)
2:wev={0,---,V -1}

3: return Zyw +— wl -Z e zZ™

Algorithm Encrypt(MPK,v)

1: MPK « (A,U,K,P,V)
cveP=H{0,---,P—1}

2
3: sample s Zy and ep <> D7’ and e1 < DL
4

Z,aq Z,aq
. compute

CO:A-s+e0€ZZIn

5: compute

c1=U-s+e + \‘%J -yEZé

6: return Cy <« (co,c1)

Algorithm Decrypt(MPK,w, zyw, Cy)

1: MPK « (A,U,K,P,V)
22 wev={0,---,V-1}
3 zw—wl . Zeczm

4: Cy + (co,c1)

5: compute

u = (w,c1) — {(zw - co) mod q

) s

6: compute

pe{-K+1,---,K — 1} that minimizes

7: return p
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