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Abstract

The context of this work is situated in the rapidly evolving sphere of Natural Language

Processing (NLP) within the scope of software engineering, focusing on sentiment analysis

in software repositories. Sentiment analysis, a subfield of NLP, provides a potent method

to parse, understand, and categorize these sentiments expressed in text. By applying

sentiment analysis to software repositories, we can decode developers’ opinions and sen-

timents, providing key insights into team dynamics, project health, and potential areas

of conflict or collaboration. However, the application of sentiment analysis in software

engineering comes with its unique set of challenges. Technical jargon, code-specific am-

biguities, and the brevity of software-related communications demand tailored NLP tools

for effective analysis.

The study unfolds in two primary phases. In the initial phase, we embarked on a

meticulous investigation into the impacts of expanding the training sets of two prominent

sentiment analysis tools, namely, SentiCR and SentiSW. The objective was to delineate

the correlation between the size of the training set and the resulting tool performance,

thereby revealing any potential enhancements in performance.

The subsequent phase of the research encapsulates a practical application of the en-

hanced tools. We employed these tools to categorize discussions drawn from issue tickets

within a varied array of Open-Source projects. These projects span an extensive range,

from relatively small repositories to large, well-established repositories, thus providing a

rich and diverse sampling ground.
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Resumo

O contexto deste trabalho situa-se na esfera em rápida evolução do Processamento de

Linguagem Natural (PLN) no âmbito da engenharia de software, com foco na análise de

sentimentos em repositórios de software. A análise de sentimentos, um subcampo do PLN,

fornece um método poderoso para analisar, compreender e categorizar os sentimentos

expressos em texto. Ao aplicar a análise de sentimentos aos repositórios de software,

podemos decifrar as opiniões e sentimentos dos desenvolvedores, fornecendo informações

importantes sobre a dinâmica da equipe, a saúde do projeto e áreas potenciais de conflito

ou colaboração. No entanto, a aplicação da análise de sentimentos na engenharia de

software apresenta desafios únicos. Jargão técnico, ambiguidades específicas do código

e a breviedade das comunicações relacionadas ao software exigem ferramentas de PLN

personalizadas para uma análise eficaz.

O estudo se desenvolve em duas fases principais. Na fase inicial, embarcamos em uma

investigação meticulosa sobre os impactos da expansão dos conjuntos de treinamento

de duas ferramentas proeminentes de análise de sentimentos, nomeadamente, SentiCR e

SentiSW. O objetivo foi delinear a correlação entre o tamanho do conjunto de treinamento

e o desempenho da ferramenta resultante, revelando assim possíveis aprimoramentos no

desempenho.

A fase subsequente da pesquisa engloba uma aplicação prática das ferramentas apri-

moradas. Utilizamos essas ferramentas para categorizar discussões retiradas de bilhetes

de problemas em uma variedade diversificada de projetos de código aberto. Esses projetos

abrangem uma ampla gama, desde repositórios relativamente pequenos até repositórios

x



grandes e bem estabelecidos, fornecendo assim um campo de amostragem rico e diversifi-

cado.

Palavras-chave: processamento de linguagem natural, análise de sentimentos, engen-

haria de software, mineração de opinião.
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Chapter 1

Introduction

Over the past years, an increasingly amount of attention is being drawn towards capturing

traces of emotions and sentiments experienced and expressed by software developers in

collaborative working enviroments. Such studies explore the social aspects of software

engineering and are becoming an important field of research.

However, as pointed by Rishi [1], due to Open-Source Software (OSS) projects often

rely on geographically distributed team settings and voluntary contributions, traditional

approaches of capturing emotions become a challenging task, as these direct observations

tempers the developers from their natural workflow frequently. Thus, a non-intrusive

approach such as detecting sentiments from software engineering textual artifacts could

be a supplementative alternative to traditional approaches. With this background, we

apply Sentiment Analysis (SA) to several software development ecosystems in this study.

Social coding platforms (e.g., GitHub) provide a high level of transparency by display-

ing a multitude of visible cues on individual and project public profile pages [2] - in par-

ticular, project related activities like the number of contributors, issues, issue comments,

and code reviews. The availability of such materials facilitates to study the sentiments

expressed during development activities.

Ortu et al. [3], highlights the impact of human affectivity in terms of productivity, in

which sentiment analysis and form of correspondence - be it polite or not - can be useful

to monitor and identify the mood of the team. Thus, allowing team leaders to articulate,
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bringing factors that motivate serenity in the community to resolve possible threats to

productivity.

1.1 Problem Statement

Sentiment in the workplace plays an important role in collaborative work. With the rising

trend of distributed development teams, software engineers are frequently using a variety

of social media tools such as mailing lists, forums, software code repositories and issue

tracking tools to monitor and manage their collaborations [4].

As emphasized by Dabbish et al. [5], the leveraging of such technologies in the software

engineering context support some level of social awareness previous only to collocated

teams. As visible information about other developers’ actions influenced perceptions of

their commitment and general interests

Previous research has indicated that user interactions on the aforementioned commu-

nication channels contain notable amounts of emotions. The expression of these senti-

ments could impact the efficiency of the software development process both positively and

negatively [6], [7].

In this study, we put effort towards investigating sentiment distribution in textual

artifacts of GitHub projects.

1.2 Objetives

The main objective of this work is to explore the impact on performance caused by the

expansion of a train dataset between two sentiment analysis tools. This objective is

accomplished mainly by means of experimentation with different train data to derive a

variation for the selected models and improve accuracy.

In addition to the main objective, a secondary objective is the retrieval and analysis

of issues from source code repositories (GitHub) towards extracting sentiment polarity

within open source projects and provide emotional insights about projects. The datasets
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will be extracted from a sample of OSS projects hosted on GitHub. The data from all sets

will be synthesised to establish if correlation points exist between the research questions.

1.3 Structure of the document

This document is structured into 5 chapters, starting with this introduction, where the

context and objectives are laid down. Chapter 2 follows, with a review of concepts and

related bibliography. Chapter 3 details the main methodology process developed in this

dissertation. Chapter 4 comes next, with an exhibition of the results gathered and dis-

cusses research findings. Finally, it ends in Chapter 5, with conclusions, final remarks,

additional findings, and future work.
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Chapter 2

Context and Technologies

This chapter aims to describe the current most relevant technologies, tools and methods

related to the main topics of this project. It begins by laying down the scientific areas

of our study: Natural Language Processing, Machine Learning, Sentiment Analysis and

Opinion Mining. Then describes the two objects of our research: SentiCR and SentiSW,

as well as the Evaluation and Performance metrics used to measure the performance.

2.1 Natural Language Processing

Natural Language Processing (NLP) is an interdisciplinary field with connections to com-

puter science, linguistics, and artificial intelligence. It is interested in the interactions

between human (natural) languages and computers and serves as a building block for

applications of speech recognition and synthesis, machine translation, Optical Character

Recognition (OCR), Sentiment Analysis (SA), question answering, and dialogue systems

[8].

The term NLP involves a wide set of techniques to address automated generation,

manipulation, and analysis of written and spoken human language [9]. It is a way for

computers to analyze, understand, and derive meaning from human language in a smart

and useful way [10]. In the literature of [11], the author suggests the following definition:
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“Natural Language Processing is a theoretically motivated range of computational tech-

niques for analyzing and representing naturally occurring texts at one or more levels of

linguistic analysis for the purpose of achieving human-like language processing for a range

of tasks or applications.”

But unlike the traditional ways of humans interacting with computers via highly struc-

tured programming languages, the task to convert information stored in natural language

to a machine-understandable format becomes challenging [10]. As introduced by the au-

thors, human speech is not precise, it may be ambiguous and the linguistic structure may

depend on different complex variables, including regional dialects, slang, and social con-

text. Difficulties arise when longer sentences that are highly ambiguous and have complex

grammar are to be processed [12].

To overcome these challenges, there have been ongoing research efforts on developing

NLP systems varying in employed techniques and purposes. The processing tasks per-

formed by an NLP consist of several layers ranging from the phonology and morphology

of elements to the lexical, syntactic, and semantic aspects of a text, to the discourse and

pragmatic properties of natural language text [12].

2.2 Machine Learning

Machine learning is a multidisciplinary field that involves computer science, engineering,

and statistics. Its primary goal is to detect meaningful patterns in data and extract useful

information. Machine learning is necessary when a programmer cannot provide an explicit

and detailed specification of the execution process due to the complexity of patterns to

be studied. The logic behind machine learning enables models to learn and improve

continuously, making them adaptable to complex problems [13]. The field attempts to

replicate humans’ ability to recognize patterns using computation, and it is particularly

useful when the dataset is large or complex and requires automation for reproducible and

time-efficient analysis [14].

The learning algorithms can be categorized into four major types, such as Supervised,
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Unsupervised, Semi-Supervised, and Reinforcement Learning (Figure 2.1). In the follow-

ing, we briefly discuss each type of learning technique with the scope of their applicability

to solve real-world problems.

Figure 2.1: Machine Learning categories

2.2.1 Supervised Learning

Supervised Learning (SL) is a branch of machine learning where a model is tutored using a

dataset enriched with pre-existing labels, with the aim of enabling the model to generate

forecasts on novel, unseen data. This pre-annotated dataset encompasses input data

(termed as features) and the corresponding output data (referred to as labels or targets).

The learning process during the model’s training phase involves creating an association

between the input data and their respective output data. This is accomplished by adopting

an iterative approach to minimize the discrepancy between the model’s predicted output

and the actual output. Once the model is adequately trained, it acquires the capability

to provide predictions on unseen input data (Refer to Figure 2.2).

The methodology of SL can be demarcated into two distinct subcategories, namely,

classification and regression. The classification paradigm involves training the model

to predict a categorical label for each data point in the input set. On the other hand,

regression involves training the model to predict a continuous value corresponding to each

data point in the input set.

6



To illustrate, classification problems are exemplified by tasks such as discerning be-

tween spam and non-spam emails or categorizing different objects within an image. Con-

versely, regression problems can be seen in applications like predicting stock market fluc-

tuations or forecasting meteorological changes.

Figure 2.2: Supervised Learning. Source: [15]

2.2.2 Unsupervised Learning

Unsupervised Learning (UL) is a machine learning technique that utilizes unlabeled data

to train the algorithm without explicit target outputs or environmental evaluations as-

sociated with each input. This technique aims to represent input patterns in a way that

reflects the statistical structure of the overall collection of input patterns, based on prior

biases as to what aspects of the structure of the input should be captured in the output

[16]. By analyzing input data, the algorithm can mine out rules and regulations and

detect relevant patterns without the need for labeled information. Unsupervised learning

includes clustering and association models, such as the K-means algorithm and Principal

Component Analysis (PCA), which identify common aspects in the same group(s) with-

out a specific requirement of labeled information [17]. Overall, unsupervised learning is

a powerful tool for discovering meaningful patterns and structures in unlabeled data sets

(Figure 2.3).
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Figure 2.3: Unsupervised Learning. Source: [15]

2.2.3 Semi-Supervised Learning

Semi-Supervised Learning (SSL) is a method that combines supervised and unsupervised

learning to avoid their limitations and take advantage of their benefits [18]. While su-

pervised learning requires a substantial amount of labeled training data, which can be

expensive and time-consuming to acquire, unsupervised learning can cluster data based

on similarity without relying on labeled data. However, this approach is not optimal and

it cannot accurately cluster unknown data [19].

To address these challenges, the goal of SSL is to use the labeled data to learn a

predictive function for the unlabeled data. To achieve this, assumptions for smoothness,

cluster and manifold are made so that label information can be delivered to unlabeled

samples [18]. By using only a few labeled patterns as training data, SSL can build a model

that can generalize to the rest of the patterns treated as test data. SSL can be further

categorized into two types, namely, semi-supervised classification and semi-supervised

clustering [19].

This approach is particularly useful in scenarios where it is difficult or expensive to

access or measure the target variable for all participants. For instance, longitudinal studies

that require several years of follow-up to obtain a reliable disease label can be impractical

or prohibitively expensive. SSL can be used in such cases to model existing labeled data,
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as well as unlabeled data, in order to maximize the amount of input data and make the

most of finite resources and time [20].

2.2.4 Reinforcement Learning

Reinforcement Learning (RL) is a subdomain of Artificial Intelligence (AI) and a distinct

approach to machine learning that focuses on goal-oriented algorithms [21], [22]. This

methodology involves training an agent, an entity that interacts with its environment, to

complete a specific task without requiring separate training and inference phases [22]. RL

is built on a trial-and-error strategy, where the agent learns from past interactions with

the environment and refines its behavior to achieve desired objectives [23]. RL algorithms

fundamentally rely on reward functions, which serve as feedback to the learning algorithm

regarding the consequences of the recently executed action [24].

The primary goal of an RL agent is to identify an optimal policy that associates states

with appropriate actions, maximizing the rewards obtained from these actions [23]. These

rewards, or reinforcements, serve as quantitative assessments of the agent’s most recent

actions and are represented by positive or negative values [22]. The environment can be

modeled as a Markovian Decision Process (MDP) and is typically represented by a 4-tuple

<S, A, P, R>, consisting of the state set (S), action set (A), state transition probability

matrix (P), and reward function (R) [24]. The Figure 2.4 illustrates the action-reward

feedback loop of a generic RL model.

Figure 2.4: Reinforcement Learning

There are two primary approaches to RL problems: model-based and model-free.

Model-based approaches involve the agent learning the environment model and refining
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its policy to achieve optimality, while model-free approaches focus on policy improvement

without acquiring knowledge about the environment model. Model-based methods tend

to learn more rapidly than model-free approaches due to their ability to reuse stored

information, but they are less prevalent owing to their increased storage requirements

and dependency on the initial environment model’s accuracy [24].

In recent years, RL applications have experienced growing popularity in diverse do-

mains such as robotics, Internet of Things (IoT), power management, financial trading,

and telecommunications. Due to its iterative trial-and-error approach, RL is considered

to be very similar to human learning, making it an effective tool for addressing problems

in which the operating environment is either unknown or subject to change [22].

2.3 Mining Software Repositories

Mining Software Repositories (MSR) is a field of research that focuses on analyzing data

generated throughout the software development process to comprehend valuable and prac-

tical insights for software engineering [25]. The information sources analyzed by MSR

include source code repositories, version control systems metadata, issue reports, bug

tracking systems, and project discussion lists [26].

MSR contributes significantly to understanding the past, present, and predicting the

future characteristics of software maintenance [26]. Researchers use historical and valuable

information stored in software repositories to monitor complex projects and products

without interfering with development activities. For example, the information can assist

developers in understanding the rationale for the current structure of the software system

[26].

One of the most used sources of information in MSR is version control systems such

as Git, as they provide precise information about the source code, its evolution, and the

developers of the software [25]. However, extracting information from Git repositories can

be difficult due to the encapsulation of all Git features in the available tools. As a result,

developers may have to write long and complex implementations to extract even simple

10



data from a Git repository [25].

Despite the challenges, the rich data in software repositories has enabled data-driven

studies of social systems, including those in areas like computational social science, social

network analysis, organizational theory, and management science. The commit history

of developers allows for the construction of social networks that can proxy collaboration,

coordination, or communication structures in software teams. Furthermore, the detailed

record of file modifications in the commit log of Git repositories enables more advanced

network reconstruction techniques that can provide insights beyond more coarse-grained

definitions [27].

2.4 Sentiment Analysis

SA, also known as opinion mining, is a computational approach to studying individuals’

sentiments, emotions, evaluations, and attitudes towards various entities such as products,

services, organizations, individuals, events, and topics, among others [28]–[30]. The field

has grown rapidly with the expansion of social media platforms, which generate an un-

precedented volume of opinionated data in digital formats [28], [29]. Sentiment analysis is

a prominent research area within NLP and has applications in various disciplines, includ-

ing management, marketing, finance, political science, communications, health science,

and history [28].

Despite its importance, challenges in sentiment analysis arise from the informal text

generated by users on social media platforms, including spelling errors, new slang, or

abbreviations, and incorrect grammar usage. Other challenges include the scarcity of

resources, such as large annotated datasets or resources in languages other than English,

the evolving dictionary of web slang, and the difficulty in detecting sarcasm and irony.

Furthermore, identifying multiple sentiments in a single sentence and determining polarity

from comparative sentences also present significant challenges [29].
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2.4.1 Levels of Sentiment Analysis

Sentiment analysis has been studied extensively across multiple levels. However, identi-

fying sentiments and opinions is primarily done at three levels of granularity: document,

sentence, or aspect level [28]. The levels of sentiment analysis are illustrated in Figure

2.5, with the first two levels being particularly interesting and highly challenging. The

third level is even more difficult as it involves a detailed investigation [31].

Figure 2.5: SA levels. Source:

A brief presentation of each level is as follows.

Document-Level

Document level sentiment classification involves determining the overall sentiment con-

veyed by an entire document or record, which can be a binary classification task (positive

or negative), a regression task (e.g., inferring a rating score), or a multi-class classifica-

tion task. The Bag-of-Words (BoW) model is traditionally employed to generate text

representations in NLP and text mining, transforming a document into a numeric feature

vector with a fixed length [28].
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This level requires a deep comprehension of the intricate relationships between words

and phrases and the full context of semantic information [29]. This classification works

best when a document is authored by a single person and focuses on a single entity.

However, conflicting sentiments within the document can impact the final decision [30].

Sentence-Level

At this level, the objective is to categorize individual sentences within a document based on

whether they express positive, negative, or neutral opinions [28], [30]. To accomplish this,

a preliminary step of subjectivity classification may be performed to determine whether a

sentence is opinionated or not. Neural networks are commonly used to generate sentence

representations for classification, and additional syntactic and semantic information may

be considered to enhance accuracy [28]. Essentially, sentence-level sentiment analysis

dissects documents or paragraphs into individual sentences to determine the polarity of

each sentence [29]. To do this, sentences are classified as either objective, expressing

factual information, or subjective, expressing opinions and views [30].

Aspect-Level

Aspect-level sentiment analysis, also known as aspect-based sentiment analysis, is a de-

tailed approach that focuses on extracting and summarizing opinions expressed about

specific aspects or features of entities, referred to as targets. This process involves several

subtasks, including aspect extraction, entity extraction, and aspect sentiment classifica-

tion [28].

In contrast to document and sentence level sentiment classification, aspect level clas-

sification considers both sentiment and target information [28]. This level of sentiment

analysis identifies opinions about specific features of entities, which can be explicit or

implicit, rather than the overall sentiment of sentences or paragraphs [29], [30].

This task is challenging due to the complexity of modeling the semantic relationships

between the target and its surrounding context words [28]. Thus, making this level more
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challenging than the other two. Neural network-based learning models are utilized to

capture the semantic connections between the target word and the context words [28].

2.4.2 Sentiment Analysis Approaches

The existing approaches for sentiment analysis can be categorized based on various points

of view (e.g. a view of the text, level of detail of text analysis). However, most literature

usually divides sentiment analysis approaches into three categories: Machine Learning

approaches, Lexicon-Based approaches, and Hybrid approaches. Machine learning is the

most widely-used approach. It relies on machine learning algorithms and linguistic fea-

tures to perform sentiment classification. The lexicon-based approach uses a sentiment

lexicon which represents a list of words and phrases that are commonly used to express

positive or negative sentiments. On the other hand, hybrid approaches combine machine

learning and lexicon-based approaches to improve sentiment analysis performance. Figure

2.6 provides the outline of the sentiment analysis approaches.

Figure 2.6: Sentiment Analysis techniques.
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Lexicon-based

This approach utilizes a sentiment lexicon, which is a list of words and phrases commonly

used to express positive or negative sentiments. The lexicon-based approach is practi-

cal for sentence and feature-level sentiment analysis and does not require training data.

However, it is challenged by domain dependency and dropped performance compared to

machine learning when provided with large training datasets. Two major techniques for

creating and annotating sentiment lexicons include the dictionary-based approach and

the corpus-based approach.

Machine-Learning based

This approach involves classifying sentiment polarity using training and testing datasets.

Machine learning can be further divided into supervised learning, unsupervised learning,

semi-supervised learning, and reinforcement learning. Although machine learning can

provide better classification results, it often requires large training datasets to perform

well.

Hybrid based

This approach combines the benefits of both machine learning and lexicon-based ap-

proaches to achieve higher accuracy and stability. By using sentiment lexicons as input

features for the sentiment classifier, the hybrid approach can inherit the strengths of both

methods.

2.4.3 SentiCR

SentiCR is a supervised sentiment analysis tool designed particularly for code review

[32]. It uses a sentiment oracle that leverages a feature vector generated by computing

Term Frequency-Inverse Document Frequency (TF-IDF) for a BoW extracted from the

input text. SentiCR provides a suite of data preprocessing steps, these include a two-stage

negation preprocessing approach, expansion of contractions, special handling of emoticons,
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word stemming, and removal of stop-words, code snippets and URLs. The training process

performs a 10-fold cross-validation to validate eight supervised algorithms. In which, the

distributed version implements Grading Boosting Tree (GBT) as its default algorithm as

it displayed the highest precision, recall and accuracy amongst all.

The tool is a binary classifier, where given a text in input, SentiCR issues either −1 for

sentences predicted as negative, or 0 for sentences predicted as Non-Negative. As opposed

to SentiSW, SentiCR does not distinguish between positive and neutral sentiment.

2.4.4 SentiSW

SentiSW is an entity-level sentiment analysis tool specific for Software Engineering (SE)

domain created by [33]. It aims at classifying issue comments into three categories neg-

ative, positive, and neutral. The tool also returns the target subject along with the

sentiment, which helps in identifying the entities that invoke a particular sentiment. The

authors have experimented with two distinct feature extraction methods and 6 supervised

classification algorithms. Identically, the experimental evaluation results yielded a con-

figuration analogous to SentiCR, the combination of TF-IDF and GBT performed best

among all others.

The models were trained on a manually labeled dataset containing 3,000 issue com-

ments and the authors reported a 68% mean precision, 63% mean recall, and 77% accu-

racy, which outperforms other existing tools.

2.5 Feature Extraction

An important step in the machine learning is effective feature extraction. In order to

translate natural language processing problems into machine learning problems, the first

step is to convert natural language into information such as vectors that computers can

recognize.
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2.5.1 Bag-of-Words

The BoW model is a widely used and effective method for document representation,

transforming variable-length input data into fixed-size representations by quantizing it

through a codebook [34]. The simplicity and efficiency of the BoW model have contributed

to its popularity, as it has the capability to achieve high accuracy in various applications,

such as sentiment classification [35]. The BoW model maps a document into a vector as

v = [x1, x2,...,xn], with xi denoting the occurrence of the ith word in basic terms, which

are usually the top n highest-frequency words in the dataset [36].

However, the BoW model has several limitations. Firstly, it only considers the pres-

ence or absence of words, ignoring the influence of other words in the document and

disregarding contextual information [36]. This issue leads to difficulties in effectively

capturing the semantics of documents, as semantically similar documents with different

word usages might be mapped to divergent vectors under the BoW model [37]. More-

over, the BoW model overlooks long-range word ordering, causing sentences with different

meanings but using the same words to have similar representations [35].

The model also struggles with handling negation, as it fails to recognize the intended

negative sentiment in sentences where positive words are negated [35]. Furthermore, the

BoW model has a limited understanding of word semantics, as words are treated as atomic

units, resulting in sparse “one-hot” vectors and no notion of similarity between words [35].

Despite these limitations, the BoW model has been widely adopted in various applica-

tions, and it serves as a fundamental starting point for more advanced text representation

methods (Figure 2.7).

Figure 2.7: Bag-of-Words
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2.5.2 Word2Vec

Word2Vec, developed by [38], is a neural network-based algorithm developed for gener-

ating word embeddings, which are low-dimensional vector representations of words that

encode their semantic features in an unsupervised manner using large text corpora [39].

This method maps each word to a fixed-length vector in an n-dimensional vector space,

where similar words are positioned close to each other [39]. It is designed to capture

the contextual relationships between words in a sentence or document without human

intervention, enabling the efficient processing of text data for various natural language

processing and machine learning tasks [40].

The Word2Vec algorithm comprises two primary approaches: Continuous Bag of

Words (CBOW) and Skip-Gram (SG), which differ in their input-output configurations

[41], [42]. Figure 2.8 illustrates the architecture of both CBOW and SG algorithms,

highlighting their unique designs and processes.

Figure 2.8: Word2Vec models: The CBOW architecture predicts the current word based
on the context, and the Skip-gram predicts surrounding words given the current word.

In the CBOW approach, the algorithm takes a set of word inputs and attempts to pre-

dict the context in which these words appear [41]. This method focuses on understanding

the contextual relationships between words, with the neural network learning to generate

word embeddings by predicting the surrounding words based on the given input words.

18



On the other hand, the SG approach reverses the CBOW process, taking context inputs

and predicting the words that fit within that context [41]. This method is particularly

effective in capturing the semantic relationships between words, as the neural network

learns to generate word embeddings by predicting target words based on their surrounding

context. Both CBOW and SG utilize backpropagation and stochastic gradient descent

methods to learn word vectors, featuring a single hidden layer in their neural network

architectures [40].

The algorithm maintains the contextual integrity of sentences and the semantic simi-

larity between words, where related words are represented near each other in the vector

space [39], [42]. By evaluating the cosine similarity between word vectors, the model is ca-

pable of discerning semantic relationships, with similar words having similar vectors and

dissimilar words having diverse vectors. Word2Vec is advantageous due to its simplicity,

scalability, and speed, providing good results for both small and large datasets [40].

2.5.3 Doc2Vec

Doc2Vec, an extension of the Word2Vec model, was introduced by [43] to improve the

learning of embeddings from word-to-word sequences and is applicable to word n-grams,

sentences, paragraphs, or documents [44]. The model aims to represent documents as

fixed-length, low-dimensional vectors and is structured as a three-layer neural network,

consisting of an input layer, a hidden layer, and an output layer [44], [45]. In contrast to

Word2Vec, Doc2Vec requires documents to be labeled, as it associates words with their

corresponding labels, rather than focusing on relationships between words [46].

Doc2Vec features two distinct algorithms: DM and DBoW, which correspond to the

and SG algorithms in Word2Vec [44]. The DBoW approach operates similarly to SG, with

the input being substituted by a unique token representing the document, while word order

within the document is disregarded [45]. On the other hand, the DM algorithm functions

in a manner akin to DBoW, introducing an extra document token as input in addition

to multiple target words. However, unlike DBoW, these vectors are concatenated rather
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than summed [45].

Figure 2.9 shows the two architectures, the first is DM, and it will add a paragraph id

to be trained with word vectors. This paragraph id contains information that is missing

from the current word. The latter, shows ways to input into the DBoW model is a

paragraph id, predicting randomly sampled words in this document.

Figure 2.9: Doc2Vec models: DM and DBoW.

Through the training process, Doc2Vec generates document vectors for each document,

with each document vector corresponding to a column in the document vector matrix D

[47]. Additionally, each word vector is represented by a column in the word vector matrix

W [47]. Once adequately trained, the distributed representation of each document in the

corpus can be obtained, which can be utilized for subsequent text mining tasks such as
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clustering or classification [48].

2.5.4 TF-IDF

TF-IDF is a widely used method in information retrieval text mining, and natural lan-

guage processing to quantify the importance of words within a textual corpus [49], [50]. It

is a statistical measure that reflects the significance of a word or phrase to a document or

category in a collection of documents or corpora, with the primary idea being that words

or phrases with a high frequency in one document and low frequency in others should be

considered more important as they are more useful for classification purposes [50], [51].

TF-IDF is based on the bag-of-words scheme, which represents a document as a collection

of words used within it [48]. This approach is often employed in information retrieval and

text mining to evaluate the importance of a linguistic term, such as a unigram or bigram

[52].

The TF-IDF algorithm comprises two components: Term Frequency (TF) and Inverse

Document Frequency (IDF) [48], [50]. Term Frequency represents the frequency of a

word’s occurrence in a document, calculated as the number of times the word appears in

a document divided by the total number of words in the document [50], [52].

Calculate Term Frequency (TF) TF is computed as the ratio of the frequency of a

specific term in a document to the total number of terms in the document. The

formula for TF is: TF (t, d) = f(t,d)
n(d)

Where f(t, d) is the frequency of term t in document d and n(d) is the total number

of terms in document d.

In contrast, inverse document frequency measures the general importance of a term

across an entire corpus [50], [51]. The importance of a term increases with its frequency in

the text, but is offset by the frequency of the term in the domain of interest, thereby scaling

down frequent words like “the” or “for” [52]. It is computed by taking the logarithm of

the inverse of the proportion of documents in the corpus containing the term, where N
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is the total number of documents and df(t) is the number of documents containing the

word i [50].

Calculate Inverse Document Frequency (IDF) IDF is calculated as the logarithm

of the ratio of the total number of documents in the corpus to the number of

documents containing the term ’t’. The formula for IDF is: IDF (t) = log( N
df(t)

)

Where N is the total number of documents in the corpus and df(t) is the number of

documents containing the term t.

The TF-IDF weight, a product of TF and IDF values, is used to evaluate the impor-

tance of a linguistic term in a studied corpus [50], [52]. Higher weights signify that a word

carries greater significance within the corpus, which is particularly useful for document

classification [48], [50].

Compute the TF-IDF weight The TF-IDF weight for a term ’t’ in a document ’d’

is calculated by multiplying the term frequency and inverse document frequency

values. The formula for the TF-IDF weight is: TF −IDF (t, d) = TF (t, d)×IDF (t)

Where TF (t, d) is the term frequency of term t in document d and IDF (t) is the

inverse document frequency of term t.

Statistical methods like machine learning and deep learning require text data to be

transformed into numerical values before analysis can be performed [50]. TF-IDF serves

this purpose by converting words into a numeric format that can represent the data as

a whole [53]. The outcome of the TF-IDF process is a matrix composed of rows and

columns, with data represented in rows and features in columns [53]. This matrix can

then be utilized as input for various machine learning and deep learning algorithms to

perform tasks such as document classification and sentiment analysis [50], [52].

2.6 Evaluation and Performance metrics

To evaluate the performance or quality of a Machine Learning model, different metrics

of performance can be applied in order to determine how well the model generalizes on
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new data. As such, the following metrics were used to quantify the performance of the

tools:accuracy, precision, recall/sensitivity, specificity, f1-score, Cohen Kappa Score, ROC

curve.

In the case of binary classification, a given set of data is categorized into 2 groups

based on a rule. For each testing subject, 4 scenarios are possible, and the basis of

precision, recall, and F1-Score comes from the concepts of True Positive, True Negative,

False Positive, False Negative. The following definition explores more about this concept:

True Positive (TP) refers to the positive instances that were correctly predicted by the

classifier.

True Negative (TN) refers to the negative instances that were correctly predicted by

the classifier.

False Positive (FP) represent the positive instances that were incorrectly labeled as

negative.

False Negative (FN) represent the positive instances that were incorrectly labeled as

negative.

Accuracy

Accuracy is a metric that informs the ratio between the number of correctly classified

predictions made by the model divided by the total number predictions. In other words,

it measures the performance of a machine learning model by determining the proportion

of correct predictions made by the model out of the total predictions on a given dataset.

The accuracy is defined by the formula: Acc = TP+TN
FP+FN+TP+TN

.

Precision

Given a set of results out of a processed document, Precision is the percentage value

indicating how many of those results are correct (correct being based on the expectations

of a certain application). It is given by the formula: P = TP
TP+FP

23



Recall/Sensitivity

Shows the proportion of correct positive predictions out of all positives a model could

have made. Unlike precision, recall provides an indication of missed positive predictions.

R = TP
TP+FN

F1-Score

The F1 score can be interpreted as a harmonic mean of the precision and recall values

of a system., where an F1 score reaches its best value at 1 and worst score at 0. It is a

metric that becomes especially valuable when working on an imbalanced data set. F1 =

2 ∗ Precision∗Recall
Precision+Recall

Specificity

Specificity is the probability that the test will give a negative result. That is, the test

measures the proportion of results without a given characteristic, indicating the power of

the test to identify individuals who do not have the trait.

ROC curve

Receiver Operator Characteristic (ROC) curves were introduced in machine learning as a

powerful tool for the evaluation of classification models, illustrating how well the classifier

algorithm works by summarizing the tradeoff between the True Positive Rate (TPR) and

the False Positive Rate (FPR) for a predictive model using different probability thresholds.

A ranking model can be represented by a point in ROC space and, to obtain a point in

this space, a classification model and the rate of true and false positives are calculated.

The x-axis, or independent variable, is represented by the FPR and the y-axis, depen-

dent variable, by the TPR. Each point in ROC space is a TP/FP data pair. In Figure

2.10, the diagonal line connecting the dot (0, 0) and the dot (1, 1) denotes the perfor-

mance of the random classifier. The ROC curves in the area with the upper left corner

(0, 1) indicate good levels of performance, while the ROC curves in the area with the
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lower right corner (1,0) indicate poor levels of performance. In this way, a point of per-

fect performance would be the point (0, 1) indicating 0% false positives and 100% true

positives.

Figure 2.10: ROC Curve

Cohen Kappa Score

Cohen’s Kappa is a statistical measure that is used to assess the agreement between two or

more raters, who are categorizing the same items into two or more classes. This measure

is commonly used in inter-rater reliability studies, where the goal is to assess how well

the raters agree on a given classification task.

Cohen’s Kappa is computed as the difference between the observed agreement between

the raters and the expected agreement if they were randomly guessing, divided by the

maximum possible agreement that could be achieved. The resulting score ranges from -1

to 1, with negative values indicating no agreement and positive values indicating some

degree of agreement beyond chance.

Cohen’s Kappa can be used to assess the agreement between two raters or multi-

ple raters, and it can be applied to nominal or ordinal data. It has several advantages

over simpler measures of agreement, such as percentage agreement, because it takes into

account the possibility of chance agreement.

In addition to its use in inter-rater reliability studies, Cohen’s Kappa is also used in

machine learning and natural language processing to evaluate the performance of classi-

fiers. In this context, Cohen’s Kappa is used to assess the agreement between the predicted
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labels and the true labels for a given set of examples.

2.7 Related Work

Research in the field of sentiment analysis in software engineering context has received

growing attention over the last years [54]. The poor performance of off-the-shelf tools in

the SE context has led to an increase in the interest for domain-specific SA tools, few

attempts have been made by researchers publishing their works regarding this topics [55].

The use of NLP methods in order to analyze the underlying sentiments contained

in texts written by developers as introduced in [56] has been verified by their work by

investigating the expression of emotions of developers in GitHub issues. The technique

has also been employed in other aspects of SE such as analyzing the association between

developers’ sentiment in commit messages and build breakage in continuous integration

servers [57]. They found that negative sentiment both affects and is affected by the result

of the build process.

A case study in the Gentoo community [55] revealed emotional preconditions preceding

a collaborator’s departure and thus, offered a Bayesian classifier capable of monitoring

discussions and predicting the likelyhood of contributors leaving the project.

For their part, the authors of [58] compared three SE domain-specific classifiers against

a baseline approach represented by an off-the-shelf tool in four publicly available datasets

to assess their performance and reliability. SentiCR was a subject of this research, and

their findings supports the experimentation of our first study, suggesting that the cus-

tomization of sentiment analysis tools to the software development domain does improve

the classification accuracy.

In contrast, the “negative results” paper of [59], the authors shared their experience

with building a software library recommender that leverages sentiment analysis in devel-

opers’ opinions mined from Stack Overflow. The researchers carried out an investigation

of the accuracy of three sentiment analysis tools to classify the polarity of SE related

texts. The study shows that none of the experimented tools are capable of producing
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reliable results when discriminating between positive/negative and neutral sentences, and

further warns the research community about the strong limitations of current sentiment

analysis tools.
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Chapter 3

Method

In this section we present our research questions and method, the data gathered and our

ground definitions.

3.1 Research Questions

Based on what has been exposed, this study will therefore address the following research

questions:

RQ1 To what extent does the amplification of train dataset affect the performance of

the tools studied?

Available literature has established a direct relation between the number of training

samples provided with the increase on performance of a given mode. Other research states

that the quality of the data. For this particular reason, we test if this hypothesis holds

true for both SA tools studied in this work.

RQ2 Does sentiment distribution differ among programming languages?

Github hosts a vast amount of projects that are continuously maintained by millions

of developers scattered across the world. The possibility of remote collaboration and

communication about the code, underlying project design, and arising issues provides an
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infrastructure to develop multi-layered socio-technical communities. A common catego-

rization of sub-communities is by programming languages, which we utilized to investigate

sentiment distribution between them.

RQ3 Does sentiment distribution differ among project size?

Given the contrast between OSS and Corporate Culture practices during development

[60], we explore whether corporate-run projects are less exposed to negative discussions

than non-corporate projects.

3.2 First Study: Context in Sentiment Analysis

The purpose of our first study is to evaluate how effectively the expansion of training

datasets enhances the performance of the sentiment analyzers discussed in this paper.

We conducted an experiment by permutating their training sets and compared their pre-

dictions on a ground-truth ”gold standard” dataset from Calefato et. al. [61], containing

4423 posts from Stack Overflow in the form of questions, answers, and comments. The

Senti4SD dataset demonstrates a balanced distribution, with 35% of the posts expressing

positive emotions, 27% convey negative emotions, and the remaining 38% being labeled

as neutral polarity since no specific emotions were observed in those posts. Each post was

reviewed and annotated with sentiment polarites (Positive, Negative, Neutral) by three

distinct human raters. The annotations are based on a majority agreement.

3.2.1 Data Augmentation

We detected a few inconsistencies that were corrected after a thorough inspection of

SentiSW’s training CSV file. Out of the 3000 entries, we have detected 7 NaN text inputs

and 27 rows containing Chinese text. The presence of such characters in the training set

could impact the performance of the tool and they were removed to better accommodate

the English language domain.
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Oftentimes, when working on specific complex tasks such as classifying sentiments out

of written text, it is very hard to acquire large amounts of data required to train the

models. One way to deal with the problem of limited data is to apply different trans-

formations on the available data to synthesize new data. This approach of synthesizing

new data from the available data is referred to as “Data Augmentation”. With this in

mind, we merged our classifier’s dataset and performed two operations on the resulting

set, namely, transform to binary and extend from binary.

3.2.2 SentiCR+ dataset generation

For the generation of the SentiCR+ dataset, a transformation was applied to the sentiment

polarity labels originally present in the SentiSW dataset. This transformation was carried

out in order to align with the binary classification approach utilized in SentiCR. We

transform the 3 label sentiment polarity (Positive, Neutral, Negative) from SentiSW to

accommodate SentiCR’s binary classification (Non-Negative, Negative). According to 3.2,

this strategy considers negative sentiments as is and maps positive and neutral sentiments

as non-negative.

Figure 3.1: SentiCR+ generation process
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3.2.3 SentiSW+ dataset generation

For the SentiSW+ dataset generation, a strategy was employed to convert the binary

classification of SentiCR into the three-domain class labels of SentiSW (Negative, Neutral,

Positive). This conversion process required manual classification of each binary label

(Negative, Non-Negative) from SentiCR, as depicted in Figure 3.2.

Figure 3.2: SentiSW+ generation process

3.2.4 Performance Evaluation

The final step of the first study involved evaluating the performance of the original tools

and their respective variations in classifying Senti4SD’s dataset. The generated predic-

tions were compared to the manual annotations of Senti4SD’s dataset. Evaluation metrics

such as precision, recall, and f1-score were computed using the macro-average approach.

Additionally, the Cohen Kappa metric was utilized to measure the agreement rate among

the analyzed tools.
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3.3 Second Study: Applied Sentiment Analysis in

GitHub OSS projects

In an effort to answer our research questions, we analyzed the sentiment expressed by

developers during discussions on issues and pull requests of several software development

projects. To achieve this, we extracted all issues of a sampled population, ranging from

the smallest repository to well-known projects from GitHub and performed Sentiment

Analysis on each comment. In this section we thoroughly expose the whole process.

3.3.1 Data collection

The GHTorrent project [62] provides a data dump of GitHub’s public event timeline,

which is updated every month. At the time of data collection (Jan 2020), MongoDB

stores around 18TB of JSON data (compressed), while MySQL more than 6.5 billion

rows of extracted metadata. A large part of the activity of 2012-2019 has been retrieved.

The GHTorrent database dump comes in CSV files, one per database table. To restore

the database as a whole, the steps in the work of Gousios et al. [63], were conducted. In

the current work, only projects, commits, issues and pull requests tables were taken into

account.

Although GHTorrent stores metadata of OSS repositories, some crucial information

about edited files, title, body and comments of issues and pull requests are not available.

These additional fields of metadata can be publicly found, however, by making REST

API calls on GitHub.

To complement our dataset, an extraction tool (GitCrawler) was developed. GitCrawler

asynchronously requests API calls and stores the response in a CSV formatted file. The

code repository for our tool can be found in https://github.com/utfpr/reposa.git.

Figure 3.3 provides an overall view of the steps involved.
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Figure 3.3: Data collection flowchart

3.3.2 Repository selection

In our second study we selected non-deleted Open Source Software projects (forks in-

cluded) hosted on Github from the three most popular programming languages (Python,

Java, and Javascript). To better visualize our data, we defined and grouped projects by

ranges of issue comment quantity and noticed that most of the repositories in our dataset

is composed of personal projects, with little to no issue/pull requests. The absence of hu-

man interaction in these tickets pose no significant value for our investigation and thus,

we discarded projects with a maximum of 10 issues. The remaining set of ranges that

were considered are described as R1 ∈ [10, 100], R2 ∈ [100, 1000], R3 ∈ [1000, 10000],

R4 ∈ [10000, 1000000].

A simple homogeneous sampling was used to draw samples from each resulting pop-

ulation. The confidence level was set to 95% with a ±5% confidence interval, plugging

these values into an online calculator yields the following target populations described in

Table 3.1.
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Table 3.1: Population sizes by range

Language Range Nº Projects Sample 80/20
10-100 57606 245

Python 100-1000 8434 239
1000-10000 606 176

10000-100000 23 23
10-100 53948 245

Java 100-1000 7344 238
1000-10000 613 176

10000-100000 9 9
10-100 120727 246

Javascript 100-1000 15562 243
1000-10000 1000 198

10000-100000 25 23

3.3.3 Issue comment metadata extraction

For every project in our sample, we acquired a list of all issue identifiers by executing

a MySQL query from the installed GHTorrent snapshot. The list of id values was used

as input for GitCrawler, which iterates over the identifiers list, receiving JSON responses

from GitHub’s API and performs an issue comment verification check. For every response

that has an accumulated comment count greater than zero, the issue metadata is stored

as a row in a CSV file. The issues that do not fit in this criteria are discarded. Table

3.2 summarizes the number of issues, issues with comments and total comment count for

their respective segment and language.

3.3.4 Filtered issue population sizes

Since comments from both sources are generated by the community, pre-processing and

polishing data was a mandatory step before supplying it to the Sentiment Analysis algo-

rithms. Our analyzers are bound to the English vocabulary and therefore are unable to

accurately classify inputs from other languages.

We decided to exclude rows of data that didn’t possess an English corpus. For this aim,
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Language Range Total issues Issues with comments Issue comments
R1 7160 3299 9946

Python R2 36441 32254 128554
R3 375474 175751 750282
R4 404806 30440 163593
R1 6876 2280 6098

Java R2 58935 33754 118495
R3 420153 152876 590602
R4 270454 22368 109524
R1 7235 2523 7214

Javascript R2 60294 32254 116203
R3 40089 168167 702541
R4 373790 23802 128481

Table 3.2: Target population issue count

a python script was written to receive the issue comments file generated in our previous

step and filter out every non-english comment text utilizing polyglot - an open-source

python library that is used to perform different NLP operations. The script produces

three files as output, one containing english-only issue comments and the other containing

non-english text and language classification error results. After execution, we obtained

the results as shown in Table 3.3.

Language Range Issue comments en-US Issues en-US issue comments
R1 3299 3178 9472

Python R2 32254 35280 124682
R3 175751 170536 723506
R4 30440 28843 148248
R1 2280 2133 5651

Java R2 33754 31339 108770
R3 152876 147557 562898
R4 22368 22319 106123
R1 2523 2290 6458

Javascript R2 32254 30254 108254
R3 168167 160472 659227
R4 23802 23603 125191

Table 3.3: Issues with English corpus
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3.3.5 Comment classification

We ran our 4 different variations of sentiment analyzers against the resulting set of issue

and pull request comments. For each R segment, we’ve acquired the prediction label and

an array of sentiment probabilities. Additionally, for the 2 variations of SentiSW, we’ve

obtained their respective detected entity when the predicted labels were different than

“Neutral”.

3.4 Evaluation/Confirmation

To further investigate the benefit of incorporating more data into SA tools during the

training phase, we evaluate their performance by comparing their scores against a test

dataset of manually classified truth labels by the author. The test dataset consists of

a sample of randomly selected issue comment texts individually extracted from all R

ranges across all programming languages. We employed the identical sample calculator

values provided before to acquire the target population. For each R range and for every

programming language, we collected 250 text artifacts, totalling to 3000 issue comments.

We computed accuracy metrics, ROC curves and Cohen Kappa’s correlation score to

give us a preliminary picture of each SA tools.
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Chapter 4

Discussion and Results

In conformity the first study of this dissertation, which is to determine how much train

data expansion helps improving NLP classification accuracy, this chapter starts by defining

the three experimental approaches for evaluating the proposed models accuracy. The first

and second experiment takes statistical measures of performance of the tools before and

after being subjected to more train samples. In the third experiment we draw sample of

the discordance between the tools and apply the before metioned statistical metrics in

order to identify the change in behaviour of the outputs.

4.1 Analysis

Together the previous results provide insights to consider when interpreting the discoveries

of the research questions described in the previous chapter. The second study moves on

to discuss the obtained classification results using both SA tools and their altered models.

Additional findings are reported in the end of this chapter.

Pursuing RQ1, we expect to assess to what extent does the amplification of train

dataset affect the performance of the tools studied.

To quantify the benefit of incorporating more data into SA tools during the training

phase, we conducted the steps described in section 3.2 to measure their performance by

comparing their outputs against a test dataset (Senti4SD) of manually classified truth
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labels. Table 4.1 shows the acquired values for precision, recall and f1-score metrics:

Sentiment Analysis Tool Precision Recall F1-score
SentiCR 0.76811 0.88854 0.82395
SentiCR+ 0.77071 0.93294 0.84410
SentiSW 0.58449 0.89020 0.70566
SentiSW+ 0.59878 0.86954 0.70919

Table 4.1: Precision, recall, F1-score metrics for macro-average.

The first experiment already provides an interesting result: when using the expanded

model of SentiSW, the act of increasing the train data size did not have a considerable

influence in the output predictions. In our view, this is due to the fact that the expansion

of train data did not incorporate any information on past behavior. Both with and without

SentiCR’s train examples, this model scored a slight difference of accuracy of 0.3%.

In contrast, SentiCR expressed more change in behavior. After increasing the amount

of train data, the tool also increased it’s precision. This suggests that SentiCR’s training

dataset could be revised or amplified in order to improve the performance of the model.

To account for the previous evidence, we further investigate the benefit of expanding

the model’s train dataset as documented in Evaluation/Confirmation. For this purpose,

we measured the accuracy metrics for each individual (Table 4.2).

SentiCR SentiCR+
Precision Recall F1-score Precision Recall F1-score

R1 0.698919 0.80958 0.73422 0.72706 0.77198 0.74645
Python R2 0.60801 0.73443 0.63176 0.66759 0.71767 0.68808

R3 0.70185 0.84135 0.74118 0.81666 0.87929 0.84397
R4 0.80511 0.88511 0.83775 0.84022 0.73052 0.77073
R1 0.6983 0.8087 0.73619 0.70954 0.68043 0.69354

Java R2 0.60626 0.63577 0.61789 0.75347 0.68919 0.7152
R3 0.59301 0.71287 0.61388 0.71325 0.84295 0.75828
R4 0.58433 0.74868 0.61564 0.5375 0.55291 0.5433
R1 0.66907 0.72621 0.69054 0.76094 0.76939 0.76507

Javascript R2 0.71273 0.74694 0.72767 0.79215 0.76749 0.77901
R3 0.64179 0.78688 0.67117 0.72328 0.78529 0.7489
R4 0.67011 0.73265 0.69181 0.83637 0.78082 0.80496

Table 4.2: SentiCR precision, recall, F1-score metrics for macro-average.
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According to the results , SentiCR+ performed on average 7,4% better precision, -

1,6% Recall, and 4,5% F1-Score than the original. Overall, this tool has benefited the

most. Indicating the viability of improving the model by means of increasing its train

dataset.

SentiSW+ got 0,6% precision, 3,9% Recall and 1,9% F1-score (Table 4.3). The tool

suffered a slight increase for the neutral classification and a moderate amount for the

negative class in both R1 and R2 Java. And for R1, R2 Python and R4 Java, SentiSW+

performed slightly worse than its original version.

SentiSW SentiSW+
Precision Recall F1-score Precision Recall F1-score

R1 0.8184 0.81142 0.81482 0.77441 0.79648 0.78483
Python R2 0.7102 0.77459 0.73822 0.69815 0.77124 0.72941

R3 0.70798 0.73086 0.71545 0.68662 0.77567 0.72162
R4 0.6475 0.65878 0.62755 0.67912 0.73393 0.69014
R1 0.65133 0.74686 0.68853 0.65977 0.81892 0.7154

Java R2 0.62024 0.64771 0.62968 0.65651 0.67247 0.65313
R3 0.71329 0.7181 0.71566 0.71413 0.79107 0.74438
R4 0.67529 0.7732 0.71286 0.6223 0.75523 0.66172
R1 0.77552 0.77742 0.77412 0.80883 0.8154 0.80628

Javascript R2 0.75421 0.76001 0.75614 0.78729 0.80351 0.79399
R3 0.61931 0.7375 0.65951 0.66505 0.8149 0.71789
R4 0.76464 0.7805 0.75321 0.78302 0.84119 0.80127

Table 4.3: Precision, recall, F1-score metrics for macro-average.

We compute the Cohen Kappa Score between SentiCR, SentiCR+, SentiSW and Sen-

tiSW+ and their respective score against a ground truth column y_true annotated by the

author (Table 4.4).

SentiCR+ SentiSW SentiSW+ y_true
SentiCR 0.51433 0.19518 0.34056 0.40821

SentiCR+ 0.33691 0.45029 0.51114
SentiSW 0.82201 0.6327

SentiSW+ 0.64828

Table 4.4: Cohen Kappa Score between the 4 models

We can observe that the original models of SentiCR and SentiSW didn’t agree with
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each other much, with a Cohen Kappa Score below 0.20 which is categorized as none to

slight agreement. When exclusively exposing SentiCR to SentiSW’s train dataset, and

vice-versa, both comparisons scored a fair agreement of 0.33 and 0.34 respectively. When

simultaneously exposed, the concordance between outputs improved to a moderate level

of 0.45. As a final remark, when compared to the y_true column, both models expressed

different improvements.

This reinforces that even when exposed to the train dataset of SentiCR, SentiSW

retains a substantial agreement (0.82) of its original version. Despite SentiSW output is

more inclined to the manually classified truth labels, the incorporation of SentiCR’s train

dataset increased the Cohen Kappa’s score by a factor of 0.01558.

Whereas SentiCR, suffered a significant change in output label predictions and al-

though it scored a moderate agreement of 0.51, Interestingly, this change was beneficial,

increasing the models concordance with the provided test set by a factor of 0.10293.

In relation to RQ2, the approach to check if sentiment distribution differ among pro-

gramming languages will be checked. After performing the classifications over the col-

lected samples described in Comment Classification section of our Method. A set of

stacked bar graphs grouped by language were built to better visualize this situation.

SentiCR and SentiCR+ ranked Python as the most Negative, Java as the least Nega-

tive, and Javascript as the most Non-Negative (Figure 4.1). When evaluated by SentiSW

and SentiSW+, Javascript ranked as the most Negative, Java as the most Positive, and

Python/Javascript as the most Neutral. All four SA tools unanimously ranked Java as

having the least amount of Negative sentiment expression on issue discussions.

Finally, the approach to RQ3 implies checking the sentiment distribution among

project size. It is important to highlight that in this study we consider the definition

of project size as the total number of issue tickets.

In Python projects, the ratio of Non-Negative sentiments for binary classification tools

SentiCR and SentiCR+ is considerably higher than Negative sentiments across all project

sizes (Figure 4.2). It is apparent that as the project size increases, the overall quantity of

Negative sentiments increases, while the quantity of Non-Negative sentiments reduces.
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Figure 4.1: Sentiment Distribution amongst Programming Languages

Figure 4.2: Python Sentiment Distribution by Category
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The average sentiment proportions and their standard deviations provide insight into

the stability and consistency of these tools’ classifications across different project sizes

(Table 4.5). When looking at SentiSW and SentiSW+, which classify sentiments into

Negative, Neutral, and Positive, there is a clear predominance of Neutral sentiments across

all project sizes. The Positive sentiment count, though lower than Neutral, increases with

the project size, with a noticeable increase in R2 and R3 projects. In R4, the tools

expressed a slight decline in positive sentiment but the value still remains higher when

compared to R1.

Negative Non-Negative Neutral Positive
x σ x σ x σ x σ

SentiCR 0.1498 0.01196 0.8222 0.0590 - - - -
SentiCR+ 0.08903 0.007 0.911 0.0071 - - - -
SentiSW 0.2065 0.03205 - - 0.7067 0.0271 0.08681 0.0092
SentiSW+ 0.2165 0.0331 - - 0.6775 0.0288 0.106 0.0113

Table 4.5: Mean and standard deviations across Python project sizes.

In Java projects, the patterns observed are similar to Python (Figure 4.3). SentiCR

and SentiCR+ again show higher counts of Non-Negative sentiments compared to Nega-

tive sentiments across all project sizes. Larger projects saw an increase in the classification

of Negative sentiments, which is consistent with our findings from Python projects.

Figure 4.3: Java Sentiment Distribution by Category.

In the case of SentiSW and SentiSW+ tools, the mean values presented in Table 4.6

for Neutral sentiments are the highest. The mean values for Negative sentiments are
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significantly higher than Positive sentiments, and the Negative sentiments in SentiSW are

particularly high. The standard deviation values for all sentiment categories and tools are

relatively low, suggesting consistent sentiment classification across different Java projects.

Negative Non-Negative Neutral Positive
x σ x σ x σ x σ

SentiCR 0.128 0.0179 0.87198 0.0178 - - - -
SentiCR+ 0.0772 0.015 0.9228 0.015 - - - -
SentiSW 0.172 0.0155 - - 0.7547 0.0066 0.0733 0.0101
SentiSW+ 0.1854 0.0186 - - 0.7237 0.0076 0.0908 0.013

Table 4.6: Mean and standard deviations across Java project sizes.

In Javascript projects, similar patterns can be observed as in Python and Java projects.

Both SentiCR and SentiCR+ tools show lower mean values for Negative sentiments com-

pared to SentiSW and SentiSW+ tools. The SentiCR+ tool shows a significant decrease

in the mean value of Negative sentiments compared to SentiCR (Figure 4.4).

Figure 4.4: Javascript Sentiment Distribution by Category.

In Table 4.7, the narrative changes however, with SentiSW and SentiSW+ showing

a progressive decrease in Negative sentiments as the project size grows, followed by an

increase of Neutral and Positive sentiments. It’s possible that very large projects have

established communication norms that limit the amount of negative sentiment expressed

in public issue discussions or that more experienced developers work on these projects

and express criticism more constructively.

To summarize our findings, the count of Neutral sentiments was the highest among
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Negative Non-Negative Neutral Positive
x σ x σ x σ x σ

SentiCR 0.1456 0.0147 0.8543 0.0147 - - - -
SentiCR+ 0.089 0.0036 0.911 0.0036 - - - -
SentiSW 0.2042 0.0227 - - 0.7068 0.0204 0.089 0.0024
SentiSW+ 0.2114 0.0223 - - 0.6834 0.0156 0.1052 0.0068

Table 4.7: Mean and standard deviations across Javascript project sizes.

all sentiment labels across all project sizes, indicating that the bulk of issue discussions

are factual and objective, rather than being emotionally charged. It is also worth noting

that the number of Positive sentiments also increased with project size. However, the rise

was not as dramatic as with Negative sentiments.

Regarding the influence of Programming Language on Sentiment, while the overall

trends are consistent across Python, Java, and Javascript projects, there are subtle dif-

ferences in the sentiment distributions. This might be influenced by the language-specific

context and nuances that can alter the sentiment of the discussions. However, more

detailed analysis would be needed to confirm this.

Considering the relatively low standard deviations in sentiment percentages, we can

say that the sentiment distributions are quite stable across different project sizes. These

results indicate that both the size of the project and the sentiment analysis tool version

are significant variables that influence the sentiment distribution. However, to formally

quantify the significance of these findings, hypothesis testing (like Chi-square or ANOVA)

could be conducted. As with any analysis, it is crucial to consider potential confounding

factors. For example, the type and nature of the projects, the community around each

language, the temporal aspect (the point in time when the analysis is performed), among

others.

Finally, the obtained results only provide a snapshot of sentiment analysis across

different project sizes and languages. There is a need for future work to investigate into

the contextual factors affecting sentiment in open-source project discussions, including a

thorough evaluation of sentiment analysis tools across diverse datasets.
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4.2 Threats to Validity

The performance of the sentiment analysis models was measured using precision, recall,

and F1-score metrics, which are standard measures in the field of natural language process-

ing. However, these measures might not capture all aspects of the model’s performance.

For instance, they might not account for the model’s ability to correctly classify complex

or ambiguous sentiment expressions. Furthermore, these metrics assume that all errors

are equally costly, which might not be the case in practical applications. The use of a

single, manually classified dataset (Senti4SD) for evaluation might also limit the validity

of our results, as the model’s performance might vary with different datasets.

Moreover, our study relied on the use of existing sentiment analysis tools (SentiCR

and SentiSW) and their “expanded” versions (SentiCR+ and SentiSW+). However, the

operational definition of “expanded” - that is, the addition of more training data - might

not reflect all the ways these tools could be improved or modified. Other factors, such as

changes in model architecture or training strategies, could also play a significant role in

the model’s performance and were not considered in this study.

Finally, it is worth noting that the performance of these models was tested solely in

the context of programming languages (Python, Java, JavaScript), which may limit the

generalization of our findings to other domains or languages.

Regarding the internal validity, our study relies on machine learning models trained on

pre-existing datasets. Therefore, any biases or errors inherent in the data could potentially

influence our findings. The randomness of data split (into training, validation, and test

datasets) can also impact the models’ performance. Furthermore, the performance of the

models may have been affected by the default configurations we used during the training

process, including the learning rate, batch size, and number of training epochs values.

Another threat to the internal validity could be the annotation bias. While the sen-

timent of developers’ comments was manually annotated to create the Senti4SD dataset,

the process is inherently subjective and may introduce biases. The researchers who anno-

tated the sentiments might have interpreted some comments differently than others, and
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this could affect the model’s training and evaluation.

Lastly, the replication of SentiCR and SentiSW’s strategies in creating expanded ver-

sions might not be perfect, leading to potential inaccuracies. The process of obtaining

additional training data for these models, as well as the selection of data, may not per-

fectly mimic the strategies used in the original studies, which might affect the comparison

between the original and expanded versions of the models.

In terms of external validity, our study is primarily limited by the specificity of the

data we used. The Senti4SD dataset was created using comments from Stack Overflow

related to specific programming languages. Consequently, the trained models might not

perform as well when applied to different programming languages, other domains outside

of software development, or even different types of text within software development (e.g.,

code comments, bug reports, etc.).

Also, while we used two widely-used sentiment analysis tools, the findings might not

be generalized to all sentiment analysis tools. The generalization of our findings might

also be limited by the scope of our data, as the sentiment of developers could be influenced

by a variety of factors that were not captured in our dataset.

Statistical conclusion validity is concerned with the extent to which conclusions about

the relationship among variables based on the data are correct or “reasonable”. In our

study, we have used standard statistical measures, including precision, recall, F1-score for

comparing the performances of standard and expanded versions of the models. Although

these measures are widely accepted in the field, they each have inherent limitations. For

instance, precision, recall, and F1-score are threshold-dependent measures, meaning that

their values can change significantly depending on the chosen threshold for classification.

This could potentially lead to different conclusions about the models’ performances and

reliability of our statistical conclusions.

Moreover, while the performance improvements observed in the expanded versions

of the models were statistically significant, we must be cautious about overinterpreting

these results. The practical significance of these improvements, especially in terms of their

impact on real-world applications, requires further investigation.
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Finally, researcher bias may pose a potential threat to the validity of the study, as

it can subtly influence numerous aspects of the research process, from the collection and

interpretation of data to the presentation and interpretation of the findings.

In the context of our study, researcher bias could primarily manifest in the manual

labeling of both the Senti4SD dataset, and the additional 3000 GitHub issue comments

sample dataset created in section 3.4. Given that these datasets were manually labeled by

the dataset’s creators and also by us, there may be inherent subjectivity and bias in the

classification of sentiments. Our interpretations of sentiments could have been influenced

by our personal experiences, beliefs, and knowledge, potentially leading to inconsistent

or skewed labeling. Even our opinions on interpreting the developers’ comments might

differ.

The risk of confirmation bias also exists, where we might unintentionally highlight

results that align with our hypotheses and underplay or disregard results that counter

them. This can influence the overall conclusion of the study and its perceived effectiveness.

In summary, while our study presents a comparison between standard and expanded

versions of sentiment analysis tools within the context of software development, the threats

to validity outlined above should be considered when interpreting our findings. Further

research is needed to validate and extend our results.
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Chapter 5

Conclusion

As supported by current literature, the introduction of new train data is often a good

strategy to increase a model’s classification performance until it reaches a theoretical

accuracy limit. In the present work, we show the presence of this phenomena by comparing

two sentiment analysis tools against variations of themselves subjected to additional train

data of the other.

Evidence indicates that by increasing SentiCR’s train dataset, the classifier has im-

proved its precision leading to the hypothesis that SentiCR’s algorithm is still susceptible

to improvement by expanding its train dataset. Whereas, SentiSW didn’t express such a

significant benefit, and thus, other areas of improvement such as fine-tuning the training

process by parameter weights modification, or algorithm model implementation could be

investigated.

On our second part of the study we obtained sentiment analysis data labels from issue

texts from OSS hosted on Github. Results show that as the OSS project‘s size increases,

the more migrations are happening from Negative to Non-Negative classes. Across the 3

most popular programming languages, Python was the most negative and second most

neutral. In contrast, Java was the least Negative and the most Positive. Lastly, Javascript

ranked most neutral of the three.
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5.1 Future Work

The study undertaken provides significant insights into the use of sentiment analysis tools,

showcasing their potential utility and outlining their current limitations. It demonstrates

the potential benefits of incorporating larger datasets into the training phase of these

tools. This promising avenue of investigation, however, opens up a plethora of further

research opportunities.

While this study has achieved its set objectives, it is essential to acknowledge certain

limitations. Specifically, the potential for researcher bias and threats to external validity

could potentially impact the study’s generalization.

There is room for further exploration in several areas. An extension of the current

study could involve the application of the sentiment analysis tool to a wider range of

data sources, such as pull requests or commits. This could provide a more comprehensive

understanding of the tool’s efficacy in other software engineering contexts.

Methodologically, future work could focus on refining the manual labeling process to

mitigate potential researcher bias, perhaps through the use of a more diverse group of

annotators. Further research could also consider developing and applying more robust

methods to increase the statistical conclusion validity, including the use of advanced

statistical models or machine learning algorithms.
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