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On the Accuracy of the Gaussian Approximation for the
Evaluation of Nonlinear Effects in OFDM Signals

Teresa Araújo and Rui Dinis

Abstract—The almost Gaussian nature of OFDM (Orthogonal
Frequency Division Multiplexing) signals with high number of
subcarriers 𝑁 is widely employed to characterize nonlinearly
distorted OFDM signals and to evaluate the corresponding
performance. In this paper we study the accuracy of the Gaussian
approach when evaluating nonlinear effects in OFDM signals
with finite number of subcarriers, showing the strengths and
limitations of this approach.

It is shown that the decomposition in useful and self-
interference components is valid even for a reduced number of
subcarriers. The Gaussian approximation of the nonlinear self-
interference at the subcarrier level is very accurate provided
that 𝑁2 is high. However, the nonlinear distortion levels slightly
lower than the ones obtained with the Gaussian approximation,
with relative errors dropping with 1/𝑁 , leading to somewhat
pessimistic SIR levels (Signal to Interference Ratio).

Index Terms—OFDM signals, nonlinear distortion, Gaussian
approximation, intermodulation analysis.

I. INTRODUCTION

OFDM (Orthogonal Frequency Division Multiplexing)
modulations can have excellent performance in severely

time-dispersive channels without the need of complex receiver
implementations, making them suitable for broadband wire-
less systems. For this reason, they were selected for several
systems, such as DVB (Digital Video Broadcasting), wireless
broadband access technologies IEEE 802.16a/d/e, commonly
referred to as WiMAX and 3GPP (3rd Generation Partnership
Project) LTE (Long Term Evolution).

However, OFDM signals have strong envelope fluctuations,
making them very prone to nonlinear distortion effects [1], [2].
In fact, when the number of subcarriers is high OFDM signals
have a Gaussian-like nature. This Gaussian nature can be used
to characterize an OFDM signal submitted to a nonlinear
device and this characterization can then be employed for
performance evaluation of nonlinearly distorted OFDM signals
[3]–[5]. The major outcomes that result from this Gaussian
approximation are:

∙ Following Price’s theorem [6] the nonlinearly distorted
OFDM signals can be decomposed in uncorrelated useful
and self-interference components;

Paper approved by C.-L. Wang, the Editor for Equalization of the IEEE
Communications Society. Manuscript received March 8, 2011; revised July
7, 2011.

T. Araújo is with the Instituto de Telecomunicações, Lisboa, Portugal,
and the Departamento de Matemática, Instituto Superior de Engenharia do
Porto, Rua Dr. António Bernardino de Almeida, 431, Porto, Portugal (e-mail:
tpa@isep.ipp.pt).

R. Dinis is with the Instituto de Telecomunicações, Lisboa, Portugal,
and the Departamento de Engenharia Electrotécnica, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal (e-mail:
rdinis@fct.unl.pt).

Digital Object Identifier 10.1109/TCOMM.2011.102011.110151

∙ Using classical IMP (Inter-Modulation Product) analysis
[7], we can obtain analytically the PSD (Power Spectral
Density) of the self-interference component, as well as
the PSD of the overall transmitted signal [5];

∙ The signal-to-interference ratio and signal-to-noise plus
interference ratio can be obtained analytically [3]–[5];

∙ The nonlinear self-interference component is Gaussian at
the subcarrier level, allowing an accurate computation of
the BER (Bit Error Rate) performance [5].

Since practical OFDM schemes have a finite number of sub-
carriers, the Gaussian approximation of OFDM signals might
not be accurate, especially when the number of subcarriers
is not very high. An accurate characterization of the effects
of nonlinear devices distortion is, therefore, critical to the
future of multicarrier techniques. This paper offers such a
characterization. In [8] an accurate model for the statistical
characteristics of the nonlinear noise caused by Cartesian
clipping of the high peak values of the in-phase/quadrature
components of the baseband OFDM signal.

In this paper we present an exact characterization of OFDM
signals submitted to a bandpass memoryless nonlinear device
with odd nonlinear characteristics of the form 𝑔(𝑅) = 𝑅2𝑝+1.
These characterizations are used to evaluate the accuracy of
the Gaussian approximation for a given number of subcarriers.

This paper is organized as follows: Sec. II presents the exact
characterization of nonlinearly distorted multicarrier signals
and a discussion on the accuracy of the Gaussian approxima-
tion is made in Sec. III. Finally, Sec. IV is concerned with the
conclusions of this paper.

II. EXACT CHARACTERIZATION OF NONLINEARLY

DISTORTED OFDM SIGNALS

Let us consider the transmission of a nonlinearly dis-
torted multicarrier signal. The time-domain block {𝑠𝑛;𝑛 =
0, 1, . . . , 𝑁 ′− 1} = IDFT {𝑆𝑘; 𝑘 = 0, 1, . . . , 𝑁 ′− 1} is given
by

𝑠𝑛 =
1√
𝑁

𝑁−1∑
𝑘=0

𝑆𝑘𝑒
𝑗2𝜋𝑘𝑛/𝑁 ′

=
1√
𝑁

∑
𝑘∈𝒦(1)

𝑆𝑘𝑒
𝑗2𝜋𝑘𝑛/𝑁 ′

(1)

with 𝒦(1) = {0, 1, . . . , 𝑁 − 1}. If a signal is submitted to a
bandpass memoryless nonlinearity then the complex envelope
of the signal at the nonlinearity output can be written as 𝑦(𝑡) =
𝐴(𝑅) 𝑒𝑗(arg(𝑥(𝑡))+Θ(𝑅)),

𝑦(𝑡) = 𝑔(∣𝑥(𝑡)∣) 𝑒𝑗 arg(𝑥(𝑡)) = 𝐴(𝑅) 𝑒𝑗(arg(𝑥(𝑡))+Θ(𝑅)), (2)

with 𝑅 = 𝑅(𝑡) = ∣𝑥(𝑡)∣ and 𝐴(𝑅) = ∣𝑔(𝑅)∣ and Θ(𝑅) =
arg(𝑔(𝑅)) denoting the so-called AM-to-AM and AM-to-PM
conversions, respectively [9]. We will assume an odd bandpass
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memoryless nonlinear whose characteristic can be expanded
as a power series of the form

𝑔(𝑅) =

+∞∑
𝑚=0

𝛽𝑚𝑅2𝑚+1, (3)

where coefficients 𝛽𝑚 are generally complex numbers. Thus
the samples at the output of the bandpass memoryless non-
linearity device that operates on the oversampled version of
the multicarrier signal can be written as 𝑠𝐶𝑛 = 𝑔(𝑠𝑛) =∑+∞

𝑚=0 𝛽𝑚𝑠
(2𝑚+1)
𝑛 , where 𝑠

(2𝑚+1)
𝑛 = (𝑠𝑛)

𝑚+1(𝑠∗𝑛)𝑚.

A. Nonlinear Characteristic of Order 3

We will first focus on the case of a cubic bandpass memory-
less nonlinear characteristic, i.e., 𝛽𝑚 = 0 for 𝑚 ≥ 2. Without
loss of generality, we will assume 𝑔(𝑅) = 𝑅3, i.e., 𝛽0 = 0
and 𝛽1 = 1 (the extension to other cases is straightforward).
Therefore 𝑠

(3)
𝑛 = 𝑠𝑛𝑠

∗
𝑛𝑠𝑛 and these samples can be written as

𝑠(3)𝑛 =
1√
𝑁3

∑
𝑘(3)∈𝒦(3)

𝑆𝑘1𝑆
∗
𝑘2
𝑆𝑘3𝑒

𝑗2𝜋(𝑘1−𝑘2+𝑘3)𝑛/𝑁
′
, (4)

with 𝑘(3) = (𝑘1, 𝑘2, 𝑘3) and 𝒦(3) = 𝒦(1) × 𝒦(1) × 𝒦(1). We
define two sets 𝒦(3)

1 = {(𝑘1, 𝑘2, 𝑘3) ∈ 𝒦(3) : 𝑘2 = 𝑘1} and
𝒦(3)

2 = {(𝑘1, 𝑘2, 𝑘3) ∈ 𝒦(3) : 𝑘2 = 𝑘3} and rewrite samples
𝑠
(3)
𝑛 as a sum of two parcels, i.e.,

𝑠(3)𝑛 =
1√
𝑁3

∑
𝑘(3)∈𝒰(3)

𝑆𝑘∣𝑆𝑘′ ∣2 𝑒𝑗2𝜋𝑘𝑛/𝑁 ′

+
1√
𝑁3

∑
𝑘(3)∈𝒦(3)∖𝒰(3)

𝑆𝑘1𝑆
∗
𝑘2
𝑆𝑘3𝑒

𝑗2𝜋(𝑘1−𝑘2+𝑘3)𝑛/𝑁
′
,

(5)

with 𝒰 (3) = 𝒦(3)
1 ∪ 𝒦(3)

2 . Clearly ∣𝒦(3)∣ = 𝑁3, ∣𝒦(3)
1 ∣ =

∣𝒦(3)
2 ∣ = 𝑁 and, since ∣𝒰 (3)∣ = ∣𝒦(3)

1 ∪ 𝒦(3)
2 ∣ =

∣𝒦(3)
1 ∣ + ∣𝒦(3)

2 ∣ − ∣𝒦(3)
1 ∩ 𝒦(3)

2 ∣ = 2𝑁 − 1 (∣𝑆∣ denotes
the cardinal of set 𝑆), the first summation in (5) reduces
to (2𝑁 − 1)𝐸[∣𝑆𝑘∣2]

∑
𝑘∈𝒦(1) 𝑆𝑘𝑒

𝑗2𝜋𝑘𝑛/𝑁 ′
. Hence the two

parcels in equation (5) obviously correspond to useful and
self-interfering components, i.e., 𝑠(3)𝑛 = 𝛼(3)𝑠𝑛 + 𝑑

(3)
𝑛 , with

𝛼(3) =
2𝑁 − 1

𝑁
𝐸[∣𝑆𝑘∣2] =

(
2− 1

𝑁

)
𝐸[∣𝑆𝑘∣2] (6)

and

𝑑(3)𝑛 =
1√
𝑁3

∑
𝑘(3)∈𝒦(3)∖𝒰(3)

𝑆𝑘1𝑆
∗
𝑘2
𝑆𝑘3𝑒

𝑗2𝜋(𝑘1−𝑘2+𝑘3)𝑛/𝑁
′
.

(7)
Let us define multiplicity of subcarrier 𝑘 as the number of

times we get 𝑘1 − 𝑘2 + 𝑘3 − ... − 𝑘2𝑝 + 𝑘2𝑝+1 = 𝑘 for all
possible (2𝑝+ 1)-tuples of set 𝒦(2𝑝+1) (𝒦(𝑛) denotes the 𝑛-
ary Cartesian product over set 𝒦(1)). Letting 𝑀

(2𝑝+1)
𝑘 denote

the multiplicity of the 𝑘th subcarrier associated to a nonlinear
characteristic of type 𝑅2𝑝+1 and 𝑀

(2𝑝+1→2𝛾+1)
𝑘 denote the

multiplicity of that subcarrier associated with the IMP of order
𝛾, with 𝛾 ≤ 𝑝, produced by the same nonlinear characteristic,
it is clear that

𝑀
(1)
𝑘 =

{
1, 𝑘 = 0, 1, . . . , 𝑁 − 1
0, otherwise

(8)

and
∑𝑁−1

𝑘=0 𝑀
(1)
𝑘 = 𝑁 . For the signal 𝑠

(3)
𝑛 the multiplicity

of subcarrier 𝑘 is 𝑀
(3)
𝑘 , where the block 𝑀 (3) = {𝑀 (3)

𝑘 , 𝑘 =
−4𝑁+1,−4𝑁+2, . . . , 5𝑁−2} is the convolution of the aug-
mented blocks 𝑀 (1) = {𝑀 (1)

𝑘 , 𝑘 = −𝑁,−𝑁 + 1, . . . , 2𝑁 −
1}, i.e., 𝑀 (3) = 𝑀 (1) ∗𝑀 (1) ∗𝑀 (1). The augmented block is
obtained by adding 2𝑁 zeros to the initial block, thus ensuring
there is no aliasing when computing the convolution. The
block 𝑀 (3) can be obtained by computing the IDFT of the
block {𝑚(1)

𝑛 𝑚
(1)
−𝑛𝑚

(1)
𝑛 , 𝑛 = −𝑁,−𝑁 + 1, . . . , 2𝑁 − 1}, with

{𝑚(1)
𝑛 , 𝑛 = −𝑁,−𝑁 + 1, . . . , 2𝑁 − 1} = DFT {𝑀 (1)

𝑘 , 𝑘 =
−𝑁,−𝑁+1, . . . , 2𝑁−1}. The generalization of 𝑀 (2𝑝+1) to
any value of 𝑝 is straightforward.

The discrete convolution 𝑢 = 𝑥 ∗ 𝑦 is given by

𝑢𝑘 =

min1∑
𝑘′=Max1

𝑥𝑘′𝑦𝑘−𝑘′+1, (9)

𝑘 = 0, . . . , 2𝑀 − 2, with Max1 = max(1, 𝑘 − 𝑀 + 1) and
min1 = min(𝑘,𝑀), where 𝑀 is the length of vectors 𝑥 and
𝑦. Consequently, for 𝑣 = 𝑢 ∗ 𝑧 = 𝑥 ∗ 𝑦 ∗ 𝑧 we have

𝑣𝑘 =

min2∑
𝑘′′=Max2

𝑢𝑘𝑧𝑘−𝑘′′+1

=

min2∑
𝑘′′=Max2

min1∑
𝑘′=Max1

𝑥𝑘′𝑦𝑘−𝑘′+1𝑧𝑘−𝑘′′+1, (10)

𝑘 = 0, . . . , 3𝑀 − 3, with Max2 = max(1, 𝑘 − 2𝑀 + 2) and
min2 = min(𝑘,𝑀). It follows that

𝑀
(2)
𝑘 =

⎧⎨
⎩

𝑁/2 + 𝑘, −𝑁/2 + 1 ≤ 𝑘 ≤ 𝑁/2− 1
3𝑁/2− 𝑘, 𝑁/2 ≤ 𝑘 ≤ 3𝑁/2− 1
0, otherwise

(11)

and 𝑀
(3)
𝑘 is given by (12). Obviously

∑3𝑁/2−1
𝑘=−𝑁/2+1 𝑀

(2)
𝑘 =

𝑁2 and
∑2𝑁−2

𝑘=−𝑁+1 𝑀
(3)
𝑘 = 𝑁3. The useful component has

multiplicity

𝑀
(3→1)
𝑘 =

{
2𝑁 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1
0, otherwise

(13)

which means that the multiplicity of the self-interference
samples is 𝑀

(3→3)
𝑘 = 𝑀

(3)
𝑘 −𝑀

(3→1)
𝑘 and has sum

2𝑁−2∑
𝑘=−𝑁+1

𝑀
(3→3)
𝑘 =

2𝑁−2∑
𝑘=−𝑁+1

𝑀
(3)
𝑘 −

𝑁−1∑
𝑘=0

𝑀
(3→1)
𝑘

= 𝑁3 − 2𝑁2 +𝑁. (14)

The evolution of multiplicities 𝑀
(3)
𝑘 , 𝑀

(3→3)
𝑘 and 𝑀

(3→1)
𝑘

are depicted in Fig. 1.A.
The power of the useful component is

𝑆(3) = 𝑃
(3)
1 =

(𝛼(3))2

2
𝐸[∣𝑆𝑘∣2]

=
1

2

(
2− 1

𝑁

)2

(𝐸[∣𝑆𝑘∣2])3 (15)
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𝑀
(3)
𝑘 =

⎧⎨
⎩

(𝑘 +𝑁)(𝑘 +𝑁 + 1)/2, −𝑁 + 1 ≤ 𝑘 ≤ −1
3𝑁(2𝑘 +𝑁 + 1)/2− (𝑘 +𝑁)(𝑘 +𝑁 + 1), 0 ≤ 𝑘 ≤ 𝑁 − 1
(2𝑁 − 𝑘)(2𝑁 − 𝑘 − 1)/2, 𝑁 ≤ 𝑘 ≤ 2𝑁 − 2
0, otherwise

(12)

−N+1 0  N−1 2N−2
0  

k

A

−2N+2 0  N−1 3N−3
0

k

B

M
k
(5)

M
k
(5→ 5)

M
k
(5→ 3)

M
k
(5→ 1)

M
k
(3)

M
k
(3→3)

M
k
(3→1)

4N2/5

3N2/4−2N+1

2N−1

3N2/4

5N4/8

N4/2

3N4/8

N4/4

N4/8

Fig. 1. Evolution of 𝑀 (3)
𝑘 (dashed line), 𝑀 (3→3)

𝑘 (dotted line) and 𝑀
(3→1)
𝑘

(solid line) (A) and 𝑀
(5)
𝑘 (dashed line), 𝑀 (5→5)

𝑘 (dash-dotted line), 𝑀 (5→3)
𝑘

(dotted line) and 𝑀
(5→1)
𝑘 (solid line) (B).

and, recalling that 𝑑(3)𝑛 is given by (7), the power of the self-
interference component is

𝐼(3) = 𝑃
(3)
3 = 2!

𝑁3 − 2𝑁2 +𝑁

𝑁3

(𝐸[∣𝑆𝑘∣2])3
2

=

(
1− 2

𝑁
+

1

𝑁2

)
(𝐸[∣𝑆𝑘∣2])3, (16)

where the factor 2! is the number of times we can get
repetitions of the values taken by 𝑘1 and 𝑘3.

If 𝐸[∣𝑆𝑘∣2] = 2𝜎2 then

𝛼(3) =

(
4− 2

𝑁

)
𝜎2 (17)

𝑃
(3)
1 =

(
4− 2

𝑁

)2

𝜎6 (18)

𝑃
(3)
3 = 8

(
1− 2

𝑁
+

1

𝑁2

)
𝜎6 (19)

For a large number of subcarriers, i.e., 𝑁 ≫ 1, these expres-
sions can be approximated by 𝛼(3) ≈ 4𝜎2, 𝑃 (3)

1 ≈ 16𝜎6 and
𝑃

(3)
3 ≈ 8𝜎6. Notice these are the same values we get by using

the Gaussian approximation results presented in appendix B
with 𝑔(𝑅) = 𝑅3.

B. Nonlinear Characteristic of Order 5

Let us now consider a bandpass memoryless nonlinear with
characteristic of order 5, i.e., 𝛽𝑚 = 0 for 𝑚 ≥ 3. Again,
without loss of generality, we will assume 𝑔(𝑅) = 𝑅5, i.e.,
𝛽0 = 0, 𝛽1 = 0 and 𝛽2 = 1. Therefore,

𝑠(5)𝑛 = 𝑠𝑛𝑠
∗
𝑛𝑠𝑛𝑠

∗
𝑛𝑠𝑛

=
1√
𝑁5

∑

𝑘(5)∈𝒦(5)

𝑆𝑘1𝑆
∗
𝑘2
𝑆𝑘3𝑆

∗
𝑘4
𝑆𝑘5𝑒

𝑗2𝜋(𝑘1−𝑘2+𝑘3−𝑘4+𝑘5)𝑛/𝑁′

(20)

with 𝑘(5) = (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5) and 𝒦(5) = 𝒦(1) × 𝒦(1) ×
𝒦(1) × 𝒦(1) × 𝒦(1). In appendix A it is shown that we can
write 𝑠

(5)
𝑛 as a sum of useful and self-interference components

𝑠
(5)
𝑛 = 𝛼(5)𝑠𝑛 + 𝑑

(5)
𝑛 , with 𝛼(5) given by (33) and self-

interference samples given by (35).
Let 𝑀 (5)

𝑘 be the total multiplicity of subcarrier 𝑘, 𝑀 (5→1)
𝑘

the multiplicity of the useful component and 𝑀
(5→3)
𝑘 and

𝑀
(5→5)
𝑘 the multiplicities of the self-interference components.

In appendix A it is shown that these multiplicities are given
by (32), (36) and (38), respectively. The evolution of 𝑀

(5)
𝑘 ,

𝑀
(5→1)
𝑘 , 𝑀 (5→3)

𝑘 and 𝑀
(5→5)
𝑘 is depicted in Fig. 1.B.

In case 𝐸[∣𝑆𝑘∣2] = 2𝜎2, using the results of appendix
A, we can write the power of the useful and self-interfering
components as

𝛼(5) = 4

(
6− 9

𝑁
+

4

𝑁2

)
𝜎4 (21)

𝑃
(5)
1 = 16

(
6− 9

𝑁
+

4

𝑁2

)2

𝜎10 (22)

𝑃
(5)
3 = 32

(
6− 9

𝑁

)2(
1− 2

𝑁
+

1

𝑁2

)
𝜎10 (23)

𝑃
(5)
5 = 192

(
1− 6

𝑁
+

15

𝑁2
− 17

𝑁3
+

7

𝑁4

)
𝜎10 (24)

and the total power of the self-interference samples is simply
𝐼(5) = 𝑃

(5)
3 + 𝑃

(5)
5 . When the number of subcarriers is

high the following approximations can be used 𝛼(5) ≈ 24𝜎4,
𝑃

(5)
1 ≈ 576𝜎10, 𝑃

(5)
3 ≈ 1152𝜎10, 𝑃

(5)
5 ≈ 192𝜎10 and

𝐼(5) ≈ 1344𝜎10. Again we can notice that these are the same
expressions we get by using 𝑔(𝑅) = 𝑅5 in the results of
appendix B.

C. Generalization

Previous results can be generalized for large values of
𝑁 noticing that the multiplicities for the signal 𝑠

(2𝑝+1)
𝑛 are

approximately given by

𝑀
(2𝑝+1→2𝛾+1)
𝑘 ≈

(
𝑝

𝑝− 𝛾

)
𝑃 (𝑝+ 1, 𝑝− 𝛾)𝑁𝑝+𝛾

=
𝑝!

𝛾!(𝑝− 𝛾)!

(𝑝+ 1)!

(𝛾 + 1)!
𝑁𝑝+𝛾 (25)

if 𝛾 < 𝑝, with 𝑃 (𝑛, 𝑟) denoting "permutation of 𝑛 elements
𝑟 by 𝑟", and by

𝑀
(2𝑝+1→2𝑝+1)
𝑘 ≈ 𝑀

(2𝑝+1)
𝑘 −

𝑝−1∑
𝑙=0

𝑀
(2𝑝+1→2𝑙+1)
𝑘 . (26)
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TABLE I
COMPARISON OF 𝛼2𝑝+1/𝜎2𝑝 FOR DIFFERENT VALUES OF 𝑁 .

𝛼(3) 𝛼(5)

𝑁 approx exact simul approx exact simul
16 4 3.875 3.873 24 21.813 21.851
32 4 3.938 3.937 24 22.891 22.967
64 4 3.969 3.966 24 23.441 23.437
128 4 3.984 3.986 24 23.720 23.713
256 4 3.992 3.991 24 23.860 23.867

if 𝛾 = 𝑝, where
∑

𝑘 𝑀
(2𝑝+1)
𝑘 = 𝑁2𝑝+1.

Thus the power of the useful and the self-interfering com-
ponents can be approximated by

𝑃
(2𝑝+1)
2𝛾+1 ≈ 1

𝑁2𝑝+1
𝛾!(𝛾 + 1)!

(∑
𝑘

𝑀
(2𝑝+1→2𝛾+1)
𝑘

)2

⋅ (𝐸[∣𝑆𝑘∣2])2𝑝+1

2𝑁2𝛾+1

=
1

2

1

𝛾!(𝛾 + 1)!

(
𝑝!(𝑝+ 1)!

(𝑝− 𝛾)!

)2

(𝐸[∣𝑆𝑘∣2])2𝑝+1 (27)

for 𝛾 < 𝑝 and, if 𝑝 = 𝛾 by

𝑃
(2𝑝+1)
2𝑝+1 ≈ 1

𝑁2𝑝+1
𝑝!(𝑝+ 1)!

(
𝑁2𝑝+1

)2 (𝐸[∣𝑆𝑘∣2])2𝑝+1

2𝑁2𝑝+1

≈ 𝑝!(𝑝+ 1)!

2
(𝐸[∣𝑆𝑘∣2])2𝑝+1. (28)

If 𝐸[∣𝑆𝑘∣2] = 2𝜎2 we get

𝑃
(2𝑝+1)
2𝛾+1 ≈ 1

𝛾!(𝛾 + 1)!

(
𝑝!(𝑝+ 1)!

(𝑝− 𝛾)!

)2

22𝑝𝜎4𝑝+2 (29)

and 𝑃
(2𝑝+1)
2𝑝+1 ≈ 𝑝!(𝑝+1)! 22𝑝𝜎4𝑝+2, which are the expressions

obtained by using the Gaussian approximation (see appendix
B).

III. ACCURACY OF THE GAUSSIAN APPROXIMATION

From the comparison of exact results and the ones obtained
using the Gaussian approximation it is clear that the Gaussian
approximation leads to errors. In this section we present some
results concerning these approaches.

The Gaussian approximation leads to errors of 2/𝑁 and
36/𝑁 − 16/𝑁2 on the evaluation of 𝛼(3) and 𝛼(5) values,
respectively. Table I shows values obtained using the exact
characterization, the Gaussian approximation and simulation
for 𝛼(3) and 𝛼(5) and several values of 𝑁 . It can be seen that
values obtained using the exact expressions are very close
to the ones obtained by simulation and that for values of 𝑁
greater then 100 there are no significant differences between
the exact and the approximated values.

As mentioned before, when the number of subcarriers is
high it is usual to consider 𝐷𝑘 exhibits quasi-Gaussian char-
acteristics for any 𝑘. This behavior of the nonlinear distortion
component at the subcarrier level is the result of having a
large number of contributions at each subcarrier, i.e., a large
multiplicity. For 𝑔(𝑅) = 𝑅3, the number of contributions
on subcarrier 𝑘 is 𝑀

(3→3)
𝑘 = 𝑀

(3)
𝑘 − 𝑀

(3→1)
𝑘 , which has

a quadratic characteristic with a maximum of order 𝑁2. Due
to this maximum in the cubic nonlinearity case (and more if
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Fig. 2. Comparison of Gaussian approximation, exact and simulated values
for 𝐸[∣𝐷𝑘∣2] and 𝑔(𝑅) = 𝑅3 .
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Fig. 3. Comparison of Gaussian approximation, exact and simulated values
for 𝐸[∣𝐷𝑘∣2] and 𝑔(𝑅) = 𝑅5 .

we have higher order terms), the Gaussian approximation is
accurate whenever 𝑁2 ≫ 1 (say 𝑁 > 10). This means that
for 𝑁 = 16 subcarriers we already have an almost Gaussian
behavior at the subcarrier level, at least for the central part
of the spectrum. However, for the subcarriers at the edge of
the band the multiplicity starts with small values. In fact, for
a cubic nonlinearity the number of contributions grows with
𝑘2 but is very low at the edges of the band (see (12) and Fig.
1.A). The same happens with 𝑔(𝑅) = 𝑅5, since the number
of contributions on subcarrier 𝑘 is 𝑀

(5)
𝑘 −𝑀

(5→1)
𝑘 (see (32),

(36) and Fig. 1.B), which depends on 𝑀
(3→3)
𝑘 . This implies

the Gaussian approximation is not accurate at the edges of the
spectrum. A comparison of 𝐸[∣𝐷𝑘∣2] values obtained using
the Gaussian approximation, the exact characterization and
simulations is shown in Figs. 2 and 3.

As an example let us now consider a Rapp characteristic,
which can be used to model a Solid State Power Amplifier
(SSPA) [10] and includes an ideal clipping as a particular
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Fig. 4. Comparison of Gaussian approximation and simulated values for
SIR𝑘 for a SSPA with 𝑞 = 2 and 𝑠𝑀/𝜎 = 2.0.
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Fig. 5. Comparison of Gaussian approximation and simulated values for
𝐸[∣𝐷𝑘∣2] for a SSPA with 𝑞 = 2 and 𝑠𝑀/𝜎 = 2.0.

case. In this case, 𝑔(𝑅) = 𝑅/ 2𝑞
√
1 + (𝑅/𝑠𝑀 )2𝑞 , where 𝑠𝑀 is

the saturating amplitude and the parameter 𝑞 is an integer that
controls the smooth transition from linear region to saturation
region. Note that, as 𝑞 grows larger (for 𝑞 = 1 this corresponds
to an ideal clipping). Figs. 4 and 5 show SIR levels and
𝐸[∣𝐷𝑘∣2] values obtained using the Gaussian approximation
and simulations for an SSPA with 𝑞 = 2 and 𝑠𝑀/𝜎 = 2.0.
Once again, the values obtained employing the Gaussian
approximation are not accurate when we have a small number
of subcarriers and our theoretical values are very close to the
simulated ones, showing the relevance of our method.

IV. CONCLUSIONS

In this paper we studied the accuracy of using the Gaussian
approach to evaluate the impact of memoryless nonlinear
devices in OFDM signals. It is shown that even for a reduced
number of subcarriers a multicarrier signal submitted to a
nonlinear device can be decomposed in useful and self-

interference components. In the cases of nonlinear charac-
teristics of order 3 and 5, exact expressions for the power
of these components are derived and compared with the
ones obtained using the Gaussian approximation approach.
From the presented analysis we concluded that the Gaussian
approximation is very good for large values of 𝑁 , as expected.
Values found for 𝛼 are also very precise. However, the PSD of
the self-interference component is over-estimated especially in
the in-band region, leading to slightly pessimistic SIR levels,
with an error inversely proportional to 𝑁 . With respect to the
Gaussian approximation of the self-interference component at
the subcarrier level, it is very accurate whenever 𝑁2 is high,
except at the edge of the band.

APPENDIX A
EXACT CHARACTERIZATION OF BANDPASS MEMORYLESS

NONLINEARITIES WITH CHARACTERISTIC 𝑔(𝑅) = 𝑅5

In this appendix we present the exact characterization for
a bandpass memoryless nonlinear with characteristic 𝑔(𝑅) =
𝑅5, i.e., with samples at the output of the nonlinear device
𝑠
(5)
𝑛 = 𝑠𝑛𝑠

∗
𝑛𝑠𝑛𝑠

∗
𝑛𝑠𝑛 given by (20).

Having in mind determining the multiplicity of each subcar-
rier, we define the sets 𝒦(5)

𝑚 = {(𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5) ∈ 𝒦(5) :
𝑘𝑥 = 𝑘𝑦∧𝑘𝑤 = 𝑘𝑧}, for all 𝑥,𝑤 ∈ {2, 4} and 𝑦, 𝑧 ∈ {1, 3, 5}.
Clearly ∣𝒦(5)∣ = 𝑁5 and ∣𝒦(5)

𝑚 ∣ = 𝑁2, 𝑚 = 1, . . . , 6. The
multiplicity of the useful component is

𝑀
(5→1)
𝑘 =

{ ∣∣𝒰 (5)
∣∣ , 0 ≤ 𝑘 ≤ 𝑁 − 1

0, otherwise
(30)

with 𝒰 (5) =
∪6

𝑚=1𝒦(5)
𝑚 . The cardinal of the set 𝒰 (5) can be

obtained from∣∣∣∣∣
6∪

𝑚=1

𝒦(5)
𝑚

∣∣∣∣∣ =
6∑

𝑚=1

∣𝒦(5)
𝑚 ∣+

6∑
𝑚=2

(−1)𝑚−1ℐ(5)
𝑚

=

6∑
𝑚=1

(−1)𝑚−1ℐ(5)
𝑚 (31)

with ℐ(5)
𝑚 =

∑
{𝑖1,...,𝑖𝑚}∈𝒞(5)

𝑚

∣∣∣∩𝑚
𝑙=1 𝒦(5)

𝑖𝑙

∣∣∣, where 𝒞(5)
𝑚 repre-

sents is the set of all subsets of {1, 2, . . . , 6} that contain 𝑚

elements. Clearly ∣𝒞(5)
𝑚 ∣ = ( 6𝑚) hence for 𝑚 = 2 the number

of subsets is
(
6
2

)
= 15. It can be shown that of these 9

have cardinal 𝑁 and the remaining have cardinal 1, which
means that ℐ(5)

2 = 9𝑁 + 6. For 𝑚 = 3, 4, 5 and 6 all
subsets have cardinal 1, hence ℐ(5)

𝑚 =
(
6
𝑚

)
and we can write∣∣𝒰 (5)

∣∣ = ℐ(5)
1 −ℐ(5)

2 +ℐ(5)
3 −ℐ(5)

4 +ℐ(5)
5 −ℐ(5)

6 = 6𝑁2−9𝑁+4,
which means

𝑀
(5→1)
𝑘 = (6𝑁2 − 9𝑁 + 4)𝑀

(1)
𝑘 (32)

and the sum of the multiplicities of the useful and self-
interference samples are, respectively,

∑𝑁−1
𝑘=0 𝑀

(5→1)
𝑘 =

6𝑁3− 9𝑁2+4𝑁 and
∑3𝑁−3

𝑘=−2𝑁+2 𝑀
(5)
𝑘 −∑𝑁−1

𝑘=0 𝑀
(5→1)
𝑘 =

𝑁5 − 6𝑁3 + 9𝑁2 − 4𝑁 .
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Thus we can write 𝑠
(5)
𝑛 as a sum of a useful and a self-

interference components 𝑠
(5)
𝑛 = 𝛼(5)𝑠𝑛 + 𝑑

(5)
𝑛 , with

𝛼(5) =
6𝑁2 − 9𝑁 + 4

𝑁2
(𝐸[∣𝑆𝑘∣2])2

=

(
6− 9

𝑁
+

4

𝑁2

)
(𝐸[∣𝑆𝑘∣2])2 (33)

and

𝑑(5)𝑛 =
1√
𝑁5

∑
𝑘(5)∈𝒦(5)∖𝒰(5)

𝑆𝑘1𝑆
∗
𝑘2
𝑆𝑘3𝑆

∗
𝑘4
𝑆𝑘5

⋅ 𝑒𝑗2𝜋(𝑘1−𝑘2+𝑘3−𝑘4+𝑘5)𝑛/𝑁
′
. (34)

The self-interference samples can be written as

𝑑(5)𝑛 =
1

𝑁

∑
𝑘

𝑀
(5→3)
𝑘 𝐸[∣𝑆𝑘∣2]

⋅ 1√
𝑁3

∑
𝑘′

∑
𝑘′′

∑
𝑘′′′

𝑆𝑘′𝑆∗
𝑘′′𝑆𝑘′′′𝑒𝑗2𝜋(𝑘

′−𝑘′′+𝑘′′′)𝑛/𝑁 ′

︸ ︷︷ ︸
≈𝑑

(3)
𝑛

+
1√
𝑁5

∑
𝑘1

∑
𝑘2

∑
𝑘3

∑
𝑘4

∑
𝑘5

𝑆𝑘1𝑆
∗
𝑘2
𝑆𝑘3𝑆

∗
𝑘4
𝑆𝑘5

⋅ 𝑒𝑗2𝜋(𝑘1−𝑘2+𝑘3−𝑘4+𝑘5)𝑛/𝑁
′
. (35)

It can be shown that

𝑀
(5→3)
𝑘 ≈ (6𝑁 − 9)𝑀

(3→3)
𝑘 + (𝑁 − 2)𝑀

(1)
𝑘 (36)

and
3𝑁−3∑

𝑘=−2𝑁+2

𝑀
(5→3)
𝑘 = 6𝑁4 − 21𝑁3 + 26𝑁2 − 11𝑁. (37)

Obviously

𝑀
(5→5)
𝑘 ≈ 𝑀

(5)
𝑘 −𝑀

(5→3)
𝑘 −𝑀

(5→1)
𝑘 (38)

and
3𝑁−3∑

𝑘=−2𝑁+2

𝑀
(5→5)
𝑘 =

3𝑁−3∑
𝑘=−2𝑁+2

𝑀
(5)
𝑘 −

3𝑁−3∑
𝑘=−2𝑁+2

𝑀
(5→3)
𝑘

−
𝑁−1∑
𝑘=0

𝑀
(5→1)
𝑘 = 𝑁5 − 6𝑁4 + 15𝑁3 − 17𝑁2 + 7𝑁.

(39)

The evolution of 𝑀
(5)
𝑘 , 𝑀

(5→1)
𝑘 , 𝑀

(5→3)
𝑘 and 𝑀

(5→5)
𝑘 is

depicted in Fig. 1.B.
The power of the useful component is

𝑆(5) = 𝑃
(5)
1 =

(𝛼(5))2

2
𝐸[∣𝑆𝑘∣2] (40)

and the power of the self-interfering components are

𝑃
(5)
3 =

1

𝑁2
(6𝑁 − 9)2 (𝐸[∣𝑆𝑘∣2])2𝑃 (3)

3

=

(
6− 9

𝑁

)2(
1− 2

𝑁
+

1

𝑁2

)
(𝐸[∣𝑆𝑘∣2])5 (41)

and

𝑃
(5)
5 = 6

(
1− 6

𝑁
+

15

𝑁2
− 17

𝑁3
+

7

𝑁4

)
(𝐸[∣𝑆𝑘∣2])5. (42)

Clearly the total power of the self-interference samples is
𝐼(5) = 𝑃

(5)
3 + 𝑃

(5)
5 .

APPENDIX B
ANALYTICAL CHARACTERIZATION OF NONLINEARLY

DISTORTED MULTICARRIER SIGNALS USING THE

GAUSSIAN APPROXIMATION

In this appendix we particularize the results obtained using
the Gaussian approximation (see [5]) for the case where
𝑔(𝑅) = 𝑅2𝑝+1. In this case 𝛼 can be obtained from

𝛼(2𝑝+1) =
1

2𝜎4

∫ +∞

0

𝑅2 𝑅2𝑝+1 𝑒−
𝑅2

2𝜎2 𝑑𝑅

=
1

2
𝜎2𝑝(2𝑝+ 2)(2𝑝)(2𝑝− 2) . . . 2 = 2𝑝(𝑝+ 1)!𝜎2𝑝, (43)

and the average power of the signal at the nonlinearity output
is given by

𝑃
(2𝑝+1)
out =

1

2𝜎2

∫ +∞

0

𝑅𝑅4𝑝+2 𝑒−
𝑅2

2𝜎2 𝑑𝑅

=
1

2
𝜎4𝑝+2(4𝑝+ 2)(4𝑝) . . . 2 = 22𝑝(2𝑝+ 1)!𝜎4𝑝+2. (44)

The intermodulation products can be obtained from

𝑃
(2𝑝+1)
2𝛾+1 =

1

𝛾!(𝛾 + 1)!

(
𝑝!(𝑝+ 1)!

(𝑝− 𝛾)!

)2

22𝑝𝜎4𝑝+2. (45)

In the particular case of 𝛾 = 𝑝 we simply get 𝑃
(2𝑝+1)
2𝑝+1 =

𝑝!(𝑝+ 1)!22𝑝𝜎4𝑝+2.
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