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Abstract  Although it is known that the hybrid male mouse is sterile just like any other animal's 

heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. 

TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA 

fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than 

the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm 

mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors 

was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the 

expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male 

sterility of mice. 

Keywords  hybrid male sterility・mitochondrial DNA deletion・maternal mitochondrial DNA 

inheritance・Spag1・Eri15・speciation
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Introduction  

Even though crossing between closely related species is possible, the gene flow will be blocked by the 

sterility of hybrids of heterogametic sex (male in the case of mammals) [1]. It can be said that postzygotic 

reproductive isolation by hybrid sterility is strict and basal. In other words, the initiative driver for 

speciation is hybrid sterility, and thus it can be said that hybrid sterility genes are speciation genes. In the 

case of mice, the female of an interspecific hybrid is fertile, while the male is sterile. Usually the hybrid 

male grows normally, except for having impaired spermatogenesis in its testis [2]. However, that 

mechanism is yet to be elucidated. 

We previously reported that maternal mitochondrial DNA (mtDNA) inheritance of the mouse is 

through selective sperm mtDNA elimination based on the sperm-specific translocator of the 

mitochondrial outer membrane (Spag1-1), two egg factors of the system-specific endonuclease (Eri15) 

and the system-specific chaperone (Spag1-2 or 1-3) [3, 4]. In the male germ cells the expression of 

Spag1-2 (or 1-3) is possibly suppressed by epistatic gene(s). In the case of hybrid offspring of a female 

with a Spag1-2 (or 1-3) genetic mutation of the type that inhibits the suppression of the expression of 

Spag1-2 (or 1-3) and a wild type male, it is speculated that while there is no effect on the female germ 

cells the mtDNA of the male germ cells do get destroyed. Mitochondrial respiration defects through 
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mutant mtDNA with a deletion result in spermatogenic meiotic arrest and cause male sterility [5]. In 

this study we discuss the maternal mtDNA inheritance system being involved in hybrid male sterility and 

report the below described “as-expected” result obtained.

Materials and Methods

Mouse strains and crosses 

Mice of the inbred strain C57BL/6J (B6) (Mus musculus domesticus) were purchased from SLC (Japan). 

The wild-derived inbred strain PWK (Mus musculus musculus) and Mus spretus were provided by 

RIKEN BRC (Japan). We crossed female PWK with male B6 to make intersubspecific hybrids (PB-F1), 

female B6 with male Mus spretus, and female PWK with male Mus spretus to make interspecific 

hybrids (BS-F1, PS-F1 respectively).

  Fertility was checked by backcrossing between the F1 male and the parent female, and the presence of 

spermatozoa in sections of F1 hybrid testis.
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Creation of cryptorchidism

To induce cryptorchidism mice were anesthetized with ether inhalation and the testes manipulated 

through the inguinal canal into the abdomen and sutured to the abdominal wall through the epididymal 

body with thread. The mice were killed through cervical dislocation and the testes sampled on 6 days 

after the operation.

Preparation of testis and ovary

The dissection of testis and mature ovary from mice killed through cervical dislocation and isolation of 

cytosol and mitochondria were performed as previously described [3].

Trypsination assay of mitochondria

Trypsination of isolated testis mitochondria was performed as previously described [3].
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TdT-mediated dUTP nick end labeling (TUNEL) assay

After deparaffinizing and rehydrating the fixed and paraffin-embedded sections of testis, the sections 

were treated with 20 μg / ml protenase K at room temperature for 15 minutes followed by labeling with 

fluorescein-dUTP and terminal deoxynucleotidyl transferase (TdT) 37 ℃ for 2 hours. Labeled sections 

were quenched with 2 % H2O2 / methanol on ice for 5 minutes prior to being incubated with 

HRP-anti-fluorescein antibody at 37 ℃ for 30 minutes and visualized using diaminobenzidine (DAB). 

The sections were couterstained with hematoxyline. With the negative control fluorescein-dUTP was 

omitted. 

  For confocal fluorescence microscopic image (Zeiss LSM 510) the sections were labeled with 

biotin-dUTP prior to incubate with avidin-Alexa 488 (invitrogen) without quenching. Nucleus and 

mitochondria is stained with TO-PRO3 (invitrogen) and MitoTracker Red CMXRos (invitrogen) 

respectively. With the negative control biotin-dUTP was omitted.

DNA fragmentation assay

Nucleus and mitochondria isolated by sucrose density gradient centrifugation were digested in TES buffer 
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(10 mM Tris-HCl, pH7.5, 10 mM EDTA, 100 mM NaCl) containing 1 % SDS, 200 μg / ml protenase 

K at 37 ℃ overnight and 200 μg / ml RNase at 37 ℃ for 60 minutes. DNA was extracted using the 

phenol-chloroform-isoamyl alcohol method. The DNA was precipitated with ammonium acetate and 

ethanol and dissolved in TE buffer (10 mM Tris-Hcl, pH 7.5, 1 mM EDTA). An aliquot of DNA (2μg) 

from each sample was labeled at the 3’ end with biotin-dUTP and TdT at 37 ℃ for 30 minutes. Labeled 

DNA was separated on 1.5 % agarose gel followed by blotting on a nylon membrane overnight with 10 

× SSC (1.5 M NaCl, 150 mM sodium citrate, pH 7.0). The DNA was fixed by being baked at 80 ℃ for 

60 minutes followed by UV cross-linking. The membrane was placed in blocking buffer (Roche) 

containing avidin-HRP at room temperature for 30 minutes prior to being washed with TBST buffer (10 

mM Tris-HCl, pH 8.0, 100 mM NaCl, 0.1 % Tween-20). The blot was develaped using an ECL plus 

system (Amersham Biosciences) and exposed to X-ray film.

Western immunoblotting analysis

Western immunoblotting by SDS-PAGE of ovary and testis proteins with anti-Spag1-2 polyclonal 

antibody and anti-Eri15 polyclonal antibody was performed as previously described [3, 4]. Anti-β-actin 

monoclonal antibody (Sigma) and anti-VDAC1/porin polyclonal antibody (abcam) were used as the 
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loading control of cytosol and mitochondria respectively.

Immunohistochemical staining

After deparaffinizing and rehydrating the fixed and paraffin-embedded sections of BS-F1 testis, 

immunohistochemical staining with anti-Spag1-2 polyclonal antibody and anti-Eri15 polyclonal antibody 

was performed as previously described [4]. Normal rabbit serum was used as a negative control.

Results and discussion

Mitochondrial DNA destruction in degenerated spermatocytes of hybrid male testis

All BS-F1, PB-F1, PS-F1 males were sterile. Although degenerated spermatocytes showing nuclear 

condensation and an eosinophilic cytoplasm through H.E staining (Fig. 1a) are stained in the TUNEL 

assay of all F1 hybrid testis (Fig. 1b), apoptotic bodies or nuclear fragmentations that are typical to 

apoptosis were not observed. As reported by T. Kaku et al. [6], BS-F1 testis are of the two types and 

include type I that suffer spermatogenic arrest before the pachytene stage in prophase and have missing 
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spermatids (Fig. 1a), and type 2 that are disrupted from metaphase I to the maturing stage of spermatid

and that have a small amount of spermatids of abnormal morphology (Fig. 3B(a)). Both PB-F1 and PS-F1 

testis indicated type 1 (Fig 1).

  The cytoplasm appears to be stained in a TUNEL assay using a light microscope. However, it is 

difficult to distinguish it from the nucleus (Fig. 1b). Hence type 1 hybrid testis, which would possibly 

have degeneration from the early stage of prophase in which the nuclear membrane is clear, were used to 

observe the TUNEL assay with a confocal fluorescence microscope. And as a result a stain corresponding

to the cytoplasm was recognized not only in BS-F1, but also in PB-F1 and PS-F1 testis (Fig. 1).

Furthermore, destruction of mtDNA was confirmed in the DNA fragmentation assay using BS-F1 testis 

DNA (Fig. 2). 

  From the above it was suggested that mitochondrial DNA destruction occurs in degenerated 

spermatocytes of hybrid male testis. As mentioned above, mitochondrial respiration defects through 

mutant mtDNA with a deletion result in spermatogenic meiotic arrest and cause male sterility [5].

Therefore hybrid male sterility can be considered to be a result of mtDNA deletion in the spermatocyte. 

Expression of maternal mtDNA inheritance system in hybrid male germ cells
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Normally, nuclear DNA (ncDNA) is destroyed in apoptosis while mtDNA is not [7, 8]. TUNEL assay of 

cryptorchid testis, which cause apoptosis [9], indicated a stain clearly corresponding to the nucleus (Fig.

1h,l,p). In addition it differed from necrosis in which both ncDNA and mtDNA are destroyed [8]. 

  Western immunoblotting assay of the BS-F1 ovary indicated expression of only Spag1-2, 1-3 and Eri15 

protein while Spag1-1 was not indicated, however, in the BS-F1 testis, Spag1-2 was also detected in 

addition to Spag1-1 and Eri15 protein (Fig. 3A). Eri15 has two monomers including 15 kDa, and its 

isoform or its post-translational modification of 18 kDa. Although a tetramer of 60 kDa and a trimer of 45 

kDa have been expressed respectively in ovary and testis [4], dimers of 30 (15×2) kDa and 36 (18×2) 

kDa were further detected common to both in this research. Among these, only 36 kDa Eri15 was 

detected in the BS-F1 testis mitochondria that were processed with trypsin while Eri15 was not detected 

in Mus spretus testis mitochondria (Fig. 3A), and thus Eri15 was thought to be transported into 

mitochondria in the hybrid testis. 

  In order to study tissue localization type 2 hybrid testis was used as it displays recognizable stages of 

arrest cells. Part of metaphase spermatocytes was stained in the TUNEL assay (Fig. 3B(a)), and thus the 

metaphase was thought to be an initial stage of arrest in type 2 hybrid testis. In immunohistochemical 

staining too both Spag1 and Eri15 (both form a complex in the ovary cytosol [4]) were detected in the 

cytoplasm of some metaphase spermatocytes in a similar pattern (Fig. 3B(c)(d)). 
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  From the above it was suggested that maternal mtDNA inheritance system is expressed in hybrid male 

germ cells. Maternal mtDNA inheritance system is selective mtDNA elimination system [3, 4]. Therefore 

it was speculated that the expression of maternal mtDNA inheritance system in male germ cells is 

involved in mtDNA destruction in murine hybrid testis

Conclusion

From the above it was assumed that mtDNA destruction caused by the expression of maternal mtDNA 

inheritance system in male germ cells is implicated in the hybrid male sterility of mice.

  Sperm mtDNA elimination by the egg is a system with high species specificity [10]. It is considered 

that this system evolved in order to eliminate parasites imported along with the sperm [11] and sperm 

mtDNA damaged by reactive oxygen species (ROS) [12]. However, it would be more suitable for all 

purposes if the species specificity did not increase. Hence the system may have originally evolved in 

situations where species specific reactions such as speciation were necessary. 

Most mitochondrial genes get transferred to the nuclear genome except for the small portion of them 

that are necessary for the mitochondrial function [13]. However, the reason why all the genes do not get 

transferred is still unknown. The presence of a system of losing the mitochondrial function through 
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mtDNA elimination to control the development of its cells may have been selective pressure to preserve 

the necessary genes for the mitochondrial function in mitochondria.
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Fig. 1 HE staining and TUNEL assay of testes. (a) HE staining of BS-F1 testes (type1). (b) Light 

microscopic image of TUNEL assay of BS-F1 testes (type1). (c-p) confocal fluorescence microscopic 

image. (c) negatine control. TUNEL assay of C57BL/6J intact testes (merged image). (d) negative control. 

TUNEL assay without biotin–dUTP of BS-F1 testes (type1) (merged image). (e-h) TUNEL assay (green). 

(i-l) nucleus stained with TO-PRO3 (blue). (m-p) merged image. (insert in e-p) a higher magnification 

image of the boxed area. Red signals are mitochondria stained with MitoTracker Red CMXRos. (e, i, m) 

BS-F1 hybrids testes (type1). TUNEL positive fluorescence is observed at the cytoplasm of the 

proliferative leptotene spermatocytes. (f, j, n) PB-F1 testes (type1). (g, k, o) PS-F1 testes (type1). (h, l, p) 

C57BL/6J testes on 6 days after the cryptorchidism operation. TUNEL positive fluorescence is observed 

at the nucleus of the various stage of germ cells

Fig. 2 DNA fragmentation assay. MM, positive control (blunt-ended DNA ladder marker); B6, 

C57BL/6J; BS, C57BL/6J♀×Mus spretus♂ F1 hybrids; N, nuclear DNA; M, mitochondrial DNA

Fig. 3  (A) Western immunoblotting assay. B6, C57BL/6J; Ms, Mus spretus; BS, C57BL/6J♀×Mus 

spretus♂ F1 hybrids; OM, ovary mitochondria; TM, testis mitochondria; OC, ovary cytosol; TC, testis 
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cytosol; TMt, testis mitochondria treated with trypsin. (B) Light microscopic image of TUNEL assay and 

immunohistochemical staining of BS-F1 testis (type 2). TUNEL assay (a). Part of metaphase 

spermatocytes was stained. immunohistochemical staining with normal rabbit serum (b). 

immunohistochemical staining with anti-Spag1-2 antibody (c). immunohistochemical staining with 

anti-Eri15 antibody (d). solid arrow, positive stained metaphase spermatocyte; open arrow, negative 

stained metaphase spermatocyte
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