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Abstract
In this work we present an uncertainty quantification analysis to determine the influ-
ence and importance of some physical parameters in a reactive transport model in
fractured porous media. An accurate description of flow and transport in the fractures
is key to obtain reliable simulations, however, fractures geometry and physical char-
acteristics pose several challenges from both the modeling and implementation side.
We adopt a mixed-dimensional approximation, where fractures and their intersections
are represented as objects of lower dimension. To simplify the presentation, we con-
sider only two chemical species: one solute, transported by water, and one precipitate
attached to the solid skeleton. A global sensitivity analysis to uncertain input data is
performed exploiting the Polynomial Chaos expansion along with spectral projection
methods on sparse grids.

Keywords Fractured porous media · Reactive transport · Uncertainty quantification ·
Polynomial Chaos expansion · Sparse grid

Mathematics Subject Classification 65M75 · 76S05

1 Introduction

The Paris agreement, adopted by 196 parties in 2015, aims at limiting global warming
to below 2 ◦C, preferably to 1.5 ◦C, compared to pre-industrial levels. The reduction
of greenhouse gas emissions in the atmosphere is crucial to achieve such long term
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goal, and requires the transition towards renewable energies, and the subsequent need
for effective energy storage; moreover, a safe long term sequestration of CO2 is con-
sidered a promising strategy to reduce emissions into the atmosphere. Many of the
aforementioned strategies entail a massive use of the subsurface for fluids injection,
storage and production. If, on one hand, it is necessary to guarantee the mechanical
integrity of the subsurface to avoid unwanted fracturing and induced seismicity, it is
also important to evaluate the effect of chemical reactions on the hydraulic properties
of the porous media. Indeed, the injection of water at different temperature and with
different solutes concentration with respect to the formation can cause dissolution and
precipitation of minerals, with an impact on porosity and permeability. In some cases,
as in the case of in situ carbon mineralization, these reactions can be exploited to
our advantage to obtain a better storage of CO2 by (1) chemically trapping carbon
by binding it into existing mineral and, at the same time (2) thanks to the change of
specific volume associated with the transformation of the minerals, creating a more
effective cap-rock, Ling et al. (2021). Even if this process occurs over very long time
scales in natural conditions, its controlled exploitation is an interesting technological
challenge.

A realistic mathematical model of these phenomena encompasses a model for flow
in porous media (we focus on single phase flow, assuming small concentrations of
gases, if present), coupled with the transport of mobile species and the modeling
of both kinetic and equilibrium reactions. Moreover, since reaction rates are usually
influenced by temperature, and in view of the possible application of the model to low
temperature geothermal plants, the coupled model is completed by the heat equation,
Fumagalli and Scotti (2020).

Since fractures are ubiquitous in porous media and have a major impact on flow and
transport (both of solutes and heat) this work is focused on the modeling of fractured
porous media, where fractures are modeled as lower dimensional objects, which can
be much more permeable than the surrounding medium, or nearly impermeable if, for
instance, precipitation occurs reducing their aperture, Fumagalli and Scotti (2021).

Many physical, geometrical and geochemical parameters involved in the model are
affected by uncertainty, therefore a purely deterministic evaluation of the model is
useless without a suitable analysis of the solution variance. In this work we propose
the application of an uncertainty quantification workflow based on Polynomial Chaos
(Wiener 1938;GhanemandSpanos1991) and sparse grids (Conrad andMarzouk2013)
for the sampling of the parameters space: this choice allows us to obtain accuracy with
a manageable number of evaluations of the model, which, being coupled and time
dependent, has a non-negligible computational cost. The goal is to compute the Sobol
indices associatedwith some input parameters to quantify the impact of the uncertainty
of such quantities on a variable of interest, typically the medium porosity. The space
distribution of the Sobol indices, or the partial variances, can also give interesting
insight into the problem, which, in spite of being reduced to the minimum possible
complexity, already exhibits a non-trivial, fully coupled behavior. In particular we
aim at a better understanding of the strength of the couplings among flow, transport,
temperature and reactions in the presence of fractures that can connect distant parts
of the domain when they are permeable, and conversely act as barriers if filled by
minerals.
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The paper is structured as follows. In Sect. 2 we describe the problem focusing
on dissolution and precipitation reactions and, in Sect. 3, we present the equations
in the hybrid dimensional case to account for the coupling with fractures. Section4
briefly discusses the proposed numerical approximation schemes and some implemen-
tation details. Section5 describes the uncertainty quantification workflow and Sect. 6
is devoted to the presentation of a complete set of test cases. Finally, conclusions are
drawn in Sect. 7.

2 Problem description

We consider the coupled problem of single-phase flow and reactive transport in porous
media, accounting for the porosity changes linked to mineral reactions. Single phase
flow can be assumed, even in the presence of CO2, at low gas concentrations, for
instance at the edge of the plume, away from injection wells. Typically, a large num-
ber of species is needed for a realistic modeling of reactive transport, including solid
mineral species and aqueous complexes, and the chemical reactions include equilib-
rium and kinetic ones. However, in this work we focus on the simple, but relevant case
of a single salt dissolving or precipitating in water. We can therefore consider a single,
simple kinetic reaction in the form

U + V − W ↔ 0

whereU and V are the positive and negative ion respectively, andW is the precipitate
they can form, Radu et al. (2010). The net reaction rate results from the difference
between precipitation (forward reaction) rp and dissolution (backward reaction) rd .
Under the hypotheses of electrical equilibrium, we can assume that the concentration
ofU and V are equal and denoted by u, which from now on is the molar concentration
of the mobile species, whereas w is the molar concentration of the precipitate. The
net reaction rate is

rw(u, w, θ) =

⎧
⎪⎨

⎪⎩

λ(θ)

(
u2

u2e
− 1

)

if w > 0

λ(θ) u
2

u2e
if w ≤ 0.

whereue is the equilibriumsolute concentration andλmight dependon the temperature
θ through an activation energy E by taking the form λ(θ) = λ0 exp

(− E
θ

)
, with

λ0 a given positive proportionality coefficient. Since the speed of reaction depends
on the local temperature we include the heat equation in the model. The complete
mathematical model, presented in detail in the next section, will thus consist of:

– The flow equations, based on Darcy’s law
– The heat equation
– The advection, transport reaction equation for the chemical species
– Suitable constitutive laws to close the model.
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Fig. 1 Fractured domain and
notation

3 Hybrid dimensional model for fractured porousmedia

In the following we introduce the coupled mathematical model specialized to the case
of fractured porous media, following (Fumagalli and Scotti 2021). For the sake of
simplicity we will present the model in the case of a single fracture, geometrically
reduced to its centerline, see Fig. 1. This model reduction strategy is often adopted in
the simulation of fractured porous media to reduce the computational cost by avoiding
excessive mesh refinement; moreover, in our case it is particularly convenient since
the aperture can change in time due to reactions. For more references on this approach
see (Martin et al. 2005; Jaffré et al. 2011; Sandve et al. 2012; Nordbotten et al. 2019;
Chave et al. 2018; Ahmed et al. 2019; Berre et al. 2019; Fumagalli and Scotti 2020)
and references therein.

Let Ω̃ be the fractured domain. Following (Formaggia et al. 2014), we define γ as a
non self-intersecting C2 curve (if n = 2) or surface (if n = 3). In an equi-dimensional
setting a fracture can be defined as the following set of points

Γ =
{

x ∈ Ω̃ : x = s + rnγ , s ∈ γ, r ∈
(

−εγ (s)

2
,
εγ (s)

2

)}

where εγ denotes the fracture aperture, which can be a function of space and, as we
will see later on, might change in time because of mineral precipitation. Thus, we have
a subdomain of Ω̃ , separated by the surrounding porous medium Ω by the interfaces
γ+ and γ− with associated normal vectors n+ and n−. We replace the fracture Γ with
its centerline γ and we assign a unique normal nγ = nγ,+ to the fracture, see Fig. 1.
We assume that the fracture is open, with porosity φγ = 1.

3.1 Reduced variables

In the following we denote with the subscript γ the variables in the fracture, and
withΩ the variables in the porous medium. Note that, after geometrical reduction, we
denote withΩ the domain Ω̃ \γ . Reduced vectors variables in the fracture are defined
as the integral of the tangential components of the corresponding equi-dimensional
variables,

qγ (x):=
∫

εγ (x)

T (x)q(x, s)ds
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with T :=I − N and N :=nγ ⊗ nγ the tangential and normal projection matrices,
respectively. The reduced scalar variables are instead the integral average, for each
section of the fracture, of the equi-dimensional counterparts as in

aγ (x):= 1

εγ (x)

∫

εγ (x)

a(x, s)ds

wherea can be replacedwith p (pressure), θ (temperature), u (solute concentration),
w (precipitate concentration).

Moreover, we denote by ∇τ , ∇τ · the tangential gradient and divergence defined on
the tangential space of the fracture.

3.2 Single phase flow

Under the assumption of single-phase flow, the fluid pressure p and Darcy velocity q
can be computed as the solution of aDarcy problemwith suitable boundary conditions.
Let k be the permeability tensor, μ the viscosity, ρw is the fluid density and g is the
gravity acceleration. Moreover, φ denotes porosity and ez is the unit vector of the
z-axis, normal to the Earth surface. We will assume constant density, but account for
porosity changes through a source term. Indeed, porosity depends on the changes of the
mineral volume fraction as detailed in Sect. 3.5. In the following, pγ and qγ indicate
the reduced pressure and flux in the fracture, defined as in 3.1. Following (Martin et al.
2005) we assume that in the fracture the permeability k can be decomposed in normal
and tangential components as

k = κγ N + kγ T . (1)

The reducedmodel for the Darcy flow, which describes the evolution of the reduced
Darcy velocity qγ and pressure pγ in the fracture is obtained, following (Martin et al.
2005), integrating the equations in each section of the fracture. Themixed-dimensional
problem in Ω and γ then reads:

μqΩ + kΩ(φΩ)∇ pΩ = 0

∂tφΩ + ∇ · qΩ + fΩ = 0 in Ω × (0, T ), (2)

μqγ + εγ kγ (εγ )∇τ pγ = 0

∂tεγ + ∇τ · qγ + qγ · nγ |γ+ − qγ · nγ |γ− + εγ fγ = 0 in γ × (0, T ), (3)

μεγ qΩ · nγ |γ+ + κγ (εγ )(pγ − pΩ |γ+) = 0 on γ+ × (0, T ) (4)

μεγ qΩ · nγ |γ− + κγ (εγ )(pγ − pΩ |γ−) = 0 on γ− × (0, T ), (5)

where fγ (x):=ε−1
γ (x)

∫

εγ (x)
f (x, s)ds is the reduced source or sink term. Follow-

ing lubrication theory, the fracture tangential permeability kγ can be expressed as a
function of the aperture, as described in more detail in Sect. 3.6.

The conditions on γ± model the fact that the flux exchange between the fracture
and the surrounding porous media is related to the pressure jump via κγ . Note that,
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since κγ , as kγ , can be modeled as a function of εγ , if the aperture goes to zero the
flux exchange vanishes.

3.3 Heat equation

Since reaction rates usually depend on temperature, we include in our model the
heat equation for thermal conduction (based on Fourier’s law) and convection in the
porous media. We assume thermal equilibrium between rock and water, so that only
one equation can be considered instead of two.

We denote as cΩ the effective thermal capacity defined as the porosity-weighted
average of the water cw and solid cs specific thermal capacities,

c(φ) = φρwcw + (1 − φ)ρscs,

where ρw and ρs are the densities of the water and solid phase respectively. The
effective thermal conductivity of the porous medium Λ is computed in a similar way,
as

Λ(φ) = Λφ
wΛ1−φ

s ,

where Λw and Λs are the water and solid thermal conductivity. In the fracture we
simply have cγ = ρwcw, Λγ = Λw since porosity is equal to 1.

The reduced model that describes the evolution of temperature θΩ , θγ is obtained,
similarly to the Darcy problem, by integrating the conservation equation in each sec-
tion of the fracture; the coupling conditions however, which stem from a suitable
approximation of the total normal heat flux, should take into account the different
nature of the advective and diffusive fluxes in the coupling. The coupled model in Ω

and γ reads:

∂t (c(φ)θΩ) + ∇ · (ρwcwq − Λ(φ)∇θΩ) + j = 0 in Ω × (0, T ),

∂t (εγ cwθγ ) + ∇τ · (ρwcwqγ − Λwεγ ∇τ θγ ) + ψ+ − ψ− + jγ = 0 in γ × (0, T ).

(6)

where jΩ , jγ are heat source/sink terms, and the conservation equation in the fracture
accounts for heat flux exchanged with the fracture on both sides, through the terms
ψ±, defined as

ψ+ = ρwcwqΩ · nγ |γ+ θ̃+ + 2Λw

εγ

(θΩ |γ+ − θγ )

ψ− = ρwcwqΩ · nγ |γ− θ̃− + 2Λw

εγ

(θγ − θΩ |γ−)
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where θ̃± is selected as the upwind value, i.e.

θ̃+ =
{

θγ if qΩ · nγ |γ+ > 0

θΩ |γ+ if qΩ · nγ |γ+ < 0
θ̃− =

{
θγ if qΩ · nγ |γ− < 0

θΩ |γ− if qΩ · nγ |γ− > 0.

Equation (6) should be completed by initial conditions and boundary conditions on
the temperature or heat flux.

3.4 Advection–diffusion-reaction equations for mobile species

The concentration u of mobile species is governed by a partial differential equation
accounting for advection, diffusion, and reaction. As in the previous section subscripts
Ω and γ denote quantities in the bulk and fracture respectively, in particular uγ is the
reduced concentration in the fracture, defined as in 3.1. As for the permeability, we
assume that in the fracture d can be decomposed in normal and tangential components
as

d = δγ N + dγ T . (7)

The reduced model that describes the evolution of the solute uγ is similar to the
reduced heat equation. By integrating the solute conservation equation in the fracture
we obtain the reduced equation, such that

∂t (φΩuΩ) + ∇ · (qΩuΩ − dΩ∇uΩ) = φΩrw in Ω × (0, T ),

∂t (εγ uγ ) + ∇τ · (qγ uγ − εγ dγ ∇τuγ ) + χ+ − χ− = εγ rw in γ × (0, T ). (8)

Note that the balance equation in the fracture accounts for exchanges with the porous
medium, in particular we have that

χ+ = qΩ · nγ |γ+ ũ+ + 2δγ

εγ

(uΩ |γ+ − uγ )

χ− = qΩ · nγ |γ− ũ− + 2δγ

εγ

(uγ − uΩ |γ−)

where once again ũ± is the upwind value, i.e.

ũ+ =
{
uγ if qΩ · nγ |γ+ > 0

uΩ |γ+ if qΩ · nγ |γ+ < 0
ũ− =

{
uγ if qΩ · nγ |γ− < 0

uΩ |γ− if qΩ · nγ |γ− > 0.

Note that the reaction rate rw accounts for the net precipitation and dissolution rate as
explained in the next section.
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3.5 Evolution of mineral species

In the case the species is immobile the evolution equation for its concentration, denoted
as w, reduces to an ordinary differential equation since we do not have the transport
and diffusion terms, i.e.

∂t (φwΩ) − φrw(uΩ,wΩ, θΩ) = 0 in Ω × (0, T ) (9)

∂t (εγ wγ ) − εγ rw(uγ , wγ , θγ ) = 0 in γ × (0, T ). (10)

where an initial condition should be supplemented. It may be more convenient to
consider a different measure of concentration for solid species, in particular we want
to compute the solid volume fractions φw as the ratio of the volume of mineral for a
unit volume of rock. The volume fractions can be obtained from the concentrations
as φw = wηφ where η is the molar volume of the mineral. If we let φI be the volume
fraction of inert minerals (i.e. species that are not affected by chemical reactions) we
have that φ = 1 − φI − φw and therefore

dtφ + ηdt (φwΩ) = 0 in Ω × (0, T )

φ(t = 0) = φ0 in Ω × {0} (11)

As the porosity changes with mineral precipitation, we consider a similar law to
describe the evolution of the fracture aperture εγ . We have

dtεγ + ηγ dt (εγ wγ ) = 0 in γ × (0, T )

εγ (t = 0) = εγ,0 in γ × {0}, (12)

where ηγ represents the molar volume of the mineral as it precipitates on the fracture
walls.

3.6 Permeability and aperture model

Finally, we provide a model for permeability changes. The intrinsic permeability,
which we assume to be isotropic in the bulk porous medium, can be modeled as a
function of porosity. We consider the following law

k(φ) = k0

(
φ

φ0

)2

where k0 is the reference value at the initial porosity φ0. Note that this dependence
will introduce a non-linear coupling among the model equations.

As already mentioned we assume that both components of the permeability k in
the fracture follow a law which relates them to the aperture, more precisely

kγ (εγ ) = kγ,0
ε2γ

ε2γ,0

and κγ (εγ ) = κγ,0
ε2γ

ε2γ,0

, (13)
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where kγ,0 and κγ,0 are reference coefficients along and across the fracture, respec-
tively, and εγ,0 > 0 is the initial aperture.

4 Numerical approximation

The complete mathematical model consists of equations (2), (6), (8), (9), comple-
mented by constitutive laws for the material parameters and the equations (11), (12)
for the evolution of porosity and fracture aperture. The numerical schemes for the
solution of this deterministic problem are implemented in the PorePy library (Keile-
gavlen et al. 2020) which provides support for multidimensional coupling, allowing
for an easy implementation of the problem in fractured media.

4.1 Time integration and splitting strategy

The complete problem is fully coupled in a non-linear way. For the sake of computa-
tional efficiency, in this work its solution is based on a non-iterative splitting strategy,
with the underlying assumption that the changes to the flow parameters due to chemi-
cal reactions are relatively slow. In particular, at each time step we follow the scheme
proposed in Fumagalli and Scotti (2021), represented in Fig. 2. In particular:

1. We first solve the Darcy problem to obtain the advective fields qΩ , qγ . The flow
problem is discretized in time by approximating the time derivative ∂tφ by finite
differences as

∂tφ � φ∗ − φn

Δt

where φ∗ = 2φn − φn−1 is the extrapolated value;
2. With qΩ , qγ we solve the heat equation, discretized in time with the Implicit Euler

method;
3. Then, given the temperature field we solve the advection–diffusion-reaction prob-

lem which is in turn split into

(a) The advective step, discretized in time with the Implicit Euler scheme, which
gives and intermediate solute concentration u∗;

(b) The reaction step to compute the final solute and precipitate concentrations
(note that the precipitate is not affected by transport). This step is integrated
explicitly in time, with the addition of an event location procedure to avoid
negative precipitate concentrations.

4. Finally, we update porosity and permeability for the next step.

4.2 Space discretization

Space discretization is based on a standard, conforming approach where fractures are
honoured by the computational grid and each element of the fractures grid is a face
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Fig. 2 Splitting strategy for the solution of the coupled problem

of the porous media grid. However, this assumption could be relaxed allowing for
different grid resolutions with the use of mortar variables. Finally, since equations are
in mixed-dimensions, all the numerical schemes are applied in different dimensions,
i.e. in 2D and 1D.

Since the Darcy flux is involved in the advective terms of the transport and heat
equations, it is of fundamental importance that local mass conservation is fulfilled.
Therefore, we approximate the Darcy problem in its mixed formulation and employ
a suitable pair of discrete spaces for the pressure and the Darcy flux. In particular we
employ the lowest order Raviart-Thomas element pair RT0, P0.

For the numerical solution of the heat equation and the advection–diffusion-reaction
equation we apply, in hybrid dimensions, the Finite Volumemethod. Consistently with
the continuous model we consider an upwind approximation of the advective term,
whereas the diffusive term is approximated with the two point flux approximation
(TPFA), see (Eymard et al. 2000; Faille et al. 2002; Droniou 2013). Since we are
considering constrained triangulations to honour the fractures the gridmay in principle
not be orthogonal. However, we assume that the distortion is small enough to obtain
a reliable approximation even with a simple TPFA scheme.

5 Sensitivity analysis workflow

In this section we present the algorithm employed to approximate stochastic quantities
by means of Polynomial Chaos (PC) expansions (Wiener 1938; Ghanem and Spanos
1991). This technique will allow us to compute the sensitivity Sobol indices and to
obtain a surrogate model of the problem for a quick evaluation of the quantities of
interest. PC expansion have been used to treat a large variety of problems, including
elliptic models [(see, e.g., Babuška and Chatzipantelidis (2002), Matthies and Keese
(2005)), fluid mechanics problems (Le Maître et al. 2002], and flow and transport in
porous media [(see, e.g., Ghanem and Dham (1998), Botti et al. (2020)].

The sampling of the uncertain parameters space is performed with pseudo-spectral
projection on sparse grids (Conrad and Marzouk 2013), thus obtaining an accurate
estimate with a limited number of evaluation of the deterministic model and, as a
result, mitigating the so-called curse of dimensionality. This is particularly important
since the problem is time dependent and, moreover, the presence of chemical reactions
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can introduce a fast time scale, constraining the time step amplitude with an increase
in the computational cost for each evaluation.

5.1 Polynomial Chaos expansion

Let N be the number of independent and identically distributed parameters ξ =
(ξi )1≤i≤N and Ξ the space of possible realizations. For the sake of simplicity the
parameters are rescaled so that Ξ = [0, 1]N . Moreover, given a probability measure
ρ : Ξ → R

+, the inner product of two second-order random variables X(ξ) and Y (ξ)

is defined as

〈X ,Y 〉 =
∫

Ξ

X(ξ)Y (ξ)ρ(ξ)dξ .

The Polynomial Chaos (PC) expansion of a variable X(ξ) reads

X(ξ) =
∑

k∈NN

Xkφk(ξ), (14)

where {Xk = 〈X , φk〉 : k ∈ N
N } are the spectral modes of X , the basis functions

{φk(ξ) : k ∈ N
N } are multi-variate polynomials chosen to be orthogonal with respect

to the product 〈·, ·〉, and the multi-index k = (k1, . . . , kN ) denotes the polynomial
degree with respect to the parameters ξi .

The PC approximation is then obtained by truncating the expansion in (14) to a
finite set K ⊂ N

N , which determines the quality of the approximation:

XK(ξ) :=
∑

k∈K
Xkφk(ξ). (15)

The statistical moments of the variables of interest are easily obtained from the PC
approximations; e.g., mean, variance, and covariance are given by

〈XK〉 = X0, Var(XK) =
∑

k∈K\0
X2
k, Cov(XK,YK) =

∑

k∈K\0
XkYk. (16)

5.2 Spectral projectionmethod

The coefficients of the PC expansion in (15) can be computed in different ways [(see,
e.g., LeMaître and Knio (2010), Constantine et al. (2012)]. This work is based on non-
intrusive pseudo-spectral projection, which in our opinion, provides the best trade-off
between complexity and precision. The numerical quadrature schemes are constructed
as sparse tensorization of a one dimensional formula (Gerstner and Griebel 2003).
Then, given M quadrature points and the respective weights {w(q)}1≤q≤M , the modes
(Xk)k∈K are computed as

123



   21 Page 12 of 29 GEM - International Journal on Geomathematics            (2023) 14:21 

Fig. 3 Sparse grid for two parameters of level 2 on the left, level 4 on the centre and level 6 on the right

Xk = 〈X , φk〉 �
M∑

q=1

w(q)X(ξ (q))φk(ξ
(q)).

The complexity of the method is governed by the number M of evaluations of the
deterministic problem, while the accuracy depends on the PC basis {φk}k∈K. In order
to maximize the accuracy with respect to the computational effort, we adopt a sparse
method (cf. Fig. 3) hinging on the application of Smolyak’s formula (Smolyak 1963)
directly on the projection operator, rather than on the integration operator. Specifically,
the setK is defined as the largest possible one such that the discrete projection is exact
for any function spanned by {φk}k∈K, i.e.:

∀k, l ∈ K,

M∑

q=1

w(q)φk(ξ
(q))φl (ξ

(q)) =
{
1 if k = l

0 otherwise
.

In this work, we have opted for an isotropic sparse tensorization of nested Clenshaw–
Curtis quadrature rules, where the level l ∈ N of the sparse grid is the only parameter
controlling the quality of the approximation. As l increases, both the number of nodes
M and the multi-index set K increase.

5.3 Sensitivity analysis

The sensitivity analysis consists in the evaluation of the different contributions of the
input parameters on the variance of the solution. This is achieved by the computation
of the Sobol indices, defined as the ratio between the partial variance corresponding
to the input parameter under investigation ξi , and the total variance of the quantity of
interest X

S1,i := Var(E(X(ξ)|ξi ))
Var(X(ξ))

, ∀1 ≤ i ≤ N , (17)

where E(X(ξ)|ξi ) denotes the conditional expected value of X given ξi . The indices
(S1,i )1≤i≤N in (17) are known as principal or first-order Sobol indices and measure
the individual contribution of the coefficient ξi to the variance.
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Higher-order Sobol indices measure the effect of the concurrent variation of more
variables. For instance, second-order Sobol indices read

Si, j := Var(E(X(ξ)|ξi , ξ j ))
Var(X(ξ))

− S1,i − S1, j , ∀1 ≤ i < j ≤ N .

Finally, the total Sobol index is obtained as the sum of the indices involving parameter
ξi

STi := 1 − Var(E(X(ξ)|ξ\i ))
Var(X(ξ))

,

where the vector ξ\i = (
ξ j �=i

)
contains all uncertain variables except ξi .

The computation of the Sobol indices results directly from the PC approximation
(15) of the variable of interest. Indeed, the partial variances can be explicitly expressed
as functions of the spectral modes similarly to the statistical quantities in (16), e.g.

Var(E(XK|ξi )) =
∑

k∈Ki

X2
k, and Var(E(XK|ξ\i )) =

∑

k∈K\i

X2
k,

where Ki ⊂ K and K\i ⊂ K are the subset multi-indices such that the corresponding
basis function depends only on ξi and all the parameters except ξi , respectively. We
refer the reader to Crestaux et al. (2009) for additional details.

6 Numerical examples

In this section, we present two test cases to test the mathematical model and the pro-
posed UQ workflow. In both cases we show the reference numerical solution and
discuss the uncertainty quantification related to three parameters affected by uncer-
tainty.

Due to the complexity of the problem, all data in the two cases are the same except
for the number of fractures in the network. In the first case, presented in Sect. 6.1, a
single fracture touching one boundary is considered, while in Sect. 6.2, ten intersecting
fractures are considered.

The data for the Darcy problem, the heat equation, and the precipitation-dissolution
process are given in Table 1. Furthermore, we assume that the following three param-
eters are affected by uncertainty and uniformly distributed as

ηγ ∼ U(1.29, 2.71) E ∼ U(2.98, 5.02) θ inflow ∼ U(0.93, 2.07).

Here θ inflow denotes the inflow temperature on the bottom boundary. Actually, many
of the considered parametersmight be affected by uncertainty but the one selected here
are for the following reasons: ηγ governs the flow properties of the fractures having
a substantial impact on the flow properties of the system, E is a crucial parameter
that governs the temperature effects on the reactions by speeding them up or slowing
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Table 1 Common data for the advection-reaction problem, examples in Sect. 6. For • ∈
{kΩ ; φΩ ; Θ; u; w; εγ ; kγ ; κγ }, the notation (•)0 is used for the reference value of the quantity • pre-
scribed as initial condition

μ = 1 g = 0 ρw = 1 kΩ,0 = 1 φΩ,0 = 0.2

dΩ = 0.1 cw = 1 cs = 1 Λw = 1 Λs = 0.1

j = 0 θ0 = 0 T = 2.25 u0 = 0 w0 = 0.3

ue = 1 pinflow
∂Ω

= 1 poutflow
∂Ω

= 0 pinflow
∂γ

= 1 poutflow
∂γ

= 0

εγ,0 = 10−2 kγ,0 = 102 κγ,0 = 102 fΩ = 0 fγ = 0

η = 0.5 λ0 = 10 uinflow
∂Ω

= 2 uinflow
∂γ

= 2 jγ = 0

dγ = 0.1 δγ = 0.1

them down and thus accelerating a possible clogging in the porous media, finally
θ inflow can be considered as a proxy for the efficiency of the geothermal system. The
main quantity of interest is the porosity, because we want to quantify the impact
of transport and reaction on the porous medium microstructure. Strong changes in
porosity are expected to affect the storativity of the medium, and its permeability
which is modeled as a nonlinear function of porosity.We expect to observe an increase
or decrease of porosity if temperature favors reaction, and if solute concentration is
far from equilibrium.

Being the construction of the sparse grids dependent only on the chosen level, the
number of uncertain parameters and the chosen quadrature formula to determine the
sampling evaluations, here we use the Fejér rule. The number of simulations needed
to construct the PC expansion are: 31 runs for level 2, 111 runs for level 3, 351 for
level 4, 1023 for and level 5. The simulations are independent and thus it is possible
to perform them in parallel to speed up the process. Once constructed, the evaluation
of the PC expansion takes a small fraction of the time used by the full order model
to evaluate the solutions for different times and for different values of the uncertain
parameters. Hence, we will use the PC expansion as a surrogate model and evaluate its
performances and accuracy properties. In both cases, we will discuss the convergence
properties of the PC expansion by increasing the level of the sparse grid considered,
the analysis of the Sobol indices, conditioned variances and covariances for selected
solutions and finally the probability distribution functions.

The simulations are developed with the library PorePy, a simulation tool for frac-
tured and deformable porous media written in Python, see (Keilegavlen et al. 2020).

6.1 Single fracture network

Let us consider a domain Ω = (0, 1)2 with a single immersed fracture defined by
the following vertices: (0.1, 0) and (0.9, 0.8). The fracture thus touches the bottom
boundary ofΩ as depicted in Fig. 4. Data and uncertain parameters are reported in the
beginning of Sect. 6. We set as 0.05 the time step and 2−6 the requested mesh size for
Gmsh (Geuzaine and Remacle 2009).We point out that the fracture is permeable at the
beginning of the simulation and due to the solute precipitation its aperture diminishes
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Fig. 4 Domain Ω and fracture γ

for the example of Sect. 6.1

Fig. 5 Reference solutions with mean value of the uncertain parameters. On the left pressure at time
t = 0.1T and on the centre for t = T , on the right the solute for t = 0.1T . Test case of Sect. 6.1

in time. As a result the effective fracture permeability decreases and until the fracture
behaves as a barrier and not anymore as a preferential path.

In the following parts, we detail some aspects related to the uncertainty quantifi-
cation analysis. In Sect. 6.1.1 a convergence study is carried out, in Sect. 6.1.2 we
discuss the variances and covariances of the solutions and in Sect. 6.1.3 we introduce
the computed probability distribution functions of some of the components of the
solutions along the fracture.

The reference solution, corresponding to the average input parameters, is reported
in Fig. 5, where it is possible to notice the variation of the pressure distribution over
time due to the sealing of the fractures and the transport of the solute when the fractures
are still highly permeable.

6.1.1 Convergence

In this part, we discuss the convergence and accuracy properties of the surrogatemodel
built with the PC expansion. In fact, the latter can be used to make fast simulations
without the need of running the full order model. Since we are dealing with a time
dependent problem, we analyse the PC expansion for two different simulation times:
after few time steps (t = t1 = 0.1T ) and at the end of the simulation (t = T ).

Figure6 presents, for both times, the error decay of the computed solutions by
increasing the level of the sparse grid. For a given sparse grid level, the error is
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Fig. 6 Error convergence for increasing level of the sparse grids, on the left at time t = 0.1T and on the
right at final time t = T . Test case of Sect. 6.1.1

computed averaging the relative L2-error between the surrogate model and the full
model over a random sample of nsim = 200 simulations, namely

errl =
√
√
√
√

nsim∑

i=1

‖X(ξ i ) − XK(ξ i )‖2L2

nsim‖X(ξ i )‖2L2

for a given observed variable X and corresponding surrogate variable XK at sparse
grid level l.

For a smooth relation between uncertain parameters and the solutions, we expect
exponential decay of the errorwith respect to the level, which is the behaviour observed
in the figure. Additionally, for t = t1 the error computed is much smaller compared
to the end of the simulation, showing a temporal dependence on the quality of the PC
expansion.

In Fig. 7, we compare the porosity φ computed with the full order model with the
one constructed by the PC expansion and the corresponding relative error. In this case
the error is relative and it has been computed cell-wise between a specific realisation
of the porosity. The two solutions are in good agreement for both times and the error
is rather low. As before, the latter is smaller at the beginning of the simulation and
tends to increase at the end, in particular near the inflow boundary at the bottom of
Ω . Moreover, at the beginning of the simulation the fracture is highly permeable and,
consequently, we observe also a region in the proximity of γ where the error is higher
due to stronger geochemical effects.

Finally, Fig. 8 compares some of the variables in the fractures computed with the
full order model or reconstructed with the PC expansion. Also in this case, the quality
of the latter is high and in good agreement with the reference solution. Moreover, in
Fig. 8 the green dashed lines represent the solutions obtained for each run to construct
the PC expansion and can be useful to visualize the variance of the solution.

6.1.2 Analysis of variance and correlations

An important factor is the impact on observed variables of the uncertain input data.
In Fig. 9 we report the Sobol indices for some variables in the fracture for t = t1 and
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Fig. 7 On the left porosity in the media computed with the full model and on the centre with the polynomial
chaos expansion, on the right the error between them. On the top at time t = 0.1T and on the bottom at
final time t = T . Test case of Sect. 6.1.1

t = T . We notice that the three variables are influenced in a similar manner by the
uncertain data, and the activation energy is the most important factor, followed by the
temperature at the inflow boundary. We notice that while the high temperature front
penetrates in the domain and in the fracture, the importance of the activation energy
over the temperature inflow tends to diminish and the latter becomes more important.
Note also that the Sobol indices of εγ wγ at final time are different from the other two
considered variables since ηγ dominates the induced uncertainty of the precipitate.
This different behavior could be due to the fact that, while the amount of solute reflects
the porosity, the amount of precipitate is correlated to porosity in a more complex way:
the larger the porosity, at fixed w, the more precipitate is present, but a larger amount
of precipitate reduces porosity.

In Fig. 10, we compare the variances of the porosity in the domain Ω induced
by the uncertain data. Depending on the situation, it might be more convenient to
consider either the normalized Sobol indices or the partial variances: the former give
a very intuitive idea of the relative impact of the parameters on the quantity of interest
variance, but the partial variance can be interesting as well, to understand where and
when the solution exhibits larger variability. The importance of the activation energy
over time is rather interesting. In the beginning the fracture is highly permeable and
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Fig. 8 Solutions along γ : in blue computed with the full model, in red with the polynomial chaos expansion
and in green computed by the full model on each sparse grid node (sparse grid level 2). On the top at time
t = 0.1T and on the bottom at final time t = T . Test case of Sect. 6.1.1(colour figure online)

Fig. 9 First order Sobol indexes for different unknowns along γ , on the top at time t = t1 and on the bottom
at final time t = T . The local coordinate of the fracture starts from the bottom boundary. Test case of Sect.
6.1.2
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Fig. 10 On the left the variance of porosity conditioned to the activation energy E , on the centre conditioned
with ηγ expansion, and on the right conditioned with the temperature inflow θ in f low . On the top at time
t = 0.1T and on the bottom at final time t = T . Test case of Sect. 6.1.2

most of the flow is concentrated around the fracture. However, due to the deposition
of new material the fracture becomes very low permeable; thus the water flow tends
to avoid it and concentrates more in the right part of the domain, where the solute is
transported and becomes precipitate altering the porosity. This effect, less evident, can
be seen also in the spatial distribution of the Sobol index of ηγ . For the temperature, we
still notice the permeability change effect coupledwith the inflowofhigher temperature
that speeds up the precipitation process and, as a result, the porosity decay.

Another important aspect is the interdependency of the output variables, which can
be expressed by their covariances. Figure11 presents this relation between the porosity
in the media and several other variables at the initial time. For the porosity and φΩwΩ

we observe a negative correlation, namely ifmore precipitate is deposited in the porous
media, less void space is left, and the porosity diminishes. The temperature front can
be seen in the plot of the covariance between φΩ and θΩ , i.e. higher values of the
latter tend to facilitate the deposition of solute with concentration higher than the
equilibrium. This increases the value of the precipitate and consequently lowers the
value of the porosity.
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Fig. 11 Covariances between different solutions in the porous media at time t = 0.1T . Test case of Sect.
6.1.2

6.1.3 Probability density functions

We consider now the probability density functions (PDFs) of some variables induced
by theuncertain data,which are uniformlydistributed.Wecompare thePDFs computed
directly from numerical simulations with the one based on solutions produced by the
polynomial model for the same inputs. Figure12 shows, for level 2, the distribution
of εγ uγ at two points along the fracture, and for both times. We notice that at the
beginning of the simulation the PDFs are more spread showing a high variability of
the considered variable. However, at the end of the simulation the uncertainty tends to
become much smaller and the value is more concentrated. Another important aspect
is that the PC expansion outcomes might not fulfill physical bounds, in this case we
can get negative values of εγ uγ which are not correct. The situation improves by
considering a higher level of the sparse grid, indeed as represented in Fig. 13 this
phenomenon is not present any more and the PDFs constructed with the PC expansion
are in good agreement with the one computed by the full order model.

6.2 Multiple fractures network

We consider now a test case with a network composed of multiple-fractures. The
geometry is given by the Benchmark 3 of Flemisch et al. (2018), where fractures at
t = 0 are now considered all highly permeable with material properties and problem
data equal to the previous test case. A graphical representation of the computational
domain is given in Fig. 15 on the left. Fractures γ3 and γ8 will be considered later for
a specific analysis.

Somequantities from the reference numerical solution are reported in Fig. 14,where
it is possible to notice the variation of the pressure distribution over time due to the
sealing of the fractures and the transport of the solute when the fractures are still highly
permeable.
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Fig. 12 Probability distribution function of εγ uγ for level 2 at two points in γ , on the top at time t = 0.1T
and on the bottom at final time t = T . Test case of Sect. 6.1.3

6.2.1 Convergence

We discuss now the convergence properties of the PC expansion. On the right of
Fig. 15, we plot the error decay for increasing sparse grid level for multiple variables.
Also in this case, the exponential decay expected is confirmed for all the variables.

In Fig. 16 we compare the porosity computed by the differential model with the one
computed by the PC expansion. On the right we also represent the relative error. The
two solutions are in good agreement with a maximum error of 13% confined at the
bottom of the domain, the error is much smaller in the other parts being of the order
of 5% or less. The surrogate model provided by the PC expansion gives a satisfactory
result at (almost) no additional computational cost.

Figure17 compares some of the variables along the two fractures γ3 and γ8 com-
puted by the full order model and by the PC expansion. Also in the fractures, we
observe a high quality for the solutions computed with the PC expansion even for
γ8 that has two intersections with other fractures. The jump across the intersection is
properly captured, confirming also in this case that the surrogate model from the PC
expansion yields a good approximation of the solutions.
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Fig. 13 Probability distribution function of εγ uγ for level 5 at two points in γ , on the top at time t = 0.1T
and on the bottom at final time t = T . Test case of Sect. 6.1.3

Fig. 14 Reference solutions with mean value of the uncertain parameters. On the left pressure at time
t = 0.1T and on the centre for t = T , on the right the solute for t = 0.1T . Test case of Sect. 6.2
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Fig. 15 On the right the computational domain with boundary conditions and on the left the error conver-
gence for increasing level of the sparse grids. Test case of Sect. 6.2.1

Fig. 16 On the left porosity in themedia computedwith the full model and on the centre with the polynomial
chaos expansion, on the right the error between them. Test case of Sect. 6.2.1

6.2.2 Analysis of variance and correlations

In this section, we present and analyze the impact of the uncertainty on some of
the computed variables. In particular, Fig. 18 shows the Sobol indices for some of
the variables of interest in the fractures γ3 and γ8. Since γ3 is closer to the inflow
boundary than γ8, the associated Sobol indices behave similarly with respect to the
ones of the previous test case. The effect of the inflow is more evident at the lowest
tip of the fracture γ3 with increased impact of θ inflow for εγ and εγ uγ compared to the
other variables. For εγ wγ the relation expressed by the Sobol index is less clear. Since
fracture γ8 is more distant form the inflow boundary, the high temperature front at the
end of the simulation does not fully reach it. Some effect are still visible since warmer
water has been transported by the fractures, especially for εγ wγ where the activation
energy E becomes less important than ηγ compared with the other two variables under
investigation.

In Fig. 19 we present the partial variances of the porosity with respect to the uncer-
tain data at final simulation time. We notice a small impact of ηγ , and a much more
significant relevance of E and θ inflow. Note that the effect of these two uncertain
parameters on reaction speed is opposite. Moreover, we notice that, on the bottom of
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Fig. 17 Solutions along two γi and in blue computed with the full model, in red with the polynomial chaos
expansion and in green computed by the full model on each sparse grid node. On the top γ3 and on the
bottom for γ8. Level considered 2. Test case of Sect. 6.2.1 (colour figure online)

Fig. 18 First order Sobol index for different solutions along two γi . On the top γ3 and on the bottom for
γ8. Test case of Sect. 6.2.2
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Fig. 19 On the left the variance of porosity conditioned to the activation energy E , on the centre conditioned
with ηγ expansion, and on the right conditioned with the temperature inflow θ in f low . Test case of Sect.
6.2.2

Fig. 20 Covariances between different solutions in the porous media. Test case of Sect. 6.2.2

the domain, the effect of the temperature is more pronounced since it is close to the
inflow boundary, while for the activation energy E the impact is more predominant
away from the inflow and close to the fractures. This can be motivated by the fact that
the water and solute get more channelized into the fractures and transported upward.
Since the fractures do not touch the outflow boundary, the solute flows again into the
rock matrix and then alters the value of the porosity by creating more precipitate.

The covariances between some of the computed variables are reported in Fig. 20.
The correlation between φΩ and θΩ is expected: below the warm water front, the
increased temperature facilitates the chemical reaction and thus lowers the porosity;
above the front, the solute is lower than the equilibrium value and the temperature is
lower, hence precipitation may not occur once fractures have been sealed and stopped
supplying reactant to the upper part of the domain. The correlation between φΩuΩ

and φΩwΩ is not included here since they are, as expected, equal to − 1 in the whole
domain. The same applies for εγ uγ and εγ wγ .
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Fig. 21 Probability distribution function of εγi uγi for level 2 at two points in γi . On the left γ3 and on the
right for γ8. Level considered 2. Test case of Sect. 6.2.3

6.2.3 Probability density functions

Finally, we present in (Fig. 21) the PDFs of the quantity εγi uγi at 75% of fractures
i = 3, 8 for level 2 of the sparse grid. We notice a phenomenon similar to the one
observed in the previous test case. For γ3 we might obtain unphysical values of εγ uγ

when thePDF is computed by thePCexpansion. This issue does not appear forγ8, since
it is further from the inflow and, as a consequence, is less subject to the uncertainty.
In both cases the probability distribution functions computed with the full model and
with the PC expansion are quite similar.

7 Conclusions

In this work we have presented a mathematical model to describe the evolution in time
of reactive transport in fractured porous media. We have adopted a simplified model,
where only one solute and one precipitate are involved in the chemical reactions. In
several meaningful applications, the chemical processes can be triggered and accel-
erated by high temperatures, thus we have included in the model also an additional
equation to model the thermal effects. The solute, transported by a liquid, might form
precipitate and alter the porosity in the media, forming a fully coupled and non-linear
system. In order to obtain a more realistic approximation of the physical process,
we have considered a mixed-dimensional model for the fractures where the latter are
represented as object of lower dimension. We have introduced appropriate equations
and derived coupling conditions with the surrounding porous media. Additionally, we
have applied a splitting strategy to numerically solve the problem by using standard
discretization schemes.

In a real scenario, several parameters might be affected by uncertainty. To quan-
tify their effect on the system, we have considered a polynomial chaos expansion
constructed by resorting to spectral projection methods on sparse grids. This strat-
egy proved to be very effective, since it provides high quality approximations at low
computational cost. Indeed, a limited amount of simulations are needed to construct
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a surrogate model which can then be used to perform multiple-simulations, even if
one has to be aware that the polynomial surrogate model might produce, especially if
the approximation is poor, unphysical results such as, for instance, negative concen-
trations. Moreover, from the PC expansion one can easily compute useful statistical
quantities such as partial variances and Sobol indexes to investigate the impact of
input parameters on the model unknowns and gain insight into the complex model
couplings. This technique has been applied to two numerical examples by increasing
the geometrical complexity of the fracture network. The results obtained showed the
validity of the proposed approach. In particular we have observed that, despite the
fact that fractures create strong anisotropy or even discontinuities in the solution, the
surrogate model can describe the quantities of interest with good accuracy. One of the
most interesting effects of fractures is the fact that, due to their small aperture, their
behavior can switch during the time intervals considered from conductive to blocking
and vice-versa if precipitation or dissolution occur. This results in a different impact
of uncertain parameters on the quantities of interest, in space and in time.
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