
Iris: Automatic Generation of Efficient Data Layouts
for High Bandwidth Utilization

Stephanie Soldavini

Politecnico di Milano

Milan, Italy

stephanie.soldavini@polimi.it

Donatella Sciuto

Politecnico di Milano

Milan, Italy

donatella.sciuto@polimi.it

Christian Pilato

Politecnico di Milano

Milan, Italy

christian.pilato@polimi.it

ABSTRACT
Optimizing data movements is becoming one of the biggest chal-

lenges in heterogeneous computing to cope with data deluge and,

consequently, big data applications. When creating specialized ac-

celerators, modern high-level synthesis (HLS) tools are increasingly

efficient in optimizing the computational aspects, but data transfers

have not been adequately improved. To combat this, novel archi-

tectures such as High-Bandwidth Memory with wider data busses

have been developed so that more data can be transferred in par-

allel. Designers must tailor their hardware/software interfaces to

fully exploit the available bandwidth. HLS tools can automate this

process, but the designer must follow strict coding-style rules. If the

bus width is not evenly divisible by the data width (e.g., when using

custom-precision data types) or if the arrays are not power-of-two

length, the HLS-generated accelerator will likely not fully utilize

the available bandwidth, demanding even more manual effort from

the designer. We propose a methodology to automatically find and

implement a data layout that, when streamed between memory and

an accelerator, uses a higher percentage of the available bandwidth

than a naive or HLS-optimized design. We borrow concepts from

multiprocessor scheduling to achieve such high efficiency.

ACM Reference Format:
Stephanie Soldavini, Donatella Sciuto, and Christian Pilato. 2023. Iris: Auto-

matic Generation of Efficient Data Layouts for High Bandwidth Utilization.

In 28th Asia and South Pacific Design Automation Conference (ASPDAC ’23),
January 16–19, 2023, Tokyo, Japan. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3566097.3567892

1 INTRODUCTION
Optimizing data transfers is one of biggest challenges in computing

today [7, 20]. Many applications, particularly big data and machine

learning (ML) algorithms, require huge amounts of data to be trans-

ferred and often this is an extreme bottleneck [16]. A lot of effort has

been put into optimizing the computational aspects of these algo-

rithms, particularly in the development and improvement of high-

level synthesis (HLS) tools [9]. However, the speedup gained on

the computation side has not been matched on the data-movement

side and thus these applications cannot take full advantage of the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00

https://doi.org/10.1145/3566097.3567892

optimized accelerators. In an attempt to solve this problem, High-

Bandwidth Memory (HBM) architectures with wide data busses

are increasingly common. The Xilinx Alveo u280 has HBM with a

maximum bandwidth of 460 GB/s and the Intel Stratix 10 MX has

HBM with a maximum bandwidth of 409 GB/s. However, it is very

difficult to realistically achieve these high bandwidths. Designers

must put in a lot of manual effort to carefully ensure their design

utilizes the full bus every single clock cycle [5]. In even the simplest

designs, this data orchestration can be quite complex and resource

intensive. In some cases, HLS tools can automatically fill the wide

bus by unrolling the arrays, but only if the design meets stringent

requirements. For instance, the bus width should be evenly divisible

by the data width and the array length should be a power of two. De-

signers can manually make adjustments to meet these requirements

or put in more effort to manually pack the bus. Even more effort

is needed for a highly custom solution beyond packing equally

sized data into evenly divided “lanes”. These highly custom designs

are not uncommon, especially with custom-precision data types

increasingly used in ML applications [15]. These arbitrarily-sized

data prove difficult to fit onto a fixed-width bus.

We propose Iris, an algorithm for automatically finding a data
layout (i.e., an organization of data in memory and in the bus lanes)

such that, when streamed to an accelerator, maximizes the use

of the available bandwidth. We borrow concepts from processor

scheduling to solve this problem. Our contributions are:

• An algorithm to automatically find an efficient data layout;

• A methodology for generating a host-side function that creates a

unified array of all the input data in the specified layout;

• A methodology for generating the accelerator-side, HLS-ready

modules to convert such data layouts into streams for the kernels.

The automation of this process is useful not only for reducing

manual designer effort, but also for rapid design-space exploration

while tuning the width of custom-precision data types.

2 RELATEDWORK ON HBM CHALLENGES
With the introduction of HBM architectures, designers should fol-

low recommended guidelines to exploit the increased bandwidth.

First, they should use a data width and clock frequency compatible

with the architecture. For instance, the HBM in the Xilinx Alveo

u280 platform operates at 450 MHz with a data width of 256 bits per

channel, so the design should either use this frequency and width or

225 MHz with a 512 bit width. Additionally, transactions should be

as large as possible to minimize the overhead per transaction [22].

Several works focused on maximizing the use of the channel

bandwidth. The work in [21] analyzes database applications accel-

erated on FPGAs with HBM. They explicitly craft their designs to

ensure that queries return parallelized data to use the full bandwidth.

https://doi.org/10.1145/3566097.3567892
https://doi.org/10.1145/3566097.3567892


ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Stephanie Soldavini, Donatella Sciuto, and Christian Pilato

Table 1: Summary of notation used in this work
𝑚 There are𝑚 processors

𝑗 There are 𝑗 tasks

𝛿 𝑗 The maximum number of processors task 𝑗 can use at once

𝑑 𝑗 The due date of task 𝑗 (time when 𝑗 would ideally finish)

𝑟 𝑗 The release time of task 𝑗 (earliest time a task can start)

𝐶 𝑗 Completion time of task 𝑗

𝐶𝑚𝑎𝑥 Makespan, maximum completion time of all tasks

𝐿𝑗 Lateness (𝐶 𝑗 − 𝑑 𝑗 ) of task 𝑗

𝐿𝑚𝑎𝑥 Maximum lateness of all tasks

The work in [4] proposes HBM Connect, a customized crossbar for

HBM access. They use a virtual HLS FIFO buffer to gather data for

read and write operations. On the Alveo u280, they achieve up to

185 GB/s over 16 channels (where the ideal bandwidth would be

230 GB/s). The work in [11] proposes a novel sparse matrix-vector

multiplier and an ILU0 preconditioned BiCGStab solver. They ex-

plicitly design their computation pipeline to accept a full 512-bit

cache line. The main focus is to rearrange the data access (and

therefore the compute kernel) to avoid transferring zero data. An

accelerator for the single-source shortest path problem is proposed

in [3]. Due to the random-access nature of graph problems, they

focus on improving throughput and optimizing for HBM. The work

in [6] proposes an automated methodology for HLS kernels to use

more bandwidth than their naive code. Their methodology trades

off between using more BRAM or achieving a greater speed.

Since bandwidth is valuable, minimizing the amount of data

transferred is important. The deep CNN design in [19] aims at ex-

ploiting DRAM bandwidth, reducing the number of data transfers

and avoiding stalls. The stream analytics engine in [14] reduces the

amount of data to be accessed by putting a smaller, more regularly

accessed portion of the data (pointers) into HBM and uses those

to reduce DRAM accesses. The LLVM pass in [12] partitions data

between DRAM and HBM. It could be extended to LLVM-based

HLS tools. Deciding where to store data can help relieve some band-

width congestion. Using a custom-width data format can reduce

the total data by reducing the bit-width of each element. Custom

precision was used in [1] to accelerate neural network training.

This work targeted only CPU with no memory considerations. To

the best of our knowledge, no prior work has focused on bandwidth

optimization with custom data types.

3 PROBLEM FORMULATION AS SCHEDULING
Scheduling is a popular research problem to decide how jobs are

assigned to resources to reduce the overall time to complete all

activities while satisfying the constraints [18].

In our case, given a bus width (𝑚) and a set of accelerator arrays,

each with bitwidth (𝑊𝑗 ), depth (𝐷 𝑗 ), and desired due date (𝑑 𝑗 ),

we want a memory layout where data are packed most densely

and the arrays arrive as close to their due dates as possible when

transferred from memory to the accelerator. This can be viewed

as a processor scheduling problem as follows: an𝑚-bit wide bus

is a multiprocessor system made of 𝑚 identical processors and

the data arrays are the tasks, 𝑗 , with due dates 𝑑 𝑗 , and processing

times 𝑝 𝑗 =𝑊𝑗 ×𝐷 𝑗 . These “tasks” are preemptible, i.e., they can be

scheduled discontinuously without incurring additional overhead.

The “tasks” will be scheduled on multiple processors at once. The

maximumnumber of bits an array can use on the bus at a time, or the

Table 2: Summary of additional symbols used in algorithms
𝑝 𝑗 Processing time (time units needed to execute) task 𝑗

𝑝𝑡𝑜𝑡 Total processing time for all tasks (i.e. 𝐶𝑚𝑎𝑥 if𝑚 = 1)

𝑙 Number of unique due dates 𝑑 𝑗
𝑑𝑚𝑎𝑥 Maximum (latest) due date of all 𝑑 𝑗
𝑊𝑗 Bitwidth of 𝑗

𝐵𝑒 𝑓 𝑓 Bandwidth efficiency

ℎ( 𝑗) Height (minimum possible execution time) of 𝑗

𝑅𝑘 Set of tasks with release time 𝑟𝑘
𝛽 𝑗 Processors allocated to 𝑗

𝑡 Current timestep being processed

𝜏 Length of interval being scheduled

maximum number of processors a task can use at once, is notated

by 𝛿 𝑗 . Arrays may be needed at different times in an accelerator.

So each has a due date 𝑑 𝑗 , derived from the dataflow graph and the

latencies of the nodes. To ensure the arrays can arrive as shortly

after their due date as possible, we use the maximum lateness,

𝛾 = 𝐿𝑚𝑎𝑥 = max𝑗 (𝐿𝑗 ), optimality criterion, where 𝐿𝑗 = 𝐶 𝑗 − 𝑑 𝑗 is

the lateness of an array and 𝐶 𝑗 is the completion time, or last cycle

the array is on the bus. All together, our problem is as follows: in a
system with𝑚 identical processors, we want to schedule preemptible
tasks across several processors (where task 𝑗 gains linear speedup by
being scheduled on up to 𝛿 𝑗 processors at once) such that each task is
finished as soon after its due date 𝑑 𝑗 as possible.

4 IRIS: OUR DATA LAYOUT ALGORITHM
We can find an 𝑂 (𝑛2) solution to an isomorphic problem of our

formulation in [8]. This isomorphic problem uses release times 𝑟 𝑗 ,

or the time step when a task 𝑗 is ready to begin execution, instead of

due dates 𝑑 𝑗 , and optimizes the completion time,𝐶𝑚𝑎𝑥 = max𝑗 (𝐶 𝑗 )
(also known as schedule length or makespan), instead of the maxi-

mum lateness 𝐿𝑚𝑎𝑥 . This problem is described as follows: in a sys-

tem with𝑚 identical processors, we want to schedule preemptible

tasks with release time 𝑟 𝑗 across several processors to minimize

the total schedule length (𝐶𝑚𝑎𝑥 ). To convert between the two prob-

lems, each due date 𝑑 𝑗 is converted to a release time 𝑟 𝑗 by sub-

tracting it from the maximum (latest) due date of all tasks such

that 𝑟 𝑗 = 𝑑𝑚𝑎𝑥 − 𝑑 𝑗 . Also, the solution schedule to the isomorphic

problem should be read backward to find the solution to the origi-

nal problem. In this way, tasks that originally have the latest due

dates will have the earliest release times in the “backward” schedule.

Fig. 1 shows how converting due dates 𝑑 𝑗 into release times 𝑟 𝑗 can

yield the same schedule but reversed in time.

Algorithm 1.1 shows our proposed layout finding algorithm,

called Iris. In Greek mythology, Iris is the messenger of the gods.

Additional symbols used in the algorithms are summarized in Ta-

ble 2. The algorithm in [8] is designed to optimize the completion

time,𝐶𝑚𝑎𝑥 , given a set of release times, 𝑟 𝑗 , when tasks are available

to be processed. The algorithm can be converted to optimizing

for the minimum lateness, 𝐿𝑚𝑎𝑥 , by changing a set of 𝑙 due dates,

𝑑1 ≤ 𝑑2 ≤ . . . ≤ 𝑑𝑙 , to release times as follows: 𝑟 𝑗 = 𝑑𝑚𝑎𝑥 −𝑑 𝑗 . After
scheduling using these new release times, the schedule can be read

backward to optimize for 𝐿𝑚𝑎𝑥 for input arrays using the due dates.

To adapt this algorithm for the bus layout problem, we mod-

ified it as follows. Instead of using a simple ratio, Iris uses the

largest-remainder method (also known as the Hamilton Method)

of apportionment to allocate processors to tasks [13]. This method

ensures tasks are assigned whole numbers of “processors” (i.e., bus



Iris: Automatic Generation of Efficient Data Layouts for High Bandwidth Utilization ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Algorithm 1.1 Layout Algorithm

1: 𝑡 := 0

2: Group tasks with release time 𝑟𝑘 in set 𝑅𝑘 , 𝑘 = 1, . . . , 𝑙

3: for 𝑘 := 1 to 𝑙 do
4: Order 𝑅𝑘 by nonincreasing values of ℎ ( 𝑗 )
5: while (𝑟𝑘+1 < 𝑡 ) and (∃𝑗 ∈𝑅𝑘ℎ ( 𝑗 ) > 0) do
6: Find_Capabilities(𝑅𝑘 , 𝛽)

7: if ∃𝑗,𝑗+1∈𝑅𝑘ℎ ( 𝑗 ) > ℎ ( 𝑗 + 1) then
⊲ Shortest time before ℎ ( 𝑗 ), ℎ ( 𝑗 + 1) are equal

8: 𝜏 ′ := min

{
ℎ ( 𝑗 ) − ℎ ( 𝑗 + 1)

𝛽 𝑗

𝛿 𝑗
− 𝛽 𝑗+1

𝛿 𝑗+1
:

𝛽 𝑗

𝛿 𝑗
≠

𝛽 𝑗+1
𝛿 𝑗+1

, ℎ ( 𝑗 ) > ℎ ( 𝑗 + 1)
}

9: else
10: 𝜏 ′ := ∞
11: end if
12: 𝜏 ′′ := ℎ ( |𝑅𝑘 | ) ⊲ Time to earliest completion of any task
13: 𝜏 := min {𝜏 ′, 𝜏 ′′, 𝑟𝑘+1 − 𝑡 } ⊲ Interval is until next change
14: For all 𝑗 ∈ 𝑅𝑘 , schedule 𝑗 on 𝛽 𝑗 processors for the interval [𝑡, 𝑡 +𝜏 ]
15: ℎ ( 𝑗 ) := ℎ ( 𝑗 ) − 𝜏𝛽 𝑗

𝛿 𝑗
for 𝑗 ∈ 𝑅𝑘 ⊲ Subtract this proc. time from ℎ

16: 𝑡 = 𝑡 + 𝜏 ⊲ Update the timestep
17: end while

⊲ Add any unfinished tasks to the next batch, 𝑅𝑘+1
18: if ∃𝑗 ∈𝑅𝑘ℎ ( 𝑗 ) > 0 then 𝑅𝑘+1 := 𝑅𝑘+1 ∪ { 𝑗 : 𝑗 ∈ 𝑅𝑘 , ℎ ( 𝑗 ) > 0}
19: end if
20: end for

Algorithm 1.2 Find_Capabilites Procedure

21: procedure Find_Capabilities(𝑋 , 𝛽) ⊲ 𝑋 is a set of tasks
22: 𝛽 := 0 ⊲ 𝛽 is a vector of # processors allocated to each task 𝑗

23: 𝑎𝑣𝑎𝑖𝑙 :=𝑚 ⊲ 𝑎𝑣𝑎𝑖𝑙 is the number of free processors
24: while 𝑎𝑣𝑎𝑖𝑙 > 0 and |𝑋 | > 0 do
25: 𝑇 := set of the highest tasks in 𝑋 with ℎ ( 𝑗 ) > 0

26: if
∑

𝑗 ∈𝑇 𝛿 𝑗 > 𝑎𝑣𝑎𝑖𝑙 then
27: 𝛽 𝑗 := LRM_Allocation(𝑇 ) ; 𝑎𝑣𝑎𝑖𝑙 := 0

28: else ⊲ Tasks in𝑇 can use at most 𝑎𝑣𝑎𝑖𝑙 processors
29: 𝛽 𝑗 := 𝛿 𝑗 for 𝑗 ∈ 𝑇 ; 𝑎𝑣𝑎𝑖𝑙 := 𝑎𝑣𝑎𝑖𝑙 − ∑

𝑗 ∈𝑇 𝛿 𝑗

30: end if
31: 𝑋 := 𝑋 − 𝑇 ⊲ Remove scheduled tasks from the working set, 𝑋
32: end while
33: end procedure

Algorithm 1.3 LRM_Allocation Procedure

34: procedure LRM_Allocation(𝑇 )

35: 𝑞𝑢𝑜𝑡𝑎 :=

(∑
𝑗 ∈𝑇 𝛿 𝑗

)
/𝑎𝑣𝑎𝑖𝑙 ⊲ Hare quota of processors

36: for 𝑗 ∈ 𝑇 do
37: 𝑣𝑗 :=

𝛿 𝑗

𝑞𝑢𝑜𝑡𝑎
⊲ 𝑣𝑗 is the processors requested per 𝑞𝑢𝑜𝑡𝑎

38: 𝛽 𝑗 :=
⌊
𝑣𝑗 /𝛿 𝑗

⌋
⊲ Assign 𝛽 𝑗 the largest multiple of 𝛿 𝑗 below 𝑣𝑗

39: 𝑟𝑒𝑚 𝑗 := 𝑣 mod 𝛿 𝑗 ⊲ Keep track of the remainder
40: 𝑎𝑣𝑎𝑖𝑙 := 𝑎𝑣𝑎𝑖𝑙 − 𝛽 𝑗

41: end for
42: Sort𝑇 by decreasing 𝑟𝑒𝑚 𝑗

43: for 𝑗 ∈ 𝑇 do
⊲ If 𝑗 fits in the remaining space, schedule it

44: if 𝑎𝑣𝑎𝑖𝑙 >𝑊𝑗 then 𝛽 𝑗 := 𝛽 𝑗 + 1; 𝑎𝑣𝑎𝑖𝑙 := 𝑎𝑣𝑎𝑖𝑙 − 1

45: end if
46: if 𝑎𝑣𝑎𝑖𝑙 = 0 then return ⊲ When there is no more space, done
47: end if
48: end for
49: end procedure

Figure 1: Sample schedule showing conversion between due
dates and release times.

Table 3: Example set of inputs
Array Width (𝑊 ) Depth (𝐷) Due Date (𝑑) Processing Time (𝑝 =𝑊 × 𝐷)

𝐴 2 5 2 10

𝐵 3 5 6 15

𝐶 4 3 3 12

𝐷 5 4 6 20

𝐸 6 2 3 12

Table 4: 𝑟 𝑗 , 𝛿 𝑗 , and ℎ( 𝑗) for each array. Arrays sorted by non-
decreasing 𝑑 𝑗 . 𝑑𝑚𝑎𝑥 = max𝑗 (𝑑 𝑗 )

Array 𝐴 𝐶 𝐸 𝐵 𝐷

𝑗 1 2 3 4 5

𝑑 𝑗 2 3 3 6 6

𝑟 𝑗 4 3 3 0 0

𝛿 𝑗 8 8 6 6 5

ℎ( 𝑗) 2 2 2 3 4

bit lanes). Also, regular multiprocessor tasks can be split arbitrarily,

but array elements are indivisible. For instance, an array with 17-bit

elements can use 17, 34, or 51 bits of a 64-bit bus (i.e., transfer-

ring one or more elements), but not 20 bits (i.e., transferring parts

of the elements). To schedule indivisible elements, we modified

the largest-remainder method to only allocate in multiples of the

bitwidth (Line 38). The remainders can then be greater than one,

but always less than the bitwidth of the element. Without this mod-

ification, the overhead for organizing the data with logical-shift

and bitwise operations would be prohibitive.

A small example is presented here. Table 3 lists the characteristics

of arrays. The total processing time, 𝑝𝑡𝑜𝑡 (total number of bits in all

of the arrays) is 69. Ideally,𝐶𝑚𝑎𝑥 ×𝑚 is as close to 𝑝𝑡𝑜𝑡 as possible to

ensure there is the smallest amount of wasted bandwidth. Therefore,

we compute bandwidth efficiency as:

𝐵𝑒 𝑓 𝑓 =
𝑝𝑡𝑜𝑡

𝐶𝑚𝑎𝑥 ×𝑚
(1)

So, the ideal case is a value of 1 (or 100%), which means that the

accelerator is fully utilizing the bandwidth.

A completely naive method would be to sort the arrays by in-

creasing due date and place one element of each array into each

8-bit slot of memory. The resulting diagram is shown in Fig. 3. Array

𝐷 would arrive 13 cycles after its due date of 𝑑𝐷 = 6 (𝐿𝑚𝑎𝑥 = 13).

The efficiency of this layout is
69

19×8 = 45.4%. An improvement

would be to pack as many elements of an array as possible onto the

bus at once. This homogeneous packing is more dense but still fairly

naive. This layout is shown in Fig. 4. In this layout, 𝐿𝑚𝑎𝑥 = 𝐿𝐷 = 7

and the efficiency is
69

13×8 = 66.3%.



ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Stephanie Soldavini, Donatella Sciuto, and Christian Pilato

Listing 1 Sample host function for organizing arrays into the layout

void pack(int* A, int* B, int* C, int* D, int* E,

unsigned char* out) {

unsigned char curr;

// 0 : C, B

curr = ((*C++) & C_MASK) << (B_WIDTH + 1);

curr |= ((*B++) & B_MASK) << (1);

*out++ = curr;

// 1 : D, B

curr = ((*D++) & D_MASK) << (B_WIDTH);

curr |= ((*B++) & B_MASK);

*out++ = curr;

// ...

for (unsigned int t = 0; t < 2; t++) {

// 7-8 : D, B

curr = ((*D++) & D_MASK) << (B_WIDTH);

curr |= ((*B++) & B_MASK);

*out++ = curr;

}

}

To convert this problem into one the algorithm can solve, the

release times 𝑟 should be computed from the set of due dates 𝑑

as 𝑟 𝑗 = 𝑑𝑚𝑎𝑥 − 𝑑 𝑗 . We show this and the computations for the

maximum bits per cycle for an array, 𝛿 𝑗 =
⌊
𝑚/𝑊𝑗

⌋
×𝑊𝑗 , and for

the heights, ℎ( 𝑗) = 𝑝 𝑗/𝛿 𝑗 in Table 4. The set of unique release times

is 𝑟 = {0, 3, 4}. Using this set, the arrays must be sorted into groups,

𝑅𝑘 , based on 𝑟𝑘 (Line 2). Within each 𝑅𝑘 , the arrays are ordered

by nonincreasing values of ℎ( 𝑗): 𝑅0 = {𝐷, 𝐵} (𝑟 𝑗 = 0), 𝑅1 = {𝐶, 𝐸}
(𝑟 𝑗 = 3), and 𝑅2 = {𝐴} (𝑟 𝑗 = 4). Then, each 𝑅𝑘 is processed in order.

The algorithm executed on the example arrays is shown in Fig. 2.

Each large box on the left side of Fig. 2 shows the current working

group, 𝑅𝑘 , and the current ready time, 𝑟 𝑗 , in the top left corner.

Inside this box is each array currently ready to be processed. The

curved arrows indicate the end of an iteration of the while loop

(Line 5) of Algorithm 1.1. The reason for the value of 𝜏 in that

iteration is listed on the arrow on the right side along with which

array elements get placed into the layout at that interval. When the

next 𝑅𝑘 group is ready, the arrays which are not yet fully processed

are added to the new group. At the end of the procedure, the final

layout must be reversed to target 𝐿𝑚𝑎𝑥 , as shown in Fig. 5. The

latest arrays arrive only 3 cycles after their due dates (𝐿𝑚𝑎𝑥 = 3).

The efficiency is now
69

9×8 = 95.8%, wasting only 3 bandwidth bits.

5 CODE GENERATION
Because all array details are statically known, we execute Iris during

the compilation part to determine the data layouts and generate

the necessary functions for decoding them into the accelerator.

Host-Side Organization. To transfer data from the CPU using the

proposed layout, the host must aggregate the arrays into the layout

efficiently. The procedure for organizing the data, given pointers to

all of the input arrays and a pointer to allocated memory the size

of the layout (𝑚 ×𝐶𝑚𝑎𝑥 ), is as follows. We create each layout cycle

using the machine-word-size of the host. For example, if the layout

is for a 256-bit bus and the host uses a 64-bit word size, we organize

the memory line in four adjacent uint64 elements. The generator

iterates over each array assigned to each cycle and logical-shift-left

the next element of that array into the current word. When this

word is full, it places it in its appropriate memory location and

Figure 2: Our process of “scheduling” arrays into the layout.

starts the next one. After placing each array element, it increments

its array pointer such that the next element will be inserted in the

next steps. When an element spans across words, it shifts in the

remaining bits to the top of the next word. The C function for the

data organization of the example in Section 4 is shown in Listing 1.

X_WIDTH and X_MASK constants represent the width of the array and
a bitmask of the appropriate width, respectively. (*X++)will get the
value at pointer X, and then post-increment it. In the case of 𝜏 > 1

(e.g., in cycles 7-8), we use a for loop to create the same layout over

several cycles. This simple function can be automatically generated

from the given layout.

Accelerator-Side Decoding. Once the data are transferred into

memory accessible by the accelerator (e.g., Xilinx HBM), the accel-

erator must interpret the data. We implement specialized modules

to exchange data between memory and the appropriate streams.

The data-read module must have an initiation interval of 1 to

maintain maximum bandwidth utilization. To achieve this, enough

local memory ports must be available to store all data elements on

the bus at once. For data elements that only appear once in any

cycle of the layout, the stream interface or a private local memory

(PLM) is sufficient. However, if two or more elements from the



Iris: Automatic Generation of Efficient Data Layouts for High Bandwidth Utilization ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Figure 3: A naive layout for the exam-
ple arrays.

Figure 4: A homogeneously packed
naive layout for the example arrays.

Figure 5: The layout for the example
arrays generated by our method.

Listing 2 Sample HLS module for a data read module to decode

the layout for an accelerator (Trimmed for brevity)

#define BUSWIDTH 8

#define A_FIFO_DEPTH 3

#define C_FIFO_DEPTH 1

void read_data(ap_uint <BUSWIDTH >* in_buf ,

hls::stream <ap_uint <A_WIDTH >>& dataA ,

// ...

hls::stream <ap_uint <E_WIDTH >>& dataE) {

ap_uint <BUSWIDTH > elem;

dataA_t tmpA[A_FIFO_DEPTH ];

dataC_t tmpC[C_FIFO_DEPTH ];

for(unsigned int t = 0; t < 9; t++){

#pragma HLS pipeline II=1

elem = in_buf[t];

if (t == 0) {

dataC << elem.range(7, 4);

dataB << elem.range(3, 1);

} else if (t == 1) {

dataD << elem.range(7, 3);

dataB << elem.range(2, 0);

// ...

} else if (t >= 7 && t <= 8) {

dataA << tmpA [0];

dataD << elem.range(7, 3);

dataB << elem.range(2, 0);

}

}

}

same array are present in a single cycle, we need extra memories

to temporarily store these elements to free up the bus quickly,

rather than waiting for several cycles to read each element off the

bus. For instance, if at most four elements from array A are on the

bus in a single cycle, we need four write ports [17]. This can be

implemented as a three-element shift-register where A[i] is written
straight to the destination, and A[i+1], A[i+2], and A[i+3] are

parallel-loaded into the shift-register, and each successive cycle

has the next element written to the destination. However, if more

elements of A are on the bus in these three cycles, additional depth

might be needed in the shift-register. The maximum depth of the

shift-register for an array is determined during layout creation by

a running sum over each schedule interval.

Listing 2 shows a sample read module for the example layout

written in Xilinx-style HLS code, using the HLS library for arbitrary

Table 5: Set of inputs for our test accelerators
Accelerator Array Width Depth Due Date (𝑑)

Inv. Helmholtz

𝑢 64 1331 333

𝑆 64 121 31

𝐷 64 1331 363

Matrix Multiplication

𝐴 64 625 157

𝐵 64 625 157

Precision Types (ap_uint). This module sends each element to a

stream for the appropriate array. Downstream dataflow modules

can begin execution as soon as the first elements are sent. The

constant X_WIDTH values are also the bitwidths of their respective

arrays. The HLS tool estimates a latency of 11 clock cycles with

only 29 flip-flops and 194 LUTs. For the naive read module (Fig. 3)

HLS estimates a latency of 43 cycles and uses 54 flip-flops and 452

LUTs. Thus, we improve both latency and resource requirements.

6 EVALUATION
We implemented a prototype of Iris in Python which receives the

input (e.g., bus bitwidth and array details) as a JSON file. This file

can be automatically generated by reading array details from the

kernel during HLS. To evaluate our method, we analyze several

layouts generated for two real accelerators. In all cases, we use

𝑚 = 256 to target the real bus width of the HBM on the Alveo u280.

Inverse Helmholtz. The work in [22] aims at deploying the

Inverse Helmholtz operator on the Alveo u280. This operator is the

building block of a computational fluid dynamics application. Due

to the physical nature of the values, each array element uses 64

bits (double). In [22], the authors examine different strategies for

optimizing the data transfers but using the packed naive approach
for the HBM. Table 5 shows the depths and due dates of each array.

𝑑𝑆 and 𝑑𝑢 are simply the earliest time by which these arrays can

feasibly be finished. 𝐷 is needed later than 𝑢 and 𝑆 , so 𝑑𝐷 is the

earliest time by which 𝑢 and 𝑆 could both be feasibly finished by.

A naive layout following the pattern in Fig. 4 has an efficiency

of 99.8% and 𝐿𝑚𝑎𝑥 = 364. Our layout is 99.9% efficient, using one

less cycle, and 𝐿𝑚𝑎𝑥 = 333. Because these data widths are all evenly

divisible into the bus-width, themetrics for our layout are nearly the

same. However, we reduce the FIFO depth from 998 for𝑢 and 𝐷 and

90 for 𝑆 to 666 for𝑢 (-33%), 636 for𝐷 (-36%), and 30 for 𝑆 (-67%). In the

naive layout, four elements of each array are nearly always sent on



ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Stephanie Soldavini, Donatella Sciuto, and Christian Pilato

Table 6: Layout metrics with varied 𝛿/𝑊 (Inv. Helmholtz)
𝛿/𝑊

Naive 4 3 2 1

Efficiency 99.8% 99.9% 98.8% 97.9% 51.1%

𝐶𝑚𝑎𝑥 697 696 704 711 1361

𝐿𝑚𝑎𝑥 364 333 341 348 998

FIFO

Depth

𝑢 998 666 667 665 0

𝑆 90 30 30 15 0

𝐷 998 636 631 620 0

Table 7: Layout metrics with varied𝑊 (Matrix Multiply)
(𝑊𝐴,𝑊𝐵) (64, 64) (33, 31) (30, 19)

Naive Iris Naive Iris Naive Iris

Efficiency 99.5% 99.8% 92.5% 98.9% 93.5% 97.3%

𝐶𝑚𝑎𝑥 314 313 236 225 206 201

𝐿𝑚𝑎𝑥 157 156 79 68 49 44

FIFO

Depth

𝐴 468 312 535 467 546 502

𝐵 468 312 546 478 576 532

the bus at a time. In our layout, instead, the three arrays are often

interleaved together in the same cycle, relieving the contention

pressure on the FIFOs. This improvement is important since BRAMs

are usually a limiting factor for data-intensive applications.

We can even vary the maximum number of times an array can

have elements on the bus in one cycle by reducing 𝛿 to a lower

multiple of the bit-width. Table 6 summarizes the results when

constraining the arrays as such. For 𝛿/𝑊 > 1, we slightly improve

FIFO depth as 𝛿/𝑊 decreases, along with slight efficiency and 𝐿𝑚𝑎𝑥

degradation. When 𝛿/𝑊 = 1, the efficiency drops to 51.1% because

there are only 3 arrays, so it is impossible to fill the entire bandwidth

if they are all only allowed to have one element on the bus at a

time. However, we eliminate the need for extra write-port FIFOs

since only one element must be written to any array at a time. If a

design is having difficulty due to area constraints, and not having

data-transfer bottleneck issues, this layout may be useful.

MatrixMultiplication. We also test layouts for Matrix Multiplica-

tion, which is popular in many tensor-based applications [10, 2]. Its

inputs are summarized in Table 5. The due dates for this application

are both as soon as possible, as both inputs are needed at the same

time. With𝑊 = 64 again, the naive layout and our layout perform

nearly identically, with our layout only having slightly better 𝐿𝑚𝑎𝑥

and FIFO depth. However, when we vary the bitwidths with custom

precision data types, Iris achieves better results. Results for the

matrix multiply layout are summarized in Table 7.

With custom precision data types, it is difficult to fit neatly into

the bus width. Our layout algorithm determines how to better

utilize the bandwidth without sacrificing performance. In the case

of 64-bit data, the schedule length is reduced by one cycle, but the

memory resources are reduced by 33%. For 33- and 31-bit widths, the

schedule length, which directly correlates to data transfer time, is

reduced by 5% and the overall FIFO memory resources are reduced

by 13%. Finally, for the 30- and 19-bit width, the schedule length is

reduced by 2% and the memory resources are reduced by 8%.

7 CONCLUSION
This work presented Iris, an algorithm designed to automatically

create an efficient data layout thatmaximizes the use of the available

bandwidth. Iris was able to achieve higher bandwidth efficiency and

lower lateness 𝐿𝑚𝑎𝑥 for various accelerators. Also, the solutions

created by Iris use fewer FPGA resources for the data read module,

particularly in the case of the data FIFOs necessary to read from the

bus every cycle. Also, as Iris is an automatic process, this relieves

the designer of a huge manual effort and can even support rapid

design space exploration when using custom data types.

ACKNOWLEDGMENTS
This work was partially funded by the EU Horizon 2020 Programme

under grant agreement No 957269 (EVEREST).

REFERENCES
[1] Grey Ballard, Jack Weissenberger, and Luoping Zhang. 2021. Accelerating

neural network training using arbitrary precision approximating matrix multi-

plication algorithms. In ICPP Workshops Article 16, 1–8.
[2] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying parallel and distributed

deep learning: an in-depth concurrency analysis. ACM Comput. Surv., 52, 4,
Article 65, (Aug. 2019).

[3] Yuze Chi, Licheng Guo, and Jason Cong. 2022. Accelerating SSSP for power-law

graphs. In FPGA.
[4] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, et al. 2021. HBM

connect: high-performance HLS interconnect for FPGA HBM. In FPGA, 116–
126.

[5] Young-kyu Choi, Yuze Chi, Jie Wang, Licheng Guo, et al. 2020. When HLS

meets FPGA HBM: benchmarking and bandwidth optimization. (2020).

[6] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. 2017. Bandwidth opti-

mization through on-chip memory restructuring for HLS. In DAC.
[7] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-specific hard-

ware accelerators. Commun. ACM, 63, 7, (June 2020), 48–57.

[8] Maciej Drozdowski. 1996. Real-time scheduling of linear speedup parallel tasks.

Information Processing Letters, 57, 1, 35–40.
[9] Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, et

al. 2021. Invited: bambu: an open-source research framework for the high-level

synthesis of complex applications. In DAC.
[10] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. 2018.

Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-

precision iterative refinement solvers. In SC.
[11] Tom Hogervorst, Răzvan Nane, Giacomo Marchiori, Tong Dong Qiu, et al. 2021.

Hardware acceleration of high-performance computational flow dynamics

using high-bandwidth memory-enabled field-programmable gate arrays. ACM
TRETS, 15, 2, Article 20, (Dec. 2021).

[12] Dounia Khaldi and Barbara Chapman. 2016. Towards automatic hbm allocation

using llvm: a case study with knights landing. In LLVM-HPC, 12–20.
[13] Ulrich Kohler and Janina Zeh. 2012. Apportionment methods. The Stata Journal,

12, 3, 375–392.

[14] HongyuMiao, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S. McKinley, et

al. 2019. StreamBox-HBM: stream analytics on high bandwidth hybrid memory.

In ASPLOS.
[15] Mahdi Nazemi and Massoud Pedram. 2018. Deploying customized data rep-

resentation and approximate computing in machine learning applications. In

ISLPED.
[16] Christian Pilato, Stanislav Bohm, Fabien Brocheton, Jeronimo Castrillon, et al.

2021. EVEREST: a design environment for extreme-scale big data analytics on

heterogeneous platforms. In DATE, 1–6.
[17] Christian Pilato, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni.

2017. System-level optimization of accelerator local memory for heterogeneous

systems-on-chip. IEEE TCAD, 36, 3, 435–448.
[18] Sartaj K. Sahni. 1976. Algorithms for scheduling independent tasks. J. ACM,

23, 1, (Jan. 1976), 116–127.

[19] Nimish Shah, Paragkumar Chaudhari, and Kuruvilla Varghese. 2018. Runtime

programmable and memory bandwidth optimized fpga-based coprocessor for

deep convolutional neural network. IEEE TNNLS, 29, 12.
[20] John Shalf. 2020. The future of computing beyond Moore’s Law. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 378, 2166, (Jan. 2020).

[21] Runbin Shi, Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, et al.

2021. Exploiting HBM on FPGAs for data processing. ACM TRETS, (Oct. 2021).
[22] Stephanie Soldavini, Karl F. A. Friebel, Mattia Tibaldi, Gerald Hempel, et al. 2022.

Automatic creation of high-bandwidth memory architectures from domain-

specific languages: the case of computational fluid dynamics. ACM TRETS,
(Sept. 2022).


	Abstract
	1 Introduction
	2 Related Work on HBM Challenges
	3 Problem Formulation as Scheduling
	4 Iris: Our Data Layout Algorithm
	5 Code Generation
	6 Evaluation
	7 Conclusion
	Acknowledgments

