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ABSTRACT  

A Candida glabrata calcineurin mutant exhibited increased susceptibility to both azole 

antifungal and cell-wall damaging agents, and was also attenuated in virulence. Although a 

mutant lacking the downstream transcription factor Crz1 displayed a cell wall-associated 

phenotype intermediate to that of the calcineurin mutant and was modestly attenuated in 

virulence, it did not show increased azole susceptibility. These results suggest that calcineurin 

regulates both Crz1-dependent and -independent pathways depending on the type of stress.  
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Infections caused by the opportunistic fungal pathogen Candida glabrata are often 

difficult to treat due in part to its intrinsic or rapidly acquired resistance to azole antifungals 

(25). Calcineurin, a serine-threonine-specific protein phosphatase (1), has attracted attention 

as a new target of antifungal therapy based on the studies in several pathogenic fungi 

including Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus (reviewed 

in reference 31). To date, very little is known about the calcineurin pathway in C. glabrata, 

although it has been reported that azole antifungals and calcineurin inhibitors have mild 

synergistic effects against C. glabrata wild-type strains (8, 15, 22). The transcription factor 

Crz1 is a downstream effector of calcineurin and is involved in azole tolerance in C. albicans 

(14, 23, 28); however, a Crz1 homolog in C. glabrata has yet to be characterized. Therefore, 

our objective was to evaluate the potential roles of calcineurin and its downstream target Crz1 

in antifungal tolerance and virulence of C. glabrata through the characterization of mutant 

phenotypes.  

Calcineurin is a heterodimer consisting of a catalytic A subunit and a Ca2+-binding 

regulatory B subunit, and the association between the two subunits is necessary for 

phosphatase activity (19). To genetically disrupt calcineurin, we completely deleted the CNB1 

open reading frame (ORF) encoding the regulatory B subunit. C. glabrata orthologs of CNB1 

and CRZ1 were identified in the genome database Genolevures (http://www.genolevures.org/). 

The primers and strains used in this study are listed in Tables 1 and 2, respectively. C. 

glabrata cells were propagated in minimal medium (0.7% yeast nitrogen base without amino 

acids, 2% dextrose) at 30C, unless otherwise noted. Gene deletion was performed using the 

one-step PCR–based technique as described previously (13). Briefly, a 1-kb XhoI fragment 

containing C. glabrata HIS3 was excised from pCgACH (17) and inserted into pBluescript II 
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SK+ (Stratagene, La Jolla, CA) to yield pBSK-HIS. A deletion construct was amplified from 

pBSK-HIS with primers tagged with the 100-bp sequences homologous to the flanking 

regions of the target ORF. Transformation of C. glabrata was performed using the lithium 

acetate (LiAc) protocol (6). Both PCR and Southern blotting were performed to verify that the 

desired homologous recombination occurred at the target locus without ectopic integration. 

To construct a centromere-based plasmid containing a C. glabrata TRP1 marker, a 1,025-bp 

SacI-KpnI fragment containing the Saccharomyces cerevisiae PGK1 promoter, a polylinker, 

and the C. glabrata HIS3 3’ flanking region was excised from pGRB2.2 (12) and inserted into 

the corresponding site of pCgACT (17) to yield pCgACT-P. The entire ORFs of C. glabrata 

CNB1 and CRZ1 were amplified from the genomic DNA of CBS138 (10) and inserted into 

pCgACT-P to generate pCgACT-PNB and pCgACT-PRZ, respectively. The constructed 

plasmids were verified by sequencing before use. Complemented strains were made by 

transforming mutant strains with a plasmid construct containing the corresponding wild-type 

gene.  

To examine the susceptibility of the generated mutants to antifungal agents, MIC 

assays were performed with a commercially prepared colorimetric microdilution panel 

(ASTY; Kyokuto Pharmaceutical Industrial Co., Ltd.) (Table 3) (24). Although increased 

azole susceptibility was observed in the Δcnb1 strain, the Δcrz1 strain displayed susceptibility 

levels similar to, or in some instances lower than, those of wild-type cells. The 

CNB1-complemented strain displayed recovered azole tolerance. Neither the Δcnb1 nor Δcrz1 

strain had an effect on amphotericin B susceptibility. Next, we monitored the percent viability 

of each strain in the presence and absence of fluconazole as described previously (15). 

Although the antifungal activity of fluconazole is generally fungistatic, the drug was 
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fungicidal for the Δcnb1 strain (Fig. 1). In contrast, the deletion of CRZ1 did not affect the 

antifungal activity of fluconazole. These results suggest that calcineurin is involved in azole 

tolerance via a Crz1-independent pathway in C. glabrata.  

To examine cell wall-associated phenotypes in the Δcnb1 and Δcrz1 strains, we 

examined their susceptibilities to different types of cell wall-damaging agents, including 

micafungin (inhibitor of 1,3-glucan synthesis), Congo red (inhibitor of chitin and -glucan 

fiber formation), and calcofluor white (inhibitor of chitin polymer assembly), using a 

previously described method (15, 20, 26). Micafungin was kindly provided by Astellas 

(Tokyo, Japan) and dissolved in distilled water. Decreased micafungin tolerance was 

observed in the Δcnb1 and Δcrz1 strains compared to that in the wild-type control and this 

was reversed in the reconstituted strains (Fig. 2). While the Δcnb1 strain showed decreased 

tolerance to both Congo red and calcofluor white, the Δcrz1 strain exhibited only moderately 

decreased tolerance to Congo red and was unaffected by calcofluor white exposure (Fig. 2B). 

These results suggest that the calcineurin-Crz1 pathway plays a role in the response to 

1,3-glucan defects and that calcineurin also regulates a Crz1-independent pathway(s) in 

response to impaired chitin construction in C. glabrata. 

To date, the involvement of calcineurin and Crz1 in virulence has not been reported 

in C. glabrata. In contrast to the C. neoformans calcineurin mutant (21), deletion of either 

CNB1 or CRZ1 did not affect cell growth at 37C in C. glabrata (data not shown), which is a 

necessary prerequisite for comparing virulence levels. We therefore performed a virulence 

assay using a murine model of disseminated candidiasis as described previously (5). Briefly, 

groups of 10 female, 8-week-old, BALB/c mice (Charles River Laboratories Japan, Inc., 

Japan) were infected via the lateral tail vein. The mice were euthanized 7 days after injection 
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to determine the number of organ CFU. In this study, no mice died before euthanasia. 

Statistical analyses were performed using the Kruskal-Wallis test with Dunn’s posttest for 

multiple comparisons. A P value of <0.05 was considered statistically significant. Mice 

infected with the Δcnb1 strain showed significantly reduced fungal burden in all examined 

organs compared to those infected with the wild-type control and CNB1-complemented 

strains (Fig. 3). Decreased numbers of CFU of the Δcrz1 strain were statistically significant in 

the kidney but not in the liver and spleen. The results from this assay indicate that the loss of 

calcineurin results in attenuated virulence while a deletion of CRZ1 causes only a partial 

reduction. 

This is the first report characterizing the phenotypes of C. glabrata CNB1 and CRZ1 

mutants, and it has identified both similarities and differences with findings for other fungi. 

For example, the observed C. glabrata Δcnb1 strain phenotype, which is characterized by an 

increased susceptibility to azoles and cell wall-damaging agents as well as decreased 

virulence, is consistent with previous findings for other pathogenic fungi, such as C. albicans 

(2-4, 27), C. neoformans (11, 18, 21), and A. fumigatus (9, 30). To date, an ortholog of Crz1 

in C. neoformans has not been identified and a mutant phenotype associated with azole 

susceptibility in A. fumigatus has yet to be reported; thus, the full importance of this 

transcriptional factor is not clear for these fungi. Although the virulence of a Δcrz1 mutant is 

highly attenuated in A. fumigatus (7, 29), this mutation has little effect on virulence in both C. 

albicans (14, 23) and C. glabrata (Fig. 3). In contrast to that in C. albicans (14, 23, 28), the 

loss of Crz1 did not result in increased azole susceptibility in C. glabrata. In addition, the C. 

glabrata Δcrz1 strain exhibited increased susceptibility to micafungin and Congo red but not 

to calcofluor white. Taken together, these results indicate that calcineurin-mediated Crz1 
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regulation is dependent upon the type of stress and that the regulatory mechanisms vary 

among fungal species. Further characterization of these mutant phenotypes will help to 

discover a novel and conserved calcineurin target in pathogenic fungi.  
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TABLE 1. Primers used in this study 

Primer a Target 
gene 

Sequence (5’ – 3’) b 

For gene deletion   
CgCNB 100-F CNB1 GTATGTGATGCTTCTCACAGGGTTCAGACGGTTACAT

ACCATCGCTTGAGAGTCATAGTAAATGTTCAGGTTCA
CGATTAAATCATGCTTTCTCTTTGATAATACGACTC
ACTATAGGGC

CgCNB 100-R CNB1 GCGAACTCTGAAATGTAGATCAAGGATTATTCTGTCC
TTGAAATGGGTGTTGATGTCCCTCACTAGGAAAGACA
ACCACTTTACTATTGTAAGGGGTGACGCTCTAGAA
CTAGTGGATCC

CgCRZ 100-F CRZ1 GATAACGAGTTGGACGCCCTCTTTTGGAAGTCTGTTC
TGGTTGCAGATGCTTATAGACCCTGGATCAAGCACTT
CATTTCATTGGGATTACAGCTTTTCTAATACGACTC
ACTATAGGGC 

CgCRZ 100-R CRZ1 CACAATCTTGATTCTGAAGAAAAAAATTTATCATTAAA
AATACTGGAGGTTTGTGTTAATTTATTCCAAAGTAACA
CCCATCTCAGTTGCTTGAATATTCGCTCTAGAACTA
GTGGATCC 

For gene cloning   
CgCNB1-F2-5P CNB1 ATCAAGGGAAATGGGAGC 
CgCNB1-R1-5P CNB1 CGCCCTAAGTTACATCTCTCCTCG 
CgCRZ1-F1-E CRZ1 CGGAATTCATGGGCGATAACGAAGAGGA 
CgCRZ1-R1938-E CRZ1 CGGAATTCTTATTCCAAAGTAACACCCATCTCA 
a “F” and “R” indicate forward and reverse primers, respectively. 

b Sequences homologous to flanking regions of the target ORF are shown in italics. 

Sequences shown in boldface are present in pBSK-HIS. Restriction sites are underlined. 
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TABLE 2. Strains used in this study. 

Strain Genotype or description Reference or source 
CBS138 Wild-type (10) 
2001T Δtrp1 (a derivative of CBS138) (16) 
2001HT Δhis3, Δtrp1 (made from 2001T) (16) 
TG11 2001T containing pCgACT-P This study 
TG161 Δcnb1::HIS3, Δtrp1 (made from 2001HT) This study 
TG162 TG161 containing pCgACT-P This study 
TG163 TG161 containing pCgACT-PNB This study 
TG171 Δcrz1::HIS3, Δtrp1 (made from 2001HT) This study 
TG172 TG171 containing pCgACT-P This study 
TG173 TG171 containing pCgACT-PRZ This study 
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TABLE 3. Antifungal susceptibilities of C. glabrata strains 

Strain (genotype) 
MIC (g/ml) a 

FLC MCZ ITC VRC AMB 

TG11 (wild-type) 16 0.5 2 0.25 0.5 

TG162 (cnb1) 4 0.125 0.5 0.125 0.5 

TG163 (cnb1 + CNB1) 16 0.5 2 0.25 0.5 

TG172 (crz1) 32 1 1 0.5 0.5 

TG173 (crz1 + CRZ1) 16 0.5 1 0.25 0.5 

a FLC, fluconazole; MCZ, miconazole; ITC, itraconazole; VRC, voriconazole; AMB, 

amphotericin B. 
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Figure legends 

Fig. 1. Time-kill curves of C. glabrata wild-type and mutant strains exposed to fluconazole. 

Logarithmic-phase cells (5 × 105 CFU/ml) were incubated in minimal medium with 

agitation in the presence or absence of fluconazole at the indicated concentrations. The total 

number of cells was counted using a hemocytometer, and the number of viable cells was 

determined by plating the appropriate dilutions on yeast extract-peptone-dextrose (YPD) 

plates. The data are expressed as the percentages of viability and represent the means and 

standard deviations for three independent experiments.  

 

Fig. 2. Susceptibilities of C. glabrata wild-type and mutant strains to cell wall-damaging 

agents. (A) Logarithmic-phase cells (2.5 × 103 CFU/ml) were incubated in minimal 

medium in either the presence or absence of micafungin, and the optical density at 600 nm 

(OD600) was measured after 24 h (left panel). The percentages of absorbance were 

calculated from the OD600 of each culture after 24 h of incubation in the presence of 0.03 

g/ml micafungin relative to those in the absence of micafungin (right panel). Data 

represent the means and standard deviations for three independent experiments. (B) Serial 

10-fold dilutions of C. glabrata log-phase cells were spotted onto minimal medium plates 

containing micafungin, Congo red, or calcofluor white at the indicated concentrations. 

Plates were incubated at 30C for 48 h. All sensitivity tests were repeated at least three 

times. C. glabrata strains were as follows: wild-type, 2001T containing an empty vector 

(strain TG11); Δcnb1, a cnb1 strain containing an empty vector (strain TG162); cnb1 + 

CNB1, a CNB1-complemented strain made with pCgACT-PNB (strain TG163); crz1, a 
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crz1 strain containing an empty vector (strain TG172); and crz1 + CRZ1, a 

CRZ1-complemented strain made with pCgACT-PRZ (strain TG173). 

 

Fig. 3. Virulence assay using a mouse model of disseminated candidiasis. Groups of 10 

mice were intravenously inoculated with 8 × 107 cells for each C. glabrata strain. Three 

target organs (liver, spleen, and bilateral kidneys) were excised 7 days after injection. 

Appropriate dilutions of organ homogenates were plated, and the numbers of CFU were 

counted after 3 days of incubation at 30C. Numbers of recovered CFU from each organ are 

indicated for individual mice in the scatter plots. The geometric mean is shown as a bar. 

Representative data of two independent experiments are shown. C. glabrata strains are as 

follows: wild-type, TG11 (wild-type control); cnb1, TG162 (cnb1 strain containing an 

empty vector); cnb1 + CNB1, TG163 (CNB1-complemented strain made with 

pCgACT-PNB); crz1, TG172 (crz1 strain containing an empty vector); crz1 + CRZ1, 

TG173 (CRZ1-complemented strain made with pCgACT-PRZ). ¶ ,P < 0.05 

(Kruskal-Wallis test with Dunn’s posttest). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
 
 


