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Abstract: The recent advancements in Intelligent Transportation Systems (ITS) have revealed signifi-
cant potential for enhancing traffic management through Advanced Driver Assist Systems (ADASs),
with benefits for both safety and environment. This research paper proposes a vehicle localization
technique based on Kalman filtering, as accurate positioning of the ego-vehicle is essential for the
proper functioning of the Traffic Light Advisor (TLA) system. The aim of the TLA is to calculate
the most suitable speed to safely reach and pass the first traffic light in front of the vehicle and
subsequently keep that velocity constant to overcome the following traffic light, thus allowing safer
and more efficient driving practices, thereby reducing safety risks, and minimizing energy consump-
tion. To overcome Global Positioning Systems (GPS) limitations encountered in urban scenarios,
a multi-rate sensor fusion approach based on the Kalman filter with map matching and a simple
kinematic one-dimensional model is proposed. The experimental results demonstrate an estimation
error below 0.5 m on urban roads with GPS signal loss areas, making it suitable for TLA application.
The experimental validation of the Traffic Light Advisor system confirmed the expected benefits with
a 40% decrease in energy consumption compared to unassisted driving.

Keywords: vehicle localization; Kalman filter; ADAS; kinematic model; GPS; TLA; ITS

1. Introduction

Vehicle localization represents a fundamental task in many fields, ranging from Au-
tonomous Vehicles (AV) to Advanced Driving Assistance Systems (ADASs) as well as traffic
management [1]. Indeed, the starting point for most of the control logic, on both the vehicle
and infrastructure sides, is the knowledge of the vehicle position. This is typically fed to
algorithms intended to compute either vehicle optimal trajectory and speed or safety risk
indexes to safely overcome dangerous situations, especially in urban scenarios.

Vehicle localization techniques can be distinguished between the onboard sensor-based
systems and those relying upon Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication. The former category can be further split into active sensor based
(e.g., LiDAR and RADAR) and passive sensor based (e.g., GPS and IMU). On the one hand,
active sensors are generally more costly and computationally expensive than passive ones.
On the other hand, Inertial Measurement Units (IMUs) suffer from noisy signals which may
lead to integration divergence, while when dealing with Global Positioning Systems (GPS)
a typical issue is the signal loss [2]. In vehicle localization, GPS outage is thus a relevant
phenomenon to cope with, especially in urban scenarios, where the presence of trees and
high buildings limit the sensor capabilities.

The Green Light Optimal Speed Advisory (GLOSA) system is an application that
conveys speed references to the driver to achieve lower travel times, fuel/energy consump-
tion, and safer travel conditions [3]. This can be achieved thanks to the knowledge of
road data, the vehicle state in terms of position and speed, and traffic light schedules. The
speed profile calculation is typically addressed by taking into account different criteria.
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One typical approach is to minimize the engine power demand and idling time [4]. Another
approach prioritizes driver annoyance reduction by minimizing the difference between the
suggested and actual speeds, or by aiming to pass the traffic light in the smallest amount of
time [5].

In this framework, the present study proposes a multi-sensor multi-rate vehicle local-
ization technique based on Kalman filtering as the ego-vehicle position is a prerequisite for
making ADASs work. The aim is to have an accurate state estimation that provides the
vehicle position to the Traffic Light Advisor (TLA) system thought to be used in challenging
scenarios such as urban roads, where pure GPS information may be neither present nor
reliable. The field tests for the localization algorithm demonstrated good accuracy results
in different conditions and GPS signal availability, proving to be consistent for running
ADASs, such as the TLA. Furthermore, having implemented the localization algorithm
and knowing the working plans of a set of traffic lights on a predefined path of the city
of Milan, the paper reports full-scale testing on a trolley-bus in the urban scenario of
the TLA developed by [6] at Politecnico di Milano, confirming the previously obtained
simulation results.

The remainder of this paper is structured as follows: After the literature review in
Section 2, the experimental setup used for the experimental campaigns is presented in
Section 3. Section 4 details the proposed localization algorithm, and Section 5 summarizes
the main feature of the TLA and presents the scenarios and the metrics adopted for the
ADAS validation. The results of both the localization algorithm and the TLA system are
reported in Section 6 while Section 7 draws the conclusions of this work, proposing some
future development for the implemented systems.

2. State of the Art

In the literature, the criteria employed for the determination of the speed profile in
GLOSA applications typically involve the minimization of the total energy consumption
and travel time [7–10]. This kind of ADAS can be further distinguished into two cate-
gories based on the number of traffic lights they consider in real time to determine the
recommended speeds: single-segment GLOSA (S-GLOSA) and multiple-segment GLOSA
(M-GLOSA). S-GLOSA systems focus on analyzing the first traffic light encountered by
the vehicle, while M-GLOSA systems consider multiple traffic lights along the vehicle’s
route. In the case of S-GLOSA algorithms, they typically employ modeling approaches
incorporating velocity profiles both upstream and downstream of the intersection, as
demonstrated in [11]. However, in recent years, data-driven approaches have emerged as
a promising alternative, as highlighted in [12]. In that research, a conventional S-GLOSA
system is contrasted with reinforcement learning (RL) implementation, which incorporates
data from a single traffic light and limited information from the preceding three vehicles.
The RL-based approach resulted in an 11% increase in energy savings compared to the
standard S-GLOSA system. These developments in data-driven methodologies highlight
the potential to enhance the performance and energy efficiency of GLOSA systems.

In the future, Vehicle-to-Infrastructure (V2I) communication will be one of the main
drivers making this kind of Advanced Driving Assistance System possible by providing
a great amount of data about adjacent vehicles and traffic [13]. In fact, the work in [14]
analyzes the effect of the GLOSA system running different simulations varying both infras-
tructure variables (e.g., cycle times and communication range) and external variables, such
as traffic conditions. As far as traffic is concerned, the research conducted in [15] demon-
strates the effectiveness of M-GLOSA systems compared to single-segment approaches,
especially in free-flow traffic conditions. However, optimizing M-GLOSA systems while
considering traffic light phase changes presents challenges, leading to non-convex feasible
solution domains. To tackle this issue, the literature proposes various approaches. Stud-
ies like [8,15] have implemented Genetic Algorithms (GAs) to address the optimization
problem. Additionally, search-based algorithms, employing semi-heuristic or brute-force
methods, have also been explored in [11]. A widely adopted alternative is Model Predic-
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tive Control (MPC), and the authors in [16] investigated the MPC application for GLOSA
implementation in road segments containing multiple traffic lights.

Self-localization has been extensively studied in the literature for a long time, as it
serves as a crucial component in the development of Cooperative Active Safety Systems
and ADASs in general. In a comprehensive review conducted in [17], various sensor-based
and communication-based approaches for localization are thoroughly examined, with a
specific focus on accuracy and real-time performance. The findings of the survey show
that data fusion techniques, such as the integration of onboard passive sensors and Vehicle-
to-Everything (V2X) communication, offer a promising solution due to their robustness,
accuracy, and ability to operate in real time.

GPS outages represent a huge limiting point in vehicle localization in urban canyoning;
thus, the most adopted strategy to cope with this issue is to use the Kalman filter and
its variants to estimate the vehicle state also when GPS is not available, fusing different
sensors (e.g., Inertial Measurement Unit and Wheel Speed Sensor) and a dynamic vehicle
model [18,19]. In [2], an extended Kalman filter (EKF) fusing a digital map, IMUs, GPS
data, and cellular Base Transceiver Stations (BTS) signals is presented. In their work, the
authors proposed the use of cellular BTS not only to overcome GPS outages but also to
improve localization accuracy.

Recently, LiDAR and vision sensors have been adopted to overcome the challenges of
localization in urban scenarios, fusing these types of sensors to cope with the limitation
of every single device [20]. In [21], a cascading Kalman filter and dynamic object removal
model using multi-GNSS, INS, Precise Point Positioning (PPP), and vision to improve
vehicle navigation performances in urban scenarios is presented. In this framework, a
novel application in state estimation is Simultaneous Localization and Mapping (SLAM)
which can be involved either in AV applications or in Cooperative ITS. On the one hand,
Bersani et al. [22] presents an integrated system for vehicle state estimation using unscented
Kalman filter fusing data from different passive sensors, such as GPS and IMUs, and from
active sensors, like RADAR and LiDAR, which are used to detect and track obstacles as
well as improve the localization algorithm. On the other hand, Wang et al. [23] compares
different localization systems based on both GNSS and V2X communication for inter-vehicle
distance calculation, which is needed for safety ADAS applications.

An interesting challenge in fusing different sensors is dealing with their different
sampling frequency. In fact, in asynchronous multi-sensor systems, there is the possibility
to miss some data when performing state estimation [24]. The authors in [25] presented
different multi-rate multi-sensor models for Kalman filtering with missing measurements.
The idea is to run the state estimation algorithm at the fastest sensor frequency and just
predict the state vector whenever a sensor is missing or it is considered not reliable.

In addition to the widely studied Kalman filtering techniques, which are extensively
covered in the vehicle localization literature, alternative strategies like graph optimization
have also been explored. The authors in [26] introduced a novel approach in their work,
presenting a multi-sensor fusion method formulated as a graphical model. This model
optimizes the integration of onboard sensors to enhance positioning performance, utilizing
a kinematic vehicle model as the underlying basis.

Recently, the advent of the 5G network cooperative oriented the research toward new
horizons, such as cooperative localization and the Internet of Vehicles (IoV). In fact, thanks
to the perception algorithm of the surrounding vehicles, vehicle communication allows
gathering localization information that can be used to either improve the ego-vehicle state
estimation when GPS is not accurate [27] or to fill the gap in case the GPS signal is missing
for long periods [28]. Another approach investigated in the literature in the last decades is
the use of Assisted-GPS (A-GPS) systems which exploit the terrestrial communication link
to determine the current location [29]. This type of localization is typically employed on
cell phones to avoid decoding the GPS messages for each satellite observed, thus using a
remote server [30]. More recently, an alternative A-GPS system combining a barometer and
accelerometer is proposed in [31] to improve the localization on smartphones.
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This research paper introduces a localization technique that is both simple and reliable,
offering robustness and accuracy for a TLA application. The approach relies on the use of
a Kalman filter and map matching. The filter incorporates a one-dimensional uniformly
accelerated kinematic motion model and integrates data from various onboard sensors,
including the IMU, GPS, and Electronic Control Unit (ECU), each operating at different
frequencies. Moreover, the localization algorithm is integrated into the Traffic Light Ad-
visor (TLA) system, as developed in [6]. This integration optimizes the vehicle’s speed,
minimizing unnecessary stops and ensuring a smoother driving experience, ultimately
reducing energy consumption.

The primary contribution of this study is the development and full-scale experimental
testing of a localization algorithm in urban scenarios facing GPS signal loss conditions. In
particular, the algorithm utilizes multiple sensors and different sampling rates, making it
suitable for implementing Advanced Driver Assistance Systems (ADAS), including Traffic
Light Advisor (TLA) systems. The research mainly focuses on the urban road environment,
where traditional GPS systems exhibit poor performance due to the challenges posed by
urban canyoning. Instead of relying solely on velocity integration, the algorithm leverages
the combined information from the Electronic Control Unit (ECU) for speed, Inertial
Measurement Unit (IMU) for longitudinal acceleration, and GPS measurements to achieve
a smoother output and accurate vehicle localization even in the absence of reliable GPS
data. Alongside the presentation of the localization algorithm, the study also showcases
the practical application of the proposed method. Specifically, experimental results for
the Traffic Light Advisor (TLA) system are presented to further validate the approach
introduced in [6] through real-world road tests.

3. Experimental Setup

This section aims at introducing the experimental setup used for the validation of
both the Kalman filter and the Traffic Light Advisor system. The localization algorithm
relies on a GPS receiver, responsible for locating the vehicle via latitude and longitude
measurements, the integrated speed value available from the Electronic Control Unit
(ECU) of the trolley-bus, and an Inertial Measurement Unit (IMU) that returns the values
of acceleration along its axes. The main navigation system utilized is the GPS which is
installed on the front part of the vehicle and provides spatial coordinates in a fixed reference
frame. As mentioned, it can be missing for significant portions of the path when the number
of satellites is not sufficient or the signal is not reliable, thus not allowing the algorithm to
know the measurement of the vehicle’s position. The information coming from the GPS
receiver must be then fused with other measurements coming from the ECU, providing the
longitudinal velocity of the vehicle, and the 5 DoF IMUs measuring the acceleration of a
body along the three main axes (x, y, z), as well as the rotational speed around the x and y
axes as shown in Figure 1.

GPS

IMU

WSS

GPS

IMU

ECU
X

Y

Figure 1. View and schematic representation of the instrumented vehicle used in the testing campaigns.

It is worth mentioning that, as depicted in the architectural diagram in Figure 2, the
available sensors have different sampling frequencies. In fact, the GPS rate is 10 Hz, while
the ECU returns the speed value at 20 Hz and the acceleration from the IMU comes at
100 Hz. As a consequence, the localization algorithm running at 100 Hz has to deal with
these different frequencies.



Sensors 2023, 23, 6888 5 of 16

GPS

IMU HMI

Localization 
algorithm

TLA

RJ45

CPU

ECU

CAN

CAN

10 Hz

100 Hz

20 Hz

100 Hz

𝑠

𝑎 ,

𝑣

𝑠

Onboard Unit

CAN

Figure 2. Architectural diagram of the vehicle’s sensor acquisition and processing.

On the onboard computational unit, the sensor acquisition, the localization algorithm,
as well as the TLA system run on a soft real-time-based Robotic Operating System (ROS)
architecture [32], allowing to have a simple framework for managing information coming
from different sources using a publisher–subscriber logic. Within this framework, there
are different nodes for publishing both the raw sensor data on the vehicle network and
the vehicle data that can be read from its Controller Area Network (CAN), such as vehicle
speed. This connection to the vehicle CAN-bus is used also to publish the outputs of the
Traffic Light Advisor system so that the information can be shown to the driver on the
integrated dashboard of the vehicle. Figure 3 reports a sample snapshot of the dedicated
Human–Machine Interface (HMI). In particular, in the middle of the dashboard the driver
receives a synthetic visual indication (i.e., an arrow indicator) to understand whether to
accelerate or decelerate with respect to the current vehicle speed in order to reach the traffic
light without stopping. This is done in order to minimize as much as possible the possible
distraction source for the driver. However, additional information, such as the current
traffic light status (i.e., top left corner), the time-to-change of the upcoming traffic light, and
the value of the speed proposed by the TLA algorithm (i.e., bottom left corner), is provided
in the periphery of the HMI.

Figure 3. Example view of the Human–Machine Interface used for TLA experimental tests (snapshot
with test values for all possible outputs).

The testing area is available on a 4 km long portion of the regular service trolley-bus
path in the city of Milan, being mainly covered in a preferential lane for public transporta-
tion. The route map (see Figure 4a) includes different scenarios, such as avenues with
trees, urban canyoning, mid-narrow turns, and a tunnel 200 m long where the GPS is
missing for a relatively long time. Furthermore, in order to have a better assessment of
the localization algorithm, additional tests have been performed where a more favorable
RTK correction for GPS is available, thus having a ground truth reference to evaluate the
algorithm’s performances. Moreover, the second testing scenario (see Figure 4b) considered
presents more severe testing conditions in terms of curve severity.
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tunnel end

tunnel start

narrow turn
(a)

tunnel end

tunnel start

narrow turn

(b)

Figure 4. Testing areas in the city of Milan. (a) Testing Area 1; (b) Testing Area 2.

4. Localization Algorithm

In order to minimize the error when estimating the position, a widely spread choice
while dealing with linear systems is the use of the Kalman filter, also known as the Linear
Quadratic Estimator (LQE). The principle of the Kalman filter (scheme in Figure 5) is to use
a dynamic model of a system, with a number of variables constituting the state vector x and
describing the system itself and its evolution over time. The system prediction step is taken
thanks to known input variables, i.e., control inputs u, while the available measurements z
are used to properly update the propagated variables in order to minimize the difference
between the predicted states and the observed quantities. For the present application, the
governing equations are those related to a simple uniformly accelerated 1D model:{

st+1 = st + vt · t + 1
2 at · t2

vt+1 = vt + at · t
(1)

where s, v, and a represent the vehicle’s position along the curvilinear coordinate on the
path, speed, and longitudinal acceleration, respectively. The choice of such a simple model
is justified by the fact that, on the one hand, the speed, and thus the accelerations, are
limited. On the other hand, the TLA application needs just longitudinal accuracy along a
predefined map of the path which has been obtained with the same algorithm presented
in [33] based on the Cubic Hermite Spline (CHS).

GPS map matching
State Estimator Traffic Light Advisor

CAN-BUS reading

𝑠

𝑎 ,

𝑠

𝑇𝐿 data

𝑣

Map
Matchingdeg2utm 𝑋

𝑌GPS

IMU

ECU

𝑙𝑎𝑡
𝑙𝑜𝑛

𝑠

𝑎 ,

𝑣

Kalman Filter

Traffic Light Advisor
𝑠

TL data

Figure 5. Scheme of the localization algorithm.

Figure 5 summarizes the scheme of the implemented Kalman filter for localizing the
trolley-bus along a known map of the route followed by the vehicle. In the following, the
general mathematical description of the state estimator is reported, dividing the algorithm
into four stages for the sake of clarity.

4.1. Process Equation

The first step reports the process equation, defining a discrete-time linear time-varying
system as

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (2)
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with it being possible to assume that the system matrices Fk−1 (i.e., state transition matrix),
Gk−1 (i.e., control-input matrix), and control action uk−1 are known without errors. In fact,
according to Equation (1), the state transition and control-input matrices can be defined as

Fk−1 =

[
1 dt
0 1

]
Gk−1 =

[ 1
2 dt2

dt

]
(3)

where dt stands for the integration time step equal to 0.01 s.
The process noise wk−1 ∼ (0, Qk−1) assumes a random Gaussian zero-mean covari-

ance Qk−1, and it accounts for the noise related both to the modeling and to the input
variables. The covariance Qk−1 indicates how much the system model can be trusted for
the prediction of the estimate. In fact, higher values of Qk−1 indicate lower accuracy of the
model, so less weight on the estimate.

In this work, the noise due to the model is assumed to be negligible and, as an
additional assumption, the covariance matrix Qk−1 is considered constant and diagonal:

Qk−1 =

[
Qpos 0

0 Qvel

]
(4)

in which the diagonal elements of the matrix are calculated as

Qpos = dt2 · σ2
ax · dt2 = 10−10 (5)

Qvel = dt · σ2
ax · dt = 10−6 (6)

where σ2
ax represents the longitudinal acceleration variance, obtained from measurements.

4.2. Measurement Equation

The measurement equation of the system is written as

zk = Hkxk + vk (7)

where Hk represents the measurement matrix structured as

Hk =

[
Hgps 0

0 Hecu

]
(8)

with Hgps and Hecu being Boolean values depending on GPS and ECU data availability, as
depicted in Figure 6.

As far as the Hk definition is concerned, in order to deal with the GPS outages and
the multi-rate multi-sensor setup illustrated above, Hgps and Hecu are Boolean variables
defined depending on each sensor’s availability at time k. Both Hgps and Hecu are initially
set to zero; if a GPS measure is available and it is considered reliable as the number of
satellites received is greater than 7, then Hgps is set to 1. As for the speed, if a new speed
measurement arrives, Hecu is set to 1. It is worth noting that the speed value read from the
ECU is considered always reliable, as the vehicle is thought to run in a standard adherence
condition with a limited average speed. In case no measurement is available for the update,
Hk remains null; thus, the state keeps on just being predicted. Performing this check every
0.01 s, the consequence, in the best-case scenario, is that the GPS update occurs just once
every 10 time steps, while the ECU update happens once in 5 time steps.

Gaussian measurement noise nk ∼ (0, Rk) is associated with the sensors used for the
measurement update. It is characterized by zero mean and covariance Rk defined as

Rk =

[
Rgps 0

0 Recu

]
(9)
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where Rgps = 10−1 and Recu = 10−5 are tuning parameters for the filter related to the
reliability of the sensors, as they are obtained by computing the variance of the signals
of the two sensors. In fact, more reliable sensors lead to lower Rk values, while sensors
introducing more noise will be responsible for higher Rk values, thus leading to a lower
impact of the measurement update on the state estimation. These values are then adjusted
to obtain additional stability for the estimate, especially when the vehicle stands still. The
idea behind the tuning is based on the following principles:

• Rgps > Recu in the driving condition: the availability and the accuracy of the GPS
depend on many different factors, while the Wheel Speed Sensor is much more reliable
and accurate, as the values of the variance confirm;

• Rgps >> Recu in the standing-still condition: the value of Rgps has been increased
to 1 when the vehicle speed is lower than 1 km/h; otherwise, the covariance values
remain the default ones. In this way, when the vehicle stands still, the GPS data are
less considered as they are less reliable and accurate for the update, while the ECU
speed value becomes much more important.

𝐺𝑃𝑆 𝑑𝑎𝑡𝑎

𝐸𝐶𝑈 𝑑𝑎𝑡𝑎

𝐻 =
1 0
0 1

Full update

𝐻 =
0 0
0 0

No update

𝐻 =
0 0
0 1

WSS 
update

𝐻 =
0 0
0 1

GPS 
update

Sensors
Input

𝐸𝐶𝑈 𝑑𝑎𝑡𝑎

available

available

available

not
available

not
available

not
available

Figure 6. Measurement matrix Hk workflow definition.

4.3. Time Update Equations

In the prediction step defined in (2) at time k, the predicted state x̂−k and corresponding
covariance P−

k are calculated according to the model:{
x̂−k = Fk−1 x̂+

k−1 + Gk−1ui−1

P−
k = Fk−1P+

k−1FT
k−1 + Qk−1

(10)

4.4. Measurement Update Equations

When the measurements are available at instant k, then the measurement step consists
of the following equations:

Kk = P−
k HT

k [HkP−
k HT

k + Rk]
−1

x̂+
k = x̂−k + Kk [zk − Hk x̂−k ]

P+
k = [I − Kk Hk] P−

k

(11)
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These equations represent the updated estimations for the state x̂+
k and the covariance P+

k ,
respectively, and these two quantities will be required for the following step k + 1 in the
prediction step equations shown above.

5. Traffic Light Advisor Experimental Validation

The Traffic Lights Advisor (TLA) system is an auxiliary tool for the driver, which
is able to provide real-time information about the following traffic light’s phase while
suggesting the speed to cruise through the intersections on the path during the green light
phase. Entering into the details of the TLA as an ADAS, it is expected to deal with the
typical situations faced approaching a traffic light:

• Stop&Go: the algorithm is intended to properly modulate the vehicle speed in order
to avoid a complete stop (when possible) in front of the traffic light.

• Last-second braking: the algorithm should inform the driver about the need to slow
down, as an acceleration maneuver is not feasible.

• Unnecessary stop: the algorithm aims at suggesting to the driver the recommended
speed (compliant with road limits and vehicle safety) in order to pass the upcoming
intersections during the green phase of the traffic light.

As a result, the main goal of this algorithm is to save both travel time and the energy
used by the vehicle. This is done by considering the 4 traffic lights ahead on the path closest
to the vehicle. In particular, the algorithm is thought to consider a uniformly accelerated
motion model for the vehicle to reach the suggested speed within the first traffic light of
the series and then keep that velocity to safely pass the upcoming intersections without
stopping. In the following, the most relevant features of the functioning of the TLA system
are reported; for further details, the reader can refer to the work in [6] where the full design
of the algorithm is presented.

The TLA system is based on an iterative algorithm for selecting the recommended
velocity which has to fulfill the following constraints:

• The velocity has to be below the maximum allowed speed limit for the road.
• The vehicle should be able to reach the target velocity following a uniformly acceler-

ated motion model within the end of the first available green phase of the first traffic
light ahead, with the the maximum vehicle acceleration limited to 1 m/s2 for both
safety and comfort concerns.

• Considering the generic ith traffic light, the vehicle’s admissible speed range is ob-
tained from the intersection between the required velocity to reach the upcoming
intersection and the admissible speed range computed for the (i − 1)th traffic light.

Figure 7 represents the scheme of the Traffic Light Advisor system: the inputs, coming
from onboard sensors for the localization algorithm presented in Section 4; the traffic lights;
and the map enter the algorithm that produces an output that is shown in the HMI.

TLA Algorithm

On board data
• GPS
• IMU
• ECU

Traffic Lights
• Position
• Phase
• Sequence

Map Data
• Route
• Speed limits

Localization

Computing

Output 
generation

HMI

Figure 7. Schematics of the Traffic Light Advisor algorithm.

As far as the traffic light data are concerned, through the municipality of Milan there
has been the possibility to know the traffic light plans of the intersections along the route.
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These data are fed to a “Traffic Light Generator” which is in charge of emulating the real
traffic lights on the road. This emulator, implemented in the Matlab-Simulink environment,
communicates the traffic lights’ phases, sequences, and positions to the TLA algorithm.

In this work, the aim is to add an experimental validation of the non-optimal Traffic
Light Advisor algorithm presented in [6]. To validate the functioning of the algorithm,
similarly to what is performed in [34], three different cases are considered:

• Base Case: test run without the TLA used to establish a benchmark. This is obtained
by letting the driver behave as usual, with no additional information available to the
driver with respect to the typical driving case.

• TLA Case: test run with the TLA running and showing information to the driver
who tries to follow the instructions. The algorithm, running in real time, conveys the
information to the driver through a specifically designed HMI (see Figure 3).

• Ideal Case: simulation run in post-process on the basis of the TLA Case data ex-
perimentally acquired, aiming to assess the behavior of the algorithm, assuming an
ideal driver able to perfectly follow the algorithm’s instructions. This is proposed to
check whether the algorithm is working correctly, observing how it would operate if
no constraints set by external factors such as traffic, the driver’s reflexes, and other
interference were to impact its ideal behavior.

In Section 6, the results of the experimental campaign are reported, proposing a
comparison between the Base Case and TLA Case. Subsequently, the real test performed
on the road is compared with the aforementioned Ideal Case. The comparison is carried
out not only by looking at the kinematic performances in terms of the covered distance,
average speed, and acceleration but also from an energetic point of view. In fact, knowing
the vehicle mass (i.e., m = 19,800 kg) and the vehicle acceleration a and velocity v from
the onboard sensors, it is possible to obtain a rough evaluation of the power consumption
expressed in (kW) starting from the inertial force as

P =
m · a · v

1000
(12)

From the power consumption, it is possible to derive then the following index, i.e., Instan-
taneous Energy Consumption (IEC) expressed in (kWh/100 km), which allows quantifying
the energy being drained by the vehicle:

IEC = P
∆t
∆s

(13)

where ∆t is the time step of the algorithm and ∆s is the distance covered by the vehicle in
the time span.

6. Results

This section is devoted to the presentation of the validation results of both the localiza-
tion state estimator and the Traffic Light Advisor algorithm. The tests have been performed
on two different paths, as shown in Figure 4, because of the availability of the traffic light
information during the test runs.

6.1. Localization

The state estimator presented in Section 4 runs at 100 Hz as a standalone C++ ROS
node generated in the Matlab-Simulink environment [35], subscribing to the sensors’ topics
present in the ROS network of the vehicle. In the following, the results of the state estimator
experimental data on the two Testing Areas are reported. It is worth noticing that the
measurement used by the Kalman filter is the raw data of the GPS device, as it represents a
more general and applicable condition in urban scenarios. As far as the localization accuracy
is concerned, the estimation error is evaluated using as ground truth the data coming from
the real-time kinematic (RTK)-corrected GPS data which reaches cm level precision.
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The analysis is focused on three main conditions:

• Vehicle standing still: this condition is quite frequent in urban scenarios because
of the high number of intersections and the stops along the path of a local public
transportation vehicle. The typical GPS behavior in this situation is to fluctuate
around the actual position, causing the vehicle localization to change, both forward
and backward.

• Prolonged GPS outage: this condition is usually faced because of urban canyoning,
high trees, or tunnels.

• Regular driving with curved path: this is the general scenario to be considered for the
localization accuracy assessment.

The first two items are analyzed in Testing Area 1 (i.e., Figure 4a) which covers the
regular service path of the vehicle. Figure 8a depicts the trend of the covered distance
(i.e., the curvilinear coordinate along the path) in correspondence to a stop. As can be seen,
on the one hand, the GPS trend is floating; on the other hand, the state estimator is able to
provide a constant s value thanks to the increase in the Rgps. This allows having a constant
value for the curvilinear coordinate when the vehicle is stopped, which is fundamental for
the TLA application as the change in the distance of the traffic light ahead affects the TLA
speed calculation. The plot reported in Figure 8b shows the state estimator trend during
a prolonged GPS outage because of a 200 m long tunnel. The distance between the state
estimator value sKF and the GPS coordinate sGPS as soon as it becomes available is equal to
1.86 m. Although this value is relatively high, the GPS benchmark after a long outage has
to be considered as not reliable, as it requires some time (i.e., 20–30 m) to obtain acceptable
GPS accuracy.

The testing campaign on the second Testing Area (i.e., Figure 4b) aims to evaluate the
actual localization accuracy that can be obtained with the proposed localization algorithm.
In fact, this area is characterized by better GPS coverage as there are no urban canyons
that typically affect the GPS signal. Furthermore, the route path has four narrow turns,
allowing to assess the behavior of the state estimator in the turn condition as well. In this
case study, the raw data of the GPS, i.e., before the RTK correction, are fed to the localization
algorithm. The state estimator output is then compared with the RTK correction GPS data
which provides the ground truth value for the accuracy assessment.

13:11:40 13:11:50 13:12:00

Time
13:12:10 
Feb 15, 2023   

259

259.5

260

260.5

261

261.5

262

262.5

263

C
ov

er
ed

 d
is

ta
nc

e 
[m

]

State Estimator 
GPS raw

(a)

16:12:50 16:13:00 16:13:10 16:13:20 16:13:30

Time Feb 15, 2023   

1450

1500

1550

1600

1650

1700

1750

1800 State Estimator
GPS raw

standing still

curve end

curve start

tunnel end

tunnel start

(b)

Figure 8. Testing Area 1: state estimator results analysis. (a) Vehicle standing still; (b) long GPS outage.

In Figure 9, a portion of the trend of the covered distance on the closed path of the
Testing Area 2 is shown. In this scenario, it is possible to appreciate a much smoother
trend of the state estimator with respect to the step-wise GPS signal because of the higher
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frequency of the localization algorithm, i.e., 100 Hz. When considering the entire path, the
estimation error can be calculated as

εs = sRTK − sKF (14)

where sRTK and sKF are the curvilinear coordinate along the map of the GPS RTK corrected
and the proposed Kalman filter, respectively. Taking the Root Mean Square value of the
error trend over the whole path, it turns out to be equal to 0.28 m. Figure 10 reports the
trajectory of the vehicle estimated by the proposed Kalman filter in the narrowest turn on
the path. The color indicates the estimation error εs, with the estimation error limited to
0.4 m also in the turn condition.
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Figure 9. Testing Area 2: state estimator result analysis.
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Figure 10. Testing Area 2: state estimator accuracy in curve condition.

The obtained experimental results show good accuracy for the TLA application, which
just needs the vehicle location along the path to compute the distance from the upcoming
traffic lights. Furthermore, as the vehicle considered is a large local public transportation
vehicle, changes in speed and direction are typically not so harsh, so the choice of a one-
dimensional model, on the one hand, allows to minimize the implementation effort. As far
as the behavior in the curve condition is concerned, the results are promising and allow
running the TLA algorithm in a general urban scenario, although the model appears to not
be accurate enough for control logic dealing with vehicle lateral dynamics.

6.2. Traffic Light Advisor

As mentioned in Section 5, the assessment of the TLA performances is performed both
from a kinematic and an energetic point of view. In particular, in Figure 11, the plot of
the covered distance of one test run, comparing the Base Case of the driver with the TLA
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Case, is shown. The horizontal lines represent the traffic lights status on the path, with the
sequence between the red and green phases. It is worth mentioning that the yellow phase
has been included in the red one for adding an extra safety margin to the algorithm.
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Figure 11. TLA Case comparison with respect to Base Case.

From the graph, it is possible to observe how the TLA system, besides avoiding
the stop at the second traffic light encountered by the vehicle, allows having a smoother
trend for the entire path, meaning that the velocity has a lower fluctuation, and thus
lower acceleration.

Table 1 proposes a similar analysis from a quantitative point of view, showing the
Root Mean Square values of velocity, acceleration, and IEC, previously defined. The results
indicate that, when the TLA is active, the vehicle proceeds with a lower average speed
with respect to the Base Case. This can sound unexpected, but it is consistent with the
lower acceleration value, as the driver tends to accelerate more than required to cruise
through all the intersections without stops. Besides more comfort for passengers, having
lower accelerations guarantees lower energy consumption, with a 40% reduction in the
energetic indicator IEC when the TLA is active. Furthermore, these values confirm the
results obtained from the simulations conducted in [6].

Table 1. RMS values for speed, acceleration, and IEC: comparison between Base Case and TLA Case.

Base Case TLA Case Reduction

vRMS [m/s] 6.50 4.95 −23.7%
aRMS [m/s2] 0.53 0.31 −44.3%
IECRMS

[
kWh

100 km

]
291.39 175.92 −39.6%

The plot in Figure 12 is intended to investigate in which situation the algorithm has an
improvement margin and how it could be adjusted to further enhance its impact.

In fact, the spotlight is on the algorithm’s reaction to the inability of the driver to
perfectly follow the speed reference. The plot reports the previously shown trend of the
TLA Case and it is compared with a set of ideal behaviors of the vehicle obtained by
running different simulations 8 s long, each one having the vehicle position and velocity
in correspondence to the start of the simulation (i.e., current actual vehicle position and
velocity) as the initial conditions. This allows to see how the vehicle would have proceeded
in an ideal case, thus highlighting, on the one hand, the effect of external factors as well
as driver behaviors, and, on the other hand, the capability of the TLA system to adapt to
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the conditions the vehicle is facing. Two main points of interest are indicated in the plot,
those in which the ideal response to given real conditions (i.e., blue solid line) is suggesting
a different behavior. In both cases, the vehicle should accelerate right before crossing the
facing traffic light, but the driver is more confident in waiting for some seconds because
the traffic in front of the vehicle is still showing a red light. This is a natural tendency of
human drivers to not fully trust an indication of the HMI. In fact, although based on actual
real-time data about the traffic light time-to-change, in some cases the TLA is perceived
unsafe as it may also suggest accelerating when a common driver, without knowing when
the light is going to change, would not.
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Figure 12. TLA Case comparison with respect to Ideal Case.

7. Conclusions

In this work, a localization algorithm based on Kalman filtering for a Traffic Light
Advisor application and the TLA experimental validation are proposed. The implemented
Kalman filter is designed to run at 100 Hz with a simple 1D kinematic model and mea-
surements from sensors having different sampling frequencies. Real-world tests provided
results accurate enough to be integrated into the TLA algorithm with an average error lower
than 0.5 m, having robust behavior both in long GPS outage situations and standing-still
and curve conditions thanks to the filter weight tuning and map matching. Regarding
the TLA validation, the experimental campaign confirmed the positive impact on both
comfort, service regularity, and energy consumption with respect to unassisted driving.
The comparison with a simulated ideal case highlighted the areas of improvement for the
actual implementation of the system, such as the presence of traffic in front of the vehicle,
and external factors, like road unevenness, that make the driver slow down, as well as
driver difficulties in following and trusting the HMI indications.

As future developments, on the one hand, it would be interesting to extend the state
estimator to a 2D vehicle model, aiming at using the implemented localization algorithm for
other ADAS applications also considering later dynamics of the vehicle. On the other hand,
the TLA experimental validation would need additional testing campaigns to perform
a larger statistical assessment of the algorithm. Furthermore, it would be valuable to
introduce information about the traffic ahead in the TLA algorithm to cope with the
challenges that emerged from the test.
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