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Abstract
When analyzing data in contingency tables it is frequent to deal with sparse data, par-
ticularly when the sample size is small relative to the number of cells. Most analyses
of this kind are interpreted in an exploratory manner and even if tests are performed,
little attention is paid to statistical power. This paper proposes a method we call redun-
dant procedure, which is based on the union–intersection principle and increases test
power by focusing on specific components of the hypothesis. This method is partic-
ularly helpful when the hypothesis to be tested can be expressed as the intersections
of simpler models, such that at least some of them pertain to smaller table marginals.
This situation leads to working on tables that are naturally denser. One advantage
of this method is its direct application to (chain) graphical models. We illustrate the
proposal through simulations and suggest strategies to increase the power of tests in
sparse tables. Finally, we demonstrate an application to the EU-SILC dataset.

Keywords Categorical variables · MC simulation · Union intersection principle ·
Redundant test · Graphical model

1 Introduction

The standard approaches to testing the relationships among a set of categorical vari-
ables collected in a contingency table are to use the likelihood ratio test G2 or the
Pearson’s X2 test. However, sparse tables face the problem that conventional statis-
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tical tests have low power and are inaccurate for type I errors. Many works in the
literature have dealt with this topic. For instance, Mehta and Patel (1983), in a study
on sparsity, showed that Fisher’s exact test and the asymptotic X2 Pearson’s test give
contradictory results for high levels of sparseness. Rudas (1986) studied the goodness
of fit of the X2 test, likelihood ratio testG2, andCressie-Read statistics. Koehler (1986)
showed that the Gaussian approximation of the likelihood ratio statistic G2 is more
accurate than the χ2 approximation in sparse contingency tables. Cressie and Read
(1989) report that G2 is generally not well approximated by the chi-squared distribu-
tion in case of sparseness. In particular, in the presence of high sparsity the chi-squared
approximation produces conservative significance levels. That is the likelihood ratio
test G2 in very sparse table tends to reject the null hypothesis less frequently.
The sparseness problem is becoming increasingly important. Contemporary studies,
such as studies of gene expression, require a suitablemethodology that takes account of
sparseness. Procedures such as multiple testing, machine learning, and probabilistic
graphical models can address the sparseness problem in different fields, and some
existing algorithms take account of tests’ loss of power for sparse tables; see, for
instance, Mieth et al. (2016). However, the literature on this topic is limited.
On the one hand, some authors, such as Fienberg and Rinaldo (2012) and Dale (1986),
have focused on the maximum likelihood estimation in log-linear models and the
conditions under which the X2 statistic and the likelihood ratio test G2 can be normal,
or chi-squared approximate when a table is sparse. On the other hand, other authors
have proposed alternative statistics that givemore accurate results than X2 andG2. For
example, Kim et al. (2009) compared the statistic D2 proposed by Zelterman (1987)
and the statistic Lr introduced by Maydeu-Olivares and Joe (2005, 2006) with the
classical X2 Pearson’s test.
All authors have concluded that the asymptotic efficiency of the statistical tests depends
on the sparseness of the contingency table, and the statistics used in the exact methods,
such as the Fisher score, are computationally expensive; see among others Kim et al.
(2009).
The present study examines the power of different tests for data collected in con-
tingency tables, highlighting the inverse relationships between sparseness and tests’
power; that is, the power of tests evaluated on dense tables is higher than the power
on sparse tables. Consequently, we consider including denser marginal contingency
tables in the analysis. For sparse tables, it is appropriate to say that, by marginalizing
over one or more variables, the resulting marginal contingency table reduces the spar-
sity because the number of observations n does not change, but the total number of
cells d decreases.
Thus, if we have a marginal non-sparse contingency table on which we carry out an
independence test, the likelihood ratio test’s asymptotic properties hold and, as shown
by Kim et al. (2009), for instance, the independence test does not lose power.

The idea of this paper is to use the advantage gained by the dense marginal
contingency tables in the multiple testing procedure according to the logic of the
union–intersection (U I ) test; see Roy (1953), Gabriel (1969). In simple terms, the
U I test states that if we express the null hypothesis as the intersection of several
component hypotheses, we reject the global null hypothesis if we reject at least one
single hypothesis. In this test, the global test’s power is greater than or equal to that of
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the individual test with the highest power. Among others, Agresti and Gottard (2007)
connected the U I logic to log-linear models. The U I approach also overcomes the
limitations of the likelihood ratio testwhen the null or alternative hypotheses of a statis-
tical testing problem are composed of finitely many regions of varying dimensionality,
as illustrated by Perlman and Wu (2003).
In particular, where the (global) null hypothesis defined on a (global) sparse contin-
gency table is the intersection of a small number of component null hypotheses defined
on a lower-dimensional denser marginal table, the test of a component hypothesis
may be more powerful than the global test. Accordingly, we propose a strategy called
redundant procedure which consists of testing one hypothesis together with another
explicitly or implicitly implied hypothesis.
These procedures become particularly relevant when relationships among a set of
categorical variables are studied through graphical models.

We use graphical models that take advantage of chain graphs (CGs), also known as
chain graph models (CGMs); see Drton (2009) for an overview. CGs are a natural gen-
eralization of directed acyclic graphs and undirected graphs. Directed acyclic graphs
have proved useful in constructing expert systems, developing efficient updating algo-
rithms, and in reasoning about causal relations. Further, they represent conditional
independencies based on subsets of variables. Graphical models based on undirected
graphs, in contrast, have been used in spatial statistics to analyze data from field trials,
image processing, and many other applications. See Lauritzen and Richardson (2002)
and references therein. CGs admit both directed and undirected arcs and they have
been applied in many fields, Cox and Wermuth (1996).
We consider here CGs graphical models for the numerous marginal distributions they
naturally involve. Indeed, the list of independencies read off these kinds of graphs
typically involves subsets of variables. Among all the possible parameterizations of
these models we choose the one based on marginal models, an extension of log-linear
models proposed by Bergsma and Rudas (2002), that allows us to test hypotheses
by constraining specific parameters to zero in certain marginal distributions. Indeed,
these models and their generalizations are increasingly used to deal with problems
associated with sparse data; see for instance Belilovsky et al. (2017), Sedgewick et al.
(2016), Yoshida and West (2010), Henao and Winther (2009).
This paper is structured as follows. Section2 explains procedures to avoid the sparsity
problem. In particular, Sect. 2.1 presents the union–intersection logic with a focus on
tests’ power. In Sect. 2.2, as an original contribution, we suggest a redundant testing
procedure, a strategy to deal with sparse contingency tables to increase tests’ power. In
Sect. 2.3 we present CGMs as a useful application for the redundant test. Section 2.4
develops our proposal further and suggests possible strategies to adopt. Section 3.1
reports a simulation studywhereweconsider tests’ power for different levels of sparsity
and different sizes of tests.Wepresent the results in Sect. 3.2 and discuss the occurrence
of the different distributions under different situations in Sect. 3.3. An application to
the EU-SILC dataset for 2016 is demonstrated in Sect. 4. Finally, Sect. 5 concludes.
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2 Methodology

2.1 The Union–intersection principle

Given a fixed sample space, the family of joint probability distributions pθ of a set
of categorical variables X , depending on parameters θ and taking values in parameter
space �, has the form

P� = { pθ : θ ∈ �}.

Let us consider θ = (θA, θB) as a vector valued so that (θA, θB) is a partition of θ

and let � = �A × �B be a partition of the parameter space. Model M0 describes a
restriction on the parameter set θA ∈ �∗

A, with �∗
A ⊂ �A, written in the form

M0 = { pθ : θA ∈ �∗
A}.

Although some results of this paper apply more generally, it is assumed that the model
of interestM0 is an open set in P�.
Let a partition of vector θA be

θA = (θA1, θA2 , . . . , θAk ),

and for i = 1, . . . , k, define

M0i = { pθ : θAi ∈ �∗
Ai

},

with an appropriate partition of �∗
A.

Then,

M0 = ∩k
i=1M0i . (1)

In such a case, the union–intersection principle may offer advantages in testing over
a direct test of the global hypothesis

H0 : pθ ∈ M0.

As will be seen, these advantages are particularly large when tests of some of the
component hypotheses

H0i : pθ ∈ M0i

aremore powerful than the test for H0. Formultivariate categorical data, this is the case
when the component hypotheses are defined on lower dimensional marginal tables less
affected by sparsity than the whole table on which M0 is defined.
The standard procedure to test H0 is to perform a test T0 and to reject H0 if T0 leads
to rejection. In general, the union–intersection principle (Roy 1953; Roy and Mitra
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1956) is to apply a testing procedure T0i to test H0i for all i = 1, . . . , k and to reject
H0 if any of T0i lead to rejection, or retain H0 if none of the component tests leads
to rejection. In this procedure, the global null hypothesis is the intersection of the
component null hypotheses and the global alternative is the union of the component
alternatives.
For any test T0i , it is possible to choose a different level αi . We denote this test T0i (αi )

to highlight the dependence with the α level. The vector αT = (α1, . . . , αk) collects
all the αi levels that defines the U I test, TU I (α). Note that, here α is not the implied
level of the U I test. Without any assumption of the real distribution, the rejection
probability of the U I test satisfies the following inequalities:

max
i

P(T0i (αi ) = rej) ≤ P(TU I (α) = rej) ≤
∑

i

P(T0i (αi ) = rej), (2)

where rej is the contraction of reject. These results are a generalization of the ones
provided in Roy (1953) and Gabriel (1969) under the truthfulness of H0.
Equality on the left hand side occurs if there is one rejection region of a component
hypothesis containing all the other regions. Equality on the right hand side occurs if
the rejection regions of the component tests are disjoint.
When H0 holds, it is desirable that the rejection probability of TU I (α) is not greater
than a fixed level α∗. This is ensured if the levels αi of the component tests T0i are
such that

∑k
i=1 αi = α∗; see the right hand side of (2). Bonferroni’s correction is a

popular choice to achieve this: αi = α∗
k .

When H0 does not hold, the rejection probabilities provide the power of the test. As
implied by the left-hand side of (2), the power of the U I procedure is not less than
the power of any component test.
A final aspect is that the component hypotheses may be defined not on the sample
space of the global hypothesis, but instead on its lower-dimensional marginals. To
apply these tests to the entire contingency table, a test of H0i is identified with a test of
a hypothesis for distribution on the entire table, on the basis that its relevant marginal
distribution possesses the characteristic formulated inM0i .
The following theorem summarizes and generalizes results presented in Roy (1953)
andGabriel (1969) under the truthfulness of H0.As shown in the proof in theAppendix,
it comes easily from formula (2). LetM1 be amodel such thatM1 = {

pθ : θA /∈ �∗
A

}
,

or simply pθ /∈ M0, then the following theorem proposes a variant of (2).

Theorem 1 Let

k∑

i=1

αi = α∗. (3)

Then,

P(TU I (α) = rej |M0) ≤ α∗. (4)
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Further,

max
i

P(T0i (αi ) = rej |M1) ≤ P(TU I (α) = rej |M1). (5)

Thus, the U I test is more powerful than the component tests, and its probability of
error type I is lower than α∗.
As (5) shows, if some of the component tests refer to hypotheses that apply to lower
dimensional marginal tables, as in the case of the marginal definition and parametriza-
tion of CGMs considered in Sect. 2.3, the component tests are carried out in less
(occasionally much less) sparse tables and, as illustrated in Sect. 3.2, have more power
than testing H0 directly. Thus, in this case, one can expect the UI procedure to have
more power than a direct test of H0.

2.2 A redundant testing procedure

The advantage of the U I test in the situations described in the previous subsection is
clear. Theorem 1 gives comforting results on the power of the U I test, but not much
can be concluded compared to the global test executed with a critical level of α∗.
However, the method of gaining power by using less sparse marginal tables seems
beneficial, as illustrated by the results presented in Sect. 3.2.
A combination of an overall test of H0 with a test of one (or a few) of its component
hypotheses, say H0i , offers advantages in such situations. This is the idea underlying
the redundant procedure (R) that we propose in this section.

In order to test an overall hypothesis H0, we test the hypothesis itself, which we
call “global”:

Hg : pθ ∈ M0,

togetherwith one ormore component hypothesis(es) included in the global hypothesis:

Hi : pθ ∈ M0i .

For simplicity, we consider here only one hypothesis of the type Hi , but the results
remain valid even if we add other composite hypotheses. We retain H0 if neither a test
of Hg nor a test of Hi suggest rejection. We reject H0 if either suggest rejection.
Such a procedure is called ‘redundant’ because if testing procedures led to determining
whether or not the relevant hypothesis was true, then testing both Hi and Hg could be
redundant, as when Hg is true, then Hi is also true and when Hi is not true, then Hg

is also not true. The procedure proposed also tests Hi , even if Hg was retained.
Then, for any true distribution and any level αg and αi at which Tg and Ti are carried
out, for the test based on the redundant procedure, TR , the following holds:

max(P(Tg(αg) = rej), P(Ti (αi ) = rej)) ≤ P(TR(α) = rej) (6)
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and

P(TR(α) = rej) ≤ P(Tg(αg) = rej) + P(Ti (αi ) = rej), (7)

where α is a vector containing (αg, αi ).
Generally speaking, the critical values of Tg and of Ti must be selected in such a way
that under the null hypothesis H0 the upper bound is small, and under the alternative
that H0 is not true the lower bound is large. Traditionally, inmultiple testing procedures
the critical values are selected in such a way that under H0 the following inequality
holds:

P(Tg(αg) = rej) + P(Ti (αi ) = rej) ≤ α∗, (8)

for some pre-selected value α∗, often equal to 0.05. The following results suggest a
general strategy of choosing the levels so that the size is retained, but the redundant
procedure’s application leads to gain in power.
Hereafter, we use equally the critical value c and the error type I probability α to
characterize test T . To provide all the information in a unique symbol, we define
cMα (T ) as the critical value of test T such that

P(T (cMα (T )) = rej |M) = α (9)

whereM is the real model to which the real distribution belongs. Note that the value
α in (9) is the probability of the error type I of test T when model M satisfies H0.
Otherwise, when model M does not satisfy H0, α represents the test’s power. When
the critical value is inserted in a test, the part in brackets becomes superfluous.
Theorem 2 provides important information about the power of the redundant test pro-
cedure when particular conditions are satisfied. For clarity, Fig. 1 shows the conditions
required in formulas (10) and (11). Note that coherent with M1, the model M1i is
such that pθ /∈ M0i .

Theorem 2 Let α∗ be the given maximal probability of error type I.
Let β∗ be such that the critical values for the test Tg are

cM0
α∗ (Tg) ≥ cM1

β∗ (Tg). (10)

If the critical values for the test Ti also satisfy

c
M0i
α∗ (Ti ) < c

M1i
β∗ (Ti ), (11)

then there exists a range of αg values for testing the global hypothesis Hg, and αi

values for testing the redundant hypothesis Hi , such that

P
{
TR(αg, αi ) = rej |M1

}
> P

{
T0(α

∗) = rej |M1

}
, (12)
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Fig. 1 Top Hypothesis testing where H0 postulates that the χ2 distribution of 25 degrees of freedom (df)
(dashed line) is the true distribution and H1 postulates that the χ2 distribution has 50 df. The red area is α∗
and the dashed blue area is β∗ Bottom Hypothesis testing where H0i postulates that the χ2 distribution has

5 df (dashed line) and H1i postulates that the χ2 distribution has 20 df. The red area is α∗ and the dashed
blue area is β∗

and

P
{
TR(αg, αi ) = rej |M0

}
≤ P

{
T0(α

∗) = rej |M0

}
. (13)

Theorem 2 asserts that the redundant procedure is more powerful againstM1 than the
test for H0 carried out with level α∗, and the size is not more than α∗.

2.3 The redundant testing procedure in chain graphmodels

Toprovide context and to introduce an important areawhere the procedures proposed in
the papermaybe useful, this subsection reviews graphicalmodels associatedwithCGs.
This model class includes, as special cases, graphical models associated with directed
acyclic graphs and with undirected graphs. Graphical models are models where it
is possible to read from a graph the independence structure between the variables
involved. The use of graphical models has increased in recent decades because of
their ability to display complex dependence structures intuitively. See, for example,
Drton (2009). These models generally use the parameters proposed by Bergsma and
Rudas (2002) and Bartolucci et al. (2007), who take advantage of a list of marginal
distributions on which to define the parameters, according to certain properties listed
by Bergsma and Rudas (2002). For different applications, see Nicolussi and Colombi
(2017), Rudas et al. (2010), Marchetti and Lupparelli (2011), Nicolussi and Cazzaro
(2021).
A brief description of these models is reported in this subsection. A CG is defined
by a set of nodes and a set of arcs, which can either be directed or undirected. Two
nodes are adjacent if an undirected arc links them. Two nodes are parent and child,
respectively, where a directed arc starts from the parent and points to the child. Given
a subset of nodes A, the parent set of A, pa(A), is composed of the nodes that are
parents of at least one node in A. A set of partially ordered chain components {C}
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defines a partition of the nodes in the graph. There are only undirected arcs within each
component, and between two nodes that belong to different components there are only
directed arcs, all pointing in the same direction, in compliance with the partial order.1

Given a component Ci , the set of components that have at least one node pointing
to one node in Ci is described as set of parent components pa(Ci ). Intuitively, in
a CGM, each node represents a variable, and the undirected (directed) arcs denote
possible symmetric (asymmetric) dependence relationships between the variables. In
contrast, the lack of an arc means no direct effect or association, that is, conditional
independence. There are various precise interpretations associated with the same CG,
seeDrton (2009). This paper uses type IVCGMs, also knownasmultivariate regression
graphical models. In this interpretation, a missing undirected arc between two nodes
in the same component means that these two variables are conditionally independent
given all variables in the parent components. If there is a missing arc between two
variables in different components, then these are conditionally independent, given the
parents of the variables in the child component. Further, variables in a component are
conditionally independent of variables in a second component that contains no nodes
into which a directed path leads from any variable in the first component, given the
variables in the parents of the first component. The following definition presents these
concepts formally.

Definition 1 Let us consider a set of categorical variables X with joint probability
distributionP� = {

pθ : θ ∈ �
}
. A probability distribution is said to be faithful to the

graph if the following Markov properties hold.

(a) If in the CG, two subsets of variables, say X A and X B belonging to the same
component Ci , are not connected, then

X A ⊥⊥ X B |pa(Ci ).

(b) If in the CG, two subsets of variables, say X A ⊆ Ci and X B ⊆ C j , belong to
different components such that arcs go from Ci to C j , i.e., Ci ∈ pa(C j ), but no
arcs go from X A to X B , i.e., X A /∈ pa(X B), then

X A ⊥⊥ X B |pa(X B).

(c) If in the CG, Ci and C j are such components that no directed path leads from any
variable in Ci to any variable in C j , but C j is not a parent of Ci , then

Ci ⊥⊥ C j |pa(Ci ).

Consequently, aCGMis defined by conditional independencies about variousmarginal
tables andmay be seen as the intersection of conditional independencemodels on these
marginals; see Rudas et al. (2010). Some of these marginals may be much smaller than
the table of the whole set of variables, because fewer variables are involved.

1 In general, the components of a CG and the component hypotheses discussed in Sect. 2.1 are unrelated,
but in the application discussed in this paper, the component hypotheses are the CGM assumptions for the
components.
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Fig. 2 A CGM with four
variables X1, X2, X3, and X4
and two components
C1 = (X1, X2) and
C2 = (X3, X4)

X1

X2

X3

X4

C1 C2

Example 1 Let X1, X2, X3, and X4 be four categorical variables, where X1 and X2
are explanatory for X3 and X4. The CGM in Fig. 2 describes one possible structure of
relationships among these variables. This model posits three (conditional) indepen-
dencies: X1 ⊥⊥ X2, that is, the explanatory variables are independent; X3 ⊥⊥ X2|X1;
and X4 ⊥⊥ X1|X2, that is, only one explanatory variable has a direct effect on each
response. All these independencies apply to lower-dimensional marginal tables of the
4−dimensional table. The CGM is the intersection of three models, each assuming
one of the (conditional) independencies on the relevant marginal tables.

The redundant procedure finds an easy application in the CGM. In this case, the
global hypothesis can consider the family of distributions that satisfies the whole set
of conditional independencies represented by the graph. Thus, it involves the joint
distribution defined on a table with d0 cells. In order to define H0i we can select, if
any, one conditional independence defined on a smaller table with d0i cells, where
d0 > d0i . By considering Theorem 2, to what extent (11), depicted in the bottom
of Fig. 1, may be achieved depends on two contradicting factors. One is that the
family of probabilities satisfying the two hypotheses belongs to M0 ⊆ M0i , and
thus distributions in the alternative of H0 may not be in the alternative of H0i . Even
those that are in the alternatives of both hypotheses may be closer to H0i than to
H0. In general, this suggests that in the power of T0i is less than the power of T0
against distributions in the alternative of H0 for tests conducted at the same level of
significance. This makes the redundant procedure, which makes use of the H0 test,
have more power than the UI procedure, which makes use of a H0i hypothesis test
instead. The other fact is that d0i is lower (occasionallymuch lower) than d0. Therefore,
the former refers to a marginal table that has fewer (occasionally much fewer) cells,
and thus is less sparse. This implies that the test of H0i is more powerful than the test
of H0, against alternatives in their respective alternative hypotheses.
When thefirst effect dominates, i.e. the smoothmanifoldM0i , defined ind0i −dimensional
space, contains the alternative distribution of H0, the joint testing of H0 in the redun-
dant procedure allows to not loose too much power. On the contrary, when the second
effect dominates, we can gain a lot of power by the density of the table. Indeed, as
illustrated in Sect. 3.1, it is the second of these two contradicting effects that domi-
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nates. Thus in most cases, the redundant testing procedure has greater power than the
simple test of H0, even if the two procedures have the same size.

2.4 Strategies

So far, we have highlighted the advantages of the U I and R procedures when at
least one component hypothesis concerns a small subset of variables. This subsection
goes further and suggests separately testing not a component hypothesis, but rather an
implication. However, possible strategies depend on the data, the variables, and the
hypotheses to test. Consider the case of testing a global hypothesis involving several
variables, defined on a huge contingency table that is likely sparse. An independence
based on a smaller subset of variables could be implied from the global hypothesis by
applying theweak-union or decomposition properties of the independence statements,
see Maathuis et al. (2018). In this case, if there is at least one independence statement
that can be defined on a less sparse marginal, the redundant procedure can consider
the original global hypothesis and this implied independence.
When this scenario is not possible, we can investigate whether there is a plausible
hypothesis in a smaller and denser marginal distribution.
Notice that Theorem 2 holds also in this case.

3 Simulations

3.1 A simulation study

We show two scenarios from which sparsity can originate. In the first case we have
a small set of variables, one of which has a large number of categories. The second
scenario considers a large number of variables. In both cases, the overall hypothesis H0
to be tested consists of two sub-hypotheses (H01 and H02 ).We set H01 as the hypothesis
in the dense marginal table, while H02 as the one in the sparse contingency table. The
simulation presented supports the results obtained for the UI and R procedures in
terms of performance, because both have higher power, or at least similar power, to
the global test.
Weusemarginalmodels (Bergsma andRudas 2002) that allow to impose constraints on
log-linear parameters defined on marginal distributions. However, alternative param-
eterizations of the joint and marginal probability distributions are still valid; see for
instance the log-mean parameterization of Roverato (2015). The likelihood ratio test
is used to infer the previous hypotheses by comparing the likelihood of the model to
test with the likelihood of the unconstrained model. When the null hypothesis holds,
the test statistic asymptotically follows the χ2 distribution with degrees of freedom
equal to the difference in the number of free parameters in the two models. Note that,
here we are considering situations where the asymptotic theory, in general, does not
hold, thus we will evaluate the power of the tests according to the Monte Carlo (MC)
procedure which we will detail shortly.
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We test the global hypothesis H0 : pθ ∈ M0 = ∩2
i=1M0i by following three different

approaches.

T0: the likelihood ratio test formodelM0. The corresponding test statistic is denoted
G2

0.
TU I : the likelihood ratio test for model M01 and the likelihood ratio test for model

M02 taking advantage of the union–intersection procedure. In this case, the two
test statistics are G2

01
for the independence H01 and G2

02
for H02 .

TR: the likelihood ratio test formodelM01 and the likelihood ratio test formodelM0
taking advantage of the redundant procedure. In this case, the two test statistics
are G2

01
for the independence H01 and G2

0 for H0.

The simulation aims to compare the power of the test of H0, π(T0), with the test
performed using the UI procedure, π(TU I ), and with the test performed using the
redundant procedure, π(TR).
We build four joint distributions, where the real distribution falls surely:

pH0: where H0 is true;
pH11 : where the component hypothesis H01 does not hold;
pH12 : where the component hypothesis H02 does not hold;
pH112 : where neither hypothesis holds.

Two scenarios are presented.
Scenario 1 Let X1, X2, and X3 be three random variables, taking values in a table
I123 of dimension (2 × 2 × 50) and let the joint probability distribution defined as
p123(i123) with i123 ∈ I123. Further, let the overall hypothesis be H0, expressed as
the intersection of

H01 : X1 ⊥⊥ X2
H02 : X2 ⊥⊥ X3|X1,

(14)

against the alternative H1 where at least one independence does not hold.
Thus, the two models corresponding to the two sub-hypotheses impose constraints

on I12 and I123 marginal tables of dimension 2 × 2 and 2 × 2 × 50, respectively.
To construct the theoretical distributions where H01 , H02 , both or either holds we use
the following schemes:

p123(i123) = p1(i1)p2|1(i2|i1)p3|12(i3|i12) (15)

for all i1 ∈ I1, i2 ∈ I2 and i3 ∈ I3, where the notation p◦|� stays for the conditioning
distribution of X◦ given X�. Further, under the different hypotheses, we apply the
following simplification:

{
p2|1(i2|i1) = p2(i2) under H01
p3|12(i3|i12) = p3|1(i3|i1) under H02 .

(16)

Let p1 be the vector containing the marginal distribution of X1 and p2 accord-
ingly. We set p1 = [0.3, 0.7] and p2 = [0.75, 0.25]. To cover several situations we
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Table 1 Odds ratios evaluated in the marginal table X1, X2 for the three cases considered in pH11 . Here,
la is “low-association”, ma is “moderate-association”, and sa is “strong-association”

Cases la ma sa

Odds-ratio 0.545 0.304 6.851

Table 2 Mean and standard deviation of the 98 odds ratios evaluated in the conditional tables X2, X3|X1 =
0 and X2, X3|X1 = 1 for the two cases considered in pH12 . Here, mv is “moderate-variability” and pv is
“pronounced-variability”

Cases mv pv

Mean 1.04 1.10

Standard deviation 0.379 0.595

contemplated three possible marginal distributions of (X1, X2), with increasing levels
of association. The distributions are obtained by fixing the value of the odds-ratio as
described in Table 1.
From p12(i12) we obtain p2|1(i2|i1) to use in formula (15).
The conditional distribution p3|1(i3|i1) for all i3 ∈ I3 is obtained by sampling from a
Uniform(0,1) and then normalizing to ensure they sum to 1 for all i1 ∈ I1. Finally, we
build the conditional distribution p3|12(i3|i12) for all i1 ∈ I1, i2 ∈ I2 and i3 ∈ I3, by
considering different association cases in p23|1(i23|i1) = p3|12(i3|i12)p2|1(i2|i1). In
particular, for all i1 ∈ I1, we evaluated (2−1)× (50−1) odds-ratios in p23|1(i23|i1),
with i23 ∈ I23. We considered two cases of different associations as described in
Table 2.
Scenario 2 Let X be a random vector composed of 8 dichotomous variables where
X1 and X2 are two dependent variables, X3 and X4 are two explicative variables for
X1, X2. Finally, X5, X6, X7 and X8 are explicative for all the variables. We wish to
test the overall hypothesis H0, composed of

H01 : X5 ⊥⊥ X6|X78
H02 : X1 ⊥⊥ X2|X345678.

(17)

The hypothesis H01 implies one constraint on a 24 marginal table, and H02 implies
constraints on a 28 table. The previous interpretation in terms of a regression model
is a possible situation in which we can meet hypothesis H0, but not the only one. We
use it because it is well represented by a CG composed of three components: X5678,
X34, and X12, and where the only missing arcs are X5 − X6 and X1 − X2.
We proceed as in scenario 1 in defining the different distributions under the possible
combinations of assumptions. Let the joint probability distribution be factorized as

pX (i) = p78(i78)p56|78(i56|i78)p34|5678(i34|i5678)
p2|345678(i2|i345678)p1|2345678(i1|i2345678) (18)
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Further, under the different hypotheses, we apply the following simplification:

{
p56|78(i56|i78) = p5|78(i5|i78)p6|78(i6|i78) under H01
p1|2345678(i1|i2345678) = p1|345678(i1|i345678) under H02 .

(19)

Here, we fixed the marginal distribution of X1 as p1 = [0.2, 0.8] and we generate any
conditional distribution by sampling from a Uniform(0,1) and adjusting the results
ensure that the sum comes to 1.

When the probability distributions of both scenarios are ready, we estimate the
power of the test. As we have already mentioned, we evaluate the power of the tests
according to the MC procedure detailed below.

Step 1 We simulate a sample of size n from amultinomial distribution with the joint
probability distribution pH0.

Step 2 We calculate the test statistics G2
0, G

2
01
, and G2

02
.

Step 3 We repeat step 1 and step 2 m times obtaining the three MC distributions of
G2

0, G
2
01
, and G2

02
.

Step 4 For fixed α1 and α2, and α∗ = α1 + α2, we calculate the quantile of order
1 − α1 of the distribution G2

01
, denoted by X2

01;(1−α1)
, the quantile of order

1 − α2 of the distribution G2
02
, denoted by X2

02;(1−α2)
and the quantiles of

orders 1 − α2 and 1 − α∗ of the distribution G2
0, denoted by X2

0;(1−α2)
and

X2
0;(1−α∗).

Step 5 We repeat steps 1 to 3 replacing the distribution pH0 with pH11 , pH12 ,
and pH112 in all the scenarios considered. For each of these we evaluate the
distributions of the test statistics Ḡ2

0, Ḡ
2
01
, and Ḡ2

02
.

Step 6 We evaluate the rejection rate r as the proportion of test statistics in the
alternative distributions exceeding the corresponding quantile. Below, we
report the formulas used for all cases.

The estimated rejection rate of the T0 test, with level α∗, r(H0;α∗)T0 , is

Mean(1Ḡ2
0≥X2

0;(1−α∗)
), (20)

where 1 is the indicator function.
The estimated rejection rate for hypothesis H01 , with level α1, r(H01;α1), is

Mean(1Ḡ2
01

≥X2
01;(1−α1)

). (21)

Analogously, we define r(H02;α2).
The estimated rejection rate obtained using the union–intersection testing procedure
TU I , at level αT = (α1, α2), r(H0,α)TU I , is

r(H01;α1) + r(H02;α2) − Mean(1(Ḡ2
01

≥X2
01;(1−α1)

∩Ḡ2
02

≥X2
02;(1−α2)

)). (22)
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Finally, the estimated rejection rate obtained using the redundant testing procedure
TR, r(H0,α)TR , considering the two critical values fixed at level α1 and α2, is

r(H01;α1) + r(H0;α2) − Mean(1(Ḡ2
01

≥X2
01;(1−α1)

∩Ḡ2
0≥X2

0;(1−α2)
)). (23)

All the analyses are carried out with the statistical software R (R Core Team 2016)
with the packages hmmm (Colombi et al. 2014) and MASS (Venables and Ripley 2002)
to estimate the (marginal) log-linear models and the package igraph (Csardi and
Nepusz 2006) for the graphical representations.

3.2 Results of the simulation

Table 3 shows the detailed results for scenario 1, where native distributions pH11 ,
pH12 , and pH112 are the closest to independence of all the cases considered (case
low-association for pH11 and case moderate-variation for pH12 ). This is the most
critical case because we add the difficulty of discriminating between situations of
independence and situations that are close to independence. Note that more details
on critical values are reported in the Supplementary materials for both scenarios. The
rejection rates in Table 3 are based on the quantiles X2

0;(1−α∗), X
2
0;(1−α2)

, X2
01;(1−α1)

,

and X2
02;(1−α2)

where the levels are α1 = α2 = 0.025 and α∗ = 0.05. We evaluate the
rejection rates for the three alternative distributions: pH11 , pH12 , pH112 , and the null
distribution pH0. The rejection rate assumes different meanings according to whether
or not the underlying distribution satisfies the null (sub)-hypothesis relative to the
test. On the one hand, when the (sub)-hypothesis holds in the alternative distribution
(step 5), the rejection rate is the simulated size of the test. On the other hand, when
the hypothesis does not hold in the alternative distribution, the rejection rate is the
simulated power (π ). Thus, in Table 3, the rejection rates in shaded cells represent the
simulated values of the level of the corresponding tests, whereas the rejection rates in
other cells are simulated powers.

By looking at Table 3 the following considerations hold.

1. The rejection rates of TU I , r(H0,α)TU I , are always greater than or equal to the
highest value of the rejection rates of the two component tests r(H01, α1) and
r(H02 , α2), according to the first inequality in formula (2).

2. The same holds for the rejection rate of TR, which is always greater than or equal
to the highest value of the rejection rates of the two component tests r(H01, α1)

and r(H0, α2), according to formula (6).
3. The simulated power of the test on sparse tables is always low (see the non-

shaded cells of r(H02 , α2), r(H0, α2), and r(H0, α
∗)T0 ). This is due to the lack

of information (low number of observations) needed for correct rejection of the
null hypothesis.

4. The simulated power of the test for a dense table is always greater than the power of
the test for a sparse table (first panel, comparison between r(H01, α1) (dense) and
r(H0, α2) or r(H0, α

∗)T0 ; third panel, comparison between r(H01, α1) (dense)
and r(H02 , α2), r(H0, α2), or r(H0, α

∗)T0 ).
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Improving the power of hypothesis

5. The simulated size of TU I and TR suggests that by using α1 = α2 = 0.025
for the single tests, as Bonferroni’s correction recommends, the real size of both
procedures is closed to 0.05, which is the same as the global test T0 (fourth panel).
Thus, in this table, the first three columns are comparable and the results are closed
to 0.025. Analogously, the last three columns are comparable and the results are
closed to 0.05. As simulated samples increase, these values are more precisely.

6. Both TU I and TR testing procedures have considerably more power against alter-
natives than the T0 test when H01 does not hold (first and third panels) and only a
slight loss of power when H01 holds but H02 does not hold (second panel). This
is because both procedures gain power from the test on the dense marginal table,
and in the second panel the rejection rate for H01 represents the simulated value
of α1 (shaded cells). However, the power reduction is minimal compared to the
power gain in the other situations. Further, as shown in Sect. 3.3, the situation
described in pH12 is hard to occur.

7. In the first and third panels, TR better performs than or is equivalent to TU I .
Ultimately, the results of both tests are similar in all panels. In the first and
third panels, both tests gain power from the test on the dense marginal table,
which contributes almost completely to the power of the two tests. Indeed,
r(H01, α1) >> r(H02 , α2) for the TU I and r(H01, α1) >> r(H0, α2) for the
TR. In the second panel, the major contribution to power is made by the charac-
terizing test for the two procedures (r(H02 , α2) for TU I and r(H0, α2) for TR).
In all panels, the two characterizing tests have similar rejection rates. This has
different justifications.

– Panel 1: r(H02 , α2) is about 0.025 because it represents the level of the sim-
ulated test (shaded cells). While r(H0, α2) is a simulated power that is not
high because of the sparsity of the table, but still it is greater than r(H02 , α2).
Indeed, when we go from n = 200 to n = 500 we see that r(H0, α2) increases.

– Panel 2: In both tests, the rejection rates represent the simulated power. In this
case, since H01 holds, the two tests H02 and H0 tend to reject in the same cases,
that is, when there is sufficient evidence to reject H02 .

– Panel 3: We are in a situation similar to panel 2, but r(H0, α2) > r(H02 , α2)

because the hypothesis H0 is more restrictive than H02 and H01 (contained in
H0) does not hold. However, the similarity between the two simulated powers
can be explained by the fact that the tests for H02 and for H0 differ in the
constraint on the only parameter describing the independence between X1 and
X2. Likely, by increasing the number of parameters to be constrained to test
H01 the difference between the two tests will be more pronounced.

Table 4 compares the three procedures two by two in terms of power, for all cases
considered in scenario 1 and scenario 2.

The results reported in Table 4 are in line with those in Table 3. In particular, for all
cases and both scenarios, the redundant procedures perform better than, or exactly the
same as, the global procedure when the alternative distribution is pH11 or pH112 . The
union–intersection procedure has similar results for the first scenario, in the second
looks a little worse. However, in these cases the discrepancy isminimal, and by looking
at the plots in the Supplementary materials it can be seen that by changing the level of
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Table 4 Paired comparison of
tests for scenario 1 and scenario
2

Dist K TU I vs T0 TR vs T0 TR vs TU I

Scenario 1

pH11 12 12 12 12

pH12 8 1 1 2

pH112 24 24 24 24

Scenario 2

pH11 4 4 4 4

pH12 4 1 1 0

pH112 4 4 4 4

K : number of cases considered
Columns from 3–5: number of times the power of the first test is greater
than or equal to the power of the second test

α1 and α2 more satisfactory results can be obtained. Indeed, in pH11 and pH112 the
two procedures gain power from hypothesis H01 (test in a dense table).
Further, in almost all cases the redundant procedure has the same power as or out-
performs the union–intersection procedure. As argued in the comment of Table 3 (item
7), the difference between the simulated powers in TU I and TR in scenario 1 is small
because of the little difference (only 1) in the number of constrained parameters to be
tested. Weaknesses arise when pH12 holds. However, none of the three tests has high
power (all under 10%). In scenario 2, the tests of H0 and H02 differ in 4 constrained
parameters and the difference between TR and TU I is more clear. For more details on
scenario 2 see Fig. 6 in Supplementary materials.
A necessary consideration should bemade regarding the satisfaction of conditions (10)
and (11) of Theorem 2. In both scenarios, the conditions are met in all cases for pH11
and pH112 . Indeed, in these two cases we have clear evidence of the power improve-
ment of the redundant test, whereas in pH12 we have already identified weaknesses.
Detailed tables are provided in the Supplementary materials.

Finally, we want to study how the power of the test changes as the α1 level of the
H01 test changes.

Figure 3 shows the distribution of the power of the scenario 1, in the most criti-
cal situation of low-association and moderate variability. The figures concerning all
the other cases in details are in the Supplementary materials together with the plots
concerning scenario 2. The underline distributions are pH11 , pH12 , and pH112 for the
three rows, respectively. In the columns the n and m changes. The two dotted lines
represent theU I (green) and the redundant (light blue) procedures, while the continue
red line represent the constant power of the global test.
The redundant and the U I procedures show results very similar, although, in corre-
spondence of low values of α1, in the first and third rows, the redundant procedure
seems to be slight better. The reason lies in the fact that when α1 decreases, the con-
tribution of the test on the dense table decreases in both procedures. However, also
when the major contribution to the test is due to testing H0 and H02 in redundant and
U I procedure, respectively, the difference is small. This is due to the fact that H0 and
H02 have a similar parameter space (they differ in only one parameter constrained).
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Fig. 3 Scenario 1. Power distribution of the test H0 (case low-association Table 1 andmoderate-variability
Table 2), as size α1 of test H01 increases. The three underlying distributions are displayed by row. In red
(continuous line) is the constant power of the global test at fixed level α∗ = 0.05. The black vertical line
fix the value of α1 = 0.025, that represents the data displayed in Table 3

This is confirmed also in scenario 2, where the parameter space of the two hypotheses
differ in 4 constrained parameters and the rejection rates of the two procedure have a
slightly difference, especially when the significance level of H01 test is small.
It is evident that when Theorem 2 holds, (first and third rows), the redundant procedure
and the union intersection procedure have more power whatever the value of α1 (see
Fig. 6 in Supplementary materials).
Furthermore, in the first and third line, by imputing large α1, the power increases.
On the other hand, in the second line, it seems that the power of U I and redundant
procedure is slightly worst by increasing α1. For this reason, a middle ground with
α1 = 0.025 is chosen (black vertical line).

3.3 Occurrence of the different distributions under the component hypothesis

Aswe have seen, in both scenarios the only situationwhere TU I and TR do not perform
as well as the test T0 in terms of power is when the underlying distribution is pH12 .
Namely, when the distribution in the alternative of H0 satisfies H01 , although the
three procedures do not perform very differently from each other. However, we next
illustrate, by assuming a particular data generating mechanism of data perturbation,
that this case is not so frequent.
We implement the following algorithm.

1. We generate a random contingency table with fixed size n = 200, 500 using the
underlying distribution pH0.

2. We increase c cells randomly selected from the simulated joint distribution under
H0 by f unit(s) and decrease c random cells (with starting frequency at least equal
to f ) by f unit(s); we used different values of c and f to perturb about the 5%,
10% and 15% of total frequencies, respectively.
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Table 5 Scenario 1. Percentage
in which the 10,000 perturbed
distributions are closest to the
column hypotheses, according to
the odds-ratios

H01&H02 H11&H02 H01&H12 H11&H12

c f n = 200

5 1 43.94 33.57 12.86 9.61

5 2 42.35 31.54 15.13 10.98

5 3 41.92 29.27 17.61 11.20

c f n = 500

6 3 72.78 22.98 3.07 1.17

5 5 73.03 21.68 4.25 1.04

7 5 72.96 21.57 4.20 1.27

f : amount of frequencies that is shifted from one cell to another; 2c:
number of cells randomly selected to shift the frequency. The combi-
nation of f and c selected are such to perturb about the 5%, 10%, 15%
of the total frequencies

3. We evaluate the odds ratio(s) on the dense marginal (conditional) distribution(s)
concerning the variables involved in H01 and the odds-ratios on the sparse condi-
tional distributions of the variables involved in H02 . We consider situations close
to independencies the ones where more than the 50% of the odds-ratios stays in
the mean interquartile range of the odd-ratios evaluated under the assumption of
H0.

4. We repeat step 1–3 10,000 times and count the number of times the simulated
tables are closest to the independencies H01 and H02 .

The results for different n, c and f , in scenario 1, were displayed in Table 5.
The results in Table 5 show that any perturbation of the joint data has a strong

affection also on the smallest marginal table of (X1, X2). Thus, by perturbing data,
there is more propensity to reject H01 instead of H02 or both. Indeed, in sparse tables,
the ones considered for testing H02 , often we have few information to reject the null
hypothesis, and the results in Table 5 reflect this tendency. Similar results occur also
in scenario 2, see Supplementary materials for details.

4 Application to real data

The EU-SILC (Statistics on Income and Living Conditions) of 2016 (Eurostat 2017)
is one of the main data sources for the European Union’s periodic reports on social
circumstances and the prevalence of poverty in member countries. Here, we suggest
exploiting the potentiality of the CGM to study how a set of pre-selected factors affect
the poverty indicator. Specifically, we analyze the work force by considering individ-
uals whose self-defined current economic status (variable PL031 in the survey) is (i)
employee working full-time, (ii) employee working part-time, (iii) self-employed work-
ing full-time, (iv) self-employed working part-time, (v) unemployed, (vi) permanently
disabled or/and unfit to work, or (vii) fulfilling domestic tasks and care responsibili-
ties. In accordance with relevant literature (see, for instance, Molina and Rao (2010))
we select the following seven variables:

123



Improving the power of hypothesis

G Gender (1 = male, 2 = female);
A Age, categorized into four groups (1 = 16 � 36; 2 = 36 � 46; 3 = 46 � 55; 4 =

55 � 81);
E Educational level, as the highest ISCED level attained (000 = less than primary

education; 100 = primary education, 200 = lower secondary education, 300 =
upper secondary education, 400 = post-secondary education);

W Status in employment (1 = self-employed with employees, 2 = self-employed
without employees, 3 = employee, 4 = family worker, 5 = unemployed);

M Marital status (1 = never married, 2 = married, 3 = separated, 4 = widowed, 5 =
divorced);

H General health (1 = very good, 2 = good, 3 = fair, 4 = bad, 5 = very bad);
P Poverty indicator (0 = equivalized disposable income ≥ at risk of poverty thresh-

old, 1 = equivalized disposable income < at risk of poverty threshold).

The contingency table formed by these seven variables is composed of d =10,000
cells. Note that the survey involves different orders of magnitude of individuals across
European countries and this gives rise to contingency tables, involving the variables
under investigation, with different levels of sparsity. As an example, mosaic plots
concerning the variables gender, age and the poverty indexwith respect to the countries
Austria and Spain is given in the Supplementary materials as cases of high and low
sparsity, respectively.

We can group the seven variables into three components according to theirmeanings
and nature. Gender, G, and age, A, are biographical data and we thus collect these in
the first component, C1; the educational level, E , status in employment, W , marital
status, M , and general health, H , all involve socio-economic aspects, and thus we
collect them in the second component, C2. Finally, the poverty index, P , is assigned
to the third component, C3. According to the relationships highlighted by previous
sociological works, it may be interesting to study the underlying relationships among
the poverty index and other variables, and to identify which factors have the greatest
impact on P . In this case, a suitable model could include independence among the
variables in the first group and the poverty status, conditionally to the variables in
the second group. Unfortunately, this hypothesis implies constraints on a sparse joint
distribution. Further, the independence statements implied by this hypothesis are all
defined on sparse distributions. We can bypass the problem of the low power of this
test by adding a further hypothesis in a smaller and denser marginal distribution, for
instance, the plausible independence among the age and gender variables. This system
of relationships is well represented by the graph in Fig. 4, where the features in the
second group affect each other and all the variables within each component affect the
variables in the next component.

The independencies implied by this CGM can be summarized with the following
hypotheses:

H01 : G ⊥⊥ A
H02 : P ⊥⊥ GA|EWMH .

(24)
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Fig. 4 CGM representing the
two independencies G ⊥⊥ A and
P ⊥⊥ GA|EWMH . The three
components are colored
differently

G

A

W

E

M

H

P

One possible list of marginal sets that is compatible with the graph in Fig. 4 is
{(GA); (GAEWMH); (GAEWMHP)}. In this way, we obtain marginal contin-
gency tables of 8, 5000, and 10,000 cells, respectively.
We implement the redundant procedure to be more confident of the result of the test of
H0. However, in Sect. 3.1, we showed that when the global test T0 is applied to sparse
tables, such as in this case, it has substantial limitations because of the low information
that we can extract from the data, due to the sparseness. Indeed, to guarantee the set
level of α∗, there is a low rejection rate when the hypothesis is not true. In light of this,
we are more confident using the redundant testing procedure. To test the hypotheses
we use both LR test and the generalization of the exact Fisher test, Agresti (2012).
The results were concordant and are displayed in Table 6.

The second and third columns of Table 6 lists the behaviour of the countries with
respect to the single component hypotheses H01 and H02 . The last three, the conclu-
sion according to the three procedures discussed. In particular we reject the global
hypothesis for p-values lower than 0.01 and the component hypotheses for p-values
lower than 0.005.
Thus, according the UI and the R procedures, for the countries AT , CY , DE , DK ,
F I , NL , NO , RO , SE and SI we are more confident choosing the graph in Fig. 4 to
represent the whole dataset.

In the other cases, with the exception of EL , the results of the global test contrast
with those obtained by the R and UI procedures. Concerning the sparseness, we are
more confident in the TR approach. After the graph structure is identified, it is pos-
sible to analyse the marginal parameters, make opportune considerations, and draw
conclusions. However, this analysis is outside the present paper’s scope and is thus
omitted.

5 Conclusions

The low power of tests involving sparse data is a well-known problem. This study
proposes confronting this issue by exploiting the power of tests carried out on dense
distributions and combining multiple tests. To do this, we used the U I procedure,
and further proposed a new procedure called the redundant procedure. Undoubtedly,
the redundant procedure brings similar results to the Union Intersection procedure

123



Improving the power of hypothesis

Ta
bl
e
6

L
is
to

f
co
un
tr
ie
s
w
he
re

th
e
hy
po
th
es
es

H
0 1

an
d
H
0 2

ha
ve

be
en

re
ta
in
ed
/r
ej
ec
te
d
an
d
th
e
co
ns
eq
ue
nt

de
ci
si
on

ac
co
rd
in
g
to

th
e
th
re
e
pr
oc
ed
ur
es

D
ec
is
io
n

H
0 1

H
0 2

T 0
T
R

T U
I

α
1

=
0.
00

5
α
2

=
0.
00

5
α

=
0.
01

α
=

(0
.0
05

,
0.
00

5)
α

∗
=

(0
.0
05

,
0.
00

5)

R
et
ai
n

A
T,

C
Y
,D

E
,

D
K
,F

I,
N
L
,

N
O
,R

O
,S

E
,

SI

A
T,

B
E
,B

G
,

C
Y
,C

Z
,D

E
,

D
K
,E

E
,F

I,
FR

,H
R
,H

U
,

LT
,L

V
,N

L
,

N
O
,P

L
,P

T,
R
O
,R

S,
SE

,
SI
,S

K
,U

K

A
T,

B
E
,B

G
,

C
Y
,C

Z
,D

E
,

D
K
,E

E
,E

S,
FI
,F

R
,H

R
,

H
U
,L

T,
LV

,
N
L
,N

O
,P

L
,

PT
,R

O
,R

S,
SE

,S
I,
SK

,
U
K

A
T,

C
Y
,D

E
,

D
K
,F

I,
N
L
,

N
O
,R

O
,S

E
,

SI

A
T,

C
Y
,D

E
,

D
K
,F

I,
N
L
,

N
O
,R

O
,S

E
,

SI

R
ej
ec
t

B
E
,B

G
,C

Z
,

E
E
,E

L
,E

S,
FR

,H
R
,H

U
,

LT
,L

V
,P

L
,

PT
,R

S,
SK

,
U
K

E
L
,E

S
E
L

B
E
,B

G
,C

Z
,

E
E
,E

L
,E

S,
FR

,H
R
,H

U
,

LT
,L

V
,P

L
,

PT
,R

S,
SK

,
U
K

B
E
,B

G
,C

Z
,

E
E
,E

L
,E

S,
FR

,H
R
,H

U
,

LT
,L

V
,P

L
,

PT
,R

S,
SK

,
U
K

123



F. Nicolussi et al.

since both aim to gain power by exploiting the same component hypothesis, defined
in the denser table. However, the crucial difference lies in damage control when things
do not work well. In fact, the trick used in the redundant procedure ensures that we
do not have minimal performance that far off from the global test performed with a
smaller level of confidence. This aspect, while seemingly minor, ensures that we can
enunciate the conditions under which the redundant procedure out-performs standard
inference, in terms of test power, which is not possible for the UI procedure. In
addition, the redundant procedure is characterized by a more restrictive assumption
than theUI procedure. Obviously, when the hypotheses characterizing the tests define
the parameters on very similar spaces, the performance of the two procedures does
not differ much. We have deepened simulative studies to investigate the performance
of the two procedures under consideration. In the first case, where the sparsity of the
table seems to greatly affect the performance of the classical ML test, we have the
best results for the two procedures examined. In the second case, however, the three
tests have very similar not so bad performance and there is no strong evidence of
improvement. Thus, there seem to be two factors affecting the good performance of
the methods discussed here. First, the penalizing sparsity on classical inference and
second, themarginal choice to gain power in the view of these composite tests. Finally,
we apply the proposed procedure to analyze the EU-SILC dataset. Our application
stops after identifying plausible independencies and demonstrating the strategy we
have developed.
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org/10.1007/s00362-023-01473-6.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Proof of Theorem 1 By assuming a distribution belonging to M0, the right-hand side
of (2) together with (3) imply the level result in (4). The power result in (5) is implied
similarly by the left-hand side of (2) and it applies to the entire alternative hypothesis.

�
Proof of Theorem 2 To prove the inequality in formula (12), according to (11), we need
to consider a probability type I error (αi ) for the test Ti , such that the corresponding
critical value (ci ) satisfies the following inequality:

c
M0i
α∗ (Ti ) < ci < c

M1i
β∗ (Ti ). (25)
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This situation is represented in Fig. 1 (bottom). Remember that, given two critical
values c1 and c2, such that c1 < c2, then

P(T (c1) = rej |M) > P(T (c2) = rej |M). (26)

In force of the (26), we obtain

P(Ti (c
M1i
i ) = rej |M1i ) > P(Ti (c

M1i
β∗ ) = rej |M1i ) = β∗. (27)

This inequality easily comes by looking at Fig. 1 (bottom) where the dashed blue area

increases for any values lower than c
M1i
β∗ (Ti ).

According to the definition, cM1
β∗ (Tg) is the critical value such that P(Tg(c

M1
β∗ ) =

rej |M1) = β∗, thus

P(Ti (c
M1i
i ) = rej |M1i ) > P(Tg(c

M1
β∗ ) = rej |M1). (28)

Further, by comparison of the critical values, one obtains from (10) that

P
{
Tg(c

M1
β∗ ) = rej |M1

}
≥ P

{
Tg(c

M0
α∗ ) = rej |M1

}
, (29)

that is, the power (β∗) of the test Tg is greater than or equal to the power of the test T0
carried out with a probability of type I error equal to α∗.
The (27) and (29) imply that

P(Ti (c
M1i
i ) = rej |M1i ) > P

{
Tg(c

M0
α∗ ) = rej |M1

}
= P

{
T0(c

M0
α∗ ) = rej |M1

}
,

because Tg tests exactly the null hypothesis H0.
According to (6), the power of the redundant test TR(αg, αi ) is greater or equal to the
power of Ti (αi ). As a consequence, the power result in (12) holds, irrespective of the
choice of αg .
To prove the inequality in formula (13), let us start by considering the inequality in
(7) when the H0 hypothesis is true:

P(TR(αg, αi ) = rej |M0) ≤ P(Tg(αg) = rej |M0) + P(Ti (αi ) = rej |M0).

The two addends in the r.h.s., by definition, are αg and αi , then their sum is less or
equal to α∗, according to (8).
Finally, the α∗ is the probability of type I error that we impose in the likelihood ratio
test we use to test H0, which definition is P(T0(α∗) = rej |M0). �
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