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ABSTRACT
Mixed precision is an approximate computing technique that can be
used to trade-off computation accuracy for performance and/or en-
ergy. It can be applied to many error-tolerant applications, but man-
ual precision tuning is both tedious and error-prone. Furthermore,
the effectiveness of the technique heavily depends on hardware
characteristics. Therefore, a hardware/software co-design approach
is necessary for an effective exploitation of precision tuning oppor-
tunities offered by the applications. In this paper, we propose, based
on the state of the art of precision tuning software and mixed pre-
cision hardware, a roadmap for the evolution of hardware designs
and compiler-based precision tuning support, which is ongoing in
the context of the European projects TEXTAROSSA and APROPOS.

CCS CONCEPTS
• Software and its engineering → Compilers; • Computer
systems organization → Reduced instruction set computing;
Parallel architectures.
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1 INTRODUCTION
Approximate Computing is an emerging class of optimization tech-
niques to trade off computation accuracy for performance and
energy [9]. In general, Approximate Computing techniques can
be performed in a wide range of contexts, from hardware to ap-
plication level, and can introduce approximation in several ways,
ranging from faults induced by undervolting the system, as in near
threshold computing [13] to skipping entire iterations of a loop, as
in loop perforation techniques [25], in real-time optimization [21],
and for on-chip communication [29].

In this paper, we focus on one particular Approximate Comput-
ing technique, namely Mixed Precision Computing [3]. Mixed Preci-
sion Computing aims at controlling the accuracy-performance/energy
trade-off at a fine grain, by modifying the data types involved
in each computation. Whenever a computation is introduced in
an application source code, it is assigned a data type based on
the programmer understanding of the semantics of the variables
and constants involved as well as the available data types in the
programming language. However, this choice usually produces a
computation that significantly exceeds the precision needed for the
actual ranges of values involved in it at run-time, since the program-
mer cannot be asked to fine-tune it, even when the programming
language and the underlying instruction set architecture allow it.
In the context of resource-constrained embedded systems, where
computing resources are scarce and floating point units may not be
available at all in low power micro-controllers, an expert needs to
manually tune the code designed by the application programmer
to produce an optimized version.

To address this issue, new hardware extensions are being de-
signed, including support for new data types such as bfloat16, and
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compiler-based tools have been developed to support the program-
mer in selecting the best solution for their applications. However,
these developments have mostly progressed in parallel, and there
is now need to combine them in a hardware/software co-design
approach in other to reap the highest possible benefits from Mixed
Precision Computing. Two European efforts have recently started
with complementary goals addressing the problem stated above.
EuroHPC TEXTAROSSA [1, 2] focuses on heterogeneous platforms
for High Performance Computing (HPC), including both reconfig-
urable fabrics and general purpose accelerators (GPU), whereas
MSCA-ITN APROPOS [19] is more oriented towards low-power
embedded systems. In this paper, we show how the two projects
will work synergically towards the development of both hardware
and software components needed for effective Mixed Precision
Computing across the Computing Continuum.

In Section 2 we review the state of the art of Mixed Precision
Computing hardware and compiler support. In Section 3 and 4 we
outline the research roadmaps of TEXTAROSSA and APROPOS,
while in Section 5 we outline some conclusions.

2 STATE OF THE ART
In this section, we provide an overview of the most relevant hard-
ware and compiler methods for mixed-precision found in the litera-
ture.

2.1 Transprecision and Mixed Precision
Hardware

Architectures targeting mixed-precision floating-point arithmetic
must provide fast, energy-efficient, and area-efficient support for
carrying out computations on a variety of floating-point formats.

The FloPoCo framework can generate hardware accelerators for
basic as well as more complex, non-standard floating-point arith-
metic operations on FPGA targets [12]. The designer can configure
at design time the precision of the generated cores, which can
then be integrated into a general-purpose CPU in the form of a
floating-point unit (FPU) or employed as a co-processor. While
FloPoCo-generated cores can compute complex operations far more
efficiently than as a sequence of standard FPU operations in a base-
line CPU, the high throughput of those accelerators is countered
by a high usage of FPGA resources, which makes such cores suit-
able to high-end embedded systems and more complex computing
platforms.

The fused multiply–accumulate (FMAC) unit for transprecision
computing presented in [15], meant for ASIC designs, can compute
multiple low-precision floating-point operations at the same time in
a SIMD fashion. Meant to be integrated in HPC solutions, the FMAC
unit adds, for each low-precision result, a bit acting as a flag for its
accuracy, signaling whether the corresponding operation has to be
computed again at a higher precision in order to achieve the desired
accuracy. Significant compiler changes must be implemented to
support such feature.

[27] introduced a transprecision FPU that was integrated within
the PULPino RISC-V-based open-source microcontroller, meant for
ultra-low-power applications. The proposed FPU can handle 32-, 16-
, and 8-bit floating-point formats on the same datapath in a packed
SIMD fashion, thus providing hardware support for transprecision

when coupled with a software framework that can explore and tune
the precision and dynamic range of floating-point variables. The
concurrent support for three floating-point formats on the same
FPU is countered by the complexity and high resource utilization
of the packed SIMD datapath.

The mixed-precision floating-point unit introduced in [32] tar-
gets FPGA chips and is meant to be suitable for embedded systems
platforms, such as the SoC supporting the RISC-V instruction set
in which it was integrated for evaluation purposes [24]. Each type
of operation can be implemented with a different floating-point
format selected at design time according to the accuracy and perfor-
mance requirements and resource constraints. Once instantiated,
the supported formats can not be modified at run time, unless per-
forming reconfiguration on FPGA targets. No changes are needed
to the compiler, which can still work with standard float32 variables.
The supported floating-formats are 32-bit ones with any number of
mantissa bits ranging from 1 to 23 and with the same 8-bit exponent
length as the IEEE 754 float32 floating-point format.

While fixed-point operations can in general be computed as se-
quences of integer arithmetic and shift operations, mixed-precision
computing making use of fixed-point arithmetic must also be sup-
ported at the hardware level to provide more effective performance.
Few state-of-the-art solutions implement therefore dedicated in-
struction set extensions providing fixed-point operations coupled
with the corresponding hardware architecture to execute them.

[16] added support for the RISC-V P extension to the RISC-V 64-
bit CVA6 processor [28]. The RISC-V P extension [22] extends the
RISC-V instruction set architecture (ISA) with support for packed
SIMD instructions, including fixed-point instructions for the Q1.63,
Q1.31, Q1.15, and Q1.7 fixed-point formats, i.e., formats with 1
integer bit and 63, 31, 15, and 7 fractional bits, respectively.

Themixed-precision hardware support for fixed-point arithmetic
introduced in [30, 31] implements instead a custom extension for
the RISC-V ISA to enable the execution of fixed-point multiplica-
tions and divisions with 32-bit fixed-point formats selected at run
time. The custom instructions, whose support must be added at the
compiler level, encode indeed, in addition to the two operands, the
position of their decimal point, i.e., the number of their integer and
fractional bits. The modifications to be applied to the baseline ALU
implementing integer multiplication and division instructions are
minimal, also in terms of FPGA resource utilization, making the pro-
posed fixed-point hardware support suitable even for constrained
platforms such as embedded systems at the edge.

2.2 Precision Tuning support at compiler level
Many of the precision tuning tools are implemented as a step in
the program compilation process. There are multiple benefits to
doing it this way: (i) operating on the lower level of granularity
exposes more opportunities for optimizations, (ii) access to informa-
tion about the target hardware allows to tailor the program to the
specifics of that hardware (e.g. supported floating-point types, op-
erations performance, etc.), (iii) it is non-intrusive and transparent
for the programmer, (iv) it benefits from highly developed compiler
ecosystem. In practical terms, precision tuning tools used to opti-
mize real applications need to satisfy the following requirements:
(i) be able to optimize programs containing loops, conditionals and
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Table 1: Precision tuning tools summary

Tool Validation Input Language Algorithm
TAFFO Static C, C++ Interval Arithmetic, Affine Arithmetic, ILP
Rosa Static Scala Interval Arithmetic, Affine Arithmetic, SMT
Daisy Static Scala, C Interval Arithmetic, Affine Arithmetic, SMT, rewriting rules
Precimonious Dynamic C, C++ Delta-Debugging
FloatSmith Dynamic C, C++ Algorithmic Differentiation, Delta-Debugging, Hierarchical Composition

memory operations, (ii) be able to work with programs written in
commonly-used programming language, (iii) support wide variety
of execution platforms, (iv) be able to work with a modern compila-
tion ecosystem. Very few tools discussed currently in the literature
satisfy these points.

TAFFO [4] is a precision tuning tool implemented as a plugin
for LLVM compiler framework. It works with programs written
in C/C++ and compiles them into transprecision binaries trading
off accuracy of result for the execution time. TAFFO requires pro-
grammer to annotate input variables with the dynamic intervals of
their values. It then uses Interval Arithmetic to derive the dynamic
intervals of other variables, and Affine Arithmetic to estimate the
errors. Provided the information about the supported types and the
speed of the floating- and fixed-point operations TAFFO uses Inte-
ger Linear Programming (ILP) model to select the most optimal type
allocation for the particular execution platforms [5], allowing it to
target a wide variety of systems ranging from HPC to embedded.
It supports fixed-point [8] and multiple floating-point [5] formats.
TAFFO can perform static precision tuning as well as run-time
optimization [7].

Rosa [11] is a source-to-source compiler precision tuning tool for
programs written in Scala. It requires programmer to use a special
Real type together and preconditions and precision requirements on
functions. From that information Rosa derives the type allocation
that satisfies the requirements using Interval and Affine Arithmetics
and SMT (Satisfiability modulo theories) Solver. It does not support
loops and conditionals. Daisy [10] is a source-to-source compiler
precision tuning tool that extends Rosa for programs written in
Scala and C. It uses genetic algorithm to explore rewriting rules
that may improve accuracy of the program.

FloatSmith [17] is a source-to-source compiler for precision tun-
ing for programs written in C/C++. It integrates previously existing
tools to create a complete precision tuning pipeline. FloatSmith
requires programmer to annotate the variables that need to be
tuned with their error thresholds. It uses Algorithmic Differentia-
tion to statically estimate the error introduced by a type change.
It uses dynamic evaluation of floating-point types configurations
with different search strategies: delta-debugging, hierarchical, and
composition of the successful configurations.

Precimonious [23] is an LLVM-based precision tuning tool for
programs written in C/C++. It explores the configuration space
for the types used in the program and finds the best within the
given error threshold given as annotations in the program. It uses
delta-debugging algorithm for more efficient exploration and tests
configurations by running the selected configurations with the
inputs provided by the programmer. It uses LLVM version 3, which
limits its usefulness for the modern applications.

Figure 1: Example of the mixed-precision floating-point ar-
chitecture, in a configuration where additions-subtractions
are performed on float32 operands and multiplications and
divisions are computed on bfloat16 operands [32]
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Table 1 summarises the relevant tool properties discussed in this
section. For the more detailed discussion of the precision tuning
tools we direct the reader to the survey: Cherubin and Agosta [6].

3 MIXED PRECISION HARDWARE IN
TEXTAROSSA

In this section, we report the advances proposed in TEXTAROSSA
towards mixed-precision hardware support.

3.1 Mixed-precision floating-point hardware
support

The mixed-precision floating-point architecture [32] allows deliv-
ering floating-point hardware support where the precision of each
type of operations, e.g., additions/subtractions, multiplications, and
divisions, can be independently selected at design time depending
on the target applications, on the accuracy requirements, and on the
resource utilization constraints. Such flexibility in the supported
floating-point formats still maintains a common dynamic range, in
particular, the one of the standard IEEE 754 float32 format, across
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the entire FPU, providing two main advantages. On the one hand,
the fixed dynamic range, i.e., the fixed number of bits encoding
the floating-point exponent, simplifies the interoperability between
the different floating-point data formats. On the other hand, the
ensuing less complexity in the hardware architecture allows further
optimizing the trade-off between efficiency and area.

Remarkably, when executing critical applications whichmandate
a higher accuracy than the one provided by a FPU implementing
some combination of reduced-precision operations, resorting to
the corresponding soft-float function calls can still guarantee the
precision of float32 computations, albeit at the cost of a reduction
of performance. Such possibility can be exploited at the compiler
level by selectively converting floating-point operations for which
the HW support has reduced precision into soft-float function calls,
which make use of the integer arithmetic resources of the CPU.

On the contrary, no changes or modifications must be applied on
the compiler side to deal with the floating-point formats, possibly
different from the standard float32 one, employed by the different
operations within the mixed-precision FPU. When low-precision
formats are used, the operands are truncated to the desired precision
and the ensuing result is extended by setting the least significant bits
to 0s at the hardware level within the FPU, without any intervention
required at the compiler or application level.

An instance of the mixed-precision FPU implementing bfloat16
multiplications, conversions, and comparisons and float32 addi-
tions/subtractions and divisions was shown to occupy 21% less
resources and providing a 19% EDP improvement compared to a
reference state-of-the-art FPU [20] while maintaining an average
accuracy error below 3%.

Figure 1 depicts an example configuration of our mixed-precision
FPU, where additions and subtractions are implemented in the same
functional unit according to the standard float32 format, while mul-
tiplications and divisions are computed between bfloat16 operands.
The operands pre-processing logic, which takes care of extending
the mantissa and exponent parts to deal with both normalized and
denormalized operands and of identifying special values such as
NaNs, infinites, and zeros, is shared between all the functional units
computing the actual operations. On the contrary, rounding logic
is instantiated for each of the hardware-supported formats. In the
example, result rounding is performed separately for float32 and
bfloat16 results, which are multiplexed from the corresponding
functional units.

3.2 Mixed-precision fixed-point hardware
support

The mixed-precision fixed-point architecture [30] provides hard-
ware support for fixed-point multiplication and division instruc-
tions of the RISC-V ISA. Any 32-bit fixed-point format is supported,
with the only constraint that both operands and the result share
the same fixed-point format.

The selection of such specific fixed-point format is not made at
design time for the fixed-point hardware support, but it is encoded
within the instruction opcodes of the fixed-point multiplication
and division instructions, which also include the number of integer
and fractional digits. In particular, the RISC-V ISA was extended
with eight fixed-point multiplication and division instructions, each

Figure 2: Overview of the changes, highlighted in red, applied
to integer multiplier and divider functional units to support
fixed-point operations in the mixed-precision fixed-point
architecture [30]
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corresponding to a multiplication or division instruction from the
standard RISC-V ISA M extension. The additional fixed-point in-
structions, coupled with the mixed-precision fixed-point hardware
support, allow executing, at run time, multiplications and divisions
instructions with any 32-bit fixed-point format while reusing the
same hardware.

The fixed-point hardware support requires a limited number
of additional FPGA resources compared to those required by the
overall SoC implementing a CPU compliant to the RISC-V ISA inte-
ger (I) and multiplication/division (M) extensions. In particular, the
experimental results highlighted an overhead in terms of resource
utilization limited to 4%, compared to the baseline SoC packing a
CPU supporting the lone RISC-V I and M extensions. On the energy-
efficiency side, implementing fixed-point hardware support was
shown to provide a 35% EDP improvement compared to the refer-
ence SoC also implementing an FPU, while maintaining a negligible
accuracy loss.

Figure 2 depicts, highlighted in red, the changes applied to the
baseline functional unit implementing integer multiplication and
division operations in order to support the corresponding fixed-
point operations. Logic meant to perform conversions between
sign-magnitude and two’s complement representations, to compute
the sign of the result, and to manage signed and unsigned opera-
tions is instead not depicted, since it is not modified. In particular,
the number of fractional bits of the operands and the result, en-
coded within the imm7 7-bit portion of the fixed-point instructions’
opcode, is employed to shift the result of the integer multiplier and
the divider operand of the integer divider, when executing fixed-
point instructions, i.e., when the isFixed 1-bit flag is set to 1. On
the contrary, when computing standard integer operations from
the RISC-V ISA M extension, i.e., when the isFixed 1-bit flag is set
to 0, the product, quotient, and remainder outputs are computed
without applying any shift.
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Figure 3: TAFFO compilation flow performing floating to
fixed point conversion [4]
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4 COMPILER-SUPPORTED PRECISION
TUNING

In this section, we provide an overview of the goals, architecture
and roadmap for the TAFFO compiler plugin set developed in TEX-
TAROSSA and APROPOS.

4.1 Precision Tuning Compiler: Architecture
Traditional compilers do not normally change the data types in-
volved in the computation. The rationale is not only that compilers
should not alter the semantics of the program (actually, most com-
pilers can perform aggressive optimizations, although those are nor-
mally disabled by default), but that the compiler does not normally
have information about the value ranges of variables, and thus can-
not say much about the computed data as well. A precision tuning
compiler, therefore, needs such information either from the pro-
grammer (by means of compiler hints expressed as annotations or
pragmas) or from profiling (as in profile-guided optimization [18]).
Our set of plugins for the LLVM compiler framework, TAFFO [4],
takes the former approach, leveraging programmer annotations
that express the value ranges of the input data.

Figure 3 shows the TAFFO compiler pipeline, compared with
the standard compilation flow performed by the LLVM. Beyond
some Initialization steps, the main activities that TAFFO performs
are the Value Range Analysis, which propagates the information
contained in the programmer annotations through the program
data flow, computing the ranges for all intermediate values, and the
Data Type Allocation, which selects the optimal allocation taking
into account not only the beneficial effect on performance given by
the reduced precision, but also the cost of converting data between
different types. This process results in a clustering of operations,
so that only a limited amount of type conversions are performed.
The Code Generation and Error Propagation steps finally perform
the conversion of the actual code, applying the decisions taken in
the previous step, and check that the selected transformation does
not catastrophically affect the computation error (in which case the
transformation is undone).

TAFFO was first developed as the result of research ideas pro-
posed in the FETHPC ANTAREX project [26], and currently devel-
oped under the umbrella of both the EuroHPC TEXTAROSSA and
the MSCA-ITN APROPOS projects.

4.2 Precision Tuning for Heterogeneous Parallel
HPC Architectures in TEXTAROSSA

When targeting parallel architectures, precision tuning tools need
to tackle additional challenges that are not present in conventional
single-threaded tasks. In particular, the tool needs to reliably detect
each parallel region and the sets of variables shared between parallel
execution threads. If this is not done, the transformed code might
not be correct or appropriately transformed to mixed-precision.
This task is even more troublesome for languages which do not
support parallel programming paradigms without an auxiliary sup-
port library. This category includes languages of particular interest
to HPC architectures such as C or C++, and languages used for
compiler development like LLVM-IR.

To address these challenges, in the context of the TEXTAROSSA
project we plan to integrate the TAFFO precision tuning plugins for
the LLVM compiler framework with parallel-oriented languages
supported by the same compiler. The choice of TAFFO is supported
by its integrated architecture with the LLVM compiler framework,
contrary e.g. to Daisy [10], which obviates the need of a specialized
parser and code-generator as in a source-to-source compiler. Addi-
tionally, TAFFO is up to date with recent LLVM versions, contrary
to Precimonious [23], which requires a severely outdated version of
LLVM. The languages we plan to target encompass a large variety
of parallel HPC architectures. In particular, we support OpenMP for
CPU-based multiprocessing architectures, and we plan to support
OpenCL and CUDA for the GPU-based SIMD paradigm and for
GP-GPUs. In the future, we also envision additional extensions to
support OmpSs, and the recently-proposed Posit numeric represen-
tation [14].

In order to add support for OpenMP-aware optimizations to
TAFFO, we modify the Initializer and Conversion passes. The mod-
ifications allow the detection of specific OpenMP pragmas and of
the outlined functions inserted by the clang frontend. This allows
to mantain code correctness and to propagate the contextual in-
formation needed by precision tuning inside of parallel blocks. In
Initializer, the program is searched for instances of call sites of the
OpenMP fork function. At each call site, such function is temporar-
ily deleted and replaced by a local trampoline, whose body simply
calls the OpenMP outlined function This allows TAFFO’s existing
code to handle OpenMP programs without additional modifications.
Additionally, we detect OpenMP’s loop initialization library func-
tion to improve the loop trip count analysis already provided by
LLVM.

A similar approachwill be used to implement support for OpenCL
and CUDA, with the additional complication that it is necessary to
subject both host code and kernel code to optimization. In particu-
lar, the data types in the signature of the kernel functions must be
kept coherent between host and device. Furthermore, it is neces-
sary to detect where buffers are created in the host code in order to
propagate annotations from the host code to the kernel code.

4.3 Precision Tuning for Embedded Systems in
APROPOS

The APROPOS project leverages novel micro-controller architec-
tures that expose mixed-precision or trans-precision arithmetic
units, and develops compiler-based techniques to achieve the best
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performance and energy efficiency within the application con-
straints on accuracy. To this end, we need to extend the TAFFO
plugins set to support multiple data types, both floating and fixed
point. Depending on the target hardware, it may be possible to
achieve a co-design scenario, where the compiler can analyze the
application based on the developer hints providing the quality of
service requirements in terms of expected maximum relative error,
determine the optimal data type selection for the various regions,
and then, based on the architectural options available, apply the
appropriate transformation to the code to generate the best mix
of data types, as well as a configuration file for the generation or
selection of the actual hardware platform.

To this end, APROPOSwill need to extend the TAFFO framework
to perform the error estimation and the data type selection not
only for fixed point operations, but also for floating point ones, to
enable the support of mixed-precision floating point units such as
those developed in TEXTAROSSA and described in Section 3.1. In
APROPOS, the TAFFO pipeline will be extended to operate first the
partitioning of operation in two sets – those that can be performed
in fixed point arithmetics, and those that need to be performed using
floating point. Then, TAFFOwill need to select the fixed-point width
using the LuIS methodology [5], and finally to select the floating
point width. Newmetrics combining sufficient precision and limited
computational effort will be needed to perform this second step.
Finally, the back-end of TAFFOwill be extended to support the RISC-
V instruction set architecture, as well as its relevant extensions.

5 CONCLUSIONS
In this paper, we have presented a roadmap towards an effective
co-design methodology for mixed precision computing, supporting
a range of different platform options for both HPC and Embedded
Systems scenarios. During the next two years, in the context of the
EuroHPC TEXTAROSSA and MSCA-ITN APROPOS projects, we
will work towards the effective implementation of this vision in
terms of both RISC-V-based hardware platforms and extensions to
the TAFFO open source precision tuning tool set.
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