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       Abstract 
The detection/identification of microorganisms is of major relevance for food quality and safety. 

Traditional analytical procedures (e.g., culture methods, immunological techniques, and 

polymerase chain reaction), while accurate and widely used, are time-consuming, costly, and 

generate a large amount of waste. Sensor-based instruments have evolved as quicker and sensitive 

complementary identification tools for yeasts, bacteria and fungi. Electronic noses (E-noses), in 

combination with chemometrics, have been effectively employed for the detection/discrimination 

of different microorganisms, providing a green, quick, cost-effective, and non-destructive/non-

invasive assessment. The successful use of the E-noses may be related to the generation of 

distinctive olfactory fingerprints of certain volatile organic compounds (VOCs) during the 

microorganism's growth. These devices have already been used to detect/discriminate fungi and 

bacteria (e.g.,Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Listeria 

monocytogenes, Pseudomonas aeruginosa), namely in milk, juice, soups,goat and pork meat,fruits 

and vegetables. 

Thus, a lab-made E-nose, with nine metal oxide semiconductor sensors, was applied to detect, 

differentiate, andquantify four common food contamination/quality indicator bacteria, including 

two Gram positive (E. faecalisand S. aureus) and two Gram negative (E. coli and P. aeruginosa). 

Besides, to support the E-nose performance the volatile profiles generated by these bacteria were 

also assessed by headspace solid-phase micro extraction gas-chromatography-mass spectrometry. 

The volatile profiles comprised 15 identified VOCs, being 10 of them emitted by at least one of 

the four bacteria evaluated, namely two alcohols (1-butanol, and 1-nonanol), three pyrazines (2-

ethyl-6-methyl-pyrazine, 3-ethyl-2,5-dimethylpyrazine,and trimethylpyrazine), three terpenes 

(camphene, D-limonene, and -pinene), and two other compounds (2,4-thujadiene and indole). 

The four bacteria could be distinguished using the electrical resistance signals produced by the E-

nose in combination with linear discriminate analysis (90% of correct classifications for leave-

one-out cross-validation). Additionally, multiple linear regression models, with root mean square 

errors lower than 4 colony forming units, were successfully established (0.9428 ≤ R2≤0.9946). 

Overall, the E-nose proved to be an effective qualitative-quantitative tool for analyzing bacteria in 

solid matrices, being foreseen it possible application to solid food matrices. 

Keyswords:electronic nose; metal oxide semiconductor sensors; bacteria identification; Gram-

positive bacteria; Gram-negative bacteria. 
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      Resumo 

 

A detecção/identificação de microorganismos é de grande relevância para a qualidade e segurança 

dos alimentos. Os procedimentos analíticos tradicionais (por exemplo, métodos de cultura, 

técnicas imunológicas e reação em cadeia de polimerase), embora precisos e amplamente 

utilizados, são demorados, dispendiosos e geram uma grande quantidade de resíduos. Os 

instrumentos baseados em sensores evoluíram como ferramentas de identificação complementares 

mais rápidas e sensíveis para leveduras, bactérias e fungos. Os narizes eletrônicos, em combinação 

com a quimetria, foram efetivamente empregados para a detecção/discriminação de diferentes 

microorganismos, proporcionando uma avaliação verde, rápida, econômica e não destrutiva/não 

invasiva. O uso bem-sucedido dos E-noses pode estar relacionado à geração de impressões 

olfativas distintivas de certos compostos orgânicos voláteis (VOCs) durante o crescimento do 

microorganismo. Estes dispositivos já foram usados para detectar/discriminar fungos e bactérias 

(por exemplo, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Listeria 

monocytogenes, Pseudomonas aeruginosa), nomeadamente no leite, suco, sopas, carne de cabra e 

de porco, frutas e legumes. 

Assim, um E-nose feito em laboratório, com nove sensores semicondutores de óxido de metal, foi 

aplicado para detectar, diferenciar e quantificar quatro bactérias comuns de contaminação 

alimentar / indicador de qualidade, incluindo duas Gram positivas (E. faecalis e S. aureus) e duas 

Gram negativas. (E. coli and P. aeruginosa). Além disso, para apoiar o desempenho do nariz E, os 

perfis voláteis gerados por essas bactérias também foram avaliados por micro-espectrometria de 

extracção de gás-cromatografia-massa de fase sólida.Os perfis Voláteis consistiam em 15 VOCs 

identificados, sendo 10 deles emitidos por pelo menos uma das quatro bactérias avaliadas, ou seja, 

dois álcoois (1-butanol e 1-nonanol), três pirazinas (2-etil-6-metil-pirazina, 3-etil-2,5-

dimetilpyrazina, e trimethylpyrazine), três terpenos (hcampene, D-limonene e-pinene), e outros 

dois compostos. (2,4-thujadiene and indole). As quatro bactérias poderiam ser distinguidas usando 

os sinais de resistência elétrica produzidos pelo E-nose em combinação com a análise 

discriminante linear (90% das classificações corretas para a validação cruzada de abandono-um-

out). Além disso, foram estabelecidos com sucesso múltiplos modelos de regressão linear, com 

erros médios do quadrado raiz inferiores a 4 unidades de formação de colônia (0,9428 ≤ 

R2≤0,9946). No geral, o E-nose provou ser uma ferramenta qualitativa-quantitativa eficaz para 

analisar bactérias em matrizes sólidas, prevendo-se a possível aplicação a matrizs de alimentos 

sólidos. 

 

Palavras-chave: nariz eletrônico; sensores de semicondutores de óxido metálico; identificação de 

bactérias; Bactérias Gram-positivas; Bactéria Gram-negativa. 
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1. Introduction 

 
  

       The entire food chain can benefit from the early and quick identification of foods 

contaminated with harmful bacteria as it serves as a diagnostic tool for quality and/or safety. 

Despite being labor-intensive, expensive, and time-consuming for technicians, conventional 

culture-based methods, immunological assays, and polymerase chain reaction techniques are 

frequently utilized as reliable, specific, and sensitive standard techniques (Green et al.,2014; 

Capuano et al.,2020). 

Alternative methods for screening microorganisms (fungi, bacteria, etc.) take into account the 

identification of particular volatile organic compounds (VOCs) produced during the primary and 

secondary metabolisms of the microorganisms. Alcohols, aldehydes, hydrocarbons, acids, ethers, 

esters, ketones, terpenes, and furans are a few examples of these VOCs (Capuano et al., 2020). As 

a result, the standard analytical tool for the investigation of VOCs is gas chromatography coupled 

with mass spectrometry, which enables the identification and measurement of the precise volatiles 

associated with each microorganism (Nieto-Arribas et al., 2011; Tait et al., 2014). 

Microorganisms release specific volatile chemicals during growth, creating discrete olfactory 

fingerprints for a given microorganism that can be utilized for identification and discrimination 

(Bonah et al., 2020). Even while some VOCs might be connected to a specific species, the volatile 

pattern and quantities emitted by each microorganism can vary depending on the strain, incubation 

period, and growth circumstances (such as substrate, nutrients, pH, humidity, and temperature) 

[Capuano et al.,2020; Kladsomboon et al.,2018). Additionally, different bacteria produce variable 

levels of the same VOCs (such as ethanol and formaldehyde) as they grow (Bonah et al., 2020). 

For instance, ammonia has been reported as the main VOC produced by Pseudomonas aeruginosa 

or Staphylococcus aureus, while acetoin and diacetyl are associated with Enterococcus faecalis 

and Escherichia coli, respectively, and methanol, 1-propanol, 1-butanol, and indole are associated 

with Escherichia coli (Nieto-Arribas et al,.2011; Kladsomboon et al.,2018). By assessing the 

relative quantity of various substances, bacteria may be identified by using pattern recognition 

analytical tools rather than conventional ones. 
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As recently reviewed by (Bonah et al., 2020). Electronic noses (E-noses) have become a 

practical and viable non-invasive alternative for detecting bacterial foodborne pathogens. E-noses 

are arrays of cross-selective sensors with partial selectivity, capable of encoding high-dimension 

patterns of VOCs into a smaller-dimension pattern of sensors signals. 

In general, many gas sensors, including metal oxide (MOX) or metal oxide semiconductors 

(MOS), and polymer sensors, have been incorporated into these devices (e.g., polypyrroles, 

thiophenes, indoles polyaniline, and furan material polymers). 

Different classification chemometric tools, such as principal component analysis (PCA), 

hierarchical cluster analysis (HCA), linear discriminant analysis (LDA) and uncorrelated LDA 

(ULDA), qualitative data analysis (QDA), support vector machines (SVM), and/or artificial neural 

networks, have been used to extract the information from the signals profiles generated (ANN). E-

noses in combination with multivariate classification techniques have demonstrated a clear 

potential as screening tools for bacterial foodborne pathogen detection (e.g., Bacillus cereus, E. 

coli, E. faecalis, Listeria innocua, P. aeruginosa, S. aureus, or Salmonella spp.) in various media 

(e.g., Lysogeny broth, Brain-Heart infusion media) or food matrices. 

For instance, an E-nose-MOS combined with ULDA permitted the separation of two E. coli 

strains, Listeria innocua and E. faecalis, cultivated in agar medium (brain-heart infusion, BHI) 

(with a sensitivity of 97.5% for leave-one-out cross-validation, LOO-CV) (Green et al.,2014). 

Salmonella enteritidis, Listeria monocytogenes, and Salmonella Typhimurium were suspended in 

phosphate-buffered saline (PBS) solution, and an E-nose-MOS along with an SVM model and 

metaheuristic optimization algorithms were able to distinguish between them (Bonah et al., 2019). 

With 100% prediction accuracy, an E-nose-MOS device with LDA was also used to distinguish 

between viable and non-viable Yersinia enterocolitica, viable and non-viable E. coli, or viable E. 

coli from viable Y. enterocolitica, cultivated in Luria-Bertani (LB) broth or in skimmed milk 

(Roda et al., 2016). With sensitivities of 100% (training) and 87% (LOO-CV), respectively, the 

signals produced by an E-nose-MOS combined with a discriminate function analysis (DFA) or 

probabilistic neural network (PNN) allowed the correct discrimination of three bacteria in water 

(E. coli, P. aeruginosa, and Klebsiella oxytoca) (Carrillo et al.,2019). Detecting and 

discriminating L. monocytogenes and B. cereus incubated in Tryptic Soy Broth (TSB) media was 

also made possible with an E-nose-MOS coupled with SVM, with a prediction accuracy of 84% 

(Astantri et al., 2020). 
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The same laboratory-produced E-nose also enabled quick identification of Salmonella 

Typhimurium and E. coli cultivated in TSB medium based on an SVM model, providing a 

classification accuracy of 84% (Prakoso et al., 2021). When a radial basis function (RBF) network 

model was used, a portable commercial E-nose (Cyrano Sciences' Cyranse 320), with 32 polymer 

sensors, was able to distinguish between six bacteria (S. aureus, Haemophilus influenza, 

Streptococcus pneumonia, E. coli, P. aeruginosa, and Moraxella catarrhalis) with correct 

classification rates of 98% (Dutta et al.,2006). Two E-noses devices, the e-nose 4000 from 

Marconi Applied Technology and the model BH-114 from Bloodhound, both used polymer sensor 

arrays paired with DFA to distinguish between control samples and samples containing E. coli or 

P. aeruginosa (Canhoto et al.,2005). To distinguish between bacteria cultivated in LB medium 

(Enterobacter cloacae, S. aureus, E. coli, P. aeruginosa, and Salmonella enterica), a hybrid E-

nose with organic-inorganic nanocomposite gas sensors and commercial MOS sensors was 

developed. The five bacteria under study could be distinguished using PCA, and cluster analysis 

(CA) made it possible to tell the four Gram-negative bacteria apart from the Gram-positive 

bacteria (Seesaard et al., 2020). Because the gas sensor device can identify the specific volatile 

chemical fingerprints for each bacterium, it has recently been possible to distinguish between E. 

coli, P. aeruginosa, S. aureus, and B. subtilis when cultured in LB medium (Shauloff et al.,2021). 

In pasteurized milk samples, an E-nose with MOX sensors was also successfully used to 

distinguish between Salmonella enterica, Klebsiella pneumonia, and E. coli. The effectiveness of 

the E-nose accurate categorization was evaluated using three distinct chemometric methods: PCA, 

LDA, and SVM. With a cross-validation approach, the constructed SVM model had the highest 

success rate for predictive classification (95%) (Carrillo-Gómez et al., 2021). 

Optical E-noses have also been used to identify and classify microorganisms with success. 

Metallic nanoparticles were used in the development of an optoelectronic nose that enables the 

rapid detection of 10 Gram-positive and Gram-negative bacteria (S. aureus, methicillin-resistant S. 

aureus, Listeria monocytogenes, Streptococcus agalactiae, E. faecalis, E. coli, Klebsiella 

pneumonia, Proteus mirabilis, E. aerogenes, and P. aeruginosa). All bacteria cultivated on TSB 

medium, as well as S. aureus, Listeria monocytogenes, E. coli, and Proteus mirabilis in drinking 

water samples, could be correctly differentiated with PCA and/or HCA (Bordbar et al., 2020). A 

near-infrared optical nose with single-wall carbon nanotubes encapsulated in peptides was also 

suggested for effectively detecting and discriminating E. coli and Klebsiella pneumonia cultured 

in LB medium based on PCA (Shumeiko et al.,2022). 
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However, very few studies have documented the use of E-noses for measuring microorganisms. 

The viability of employing an E-nose-MOX device to semi-quantitatively measure the levels of E. 

coli contamination in milk samples or drinking water was confirmed by (Carrillo-Gómez et al., 

2021). 

For each matrix under examination, the signals profiles produced by the gas sensing in 

conjunction with PCA and/or DFA enabled for the accurate division of the samples into clusters of 

pre-determined E. coli concentrations (i.e., colony forming units per milliliters: from 110-2 to 

1107 CFU/mL). Additionally, according to (Tonezzer et al.,2021) an E-nose consisting of a single 

nanowire gas sensor was able to properly estimate the decimal logarithmic of the total viable count 

(TVC) during trout fish deterioration with an error rate of less than 5%. The ability of an E-nose-

MOX device to assess the emission of VOCs generated by the bacterial breakdown of sardines 

was also used to estimate the TVC of aerobic bacteria in sardines using partial least squares 

models (correlation coefficient of 0.91). 

In this regard, the current study's objective is to assess the classification and quantification 

capabilities of a lab-made E-nose using commercial MOS gas sensor for the evaluation of bacteria 

cultured in solid media. Four target microorganisms—two Gram-positive (E. faecalis and S. 

aureus) and two Gram-negative (E. coli and P. aeruginosa) bacteria—were chosen in 

consideration of their potential use as quality/contamination indicators for food/water samples. 

Although it required resuspending each dried mass of bacteria in water, which prevents a direct 

bacteria examination, the study team has previously shown that a potentiometric electronic tongue 

made of lipid polymeric sensor membranes may be employed for these reasons (Ghrissi et al., 

2021). As an alternative, the E-nose-MOS device could be employed as a green, direct (i.e., 

without requiring any sample's pre-treatment) and non-invasive recognition/counting sensing 

platform for sniffing bacterial growth in solid media when combined with LDA or multiple linear 

regression models (MLRM). 
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   1.1-Objectives 

        The main objective of the present study was to detect and distinguish microorganisms that 

play an important role in the food and environmental sectors, namely Escherichia coli, 

Enterococcus faecalis, Pseudomonas aeruginosa, and Staphylococcus aureus. Although 

conventional methods such as smear techniques are still the most widely used, there is a need to 

develop rapid, easy-to-use, environmentally friendly and cost-effective screening detection 

methods. In this regard, the development of electrochemical sensors, including electronic nose (E-

nose), has shown promise as bioinspired detection methods for screening microorganisms in 

recent decades. Therefore, the use of a laboratory fabricated electronic nose consisting of an array 

of nine metal oxide semiconductor gas sensors (MOS) was investigated to explore the advantages 

of these innovative (bio)sensors for the detection and discrimination of microorganisms. 
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2-Bibliographic review 

 

           To comprehend how an "electronic nose" (e-nose) functions, it is necessary to first define 

"smelling" and what defines an "odour," or fragrance. The basic features of odor molecules are as 

follows. The fact that they are light (relative molecular weights up to roughly 300 Da), tiny, polar, 

and typically hydrophobic are the most essential characteristics. The e-nose is a computerized 

version of the human olfactory system. The smell molecules are delivered to a test chamber 

housing the sensor array by a sampling mechanism. The interaction of the sensors with the volatile 

molecules causes a change in sensor response, which is subsequently analyzed by a pattern 

recognition system. To get the most out of e-nose technology, a neural network that works like 

human brain's memory may be installed, generating a library of sensor responses known as sensor 

profiles. The signals that make up a sensor array's output don't give a spectrum of smell 

components like a gas chromatogram, but rather information on the odour's attributes as defined 

by specific sensor response signatures. More recently, e-nose MS combinations have been able to 

offer not only an odour fingerprint but also the mass-to-charge ratio of its constituents. It is 

therefore feasible to offer both qualitative and quantitative information while looking for a certain 

molecule with a specific mass-to-charge ratio. 

 

 

2.1-Microorganisms and foodborne disease 

 
          Microorganisms are extremely minute organisms that can only be seen under a microscope, 

but they play both beneficial and harmful functions. Microorganisms are everywhere, and they 

have an incredible capacity to adapt to new surroundings and reproduce in vast numbers in a short 

amount of time (Allen et al., 2015). They are found on soil surfaces, acidic hot springs, radioactive 

waste water, deep in the earth's crust, organic materials, and living bodies of flora and wildlife 

because of their capacity to adapt and reproduce on varied surfaces and in different situations 

(Balkwill et al., 1997). 

Only a small number of different types of microorganisms, so-called pathogenic microorganisms, 

have the ability to cause foodborne disease. These can cause infections or food poisoning. 
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Pathogenic microorganisms and their foodborne toxins are the cause of numerous cases of 

foodborne illness worldwide (Hernández-Cortez et al., 2017). 

Pathogens allowing FBDs to be easily transmitted have resulted from high population growth and 

food marketing, resulting in epidemics in many places, harming the morbidity, mortality, and 

economics of the affected population. FBDs are becoming more common in the United States, the 

United Kingdom, and Europe, and this will become a public health issue in the next years 

(Hernández-Cortez et al., 2017).  

Campylobacter spp., enterotoxigenic E. coli (ETEC), enter pathogenic E. coli (EPEC), Salmonella 

spp., Shigella spp., Shiga toxin-producing E. coli (STEC), and V. cholerae are some of the genera 

usually linked with FBDs (Hernández-Cortez et al., 2017). 

Bacteria are responsible for 66% of all foodborne illnesses. Botulism produced by C. botulinum, 

gastroenteritis caused by E. coli strains, Salmonellosis, and Staphylococcal poisoning are all 

common disorders. Furthermore, B. cereus and V. cholerae are bacteria that have been implicated 

in toxic infection caused by food (Hernández-Cortez et al., 2017). 

Food poisoning produced by S. aureus is the most common in several countries; estimates suggest 

that S. aureus is responsible for up to 41% of food poisoning outbreaks. Although it may affect 

persons of any age, the most common age group is 20 to 49 years old, with up to 48 percent of 

cases occurring in this age group. Chicken and eggs, cakes, pastas, sauces, milk, and its 

derivatives are the principal food items linked to food poisoning caused by S. aureus (Hernández-

Cortez et al., 2017). 

 

2.2- Microbiological analysis of food & water 
 

 

           Microbiological analyzes of food, surfaces and handlers, as well as different types of water, 

are essential for control and quality, in order to avoid damage to human health. Since it is not 

feasible, in routine analyzes to search for all pathogens in food/water matrix, groups or species of 

microorganisms more easily determined are usually used, and of course whose presence in food 

between certain numerical limits, indicates exposure to conditions that may introduce and/or allow 

the proliferation of infectious or toxigenic microorganisms. When there is a positive link between 

the presence of an indicator microbe and the prevalence of a disease, microorganisms are widely 

employed to assess food quality and safety. Escherichia coli and Staphylococcus aureus are 

utilized as hygiene and safety indicators for a variety of food items across the world. The 
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Enterococci are often considered good indicators of fecal contamination, since they are highly 

resistant to adverse conditions such as freezing and drying.  

 

Standard methods for the detection and enumeration of indicator bacteria and some pathogenic or 

opportunistic bacteria have been established by various organizations, namely the International 

Organization for Standardization (ISO), the European Committee for Standardization (CEN) and 

the American Public Health Association (APHA). 

Conventional methods for detecting foodborne bacterial pathogens in foods/water matrix rely on 

the use of microbiological selective media to growth and enumerate bacteria. In some cases, it is 

necessary to carry out the biochemical characterization of the isolated colonies. These methods are 

sensitive, generally inexpensive, and provide both qualitative and quantitative results. However, 

the preparation of media and plates, as well as colony counting and subsequent biochemical 

characterization of isolated colonies makes this process time-consuming and laborious. 

 

2.2.1-Enterococcus faecalis 

 

E. faecalis is a Gram-positive coccus that lacks catalase (Opera and Zervos, 2007). Cells are the 

most common type of organism, and they can live individually, in pairs, or in short chains. They're 

facultative anaerobes that don't sporulate and can withstand high temperatures, salinity, and pH. 

As a result, they thrive in a 6.5 % NaCl broth with a pH of 9.6 and temperatures ranging from 10 

to 45°C, with 35°C being the ideal temperature for development (Teixeira and Facklam, 2003). 

Enterococci are found in the flora of both humans and animals. Enterococcus faecalis is a fecal 

contamination indication, but it is also found in the natural micro biota of many fermented foods 

(dairy, meat, and vegetables), where plays a significant role in the development of organoleptic 

features and safety of fermented goods. In food products, E. faecalis can also produce bacteriocin 

with antimicrobial action against foodborne pathogens such as Listeria and spoilage bacteria. Thus 

contributing to the safety of these foods (Franz, Holzapfel & Stiles., 1999). 

Nevertheless, On the other hand, they are among the most common resistant hospital infections in 

the world, and they can act as a reservoir for virulence characteristics and antibiotic resistance  

(Giraffa., 2002; Andrighetto et al., 2001) 
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     2.2.2-Staphylococcus aureus 

     

      S. aureus is a Gram-positive, spherical staphylococci arranged in clusters with diameters of 0.5 

– 1.5 µm, resembling to a bunch of grapes, catalase positive and oxidase negative. S. aureus is an 

aerobic and facultative anaerobic organism that can grow in a wide range of temperatures (7° to 

48.5°C; optimum 30 to 37°C), pH (4.2 to 9.3; optimum 7 to 7.5), and sodium chloride 

concentration up to 15% NaCl. 

S. aureus does not form spores; this microorganism can contaminate food products during their 

preparation and processing (Kadariya et al., 2014). It is a commensal and opportunistic pathogen that 

can cause wide infections, and severe, and eventually deadly, invasive diseases (Lowy, 1998). This 

ubiquitous bacterium is observed as an important pathogen due to combination of “toxin-mediated 

virulence, invasiveness, and antibiotic resistance. The organism is well known for its ability to acquire 

resistance to various antibiotic classes (Kadariya et al., 2014). 

 

 

2.2.3 –Escherichia coli 
 

 

             Escherichia coli is a Gram-negative, rod-shaped, non-sporulating and facultative 

anaerobic bacterium that is found in the lower intestine of warm-blooded organisms (endotherms) 

(George and Garrity, 2005). Cells are about 2 μm long and 0.5 μm in diameter, and the cell 

volume range from 0.6 to 0.7 μm3 (Kubitschek, 1990). The growth can be driven by aerobic or 

anaerobic respiration, using a large variety of redox pairs, including the oxidation of pyruvic acid, 

formic acid, hydrogen and amino acids, and the reduction of substrates such as oxygen, nitrate, 

dimethyl sulfoxide and trimethylamine N-oxide (Ingledew and Poole, 1984). 

E. coli is a bacteria belonging to the group of fecal coliforms and therefore considered an indicator 

of fecal contamination of water and foodstuffs. 
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2.2.4-Pseudomonas aeruginosa 

 

               Pseudomonas aeruginosa is a Gram-negative, aerobic rod bacterium of 

the Pseudomonadaceae family (a member of the Gamma proteo bacteria) with the measure of 0.5 

to 0.8 μmby 1.5 to 3.0 μm. Almost all strains are motile by means of a single polar flagellum, and 

some strains have two orthreeflagella (Baron, 1996). 

P. aeruginosa contains 12 other members in its family. Similar to other members of the genus, P. 

aeruginosa is commonly found in soil and water as well as in plants and humans. 

P. aeruginosa is a non-fermentative aerobe that derives its energy from oxidation rather than 

fermentation of carbohydrates. Although able to use more than 75 different organic compounds, it 

can grow on media supplying only acetate for carbon and ammonium sulfate for nitrogen. 

Furthermore, although an aerobe, it can grow an aerobically, using nitrate as an electron acceptor. 

This organism grows well at 25° to 37° C, but can grow slowly or at least survive at higher and 

lower temperatures. In addition to its nutritional versatility, P. aeruginosa resists to high 

concentrations of salt, dyes, weak antiseptics, and many commonly used antibiotics. Pseudomonas 

spp. may be found in soil, water, plants, and foods (such as dairy and meat products), as well as on 

the surfaces of food processing plants, all of which are connected to their ability to create biofilms 

(Ahmed et al,2020). Furthermore, because these bacteria are psychotropic (i.e., they can thrive at 

low temperatures ranging from 0 to 7 degrees Celsius), they can colonize cold-stored foods and 

become the majority population (Stellato et al., 2017). 

Serious infections in immune compromised people are caused by P. aeruginosa. Most 

Pseudomonas spp. are resistant to penicillin and similar -lactam antibiotics, which supported the 

identification of P. aeruginosa as a quality indicator microbe in water for human use. (Croughs et 

al, 2018). 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pseudomonas
https://www.sciencedirect.com/topics/medicine-and-dentistry/pseudomonadaceae
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2.3-Methods used to detect microorganisms 
 

  2.3.1- Conventional methods 

 

        To identify foodborne bacterial pathogens, present in food, traditional approaches rely on 

growing microorganisms on agar plates followed by routine biochemical identifications (Mandal 

et al., 2011). These procedures are often low-cost and straightforward, but they may be time-

consuming since they rely on the microorganisms' capacity to grow in various culture media, such 

as pre-enrichment media, selective enrichment media, and selective plating media. Conventional 

procedures, in fact, take two to three days for preliminary identification and more than a week to 

confirm pathogen species (Zhao et al., 2014). They may also be time-consuming, since the 

preparation of culture medium, plate injection, and colonies counting all take time (Mandal et al., 

2011). 

Rapid approaches, on the other hand, are sensitive enough to identify infections in low levels in 

food. Because just one pathogen in food has the potential to cause illness, sensitivity is critical. 

These approaches are more efficient in terms of time and labor, as well as preventing human 

mistakes (Mandal et al., 2011). Rapid approaches, on the other hand, have benefits and drawbacks. 

Nucleic acid-based, biosensor-based, and immunological-based fast detection approaches are the 

most common (Zhao et al., 2014). 

 

 2.3.2- Immunological based methods 

       To identify the presence of bacteria, immunological tests rely on the interaction between the 

antigen and the antibody. Indeed, one of the most well-known immunological procedures is the 

enzyme-linked immunosorbent test (ELISA). Escherichia coli O157:H7, Yersinia enterocolitica, 

Salmonella coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria 

monocytogenes have all been effectively detected using multiplexed immunoassays (Zhang, 

2013). 
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 2.4- Electrochemical techniques: E-nose 

 

   2.4.1-Electronic nose instrumentation 

 

            An electronic nose (E-nose) is a device that comprises a gas/smell sampling chamber, a 

sensing unit, a signal recording apparatus being the gathered signals preprocessed and analyzed 

using chemometric tools, delivering a olfactory fingerprint of the samples under study (Jia et al. 

2018). The E-nose allows generating signal profiles when the sensors comprised in the device are 

exposed to the volatile chemical compounds that are released from of a specific sample. The 

signals are recorded using a data acquisition unit, controlled by a software, allowing transforming 

them into digital values, which are computed generating a unique volatile fingerprint of the 

sample under analysis, being then computed using chemometric tools, including unsupervised or 

supervised multivariate statistical techniques. Different feature extraction techniques can be 

applied aiming to establish the most informative dataset (Gila et al., 2020). 

 

 2.4.2-Electronic nose sensor types 
 

             The E-noses use several chemical sensors with different sensibilities and specificities that 

react to and respond to volatile organic chemicals found in gas samples (Jiang and Chen 2014; 

Zohora et al., 2013). Quartz crystal microbalance sensors, surface acoustic wave sensors, 

electrochemical sensors, optical sensors, and calorimetric sensors are among the many sensors that 

may be used. Wilson and Baietto (2009) provide a complete explanation of these sensors. For E-

nose, chemical-based sensors were utilized (catalytic, semiconducting metal oxide, solid 

electrolyte, polymer, and field-effect transistor-based sensors). Researchers have typically 

employed metal oxide semiconductors (MOS) as sensing elements in the electronic nose because 

to its availability, high sensitivity, and capacity to respond to oxidizing and reducing substances. 

The MOS sensor works by causing a change in conductivity through the adsorption of gas 

molecules. The amount of volatile organic chemicals adsorbed is usually proportional to the 

change in conductivity.  
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        2.4.3-Volatiles associated with the microbial growth 

 

     Volatile organic compounds (VOCs) are a class of carbon-based substances that are volatile at 

room temperature and detectable by smell. VOCs are easily volatilized because they have low 

molecular weights and high vapour pressures (Tait et al., 2014). 

Microorganisms, including pathogenic and spoilage bacteria, grow in food substrates and release 

distinct VOCs. Thus, an electronic nose can, in principle, distinguish between numerous volatile 

compounds, which then can be related with the volatile substances produced during the growth 

and proliferation of the microorganisms (Avalos et al., 2018; Giungato et al., 2018). Some of these 

volatiles provide a distinct olfactory fingerprint, unique for each microorganism, allowing its 

identification and differentiation from other microorganism, avoiding the use of conventional 

time-consuming food analysis techniques. In fact, some bacteria are responsible for different odors 

(Balasubramanian et al., 2016; Berna et al., 2013): 

- E. coli has an amino acid distinctive odor (indole gas). 

- Salmonella typhimurium generates methyl ketenes, primary and secondary alcohols. 

According to some researchers, it has been hypothesized that some of these VOCs are generated 

as signaling or defense responses of the microorganisms, and can be used for growth monitoring 

(Selim et al., 2017).  

At the molecular level, VOC data offer fundamental information regarding activity of 

microorganisms and the supports the hypothesis that the olfactory profile can be used as an 

identification tool (Robin Michael Statham and John, 2012). Table 1 lists some relevant 

information regarding the VOCs that can be usually found for different microorganisms. The 

composition and amount of volatiles generated by a microorganism are affected by physiological 

parameters such as moisture content, oxygen, pH, and temperature. The carbon-energy sources 

available for the microorganism’s growth also impact the content and diversity of the volatiles 

generated (Romoli et al., 2014). Primary metabolism (metabolites required for growth, and 

reproduction, such as DNA, amino acids, and fatty acid synthesis) and secondary metabolism are 

the major sources of VOCs generated by bacteria (organic metabolites not involved directly in the 

normal growth and reproduction and are intermediates of the primary metabolism). During the 

metabolic oxidation of glucose, fatty acids, acetic acid, keto acids, and amino acids function as 

precursors, culminating in the creation of certain Microbial Volatile Organic Compounds 

(MVOCs) (Selim et al., 2017) 
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Table 1: A summary of volatile organic compounds produced by foodborne pathogens 

 

Foodborne pathogen                        VOCs               References 

 

 

 

Escherichia 

coli 
 

 

 

 

 

 
Indole, 1-decene (E. coli O157:H7 in TSYA), 

Dimethyl disulfide, 
ethanol, 2-nonanone, 2-heptanone, indole, 

pentyl cyclopropane 
(E. coli in tryptone-yeast NaCl super-broth), 

2,5-dimethyl 
tetrahydrofuran, dimethyl disulfide, 2-

heptanone, 2 undecanone, 
indole, unknown, 2-tridecane, 2,5 dimethyl 

pyrazine, 

benzaldehyde, dimethyl trisulfide, 2-nonanone, 
nonanal, decanal 

(Escherichia coli O157:H7 and a 
nonpathogenic strain of 

E. coli) 

 

 

 

 

 
Siripatrawan (2008a) and 

Senecal 

et al. (2002) 
 

 

 

 

 

 

 

Listeria 

monocytogenes 
 

 

 

 

 
Acetaldehyde, Ethanol, Acetone, 2-Methyl-

propanal, 2,3-Butanedione, 2-Butanone Acetic 
acid, 1-Butanol,3-Methylbutanal, 

2-Methyl-butanal,3-Methyl-3-buten-1-ol 3-
Hydroxy-2-butanone, Dimethyl disulfide, 

Pyrazine, Pyrrole, Hexanal, Butyl 

ester acetic acid,3-Methyl-2-butenal, Methyl-
pyrazine, 

Methoxy-phenyl-oxime 2,5-Dimethyl-
pyrazine,4,6-Dimethylpyrimidine, 

D-Limonene, 6-Methyl-5-hepten-2-one, 
Octanal 

2-Ethyl-1-hexanol, Benzaldehyde, 2-Ethyl-6-
methylpyrazine, 

 

 

 

 

 
Yu et al. (2014) 
 

 

 

 

 

 

 

Salmonella 
 

 

 

 

Primary alcohols (1-octanol, 1-decanol), 

secondary alcohols (2-undecanol, 2-

tridecanol), methyl ketones (2-

nonanone,2-undecanone), 3-methyl-1-

butanol (S. typhimurium in tryptic 

soy yeast agar), Hydrogen sulfide, ethanol, 

carbon disulfide,dimethyl cyclopropane, 

1-propanol (S. typhimurium intryptone-

yeast NaCl super-broth), Dimethyl sulfide, 

carbon disulfide, heptane, acetic acid, 

ethyl 

 

 

 
Senecal et al. (2002), 

Siripatrawan 

and Harte (2007) and 

Siripatrawan 

(2008a) 
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Staphylococcus 

aureus 
 

 

 

Isovaleric acid, 2-methyl butyric acid, 

isobutyric acid, 1-hydroxy 

2-propanone, 1-hydroxy 2-butanone, 

butyric acid, 

4-methylhexanoic acid (S. 

aureus in blood agar) 

 

 

Preti et al. (2009) 

 

E. coli, S. sonnei, S. typhimurium, 

Bacillus cereus, L. monocytogenes, 

S. aureus 

1 Octanol, 1-decanol, dodecanol, 2 
undecanone, 2-tridecenone, 

indole (E. coli), 1 octanol, 1-decanol, 
dodecanol, 2-nonanone,1-undecene, 2-

undecanone, 2-tridecanone (S. sonnei), 1 
octanol,1-decanol, dodecanol (S. 

typhimurium), 2-undecanone, 

 

Elgaali et al. (2002) 

 

 

              2.4.4-Application of electronic nose for foodborne pathogen detection 
 

       As described previously, several authors have reported the detection and measurements of 

VOCs associated with bacterial foodborne pathogens as well as other microorganisms, leading to 

different attempts to create a profile of microbial VOCs (MVOCs) for a particular pathogen. The 

application of E-nose for microorganism’s detection is described in this section and summarized in 

Table 2. 
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Table 2: Recent studies on food pathogen detection by electronic nose 

 

                           

Pathogens 

 

  Matrix 
Sensor        

types 

Chemometric 

analysis 

 

References 

 

E. coli O157:H7, Salmonella 

typhimurium 857, 

Staphylococcus 

aureus 29213, 

Pseudomonas 

aeruginosa 27853 

 

Salmonella typhimurium 

 

E. coli, Salmonella 

typhimurium 

 

 

E. coli, Listeria innocua. 

 

E. coli DH5a, Listeria innocua, 

Enterococcus faecalis, E. coli 

Biotype I 

 

E. hormaechei and E. 

coli 

 

Escherichia coli 

 

Staphylococcus. 

Salmonella, Shigella 

 

Escherichia coli, Listeria 

monocytogenes, Salmonella 

Typhimurium 

 

Escherichia coli (ATCC 

25922) 

 

Enterococcus faecalis, 

Escherichia coli and 

Staphylococcus 

Aureus 

 

Escherichia coli 

 

 

 
Beef 
 
 
 
 
 
 
 
 
Beef 
 
Super 
broth 
 

Lysogeny broth, 

Brain–Heart 
Infusion 
media 
 

Brain–heart 
Infusion 
 
 

Mixed 
vegetable 
soups 
 

Processed 
Tomatoes 
 
Apple 
 
 

Brain Heart 
Infusion 
 
 
 
Alfalfa 
Sprouts 
 
 
Street 
foods 
 
 
 
Goat meat 

 
32-polymer sensor 
nose chip 
 
 
 
 
 
 
8 MOS sensors 
 
 
12 MOS sensors 
 
 
12 MOS sensors 
 
 
 
 
12 MOS sensors 
 
 
 
4 MOS sensors 
 
 
 
6 SMO sensors 
 
 
6 SMO sensors 
 
 
4 MOX thin film 

gas sensors and 2 

MOX nanowires 
gas sensors 
 
 
12 MOS sensors 
 
 
9 MOS sensors 
 
 
 
 
32 polymer 
sensors 

 
- 
 
 
 
 
 
 
LDA, QDA 
 
 
 
PCA, BPNN 
 
 
ULDA 
 
 
 
 
PCA, ULDA 
 
 
 
LDA 
 
 
 
PCA 
 
 
PCA, HCA 
 
 
PCA 
 
 
 
 
 
ANN 
 
 
 
SVM 
 
 
 
 
PCA 

 
Abdallah et al. 
(2013) 
 
 
 
 
Balasubramanian 
et al. (2012) 
 
 

Siripatrawan 
(2008a) 
 

Green et al. 
(2011) 
 
 
 

Green et al. 
(2014) 
 
 
Gobbi et al. 
(2015) 
 
 

Concina et al. 
(2009) 
 

Ezhilan et al. 
(2018) 
 

Sberveglieri et al. 
(2015) 
 
 
 
 

Siripatrawan et al. 
(2006) 
 
 

Balbin et al. 
(2017) 
 
 
 
Ding et al. 
(2010) 
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Green et al. (2011) used an E-nose based on metal oxide semiconductors (MOS) sensors coupled 

with uncorrelated linear discriminate (ULDA) analysis to effectively identify and discriminate 

between E. coli and Listeria innocua in phosphate-buffered saline solution, with a classification 

accuracy of 92.4%. This approach was developed by analyzing the olfactory fingerprints of single 

bacterium colonies that were scraped from the agar medium's surface. Bacteria identification based 

on single colony E-nose responses provides quick findings and eliminates the need for culturing, 

serological, and biochemical testing. Green et al. (2014) also used individual colonies to test the 

reliability of employing an E-nose for bacterial identification at the genus level. This study used 

four non-pathogenic bacteria species (E. coli DH5a, Listeria innocua, Enterococcus faecalis, and 

E. coli Biotype I) and classification accuracy greater than 80% was achieved, with higher 

classification accuracy (96.7%) when the E-nose sampling was repeated for the same colony and 

all existing odor responses were used for sample characterization. Integrating E-nose data with 

chemometrics also allowed the fast identification of L. monocytogenes, Staphylococcus lentus, and 

Bacillus cereus (Yongxin and Zhao 2012). A research found that an E-nose together with cluster 

analysis and principal component analysis (PCA) allowed differentiating four distinct Vibrio 

parahaemolyticus strains, as well as discriminating four different Pseudomonas species. Xue et 

al.,2012 prosposed the application of an E-nose in conjunction with chemometrics to differentiate 

strains and species. Brain heart infusion broth was used to cultivate L. monocytogenes. The volatile 

compounds generated from nine strains of Listeria monocytogenes and four species of Listeria spp. 

and collected by the E-nose allowed a successful analysis based on PCA combined with ANN 

(artificial neural networks) for feature extraction. 

Since discriminating between individual bacterial colonies at both the species and strain level was 

achievable, these findings demonstrated the E-nose has strong promise as an accurate early 

diagnostic screening technique for bacterial foodborne disease identification. Since virulence and 

pathogenicity are often linked with just a fraction of bacterial strains, it is critical for a method to 

be able to discriminate between pathogenic and nonpathogenic strains during a foodborne 

epidemic. 
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          2.4.4.1- Microorganisms in food matrices detection 
 

 

Meat products: Balasubramanian et al. (2008) achieved successful prediction of Salmonella 

typhimurium in contaminated beef using E-nose data and independent component analysis (ICA). 

A stepwise linear regression prediction (SLRP) model was built with the independent component 

(IC) and principal components (PC) with a prediction accuracy of 69.64% and 82.99%, and a root 

mean squared error (RMSE) of 1.358 and 0.803 for PCA and ICA respectively. The results showed 

that ICA performed better than PCA on the E-nose dataset, ICA which is higher-order statistical 

techniques can explore higher order information of the original inputs than PCA (Cao et al. 2003). 

Balasubramanian et al. (2012) effectively screened Salmonella typhimurium in beef using two 

separate gas sensor-based artificial olfactory systems: conducting polymer-based and metal oxide-

based sensors. For classifying ""No Salmonella" (counts < 0.7 log10 cfu/g) and "Salmonella 

inoculated" (counts < 0.7 log10 cfu/g) in meat samples stored at 10 °C, LDA and QDA 

classification models achieved varying levels of success for polymer E-nose (69%), metal oxide E-

nose (>70%), and a fusion of the sensors (>80%). The utilization of just relevant sensors (as 

determined by Fisher Criteria Ranking of Sensors) and sensor fusion techniques were shown to be 

crucial in obtaining improved classification accuracy. 

For the quick detection of E. coli in goat meat samples, Ding et al. (2010) used a Cyranose-320 E-

nose based on 32 polymer sensors, with early findings indicating 18–77% detection accuracies for 

cultivated bacteria. 

Due to overlapping or extremely near marking, there was no difference in PCA data collected for 

infected and uncontaminated meat samples, and the sensor was sensitive to lower bacteria 

concentrations. 

Balbin et al. (2017) used SVM on E-nose signals to identify and classify E. coli and 

Staphylococcus aureus in street meals, which are a significant cause of foodborne diseases. The 

study's findings demonstrated that pathogens in street meals (Kwek–Kwek, pork barbeque, and 

isaw) could be detected before and after cooking, demonstrating the use of E-nose as an online tool 

for process monitoring during food preparations. 
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Abdallah et al. (2013) used an E-nose with a 32-sensor nose chip to identify E. coli O157: H7, 

Salmonella typhimurium 857, and S. aureus 29213 in fresh and frozen beef. The study's findings 

revealed a substantial association (p < 0.005) between gas concentration before and after pathogen 

contamination. 

Vegetables and fruits: E-nose was used by Concina et al. (2009) to identify microbial 

contamination in processed tomatoes. After 48 hours of inoculation, E. coli using both KNN 

pattern recognition methods showed high classification scores of 83%. The findings demonstrated 

that the metabolic kinetics of microorganisms have an impact on the headspace composition during 

microbial growth. Siripatrawan et al. (2006) used an E-nose with 12 metal oxide electronic sensors 

to capture volatile metabolites generated by E. coli. Using the data collected, an ANN model with a 

regression coefficient R²=0.903 was used to predict E. coli counts in packed alfalfa sprouts. By 

merging E-nose data with PCA and BPNN models, Siripatrawan (2008a) established a fast 

approach for discriminating E. coli and Salmonella typhimurium. PCA was used to illustrate class 

separation among sample subgroups and for data exploration and dimensionality reduction. With a 

regression coefficient R² = 0.96 between actual and projected data, BPNN was able to make a good 

prediction. 

Siripatrawan used a Self-organizing map method to classify E. coli bacteria in packed fresh 

vegetables (2008b). In the vegetable samples, the SOM algorithm paired with E-nose data correctly 

categorized E. coli over 105 cfu/g. Siripatrawan and Harte (2015) used the Kohonen network for 

data visualization of Salmonella typhimurium present in packed fresh alfalfa sprouts in a more 

recent investigation. On the self-organizing map, the Kohonen network could visually differentiate 

various amounts of S. typhimurium contamination (SOM). 

The Kohonen network proved more useful and better at displaying multi-dimensional nonlinear 

data than a traditional linear principal component analysis (PCA) technique, and it demonstrated a 

far more perfect separation of distinct sample groups. 

Gobbi et al. (2015) were able to quickly identify E. coli in vegetable soups. At a detection 

threshold of 8 and 3 cells/100 ml, E-nose with four metal oxide sensors and LDA analysis obtained 

a classification performance of 98% for E. coli contamination.  
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The starting and final microbial concentrations had no impact on the discrimination of bacterial 

contamination in this investigation. 

Although the research demonstrated the ability to diagnose bacterial contamination throughout 

development, it should be highlighted that the production of VOCs from bacteria alters during their 

growth. 

A trilayer technique based on a handmade E-nose was employed by Ezhilan et al. (2018) to 

investigate the prevalence of Staphylococcus, Salmonella, and Shigella bacteria in delicious royal 

apple at concentrations of zero, 102, 103
 and 104cfu/mL. The samples were analyzed using voltage 

responses for E-nose sensors, as well as a PC and wards HCA. The created E-nose effectively 

evaluated the freshness or contamination levels of the apple samples by integrating data 

classification systems, bacterial culture investigation, and GC–MS analysis. 

Others Salmonella enterica is a disease most often linked with chicken, and it is most commonly 

transmitted by manure contamination during processing. E-nose was used by Kizil et al. (2015) to 

identify the presence of S. enteric poultry manure, with the ANN model reaching a classification 

accuracy of 94% for both the training and validation sets. Sberveglieri et al. (2015) used six MOX 

gas sensors and PCA to examine the use of E-nose in food quality control for the identification of 

microorganisms in water and other food matrices. At a concentration of 9×108 bacteria/ml, E. coli, 

Salmonella typhimurium, and Listeria monocytogenes were found. 

 

             2.4.4.2- Advantages and Potentialities of E-nose for bacterial pathogen detection 

 
         The E-noses used in the food sector have mostly been applied for food quality analysis, 

particularly for identification purposes. So, future prospects for using this technology for bacterial 

pathogen detection would be the possible extension to detect viable microorganisms. In contrast to 

various microbiological and molecular approaches, E-nose detection has limitations, including 

limited sensitivity and specificity. The identification of volatile chemicals is generally hampered by 

a complicated background combination of water vapour and carbon dioxide (Sanaeifar et al. 2017). 
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Other drawbacks include a high limit of detection (LOD), with Siripatrawan (2008b) reporting an 

E. coli detection limit of over 105 CFU/g and Gobbi et al. (2015) reporting E. coli sensitivity as low 

as 3 cfu per 100 ml. However, increasing the diagnostic specificity of VOCs by using enzyme 

substrates to release exogenous VOCs of foodborne bacterial pathogens might overcome this 

problem. This is accomplished by altering bacteria growth medium with substrates that, in response 

to the presence of enzyme activity shown by a target pathogen, release distinct VOCs via 

enzymatic metabolism. This approach has been successfully examined using traditional detection 

methods such as gas chromatography–ion mobility spectrometry (GC–IMS) and gas 

chromatography–mass spectrometry (GC–MS), and it may be enhanced with a noninvasive 

electronic nose application. 2-nitrophenyl-b-d-glucuronide (E. coli), 2-nitrophenyl-b-d-

glucopyranoside (Listeria spp.) and 2-nitrophenyl-b-d-galactoside-6-phosphate are examples of 

substrates (Staphylococcus aureus). 

Although, they are many advantages of E- nose like fast detection Non-invasive technique 

Minimal sample pretreatment Green technique, not involving chemical reagent… 
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3. Materials and methods 

     3.1- Microorganisms growth 

      3.1.1 Bacterial strains and inoculum preparation 

         As target food-borne pathogens, three Gram positive spherical-shaped (S. aureus ATCC653 

and E. faecalis ATCC29212) and one Gram-negative rod-shaped (P. aeruginosa ATCC15442) 

bacteria were chosen. Since E. coli ATCC29998 is a general indicator of feces and hygiene, it was 

also included in this investigation. The inocula were created by combining 700 µL of an overnight 

bacterial culture with 300 µL of glycerol (Sigma-Aldrich), as previously explained (Ghrissi et al., 

2021). The growth was accelerated in the Brain Heart Infusion (BHI) (PanReac AppliChem, ITW 

Reagents) at 37 °C and 90 rpm (Orbital incubator S1500, Stuart). Prior to usage, each inoculum 

was cry preserved at 20 ℃. 

 

 

 

 

 

 

 

 

Figure 1: Orbital incubator used in the study 
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       3.1.2. Growth conditions  

        Each strain was aseptically inoculated into 250 mL Erlenmeyer flasks with 50 mL of BHI 

media. Until the stationary phase of the cells was attained, bacterial cultures were cultivated at 

37°C with orbital agitation (90 rpm) for 24 hours. After that, a spectrophotometer was used to 

detect the optical density at 560 nm (UV-3100 PC Spectrophotometer, VWR). Preliminary tests 

(data not shown) revealed that overnight developed cultures were used to complete sets of pre-

established serial dilutions of E. faecalis from 10-1 to 10-8 and P. aeruginosa, S. aureus, and E. 

coli from 10-1 to 10-9 using NaCl solutions (0.9% v/v). These colony forming units (CFU) were 

evaluated: 100 µL of each dilution was duplicated and plated on BHI agar. CFUs were counted 

following a 37°C overnight incubation period. Gram staining was used to confirm that there was no 

contamination of the culture, as stated by Gregersen. 

 

 

 

 

 

 

 

 

 

    Figure 2: Microorganisms growth                    Figure 3: Spectrophotometer used in this study 

 

3.1.3 HS-SPME-GC-MS evaluation of VOCs emitted by each bacteria 

Through the use of headspace solid-phase micro extraction (HS-SPME) gas chromatography/mass 

spectrometry (GC/MS), the profiles of VOCs released by the four bacteria under investigation—

each of which was cultured independently were determined. By examining the HS of glass vials 

(50 mL, Duran, Germany) containing 10 mL of BHI agar that had previously been infected with 

100 µL of a diluted overnight culture, the volatile fraction was chromatographically analyzed (10-4 

dilution for E. faecalis and 10-5 for the others bacterial strains). Polytetrafluroethylene/silicone 

screw caps were used to seal the vials, which were then incubated at 37°C for 24 hours. As a 

negative control, the HS of BHI culture medium that had not been infected was also examined.  
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The mass spectrometer used was a Shimadzu GC/MS-QP2010 SE detector with a Shimadzu GC-

2010 Plus chromatograph. The internal standard (IS:-pinene, 98% from Sigma Aldrich) 

methanolic solution, with a concentration of 0.50225 mg/mL, was accurately added to each vial 

after it had been inoculated with a predetermined amount of one of the four bacteria. The volatiles 

were adsorbed into an SPME fiber coated with divinylbenzene/carbonex/polydimethylsiloxane 

(DVB/CAR/PDMS 50/30 m, from Supelco, Bellefonte, USA). To allow the release of the VOCs, 

the vials were condition for 5 minutes at 37 degrees Celsius. Following this timeframe, the SPME 

fiber was exposed for 30 min at 37° C, allowing the volatile chemicals in the headspace to adsorb. 

The same method and the same amount of IS were used to study the volatile portion of the solid 

medium that had not been infected with any of the four bacteria For each bacterium,, the process 

was carried out twice using uninoculated media. As previously described (Marx et al., 2021), 

peaks’ separation was accomplished on a TRB-5MS (30 m × 0.25 mm × 0.25 µm) column 

(Teknokroma, Spain).  

The injector was set at 220 ºC and the manual injections were made in splitless mode.  

The mobile phase consisted of helium (Praxair, Portugal) at a linear speed of 30 cm/s and a total 

flow of 24.4 mL/min. The oven gradient temperature was as follows: 40 ºC/1 min; 2 ºC/min until 

220 ºC (30 min). The ionization source was maintained at 250ºC with ionization energy of 70 

electron volts (eV) and an ionization current of 0.1 kilovolts (kV). All mass spectra were produced 

by electron ionization, and the individual spectra fragments were identified by comparing them to 

the free databases of PubChem and ChemSpider as well as the mass spectra in the NIST SRD-69 

Library (National Institute of Standards and Technology, Gaithersburg, MD, USA).  

For identification reasons, a minimum similarity of 85% was specified. The Kovat retention indices 

were also used to confirm the peak identification. By integrating the reconstructed chromatogram 

from the full scan chromatogram and utilizing the ion base (m/z intensity 100%) for each 

compound, the areas of the chromatographic peaks were identified. Without taking into account the 

response variables, the quantities of the discovered volatiles were determined by dividing the area 

of each base ion peak by the area of the internal standard base ion peak, and then converted to mass 

equivalents using the internal standard concentration. 
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3.2. E-nose setup 

   3.2.1. Apparatus 

         The E-nose used in this study was designed and built (Fig. 1) by the research team, as an all-

in-one olfactory multi-sensor device. The device included a sampling heated unit (~30ºC), where 

up to 4 glass sampling vials (~ 25 mL) could be placed. Each vial was closed with a screw cap 

connected to a plastic gas valve allowing, when open, to collect and deliver the gas headspace to 

the sensing heated unit (~40 ºC) by means of a diaphragm vacuum mini pump. The vacuum was 

monitored using a mini Dial Air Vacuum Pressure Gauge Meter Digital Manometer. The sensing 

unit comprised 9 commercial MOS (Table 3) Figaro gas sensors (S1: TGS 2600 B00; S2: TGS 

2602; S3: TGS 2610 C00; S4: TGS 2611 C00; S5: TGS 2610 D00; S6: TGS 2610 E00; S7: TGS 

2612; S8: TGS 826 A00; TGS 823 C12N; specifications can be found at 

https://www.figarosensor.com/product/sensor/, accessed on 6 October 2022), which are sensitive 

towards alcohols, hydrocarbons, hydrogen, carbon monoxide, ammonia, hydrogen sulfide, among 

other gases. 

 

 

 

 

 

 

 

 

 

 

Figure 4: E-nose-MOS lab-made device comprising: sample heated unit, gas sensor heated unit and data logger interface. 

 

 

 

 

 

https://www.figarosensor.com/product/sensor/
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Table 3: Metal oxide gas sensors (MOS) included on the lab-made E-nose device. 

 

                 Sensor code             Commercial sensor code                              Target gases 
 

S1                           TGS 2600 B00                                     General air contaminants 

S2                           TGS 2602                                             General air contaminants 

S3                           TGS 2610 C00                                     Butane, liquid petroleum gases  

S4                           TGS 2611 C00                                     Methane, natural gas 

               S5                           TGS 2610 D00                                     Butane, liquid petroleum gases (carbon filter) 

S6                           TGS 2611 E00                                     Methane, natural gas (carbon filter)  

S7                           TGS 2612                                            Methane, propane, iso-butane  

S8                           TGS 826 A00                                       Ammonia  

S9                           TGS 823 C12 N                                   Organic solvent vapours 

 

           3.2.2. Sampling and analysis 

       During the first use, the MOS sensors' sensitive components were turned on for 48 hours, 

allowing them to attain the operating sensing temperature (> 200 ° C). All subsequent tests simply 

needed heating the sampling and sensing devices for about 30 minutes, followed by a thorough 

system clean using filtered air pumps. Before every study, a vacuum environment of 0.35 bar was 

also built up to eliminate any potential interfering chemicals that might be present in the external 

air flow and to encourage the cleaning of the sensitive sensor materials. After that, the gas static 

headspace of each vial (~ 25 mL) was collected by suction (vacuum pump) and delivered to the 

sensing unit, allowing the interaction, during 2.5 min, of the VOCs with the 9 MOS sensors, 

generating the respective resistive signal profiles, which were acquired each 4 s. Before pumping 

the sample’s gas headspace, each glass vial, previously inoculated with a single strain and a known 

number of CFUs, was placed inside the sampling unit during 13 min to allow reaching the desired 

temperature (~30 ºC). The cleaning step was promoted during the samples heating time.  
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 Overall two experimental designs were conducted. In the first, in order to evaluate the qualitative 

classification (i.e., discrimination) performance of the E-nose, glass vials (25 mL) with 7 mL of 

BHI agar medium, were inoculated with 100 µL of different diluted solutions obtained from an 

overnight culture of one of the four bacteria under study: dilutions of 10-1 to 10-7 for E. faecalis;  

and dilutions of 10-1 to 10-9 for the other three bacteria. In the second kind of assays, used for 

evaluating the quantitative performance of the E-nose to assess the number of CFUs of a single 

bacterium, sterile glass vials (25 mL) containing 7 mL of BHI agar medium were inoculated with 

100 µL of different diluted solutions of an overnight grown bacteria culture with a known amount 

of CFUs. In this way, the vials were inoculated with dilutions of10-4 to 10- 8 for E. faecalis (from 

1.2 to 1.2 × 106 CFUs), and from10-5 to 10- 9 for the others bacteria (E. coli: 2.2 to 2.2 × 108 CFUs; 

P. aeruginosa: 3.05 to 3.05 × 105 CFUs; and, S. aureus: 1.2 to 1.2 × 106 CFUs). After inoculation, 

the vials were closed with screw caps and incubated at 37ºC for 24h, being only analyzed with the 

E-nose those with visible bacterial growth. 

 

     3.2.3. Data acquisition, feature extraction and signal treatment 

        As previously described (Teixeira et al., 2021), the resistance signals (in ohms) generated due 

to the interaction between the VOCs emitted by each bacterium (E. coli, P. aeruginosa, E. faecalis 

or S. aureus), grown in solid medium, and the nine MOS sensors, were acquired by a data logger 

(Agilent 34970A) and then recorded by the Agilent Bench Link Data Logger software. For each 

analysis and sensor, a total of 37–38 resistance values were recorded (signals acquired during 2.5 

min each 4 s).In total, seven feature extraction methods (Gregersen et al.,1978 Teixeira et al., 2021) 

were applied to obtain a representative E-nose fingerprint for the volatile profile of the compounds 

emitted during the growth of each of the four bacteria under study: last response point (LP) 

acquired; integral of each E-nose signal response curve (INT); maximum resistance response 

(MAX); minimum resistance response (MIN); sum of the response curve (SUM): sum of all the 

resistance signals recorded during the analysis time-period; average of the resistance signal curve 

(MEAN); and, standard deviation (SD) of the response curve. In this context, for each independent 

sample a response database comprising 9 sensors × 7 feature extraction method, is generated, being 

the basis for the statistical analysis. 
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    3.3. Statistical analysis 

          Linear discriminate analysis (LDA) in combination with the simulated annealing (SA) 

algorithm was implemented as a supervised classification multivariate procedure to assess the  

E-nose predictive performance towards the discrimination of the four bacteria evaluated, based on 

the recorded resistance signals generated by the interaction between the sensors and the VOCs  

emitted by each bacterium, grown in solid medium. The classification potential was evaluated by 

determining the sensitivities (i.e., the correct classification percentages) for the leave-one-out 

cross-validation (LOO-CV) variant. Furthermore, for the training set, the classification was also 

checked graphically, by plotting the 2D graphs for the two most significant discriminate functions 

(DFs). Multiple linear regression (MLR) models, based on feature extraction parameters selected 

using the SA algorithm, were also developed. For this, the E-nose signals used were those 

generated when analyzing vials with solid medium, inoculated with pre-established known 

amounts (in CFU) of each of the four studied bacteria. The accuracy of the E-nose-MLRM was 

discussed based on the determination coefficients (R2) and the root-mean-square errors (RMSEs) 

for the training and LOO-CV procedures. The accuracy of developed models was verified against 

the analytical conventional counting plate technique, being evaluated if the slope and intercept 

values of the regression line between the data for both approaches can be statistically assumed 

equal to those of a perfect line (i.e., 1 and 0, respectively) (Roig et al.,2003; Roig et al.,2021). 

All statistical analyses were performed using the packages of the open-source statistical program R 

(R Studio 2021.09.0 Build 351), at a 5% significance level. 
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4. Results and Discussion 

4.1. Evaluation of VOCs emitted during the bacterial growth by HS-SPME-GC-MS 

         The VOCs emitted during the bacterium growth depend on the bacterial metabolism that is 

influenced by the culture media composition and nutrient sources. Thus, many bacterial VOCs 

have been identified and their amounts and profiles greatly depend on the culture medium, 

incubation time, and bacterial species and strains used, being contradictory detection/non-detection 

data reported (Thorn et al., 2021 ; Bos et al.,2014; Tait et al.,2014). Also, background VOCs 

related to the growth media have been reported (Thorn et al., 2021). 

Thus, as a first step, the VOCs emitted by the BHI un-inoculated medium were determined. 

Globally, 15 volatiles were identified (data not shown), being 10 of them also emitted by at least 

one of the four bacteria evaluated, namely two alcohols (1-butanol and 1-nonanol), three pyrazines 

(2-ethyl-6-methyl-pyrazine, 3-ethyl-2,5-dimethylpyrazine and trimethylpyrazine), three terpenes 

(camphene, D-limonene and β-pinene) and two other compounds (2,4-thujadiene and indole). The 

volatiles were identified in both un-inoculated and inoculated (with a 10-4 dilution for E. faecalis 

and 10-5 dilution for the other bacterial strains) solid culture medium (i.e., BHI agar medium), after 

overnight incubation. Table 4 shows the amounts (in ng of each compound as IS equivalents) of 

the VOCs detected during the chromatographic analysis of the volatile head-space generated during 

the overnight growth of the two Gram-positive (E. faecalis and S. aureus) and the two Gram-

negative (E. coli and P. aeruginosa) bacteria, after subtracting the respective amounts quantified in 

the head-space of the un-inoculated culture medium.  
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Table 4: Identified volatile compounds and respective average amounts (ng of compoundas internal 
standard equivalents), for the E. coli, P. aeruginosa, E. faecalis or S. aureus, grown overnight in BHI solid 
medium after incubation with a 10-4 dilution for E. faecalis and 10-5 dilution for the other bacterial strains. 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

                    nd: not detected 

 

 

 
 

 

Volatile compounds 
Gram-negative bacteria Gram-positive bacteria 

E. coli P. aeruginosa E. faecalis S. aureus 

Alcohols 
1-Butanol 33.82 nd 51.68 nd 

1-Nonanol 5.42 nd nd nd 

1-Pentanol 53.96 95.53 869.56 51.09 
3-Chloro-2-methyl-2-pentanol nd nd nd 11.11 

Ethanol nd nd 695.93 nd 

Phenylethyl alcohol 15.46 nd 23.30 nd 

Aldehydes 
Phenol 6.19 nd 6.87 nd 

Alkanes 
Isocetane 5.11 5.21 5.55 5.41 

Alkenes 
(E)-1,4-Undecadiene nd 70.09 nd nd 

1-Undecene nd 32.00 23.71 43.71 

Carboxylic acids 
2-Methylbutanoic acid nd nd 13.63 nd 
Acetic acid nd nd 29.40 nd 

Isovaleric acid nd 43.40 37.17 nd 

Undecane 9.89 11.45 16.63 7.22 

Esters 
Methyl valerate  nd 70.17 nd 114.72 

Ketones 
2-Tridecanone 7.92 nd nd nd 

Phellandrenes 
α-Phellandrene nd nd nd 6.81 

Pyrazines 
2,5-Dimethylpyrazine 38.62 46.01 48.88 46.87 
2-Ethyl-6-methyl-pyrazine 0.52 nd 0.79 nd 

3-Ethyl-2,5-dimethylpyrazine 1.11 nd nd nd 

Trimethylpyrazine nd nd nd 0.59 

Terpenes 
Camphene nd nd nd 1.50 

D-Limonene 0.74 nd nd nd 

β-Pinene 2.56 4.78 4.71 3.08 

Others 
2,4-Thujadiene 0.52 nd 1.47 0.59 

E-7-Dodecen-1-ol acetate nd nd 11.67 nd 
Indole nd 2.97 nd 32.75 

Methyl undecyl ether nd nd 19.82 nd 

https://www.ncbi.nlm.nih.gov/pcsubstance/?term=%22isocetane%22%5bCompleteSynonym%5d%20AND%2020414%5bStandardizedCID%5d
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As can be seen from Table 4, VOCs belonging to 10 chemical classes were identified, being 

alcohols the most abundantly emitted by E. coli, E. faecalis and P. aeruginosa during their growth 

in BHI solid medium, while esters were the predominant volatiles produced by S. aureus grown in 

the same culture medium. It should also be noticed that each bacterium had a specific profile of 

emitted VOCs, both in number of different volatiles identified as in the quantified amounts. In 

total, 17 VOCs were emitted during the growth of E. faecalis, followed by 14 VOCs for E. coli, 13 

VOCs for S. aureus and only 10 VOCs for P. aeruginosa. As can also be inferred, some VOCs 

were specifically produced by only one of the four studied bacteria (E. coli: 1-nonanol, 2-

tridecanone, 3-ethyl-2,5-dimethylpyrazine, and D-limonene; P. aeruginosa: (E)-1,4-undecadiene; 

E. faecalis: ethanol, 2-methylbutanoic acid, acetic acid, and methyl undecyl ether; S. aureus: 3-

chloro-2-methyl-2-pentanol, α-phellandrene, trimethylpyrazine, and camphene), while others were 

common to two or more bacteria, although emitted, in general, in quite different amounts. These 

differences, in the emitted VOCs profiles and respective amounts generated by each bacterium 

growth, confirmed that VOCs can be used as bacterial identification biomarkers. However, it 

should be remarked that, for example, in this study, ethanol was only identified during the growth 

of E. faecalis, although according to the literature this alcohol is usually emitted by the four 

bacteria evaluated, being more abundant for E. coli and S. aureus compared to E. faecalis and P. 

aeruginosa (Bos et al.,2014).Also, indole is usually associated in the literature with E. coli Nieto-

Arribas et al.,2021; Kladsomboon et al.,2018) but, in the present study, it was only identified for P. 

aeruginosa and S. aureus. On the other hand, (E)-1,4-undecadiene was only identified for P. 

aeruginosa, in-line with the literature data, according to which this alkene has been associated with 

Pseudomonas species, allowing its use as a biomarker for this species (Poveda et al.,2021). The 

observed differences may be tentatively attributed to the different bacterium strains, growth media 

and/or incubation conditions (time and temperature) used in the various studies as well as to the 

diverse chromatographic analysis conditions applied. 

 

4.2. Bacterial species discrimination using the E-nose-MOS lab-made device 

      The dataset comprising the resistance signals based feature extraction data generated by the E-

nose sensors (9 sensors × 7 feature extraction variables, for each vial inoculated with different pre-

established CFU of a single bacterium) was used to evaluate the potential application of the lab-

made E-nose for discriminating the four bacteria under study, which were grown in solid agar 

medium (BHI agar).  
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Figure 2 shows that an E-nose-MOS-LDA-SA model could be established, based on 25 feature 

extraction parameters selected by the SA algorithm (S6_LP, S1_INT, S5_INT, S8_INT, S9_INT, 

S1_MAX, S2_MAX, S4_MAX, S6_MAX, S2_MIN, S4_MIN, S5_MIN, S6_MIN, S2_SUM, 

S3_SUM, S5_SUM, S6_SUM, S8_SUM, S9_SUM, S2_MEAN, S5_MEAN, S1_SD, S2_SD, 

S3_SD, and S6_SD), which first two DFs explained 99.4% of the data. The model enabled the full 

discrimination of the four bacteria (sensitivity and specificity of 100%, for the training/original 

grouped data). Moreover, it should be highlighted that, according to the 1st DF, it was possible to 

successfully discriminate the two Gram-positive bacteria (E. faecalis and S. aureus) from the two 

Gram-negative bacteria (E. coli and P. aeruginosa), located in the positive and negative regions, 

respectively. The satisfactory classification performance of each single bacterial species as well as 

between Gram-positive and Gram-negative bacteria, could be attributed to the observed 

differences, in number and respective amount, of the VOCs emitted during the bacterial growth of 

each species (Table 3). As previously pointed out, the VOCs’ profiles established in this study by 

HS-SPME-GC-MS clearly pointed out the existence of volatiles emitted by only one of the four 

bacteria, which would generate different signal responses during the E-nose analysis, justifying the 

discrimination power of this MOS sensor device. It should be highlighted that, although not 

confirmed in the present study, other VOCs have been reported in the literature, as bacterial 

species’ biomarkers, namelyisovaleric acid, or 2-methyl-butanal for S. aureus; 1-undecene, 2,4-

dimethyl-1-heptane, 2-butanone, 4-methyl-quinazoline, hydrogen cyanide, or methyl thiocyanide 

for P. aeruginosa; and, methanol, pentanol, ethyl acetate, or indole for E. coli (Bos et al.,2014). 

In which concerns the predictive performance, an overall correct classification of 90% was 

achieved for the LOO-CV procedure, with a global specificity of 91%. Among the four bacteria, 

only S. aureus was not misclassified (sensitivity of 100%) but had the lowest specificity of (~83%). 

On the contrary, one of the 10 assays with E. coli was misclassified as S. aureus (sensitivity and 

specificity of 90%); one E. faecalis was misclassified as P. aeruginosa (sensitivity of 90% and 

specificity of 100%); and, finally, one sample of P. aeruginosa was incorrectly classified as E. coli 

and another as S. aureus (sensitivity of 80% and specificity of 89%).The misclassifications 

observed, although in a low number (4 in 40 independent bacteria samples) can be attributed to the 

fact that some VOCs are emitted by different bacterial species, which mitigate their use as unique 

chemical fingerprints. Indeed, the VOCs profiles established in this study showed that several  
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volatiles were emitted by two or more of the four bacteria under study, although in different 

amounts (e.g., 1-butanol, 1-pentanol, phenylethyl alcohol, phenol, isocetane, 1-undecene, isovaleric 

acid, undecane, methyl valerate, 2,5-dimethylpyrazine, 2-ethyl-6-methyl-pyrazine, β-pinene, 2,4-

thujadiene or indole). Additionally, a systematic review performed by Bos et al. revealed that, for 

example, the four bacteria produce isopentanol, formaldehyde, methyl mercaptan, and 

trimethylamine, although not observed in the present study. 

Nevertheless, it should be remarked that the discrimination rates (training and LOO-CV) are 

similar to the E-nose classification performances previously reported in the literature, which 

sensitivities varied from 84 to 100%, allowing differentiating/discriminating several bacterial 

species, including E. coli, E. faecalis, P. aeruginosa or S. aureus, among other pathogenic bacteria 

(Green et al.,2014; Bonah et al.,2019; Roda et al.,2016; Carrillo-Gómez et al.,2021). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: E-nose-MOS-LDA-SA model’s discrimination of the four studied Gram-positive and Gram-negative 

bacteria grown in BHI agar medium: (▲) E. faecalis; (♦) S. aureus; (■) E. coli; and, (●) P. aeruginosa. Classification 
model based on 25 feature extraction MOS signal parameters (S6_LP, S1_INT, S5_INT, S8_INT, S9_INT, S1_MAX, 

S2_MAX, S4_MAX, S6_MAX, S2_MIN, S4_MIN, S5_MIN, S6_MIN, S2_SUM, S3_SUM, S5_SUM, S6_SUM, 
S8_SUM, S9_SUM, S2_MEAN, S5_MEAN, S1_SD, S2_SD, S3_SD, and S6_SD). 

 

          4.3. Quantification of bacteria CFUs using the E-nose-MOS lab-made device 

           As previously mentioned, few studies report the use of E-noses as semi-quantitative 

(Carrillo-Gómez et al., 2021; Carrillo-Gómez et al., 2019) or quantitative (Tonezzer et al., 2021; 

Barbri et al., 2009) tools to assess the levels of bacteria. In this sense, the present study also aimed  
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to evaluate the quantitative performance of the lab-made E-nose-MOS for determining the number 

of CFUs in BHI agar medium. For that, MLRM were developed relating the decimal logarithmic of  

the CFUs (log10(CFU)) of each one of the four bacteria as a multiple linear function of the selected 

feature extracted parameters derived from the E-nose-MOS response towards the VOCs emitted by 

each single bacterium grown in solid medium. The predictive models’ performances were 

evaluated based on two goodness of fitting parameters (R2 and RMSE) for the LOO-CV variant. 

Table 2 shows the goodness of fitting data as well as the information regarding the concentration 

range studied and the number of parameters included in each developed MLRM, which were 

selected by the SA algorithm. 

The satisfactory predictive (LOO-CV) values of R2 and RMSE (0.943 ≤ R2 ≤ 0.994 and 0.158 ≤ 

RMSE ≤ 0.602log10 (CFU)), which are confirmed by the visualization of Figure 3, support the use 

of the lab-made E-nose-MOS for quantifying the number of CFU of each one of the four bacteria 

studied. Indeed, based on the RMSE values, the number of CFU sinitially inoculated in BHI agar 

medium, could be estimated after 24 h of incubation (at 37 ºC) with an accuracy as low as 1 to 4 

CFUs, in-line with the accuracies previously reported in the literature for quantitative assessment 

of bacteria in food samples (Tonezzer et al., 2021; Barbri et al.,2009). 

 

 

Table 5: Predictive performance (LOO-CV) of the MLRM developed based on selected feature extraction parameters 

derived from the interaction of the E-nose-MOS sensors with the VOCs emitted by each one of the four bacteria 

studied: E. coli, P. aeruginosa, E. faecalis, and S. aureus (contents in log10(CFU)). 

Microorganism 

Concentratio

n range 

(log10(CFU))
a
 

Selected extracted feature 

parameters
b
 

Goodness of fitting 

parameters
c
 

R
2
 

RMSE 

(log10(CFU)) 

Gram-

negative 

E. coli [0.342, 8.342] S4_LP; S6_SUM; S9_MEAN 0.978 0.436 

P. 

aeruginosa 

[0.079, 6.079] S8_MAX; S9_MAX; S9_SD 0.995 0.174 

Gram-

positive 

E. faecalis [0.079, 8.079] S9_INT; S9_MIN; S8_MEAN; 

S5_SD 

0.943 0.602 

S. aureus [0.484, 5.484] S5_INT; S4_SUM; S4_MEAN 0.994 0.158 

 

aExperimental concentration range in log10(CFU): 9 independent levels for E. coli; 7 independent levels for P. 
aeruginosa; 10 independent levels for E. faecalis; and, 6 independent levels for S. aureus.bFeature extracted 
parameters from the E-nose-MOS response, selected by the SA algorithm and included in each MLRM. bR2: 
determination coefficient; RMSE: root mean square error. 
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Figure 6: E-nose-MOS-MLR-SA model’s predictions (leave-one-out cross-validation) of the decimal logarithmic of 

the colony forming units (CFU) for the studied Gram-positive and Gram-negative bacteria grown in BHI agar medium. 

 

 

The possibility of using the E-nose-MOS as an alternative routine tool for estimating the number of 

CFU grown in a solid medium, was further checked following the methodology proposed by Roig 

and Thomas (Roig et al.,2003) ,which is based on the XPT 90-210 French standard 

(AFNOR,1997). For each bacterium, the decimal logarithmic of the CFU, predicted by the E-nose-

MOS-MLRM were plotted versus the decimal logarithmic of the experimental number of CFU, 

determined by counting plate technique, and the respective parameters (slope and intercept values) 

of the single regression trend line were calculated. The regression analysis allowed verifying if the 

slope and intercept values were statistically equal to one and zero, respectively, which would 

correspond to a perfect linear fit.  
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Table 6 shows the parameters of the single linear regressions (R2, slope and intercept values and 

the respective 95% confidence intervals, CI) for the LOO-CV procedure. The results clearly 

demonstrate that, at 5% significance level, the slope and intercept values were statistically equal to 

the expected theoretic values (i.e., the slope CI included the value 1; and, the intercept CI contained 

the value zero). Thus, it was confirmed that the lab-made E-nose-MOS device combined with 

MLRMs could be implemented as a fast, green and non-invasive tool to estimate the number of 

CFUs of each of the four bacteria studied inoculated separately in BHI agar medium, based on the 

sensors’ response towards the VOCs emitted by each individual strain during a 24h growing-period 

in a solid synthetic medium.  

 

Table 6: Parameters of the single linear regressions established between decimal logarithmic of the CFU predicted 

(LOO-CV) by the E-nose-MOS-MLM and the decimal logarithmic of the CFU experimentally determined by the 

conventional plate counting technique: coefficient of determination (R2); slopes, intercept values and respective 

confidence intervals (CI) at 95%. 

Microorganism R
2
 Slope Slope CI 

Intercept 

(log10(CFU)

) 

Intercept CI
 

(log10(CFU)) 

Gram-

negative 

E. coli 0.978 0.990 [0.857, 

1.124] 

-0.016 [-0.690, 0.658] 

P. 

aeruginosa 

0.995 0.943 [0.863, 

1.022] 

0.082 [-0.211, 0.375] 

Gram-

positive 

E. faecalis 0.943 1.044 [0.834, 

1.254] 

0.167 [-1.060, 0.726] 

S. aureus 0.994 0.998 [0.893, 

1.103] 

0.004 [-0.358, 0.366] 
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5. Conclusions 

 

         The research showed that a self-built electronic nose prototype with metal oxide 

semiconductor sensors may be used as a qualitative-quantitative tool for identifying and keeping 

track of four different bacteria. Gram-positive (E. faecalis and S. aureus) and Gram-negative (E. 

coli and P. aeruginosa) bacteria that had been cultured overnight in solid culture media could be 

distinguished by the proposed apparatus based on their distinct scents. Additionally, the olfactory-

sensor device provided a quick, non-intrusive, and environmentally friendly 

alternative/complementary strategy to traditional analytical approaches by allowing the 

measurement of the number of colony-forming units of each of the four bacteria under study, 

grown separately in BHI solid culture medium. 

Finally, although the impact of environmental factors and the impact resulting from the complexity 

and diversity of real sample matrices must be taken into consideration, the hypothesis of applying 

the proposed sensing-chemometric approach to the analysis of bacterial growth in solid food 

samples is strengthened by the promising and reliable classification and quantitative performances 

achieved with the lab-made electronic nose. 



 
 

38  

 

                         References                                             

 

                                                                  

Abdallah SA, Al-Shatti LA, Alhajraf AF, Al-Hammad N, Al-AwadiB(2013) The detection 

ofFoodborne bacteria on beef: theapplication of the electronic nose. Springerplus 2:687. 

 

Ahmed, A.B.H.; Abbassi, M.S.; Rojo-Bezares, B.; Ruiz-Roldán, L.;Dhahri, R.; Mehri, I.; Sáenz, 

Y.; Hassen(2020), A. Characterizationofpseudomonas aeruginosa isolated from various 

environmentalniches: New sts and occurrence of antibiotic susceptible “highriskclones”. Int. 

Environ. Health Res. 30, 643–652. 

 

Albin JR, Sese JT, Babaan CVR, Poblete DMM, Panganiban RP,Poblete JG (2017) Detection And 

classification of bacteria in common street foods using electronic nose and support vector 

Machine. In: 2017 7th IEEE international conference on control system, computing and 

Engineering (ICCSCE), 24–26 Nov 2017,pp 247–252. 

 

Allen M, Bridle G, Briten E (2015)Life under the Microscope:Children’s Ideas about Microbes. 

Primary Science: n136 p35–38. 

 

Association Française de Normalisation (AFNOR). Recueil desNormes Françaises, Qualité de 
l’Eau, 2nd ed.; AssociationFrançaise de Normalisation (AFNOR): Paris, France, 1997;Volume 1, 
p. 293. 
 
Astantri, P.F.; Prakoso, W.S.A.; Triyana, K.; Untari, T.; Airin,C.M.; Astudi, P. Lab-Made 
Electronic Nose for Fast Detection of Listeria monocytogenes and Bacillus cereus. Vet. Sci.2020, 
7, 20. 
 
Avalos M, van Wezel GP, Raaijmakers JM, Garbeva P (2018)Healthy scents: microbial volatiles 

as new frontier in antibiotic research,Curropinmicrobiol 45:84–91. 

 

Balasubramanian S, Amamcharla J, Panigrahi S, Logue CM,Marchello M, Sherwood JS(2012) 

Investigation of differentgas sensor-based artificial olfactory systems for Screening salmonella 

typhimurium contamination in beef. Food bioprocess technol 5:1206–1219.24 

 

Balasubramanian S, Amamcharla J, Shin J-E (2016) Chapter 7Possibleapplication of Electronic 

nose systems for meat safety: an overview. In: Rodriguez Mendez ML (ed) ElectronicNoses 

andtongues in food science. Academic Press, San Diego, pp 59–71. 

 

Balkwill D, Gwendolyn DR, Reeves RH, Fredrickson JK, WhiteDC, Ringelberg DB, (1997) 

Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and 

description of sphingomonasaromaticivorans sp. Nov subterranean sp. Nov., and 

Sphingomonasstygiasp.Nov.International Journal of Systematic and Evolutionary Microbiology.; 

47(1):191–201. 



 
 

39  

 
 
Barbri, N.E.; Mirhisse, J.; Ionescu, R.; Bari, N.E.; Correig, X.;Bouchikhi, B.; Llobet, E. An 
electronic nose system based on amicro-machined gas sensor array to assess the freshness of 
sardines. Sens. Actuators B Chem.2009, 141(2), 538-543. 
 
Berna Z, Webb CC, Erickson MC (2013) Electronic nose and fast gc for detection of volatiles 

From Escherichia coli O157:H7,Escherichia coli and Salmonella in lettuce. In: International 

Society For Horticultural Science (ISHS), Leuven, Belgium,pp 1255–1261. 

 

Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of electronic nose as a non-invasive 
technique for odor fingerprinting and detection of bacterial foodborne pathogens: a review. J. 
FoodSci. Technol.2020, 57(6), 1977–1990. 
 
Bonah, E.; Huang, X.; Yi, R.; Aheto, J.H.; Osae, R.: Golly, M. Electronic nose classification and 
differentiation of bacterial foodborne pathogens based on support vector machine optimized with 
particle swarm optimization algorithm. J. Food ProcessEng.2019, 42(6), e13236. 
 
Boots, A.W.; Smolinska, A.; Van Berkel, J.J.B.N.; Fijten, R.R.R.;Stobberingh, E.E.; Boumans, 
M.L.L.; Moonen, E.J.; Wouters,E.F.M.; Dallinga, J.W.; Van Schooten, F.J. Identification of 
microorganisms based on headspace analysis of volatile organic compounds by gas 
chromatography-mass spectrometry. J. BreathRes.2014, 8, 027106. 
 
Bordbar, M.M.; Tashkhourian, J.; Tavassoli, A.; Bahramali, E.;Hemmateenej, B. Ultrafast 
detection of infectious bacteria using optoelectronic nose based on metallic nanoparticles. 
Sens.Actuators B Chem.2020, 319, 128262. 
 
Bos, L.D.J.; Sterk, P.J.; Schultz, M.J. Volatile metabolites of pathogens: A systematic review. 
Plos Pathog.2013, 9, e1003311. 
 
Canhoto, O.; Magan, N. Electronic nose technology for the detection of microbial and chemical 
contamination of potable water. Sens. Actuators B Chem.2005, 106, 3–6. 
 
Cao LJ, Chua KS, Chong WK, Lee HP, Gu QM (2003) A comparison of PCA, KPCA and ICA 

For dimensionality reduction in support vector machine. Neurocomputing 55:321–336.25 

 

Capuano, R.; Paba, E.; Mansi, A.; Marcelloni, A.M.; Chiominto,A.; Proietto, A.R.; Zampetti, E.; 
Macagnano, A.; Lvova, L.; Catini,A.; Paolesse, R.; Tranfo, G.; Di Natale, C. Aspergillus species 
discrimination using a gas sensor array. Sensors 2020, 20(14), 4004. 
 
Carrillo, J.; Durán, C. Fast identification of Bacteria for Quality Control of Drinking Water 
through a Static Headspace Sampler Coupled to a Sensory Perception System. Biosensors2019, 9, 
23. 
 
Carrillo-Gómez, J.; Durán-Acevedo, C.; García-Rico, R.Concentration detection of the E. Coli 
bacteria in drinking watertreatment plants through an E-nose and a volatiles extractionsystem 
(VES). Water2019, 11(4), 774. 
 
Carrillo-Gómez, J.K.; Acevedo, C.M.D.; García-Rico, R.O.Detection of the bacteria concentration 
level in pasteurized milk byusing two different artificial multisensory methods. Sens. Bio-
Sens.Res.2021, 33, 100428. 
 



 
 

40  

 

 

Hernández-Cortez,Palma-Martínez, Gonzalez-Avila, guerrero mandujano, and Graciela Castro-

Escarpulli G (2017)Food Poisoning Caused byBacteria (Food Toxins); chp3,37-38. 

 

Croughs, P.D.; Klaassen, C.H.W.; van Rosmalen, J.; Maghdid,D.M.; Boers, S.A.; Hays, J.P.; 

Goessens ,W.H.F.(2018) Unexpected mechanisms of resistance in Dutch Pseudomonas 

aeruginosa isolates collected during 14 years of surveillance. Int. J.Antimicrob. Agents, 52, 407–

410. 

 

Dutta, R.; Das, A.; Stocks, N.G.; Morgan, D. Stochastic resonance-based electronic nose: A novel 
way to classify bacteria. Sens.Actuators B Chem.2006, 115, 17–27. 
 
Elgaali H, Hamilton-Kemp TR, Newman MC, Collins RW, YuK,Archbold DD (2002)Comparison 

of long-chain alcohols andother volatile compounds emitted from food-borne and Related gram 

positive and Gram negative bacteria. J Basic Microbiol Food Sci Techno l42:373–380. 

 

Ezhilan M, Nesakumar N, jayanthbabu K, Srinandan CS,Rayappanjbb (2018) AnElectronic nose 

for royal delicious apple qualityassessment—a tri-layer approach. Food Res Int109:44–51. 

 

Franz, C.M., Holzapfel, W.H., Stiles, M.E., 1999. Enterococci atthe crossroads of food safety? Int. 

J. Food Microbiol. 47:1–24. 

 

Ghrissi, H.; Veloso, A.C.A.; Marx, Í.M.G.; Dias, T.; Peres, A.M. A potentiometric electronic 
tongue as a discrimination tool of water food indicator/contamination bacteria. 
Chemosensors2021, 9(6),143. 
 
Giraffa, G., 2002. Enterococci from foods. FEMS Microbiol. Rev.26, 163–171. 

Giungato P, Di Gilio A, Palmisani J, Marzocca A, MazzoneA,Brattoli M, Giua R, de Gennaro G 

(2018) Synergistic approachesfor odor active compounds monitoring and Identification: state of 

the art, integration, limits and potential ities of analytical andsensorial techniques.  Trac Trends 

Anal Chem107:116–129. 

 

Gobbi E, Falasconi M, Zambotti G, Sberveglieri V, Pulvirenti A,Sberveglieri G (2015) Rapid 

Diagnosis of Enterobacteriaceae invegetable soups by a metal oxide sensor based electronic 

nose.Sens Actuators B Chem 207:1104–1113. 

 

Green GC, Chan ADC, Dan H, Lin M (2011) Using a metal oxide sensor (MOS)-based electronic 

nose for discrimination of bacteria based on individual colonies in suspension.Sens Actuators B 

Chem 152:21–28. 

 

 

 

 



 
 

41  

Green GC, Chan ADC, Lin M (2014) Robust identification of bacteria based on repeated odor 

measurements from individual bacteria colonies. Sens Actuators B Chem 190:16–24. 

 

Gregersen, T. Rapid method for distinction of gram-negative from Gram-positive bacteria. Eur. J. 
Appl. Microbiol. Biotechnol. 1978,5, 123–127. 
 
Hanchi, H.; Mottawea,W.; Sebei, K.; Hammami, R(2018). The Genus Enterococcus: Between 

Probiotic Potential and Safety Concerns—an update. Front. Microbiol.9, 1791. 

Ingledew, W.J., Poole, R.K., 1984. The respiratory chains of Escherichia coli. Microbiol. Rev. 48, 

222–271. 

 

 

Jia W, Liang G, Wang Y, Wang J (2018) Electronic noses as a powerful tool for assessing meat 

quality: a mini review. Food Anal Methods 11:2916–2924. 

 

Jiang H, Chen Q (2014) Development of electronic nose and near infrared spectroscopy analysis 

techniques to monitor the criticaltime in SSF process of feed protein. Sensors 14(10), 19441-

19456.  

 

Kadariya, J., Smith, T.C., Thapaliya, D., 2014. Staphylococcus aureus and staphylococcal food-

borne disease: an ongoing challenge in public health. Biomed Res. Int. 2014, 827965. 

 

Kizil U¨, Genc¸ L, Genc¸ TT, Rahman S, Khaitsa ML (2015) Enose identification of Salmonella 

enterica in poultry manure. Br Poult Sci 56:149–156. 

 

Kladsomboon, S.; Thippakorn, C.; Seesaard, T. Development of organic-inorganic hybrid optical 
gas sensors for the non-invasive monitoring of pathogenic bacteria. Sensors 2018, 18(10), 3189. 
Le Loir, Y., Baron, F., Gautier, M., 2003. Staphylococcus aureus and food poisoning. Genet. Mol. 

Res. GMR 2, 63–76. 

 

Lowy, F.D., 1998. Staphylococcus aureus Infections. N. Engl. J.Med. 339, 520–532. 

Martínez Gila, D.M., gámezgarcía, J., Bellincontro, A., Mencarelli,F., Gómez Ortega,J(2020), 

Fast tool based on electronic nose topredict olive fruit quality after harvest Postharvest Biology 

and Technology, 160, art. No. 111058. 

 

Marx, Í.M.G.; Casal, S.; Rodrigues, N.; Cruz, R.; Peres, F.; Veloso,A.C.A.; Pereira, J.A.; Peres, 
A.M. Impact of fresh olive leavesaddition during the extraction of Arbequina virgin olive oils on 
thephenolic and volatile profiles. Food Chem.2022,393, 133327. 
 
Nieto-Arribas, P.; Seseña, S.; Poveda, J.M.; Chicón, R.; Cabezas,L.; Palop, L. Enterococcus 
populations in artisanal Manchegocheese: Biodiversity, technological and safety aspects. 
FoodMicrobiol.2011, 28(5), 891-899. 
Oprea, S.F., Zervos, M.J., 2007. Enterococcus and its association with foodborne illness, in: 

Simjee, S. (Ed.), Foodborne Diseases,Infectious Disease. Humana Press, Totowa, NJ, pp. 157–

174. 

 



 
 

42  

Pierson, M.; Zink, D.; Smoot, L(2007). Indicator Microorganismsand Microbiological Criteria. In 

Food Microbiology: Fundamentals and frontiers, 3rd ed.; Doyle, M., Beuchat, L., Eds.; ASM 

Press:Washington, DC, USA; pp. 69–85. 

 

Poveda, J. Beneficial effects of microbial volatile organic compounds (mvocs) in plants. Appl. Soil 

Ecol.2021,168, 104118. 

 
Prakoso, W.S.A.; Astantri, P.F.; Triyana, K.; Untari, T.; Airin,C.M.; A studi, P. Rapid Detection 
of Escherichia coli andSalmonella Typhimurium Using Lab-Made Electronic Nose Coupled with 
Chemometric Tools. Int. J. Adv. Sci. Eng. Inf.Technol.2021, 11(4), 1494-1500. 
 
Preti G, Thaler E, Hanson CW, Troy M, Eades J, Gelperin A (2009) Volatile Compounds 

Characteristic of sinus-related bacteria andinfected sinus mucus: analysis by solid-

phaseMicroextractionand gas chromatography–mass spectrometry. JChromatogr B877:2011–

2018. 

 

Robin Michael Statham T, John G (2012) Microbialvolatilecompounds in health and 

diseaseConditions. J BreathRes6:024001. 

 

Roda, B.; Mirasoli, M.; Zattoni, A.; Casale, M.; Oliveri, P.; Bigi,A.; Reschiglian, P.; Simoni, P.; 
Roda, A. A new analytical platformbased on field-flow fractionation and olfactory sensor to 
improvethe detection of viable and non-viable bacteria in food. Anal.Bioanal. Chem.2016, 408, 
7367–7377. 
 
Roig, B.; Thomas, O. Rapid estimation of global sugars by UV photo degradation and UV 
spectrophotometry. Anal. Chim. Acta2003, 477, 325–329. 
Roig, B.; Thomas, O. UV monitoring of sugars during winemaking. Carbohydr. Res.2003, 338, 
79–83. 
 
Romoli R, Papaleo MC, De Pascale D, Tutino ML, Michaud L,logiudice A, Fani R,Bartolucci G 

(2014) GC–MS volatolomicapproach to study the antimicrobial activity of the Antarctic bacterium 

Pseudoalteromonas sp. TB41. Metabolomics10:42–51. 

 

Sberveglieri V, Nunez Carmona E, Pulvirenti A (2015) Detection of microorganism in water and 

different food matrix by electronic nose. In: Mason A, Mukhopadhyay SC, Jayasundera 

KP(eds)Sensing technology: current status and future trends III.Springer, Cham, pp 243–258. 

 

Seesaard, T.; Thippakorn, C.; Kerdcharoenc, T.; Kladsomboon, S.A hybrid electronic nose system 
for discrimination of pathogenic bacteria volatile compounds. Anal. Methods2020, 12, 5671-5683. 
 
Selim KA, El Ghwas DE, Selim RM, Abdelwahab Hassan MI(2017)Microbial volatile in Defense. 

In: Choudhary DK, Sharma AK,Agarwal P, Varma A, Tuteja N (eds) Volatiles and 

foodSecurity:role of volatiles in agro-ecosystems. Springer,Singapore,pp 135–170. 

 

 

 



 
 

43  

Senecal AG, Magnone J, Yeomans W, Powers EM (2002)Rapid detection of pathogenic bacteria 

by volatile organic compound(VOC) analysis. In: Environmental and industrial 

sensing,2002.SPIE, p 11. 

 

Shauloff, N.; Morag, A.; Yaniv, K.; Singh, S.; Malishev, R.;Paz‑Tal, O.; Rokach, L.; Jelinek R. 

Sniffing Bacteria with aCarbon‑Dot Artificial Nose. Nano-Micro Lett.2021, 13, 112. 

 
Shumeiko, V.; Zaken, Y.; Hidas, G.; Paltiel, Y.; Bisker, G.;Shoseyov, O. Peptide-Encapsulated 
Single-Wall Carbon Nanotube Based Near-Infrared Optical Nose for Bacteria Detection and 
Classification. IEEE Sens. J.2022, 22 (7), 6277-6287. 
 
Siripatrawan U (2008) Rapid differentiation between E. Coli and Salmonella typhimurium 

usingMetal oxide sensors integrated with pattern recognition. Sens Actuators B Chem 133:414–

419.23. 

 

Siripatrawan U, Harte BR (2007) Solid phasemicroextraction/gaschromatography/mass 

spectrometry integrated with chemometricsfor detection of Salmonella typhimurium contamination 

in apackaged fresh vegetable. Anal Chim Acta581:63–70. 

 

Siripatrawan U, Harte BR (2015) Data visualization of Salmonellatyphimurium contamination In 

packaged fresh alfalfa sproutsusing a Kohonen network. Talanta 136:128–135. 

 

Stellato, G.; Utter, D.R.; Voorhis, A.; de Angelis, M.; Eren,A.M; Ercolini, D. (2017) A Few 

Pseudomonas Oligo types Dominatein the Meatand Dairy Processing Environment. Front. 

Microbiol, 2,264. 

 

Tait E, Perry JD, Stanforth SP, Dean JR (2014) Use of volatile ecompounds as a diagnostic tool, 

for the detection of pathogenic bacteria. Trac Trends Anal Chem 53:117–125. 

 

Tait, E.; Perry, J.D.; Stanforth, S.P.; Dean, J.R. Identification of volatile organic compounds 
produced by bacteria using HS-SPMEGC-MS. J. Chromatogr. Sci.2014, 52, 363–373. 
 
 

Teixeira, G.G.; Dias, L.G.; Rodrigues, N.; Marx, Í.M.G.; Veloso,A.C.A.; Pereira, J.A.; Peres, 
A.M. Application of a lab-made electronic nose for extra virgin olive oils commercial 
classification according to the perceived fruitiness intensity. Talanta 2021, 226,122122. 
 
Teixeira, G.G.; Peres, A.M.; Estevinho, L.; Geraldes, P.; GarciaCabezon, C.; Martin-Pedrosa, F.; 
Rodriguez-Mendez, M.L.; Dias,L.G. Enose lab made with vacuum sampling: 
quantitativeapplications. Chemosensors 2022,10(7), 261. 
 
 

Teixeira, L. M. And Facklam, R. R., 2003. Enterococcus. In:Manual of Clinical Microbiology 

(Murray, P. R., Baron, E. J.,Jorgensen, J. H., Pfaller, M. A., and Yolker, H. Y., eds.), 8th 

edn,ASM, Washington, DC, pp. 422–429. 

 



 
 

44  

Thorn, R.M.S.; Reynolds, D.M.; Greenman, J. Multivariate analysisof bacterial volatile compound 
profiles for discrimination between selected species and strains in vitro. J. Microbiol. Meth.2011, 
84,258–264. 
 
Tonezzer, M.; Thai, N.X.; Gasperi, F.; Duy, N.V.; Biasioli, F.Quantitative Assessment of Trout 
Fish Spoilage with a Single Nano wire Gas Sensor in a Thermal Gradient. Nanomaterials2021,11, 
1604. 
 
Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C.,2010. An overview of 

foodborne pathogen detection: in the perspective of biosensors. Biotechnol. Adv. 28, 232–254.21. 

 

Wei, Z., Wang, J., Zhang, X., 2013. Monitoring of quality and storage time of unsealed 

pasteurized milk by voltametric electronic tongue. Electrochim Acta 88, 231–239. 

 

Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. 

sensors(Basel, Switzerland)9:5099–5148. 

 

Xue C, Lin Y, Zhao Y, Xitao Z (2012) The identification of Listeria monocytogenes based on the 

electronic nose. In: 2012 International conference on computer science and information processing 

(CSIP), 24–26 Aug 2012. Pp 467–472. 

 

Yongxin Y, Zhao Y (2012) Electronic nose integrated with chemometrics for rapid identification 

of foodborne pathogen. Intechopen. 

 

 

Yu Y-x, Sun X-h, Liu Y, Pan Y-j, Zhao Y (2014) Odor fingerprinting of Listeria monocytogenes 

recognized by SPME–GC–MS ande-nose. Can J Microbiol 61:367–372. 

 

Zhang, G., 2013. Foodborne pathogenic bacteria detection: An evaluationof current and developing 

methods. The Meducator 1 (24). 

 

Zhao, X., Lin, C.-W., Wang, J., Oh, D.H., 2014. Advances in rapid detection methods for foodborne 

pathogens. J. Microbiol. Biotechnol. 24,297–312. 

 

 

 

 

Zhou, B., Xiao, J., Liu, S., Yang, J., Wang, Y., Nie, F., Zhou, Q., Li, Y.,Zhao, G., 2013. Simultaneous 

detection of six food-borne pathogens bymultiplex PCR with a gexp analyzer. Food Control 32, 198–204. 

 

Zohora SE, Khan AM, Hundewale N (2013) Chemical sensors employed in electronic noses: a 

review. In: Meghanathan N,Nagamalai D, Chaki N (eds) Advances in computing and information 

technology. Springer, Berlin, pp 177–18422. 

 

Zscheppank, C.; Wiegand, H.L.; Lenzen, C.; Wingender, J.;Telgheder, U. Investigation of volatile 
metabolites during growth of Escherichia coli and Pseudomonas aeruginosa by needle trap-
GCMS. Anal. Bioanal. Chem.2014, 406, 6617–6628. 



 
 

45  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

          



 
 

46  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of tables
	Colony-forming unit (CFU)

	1. Introduction
	1.1-Objectives

	2-Bibliographic review
	2.1-Microorganisms and foodborne disease
	2.2- Microbiological analysis of food & water
	2.2.1-Enterococcus faecalis
	2.2.2-Staphylococcus aureus
	2.2.3 –Escherichia coli
	2.2.4-Pseudomonas aeruginosa

	2.3-Methods used to detect microorganisms
	2.3.1- Conventional methods
	To identify foodborne bacterial pathogens, present in food, traditional approaches rely on growing microorganisms on agar plates followed by routine biochemical identifications (Mandal et al., 2011). These procedures are often low-cost and str...


	2.4- Electrochemical techniques: E-nose
	2.4.1-Electronic nose instrumentation
	2.4.2-Electronic nose sensor types
	2.4.3-Volatiles associated with the microbial growth
	2.4.4-Application of electronic nose for foodborne pathogen detection
	2.4.4.1- Microorganisms in food matrices detection
	2.4.4.2- Advantages and Potentialities of E-nose for bacterial pathogen detection

	3. Materials and methods
	3.1- Microorganisms growth

	3.1.1 Bacterial strains and inoculum preparation
	3.1.2. Growth conditions
	3.1.3 HS-SPME-GC-MS evaluation of VOCs emitted by each bacteria
	3.2.1. Apparatus
	3.2.2. Sampling and analysis
	3.2.3. Data acquisition, feature extraction and signal treatment

	3.3. Statistical analysis

	4. Results and Discussion
	4.2. Bacterial species discrimination using the E-nose-MOS lab-made device
	4.3. Quantification of bacteria CFUs using the E-nose-MOS lab-made device

	5. Conclusions
	References

