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CAPE: combinatorial absolute phase estimation
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An absolute phase estimation algorithm for interferometric applications is introduced. The approach is
Bayesian. Besides coping with the 2�-periodic sinusoidal nonlinearity in the observations, the proposed meth-
odology assumes a first-order Markov random field prior and a maximum a posteriori probability (MAP) view-
point. For computing the MAP solution, we provide a combinatorial suboptimal algorithm that involves a mul-
tiprecision sequence. In the coarser precision, it unwraps the phase by using, essentially, the previously
introduced PUMA algorithm [IEEE Trans. Image Proc. 16, 698 (2007)], which blindly detects discontinuities
and yields a piecewise smooth unwrapped phase. In the subsequent increasing precision iterations, the pro-
posed algorithm denoises each piecewise smooth region, thanks to the previously detected location of the dis-
continuities. For each precision, we map the problem into a sequence of binary optimizations, which we tackle
by computing min-cuts on appropriate graphs. This unified rationale for both phase unwrapping and denoising
inherits the fast performance of the graph min-cuts algorithms. In a set of experimental results, we illustrate
the effectiveness of the proposed approach. © 2009 Optical Society of America
OCIS codes: 100.5088, 100.3020, 100.3175.
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. INTRODUCTION
here are nowadays many applications based on phase

mages, e.g., interferometric synthetic aperture radar (In-
AR) [1], magnetic resonance imaging [2], adaptive optics

3,4], vibration and deformation measurements [5], and
iffraction tomography [6]. InSAR is being successfully
pplied, e.g., to the generation of digital elevation models
nd in the monitoring of land subsidence; among the
lethora of magnetic resonance imaging applications, we
mphasize venography (and angiography as well) [7] and
issue elastography [8]; concerning adaptive optics, we
oint to applications in medicine and industry [9].
nterferometry-based vibration and deformation mea-
urements are widespread among metrology techniques,
nd diffraction tomography finds application in, e.g., geo-
hysical subsurface prospection and 3D microscopic
maging.

In all of these imaging systems, the acquisition sensors
ead only the sine and the cosine of the absolute phase;
hat is, we have access only to the phase modulo 2�, the
o-called interferogram. Besides this sinusoidal nonlin-
arity, the observed data are corrupted by some type of
oise. Because of these degradation mechanisms, abso-

ute phase estimation is known to be a very difficult prob-
em. In particular, if the magnitude of absolute phase
ariation between neighboring pixels is larger than �, i.e.,
f the so-called Itoh condition [10] is violated, then the in-
erence of the absolute phase is an ill-posed problem [11].
hese violations may be due to spatial undersampling,
riginal phase discontinuities, or noise. The goal in this
aper is to present an algorithm to solve this nonlinear
nverse problem: the so-called absolute phase estimation
roblem.
The structure of the observation models relating the

oisy wrapped phase with the true phase depends on the
1084-7529/09/092093-14/$15.00 © 2
ystem under consideration (see, e.g., [12–14] for an ac-
ount of observation models in different coherent imaging
ystems). The essence of most of these observation mecha-
isms is, however, captured by the relation

z = Aej� + n, A � 0,

= �z�ej��+�n�, �1�

here � is the true phase value (the so-called absolute
hase value), n=nI+ jnQ is complex-valued zero-mean cir-
ular white additive noise with variance �2 (i.e., nI and nQ
re zero-mean independent Gaussian random variables
ith variance �2 /2), and �n is the phase due to n.
Let us define W, the wrapping operator, such that

� = angle�z� = W�� + �n�, � � �− �,��. �2�

perator W maps the noisy phase �+�n into the principal
hase interval �−� ,��. For �n=0, there is an obvious link
etween the wrapped phase � and the nonwrapped abso-
ute phase �, �=�+2�k, �� �−� ,��, where k is an inte-
er. The basic unwrapping problem is to reconstruct
�x ,y�, �x ,y��X�Z2, from the observations ��x ,y�. There

s, of course, no one-to-one relation between the wrapped
nd the absolute phases. It is, however, straightforward
o show that, in the absence of noise, if the phase differ-
nce �� between any two neighboring pixels is smaller
han � in magnitude (i.e., the Itoh condition is verified),
hen the correspondent wrapped phase difference is the
ame, i.e.,

�� = W����. �3�

e are, then, able to compute (unwrap) the absolute
hase for every other pixel, up to a constant, by integrat-
ng the wrapped differences W����. This is the basis of
009 Optical Society of America
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he path-following phase unwrapping algorithms [15]. It
appens, quite often, that phase images have discontinui-
ies, areas of high phase rate, and noise. In this case, the
toh condition may fail, and therefore different integra-
ion paths may lead to different unwrapped phase values.

To cope with these difficulties, there are in the litera-
ure two main classes of algorithms: the basic phase un-
rapping type, which solves only the 2�-multiples prob-

em [15–17,19], and the estimation type (or regularization
ype), in which the absolute phase is estimated
13,20–23], and thus the estimation type has a broader
cope.

. Contributions
he main contribution of this paper is twofold:

1. A new approach to absolute phase estimation. Con-
rary to the majority of absolute phase methods, we first
pply unwrapping and only then denoising. By using a
iscontinuity-preserving prior, the unwrapping algorithm
ot only infers the 2� multiples of the absolute phase, but
lso implicitly detects the discontinuity locations. This is
rucial information for the effectiveness of the phase de-
oising that would not be available if this step were ap-
lied prior to unwrapping.
2. A unified rationale for both phase unwrapping and

enoising. This is achieved through the proposal of a
state-of-the-art competitive) multiprecision combinato-
ial optimization algorithm based on graph cuts. The mul-
iprecision technique improves the performance by de-
reasing the algorithm’s complexity.

. Related Work
n the field of phase unwrapping, we refer to [12] and ref-
rences therein. References [17–19,24] introduce phase
nwrapping algorithms with discontinuity-preserving ca-
abilities. Furthermore, PUMA [25] is a state-of-the-art
hase unwrapping algorithm, while Z�M [13] and
EARLS [26] are state-of-the-art absolute phase estima-
ion algorithms. Regarding Z�M, the present work ex-
ends it by allowing a wider family of Markov random
elds (MRFs), namely, nonconvex pairwise potentials,
hich brings the discontinuity-preservation ability. The
EARLS algorithm [26] employs PUMA for phase un-
rapping and differs from ours essentially in the denois-

ng technique: specifically, it applies denoising before un-
rapping. This is a sensitive issue, since the effectiveness
f the denoising step depends on the knowledge of the lo-
ation of the discontinuities. PEARLS implements a fil-
ering technique based on local polynomial approximation
ith a varying adaptive neighborhood used in reconstruc-

ion (see [26] for details). The adaptive mechanism trades
ias with variance in such a way that the window size
tretches in areas where the underlying true phase is
mooth and shrinks otherwise, that is, in the presence of
iscontinuities.
In this paper, we circumvent the need of filtering the

nterferogram (noisy wrapped phase image) by basically
rst using PUMA to unwrap the interferogram; only then

s denoising applied after PUMA has implicitly located
he discontinuities. Compared with PUMA [25], the
resent work also goes further by both allowing denoising
nd improving the performance of each binary step in the
ptimization sequence.

. Integer Optimization
ith respect to the optimization referred to above, we

eal with a labeling problem on first-order Markovian
andom field made of unary (one-variable dependence)
nd pairwise on difference (two-variable difference depen-
ence) terms. If the unary and pairwise terms are convex,
his problem is known as the dual of the convex cost net-
ork flow problem which is extensively discussed in the

iterature (see, e.g., [27–30]). References [13,25,31] at-
acked particular instances of the dual of the convex cost
etwork flow problem by solving a sequence of descent bi-
ary optimization problems, each of which may be solved
y computing the max-flow/min-cuts on appropriate
raphs. This is a relevant practical advantage, as there
re max-flow/min-cut algorithms specifically tuned to im-
ge processing and computer vision problems [32].
References [29,33–35] introduced and characterized

eneralizations of the descent algorithms [13,25,31] to
ual of the convex cost network flow problems containing
airwise and unary terms. An even more general class of
unctions, the so-called L-convex and L�-convex functions,
as considered in [36]. References [33,34], in addition to

ntroducing new results, give an excellent account of the
onnections between the dual of the convex cost network
ow problems and of L-convex and L�-convex based prob-

ems. Concerning Markovian first-order objective func-
ions (having unary and pairwise terms), we still should
efer to [37] (pairwise term depending on the difference of
he two values involved), which, although being theoreti-
ally very appealing, seems not very practical for most of
he computer vision problems; we should also refer to
38], which deals with general first-order submodular ob-
ective functions. In practical terms, we can think about a
ubmodular function as a discrete analogue of a convex
unction. A binary pairwise interaction function E� · , · � is
ubmodular iff E�0,0�+E�1,1��E�1,0�+E�0,1�. Concern-
ng this subject we refer to [36] and references therein.

Discontinuity-preserving pairwise interaction terms
re, quite often, nonconvex. In this case, the underlying
ptimization problem is NP-hard [39], and none of the
ited algorithms applies. The source of difficulties is two-
old: (a) a sequence of descent optimizations leads to a lo-
al minimum, and (b) each subproblem can no longer be
apped onto a max-flow/min-cut. In the vein of [25] we

nsist, however, in the descent approach, which, in the
ase of phase unwrapping, leads systematically to high-
uality results. Concerning each binary subproblem, we
eplace the objective function with a convex majorizer,
hus adopting the majorization–minimization framework
40].

. Paper Organization
n the next section, we present the core ideas and con-
epts of the proposed approach. Subsection 2.A character-
zes the posterior density of the proposed Bayesian frame-
ork; then Subsection 2.B concerns the roles of
nwrapping and denoising in the optimization process to
ompute the maximum a posteriori (MAP); and subse-
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uently Subsection 2.C establishes and discusses the op-
imization technique in some detail. Finally, Section 3
resents a series of experimental results, and then Sec-
ion 4 provides some concluding remarks.

. PROPOSED APPROACH
et G= �V ,E� be an undirected graph associated with a
rst-order MRF where the set of nodes V represents im-
ge pixels and the set of edges E represents pairs of neigh-
oring pixels. We assume that if �i , j��E, then �j , i��E.
In this paper, we consider first-order MRFs, and there-

ore the set of edges E represents the set of horizontal and
ertical neighbors. Nevertheless, all the concepts and re-
ults presented are valid for any set of pairwise interac-
ions.

. Posterior Function
e follow the Bayesian framework. Accordingly, we need

o build the posterior density function p�� �z� of the phase
mage ��R�V� given the observed complex image z�C�V� (C
enotes the complex field). Invoking the Bayes law we
ave p�� �z��p�z ���p���, where p�z ��� is the likelihood
unction measuring the data fit and p��� is the prior den-
ity encoding a priori knowledge about the phase image
.
Let us assume conditional independence in the obser-

ation mechanism, i.e., p�z ���=�i�Vp�zi ��i�. Further-
ore, let us consider priors such that log p���
−	��i,j�Vi,j��i−�j�+c, where c is an irrelevant constant,
�0 is a scale parameter often termed the regularization
arameter, and Vi,j� · � is the so-called potential associated
ith edge �i , j�. In these circumstances, computing the
AP estimate is equivalent to minimize the negative

ogarithm of the posterior density E :R�V�→R� �+
� given
y

E��� � �
i�V

Di��i�

Data fidelity term

+ � �
�i,j��E

Vi,j��i − �j�

Prior term

,
�4�

here Di��i�	−log p�zi ��i�.
MAP Estimation. Given the observation mechanism in-

roduced in Eq. (2), we have (see, e.g., [13])

p�zi��i� =
1

��2 ,e�−�zi − Aej�i�2�/��2�,

nd, thus, by dropping some irrelevant constants we get

Di�zi� = − �i cos��i − �i� for i � V,

ith �i	2A�zi� / ��2� and �i	angle�zi�; i.e., the log likeli-
ood function is proportional to a shifted cosine. The MAP
bsolute phase estimate is then obtained by minimizing
he negative of the log posterior function given by

E��� � �
i�V

− �i cos��i − �i�

Data fidelity term

+ � �
�i,j��E

Vi,j��i − �j�

Prior term

.

�5�

otice that 	, the so-called regularization parameter, sets
he relative weight between the data fidelity term and the
rior term.
We emphasize that the MAP estimation gives place to
inimizing the log posterior function (5). For a given im-

ge phase � candidate to a MAP solution, this function
omprises a data fidelity term, which measures the misfit
etween the observed data and �, and a prior term, which
easures the lack of plausibility of �, induced by the po-

entials Vi,j� · �; roughly, enforcing smooth surfaces implies
onvex potentials, whereas enforcing piecewise smooth-
ess, and thus preserving surfaces discontinuities, im-
lies nonconvex potentials.
Assume that the noise approaches zero. Then, �i
2A�zi� / ��2�→+
, and any MAP solution satisfies cos��i
�i�=1, implying the constraints

�i = �i + 2�ki for i � V and ki � Z. �6�

herefore, computing the MAP solution reduces to mini-
izing the prior term in Eq. (5) under constraints (6).
his the so-called phase unwrapping problem, which is an

nteger optimization problem well known to be a difficult
ask to perform [41]. The phase unwrapping is even more
ricky because, usually, the phase images are very large
e.g., 106 variables for a 1000�1000 image). Such a prob-
em is addressed by the PUMA algorithm [25], which
ields, in polynomial time, exact or approximate solutions
s long as the potential V in Eq. (5) is, respectively, con-
ex or nonconvex. In fact, in the latter case, we cannot
ope to achieve more than approximate solutions, as the
roblem is NP-hard [32,42].
Aiming at simultaneous noise filtering and discontinu-

ty preservation, we use in this paper half-quadratic-type
43,44] potentials, all with the same shape Vi,j=V given
y

V�x� = 
�x�2 if �x� � �

�2 − �p + �x�p if �x� � �� , �7�

ith 0
p
1 and thus nonconvex. Figure 1 plots this
unction for p=0.4. These potentials are quadratic near
he origin, thus modeling Gaussian noise, and with a flat-
ess trend for phase magnitudes larger than �, in order
o preserve discontinuities [45]. When we do not have dis-
ontinuities to deal with, we simply employ quadratic (or
ear quadratic) potentials. In any case, the concepts and

deas introduced next are valid for a wide class of poten-
ial functions.

ig. 1. (Color online) Graph of a half-quadratic potential em-
loyed in this paper �p=0.4�.
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. Optimization
ur goal is to compute

�* = arg min
�

�E����, �8�

here E��� is given by Eq. (5). This is a hard problem be-
ause both data fidelity and prior terms are nonconvex.

First Unwrap, then Denoise. Very often, in interfero-
etric applications, we are just interested in computing

he 2� multiple in the representation �i=�i+2�ki, the so-
alled phase unwrapping problem. Since the data fidelity
erm, Di��i=�i+2�ki�=−�i, does not depend on ki, then
he unwrapping optimization problem consists in mini-
izing the prior term of Eq. (5) with respect to �
�i�V��i+2�ki :ki�Z�. In our previous works [25,31], we

ntroduced a descent method that, depending on the po-
entials, yields exact (in the case of convex potentials) or
pproximated (in the case of nonconvex potentials) solu-
ions. Each step of this method solves a binary problem by
omputing the min-cut of an appropriate graph.

We note that the basic phase unwrapping step can be
iewed as a discretization of the original domain, using a
ampling interval of 2�. A consequence of this discretiza-
ion is that the resulting objective function is easier to
eal with, since, for ���i�V��i+2�ki :ki�Z�, it does not
epend on the nonconvex data terms −�i cos��i−�i�.
After the unwrapping step, we get absolute phase esti-
ates given by �̂i=�i+2�k̂i. Even if the integer image es-

imate is exact, we still have error in �̂i due to the noise
resent in �i [please see expression (2)]. In order to filter
ut the noise, we compute a sequence of binary descent
ptimizations, using a multiprecision schedule. The preci-
ion q� �0,1, . . . ,N� corresponds to a sampling interval of
=2� /2q. Thus, the coarser precision implements phase
nwrapping and the following denoising.
We highlight the following qualitative characteristics of

he approach just described:

1. The PUMA algorithm [25], used for phase unwrap-
ing, is able to deal with discontinuities and implicitly lo-
ate them.

2. The PUMA solution yields an error much smaller
han � in magnitude in most of the pixels.

3. Given that for precisions q�0 we have, for most i
V , ��i−�i���, then most of the unary terms −�i cos��i
�i� behave as convex functions, rendering a much easier
ptimization problem.

One expectable advantage of coarse-to-fine multipreci-
ion schedule is computation time. However, in our sce-
ario this is not, perhaps, the most important feature: ow-

ng to the nonconvexity of the problem, the algorithm very
ikely would have become stuck in a local minimum if we
ad begun with the highest precision.

. Algorithm
lgorithm 1 shows the pseudocode for the optimization,
here we use the following sets:

MU���,�� 	 �� � R�V�:�i = �i� + �i��,
MD���,�� 	 �� � R�V�:�i = �i� − �i��,

here �i� �0,1�, ��R.
Our Algorithm 1:

lgorithm 1. Combinatorial absolute phase estimation.
nitialization: �=� {Interferogram}, successup=false,
uccessdown=false
1: for �=2�� �20,2−1, . . . ,2−N� do
2: while (successup=false OR successdown=false) do
3: if successup=false then

4: �̂=arg min�̂�MU��,��Ẽ��̂�
5: if E��̂�
E��� then

6: �= �̂

7: else
8: successup=true
9: end if
10: end if
11: if successdown=false then

12: �̂=arg min�̂�MD��,��Ẽ��̂�
13: if E��̂�
E��� then

14: �= �̂

15: else
16: successdown=true
17: end if
18: end if
19: end while
20: end for

ngages in a greedy succession of up and down binary
ptimizations. The precision interval � starts with the
alue 2� and ends with the value 2� / �2N�, where N is a
epth of precision. In order to characterize the algorithm,
e start by assuming E���= Ẽ��� and the terms Di and Vi,j

n expression (4) to be convex. Then, for each precision
nterval �, Algorithm 1 finds, in finite time, a minimizer of

in a grid of size �. More precisely, we have the following.
Theorem 1. If the unary and pairwise terms of E, de-

ned in Eq. (4), respectively, Di� · � for i�V, and Vij� · � for
i , j��E, are convex, then, at a given precision interval �
2� /2q, for q� �0, . . . ,N�, the following holds:

1. The output of the while loop is a minimizer of E���
n the set ���R�V� :�i=�i+zi� ,zi�Z�.

2. The number of while iterations at each precision q
�0, . . . ,N� is bounded by Kq+1, where Kq=K02q is the

ange of the 2� multiples variables at precision q.

Proof: For the precision interval �, the pseudocode em-
raced by the while loop (lines between 2 and 19) finds a
inimizer of E��� in ���R�V� :�i=��+zi� ,zi�Z�, where ��

s the minimizer obtained in the previous precision.
roofs are given in [25], in the absence of unary terms,
nd in [33,35], for the general case, i.e., when E contains
nary and pairwise terms.
Since the successive precisions are powers of �1/2� we

an write �i�=�i+ li�, where �i� and �i are the ith compo-
ents of �� and �, respectively, and li is an integer. There-

ore, it follows that ���R�V� :�i=��+zi� ,zi�Z�= ��
R�V� :�i=�i+zi� ,zi�Z�. �

As already pointed out, we solve the binary minimiza-
ions displayed in lines 5 and 14 of Algorithm 1 by com-
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uting max-flows/min-cuts on appropriate graphs. Denot-
ng by T�n ,m� the time complexity of the max-flow/min-
ut algorithm used, where n is the number of graph nodes
nd m the number of edges, then Algorithm 1 takes the
seudopolynomial time O�KqT�n ,m�� to find a minimum
f E at the precision q.

The rationale underlying the multiprecision minimiza-
ion is that of a minimum length search for a minimizer of
. Still considering the convex scenario, given a mini-
izer at a precision q, say �q, there exists a minimizer at

he precision q+1 such that 
�q−�q+1


n [36, Theorem
.18], where 
x

	maxixi is the l
 norm of x. Therefore,
he algorithm takes at most n iterations to find a mini-
izer at resolution q+1 [25]. Consequently, the number of

terations to find a minimizer of E is bounded by
�n log KN�. In practice, we have observed systematically

�q−�q+1

�n, and very often we have 
�q−�q+1


2,
aking the algorithm highly efficient from the time com-

lexity point of view. This behavior is illustrated in Fig.
(c) below, where we show the evolution of Algorithm 1 in
convex scenario, both with and without multiprecision.
otice that in the former case the number of up and down

terations (lines 6 and 14 of Algorithm 1) to find a mini-
um, in a given precision, is 2� �Kq+1�.
To solve the binary optimizations shown in lines 4 and

2, we use the graph cuts techniques. The main idea,
hich was introduced into computer vision in [46], and
opularized in [37,39,41,47], is a one-to-one mapping of a
ubmodular binary function onto the set of cuts of a cer-
ain source-terminal graph. As referred to at the very be-
inning of this section, to each pixel of the image to be in-
erred there corresponds a node. Each node is in general
inked, through edges, with each neighbor (either vertical
r horizontal in our case) and, furthermore, to the source
s� and/or to the sink �t� (the edges always have either
ositive or null weights, the latter corresponding to non-
xistence of the edge). An s– t cut C= �S ,T� is a partition
f the set of vertices V into two disjoint sets S and T, such
hat s�S and t�T. The cost of the cut is the sum of costs
f all edges between S and T. A min-cut is a cut of mini-
um cost. After computing an s– t min-cut, each node v

nds having the binary value 1 if v�S or binary value 0
therwise.

Figure 2 illustrates the building of such a graph. As
ong as the binary function is submodular, the exact glo-
al minimum of the function is attained [39]. According to
he Ford–Fulkerson theorem [48], the min-cut is equal to
he max-flow. As there are plenty of efficient low-order
olynomial complexity algorithms to compute min-cuts/
ax-flows, it turns out that each binary problem is effi-

iently solved. We have followed the mapping proposed in
49], which gives an improvement relative to [39].

In our case, neither the unary nor the pairwise energy
Eq. (4)] interaction terms, Di��i� and Vi,j��i−�j�, respec-
ively, are convex. First, this means that we cannot map
he binary optimizations discussed above into min-cuts on
uited graphs, because the resulting binary energy is non-
ubmodular [39]; moreover, we do not meet the conditions
n which Theorem 1 applies. We address this problem by
pproximating energy E��� with Ẽ���. This approxima-
ion consists in replacing the nonsubmodular pairwise
erms V with submodular majorizers. Then we apply the
i,j
ajorize–minimize principle [40]. Figure 3 illustrates the
rocess of finding the majorizer.
We note that although we employ the approximation

˜ ��� to compute the optimizations, the evaluation of de-
cending energy in lines 5 and 13 of Algorithm 1 is made
hrough E���, the true energy.

We now emphasize two facts:

• For the first precision ��=2�� there is no unary term
n the energy E��� [Eq. (4)]. This means that with Ẽ we
re in a convex scenario.
• For the subsequent precisions the nonconvex sinu-

oidal unary terms in Ẽ are not null; however, for these
mall precisions, we are likely to be in a convex attraction
asin of Ẽ��� because, as already referred to in Subsec-
ion 2.B, ��i−�i��� for most of the unary terms.

Figure 4 illustrates the virtues of employing a multi-
recision approach. In the first example [Figs. 4(a)–4(c)]
e intend to illustrate the pure effect of the algorithm’s

peed enhancing. For that, we consider a convex energy
q. (4), for which we set Di�zi�= ��i−�i�2, instead of the

ig. 2. (Color online) Elementary graph representing a unary
nd a pairwise interaction energy term. Nodes s and t represent
ource and sink, respectively, and v and v� represent the two pix-
ls involved in the interaction; pixel v also has a unary term at-
ached to it. In this case E�1�−E�0��0, E�1,0�−E�0,0��0, and
�1,0�−E�1,1��0. We note that the two edges linking pixels s
nd t are equivalent to a single edge with weight E�1�−E�0�
E�1,0�−E�0,0�. (b) Illustration of the graph obtained at the
nd: it results from adding elementary graphs.

ig. 3. Replacing nonsubmodular energy terms by submodular
nes; we end up with an approximate energy. One of the possible
pproximations is to increase Eij�0,1�.
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inusoidal nonconvex observation data model, and V�x�
�x� for the pairwise interaction, discontinuity-preserving,
otential. In this example, � plays the role of a noisy ob-
ervation of � in a Gaussian additive model. Figure 4(a)
hows an image that corresponds to a discretized pyramid

ig. 4. (Color online) (a) Discretized pyramid with additive Ga
nergy). (c) Energy decrease versus iterations for (b): dots indic
nest precision only. (d) Wrapping of a clipped Gaussian with 14�
ultiprecision approach. (f) Completely failed unwrapping, runni

e) with or (f) without multiprecision; dots indicate increase of pr
ith additive Gaussian noise ��=1�. Figure 4(b) shows
he image in Fig. 4(a) denoised by applying algorithm 1;
he result is very good. Figure 4(c) illustrates the energy
ecreasing versus iterations. The curve with dots repre-
ents the energy evolution obtained by using multipreci-

noise ��=1�. (b) Image in (a) denoised by Algorithm 1 (convex
increase of precision; the other curve corresponds to using the
eight. (e) Perfect unwrapping obtained by Algorithm 1 using the
algorithm with finest precision only. (g) Energy evolution either
; the other curve corresponds to using the finest precision only.
ussian
ate an

rad h
ng the
ecision
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ion; each dot corresponds to a change of precision. The
ther curve corresponds to a performance of the algorithm
n the finest precision from the beginning. It can be seen
hat both ways we end up with the same energy (and in
act the same denoised image), as expected by using a
onvex energy function; however, multiprecision makes
he algorithm much faster. In the second example [Figs.
(d)–4(g)] we illustrate the absolute phase estimation us-
ng the energy [Eq. (4)] as almost elsewhere in the paper.
igure 4(d) shows the wrapped phase corresponding to a
rue phase given by a clipped Gaussian with 14� rad
eight. Figure 4(e) shows a perfect unwrapping obtained
y algorithm 1 with the multiprecision approach. Figure
(f) displays the completely failed unwrapping that one
btains by running the algorithm with the finest precision
rom the very beginning. Finally, Fig. 4(g) displays the en-
rgy evolutions both with and without multiprecision; the
urve with dots, corresponds to the multiprecision run
each dot represents a precision change). These plots il-
ustrate that multiprecision avoids the poor-energy local

inima that are obtained without multiprecision. Again
ultiprecision enhances the speed of the algorithm.
In the next section, we present a series of experiments

onfirming the effectiveness of the proposed approach in
bsolute phase estimation.

. EXPERIMENTAL RESULTS
n this section, we present four experiments illustrating
he performance of the proposed algorithm: the first three
oncern synthetic data generated according to the model
hown in Eq. (1) and with A=1; the fourth deals with In-
AR data distributed with [12], which is a commonly used
enchmark to score absolute phase estimation algo-
ithms. In all the experiments, we have employed a depth
f precision (see Algorithm 1) N=8, which gives a mini-
um precision interval of 2� /28 rad�2.5�10−3 rad. The

egularization parameter 	 [see Eq. (5)] and the exponent
[see Eq. (7)] of the half-quadratic discontinuity-

reserving potential were hand-tuned for the best perfor-
ance. We note, however, that in the four experiments

he regularization parameter takes values in the set
0.2,0.4] and that the exponent p takes values close to 0.5
hen the original absolute phase has discontinuities, and
qual to 2 when there are no discontinuities. These values
onform to the rationale given in Subsection 2.A: to pre-
erve discontinuities, the exponent p of the half-quadratic
otential must satisfy p
1, and thus it is nonconvex. On
he other hand, if there are no discontinuities to preserve,
onvex potentials are preferable (e.g., p=2), as they im-
ose smoothness on the estimated surfaces and lead to
asier optimization problems.

In this section we use the following error measures:

1. RMSE	std��̂−��,
2. ISNR	10 log 10�ej�−ej��2 / �ej�̂−ej��2,

here � is the true absolute phase, � the noisy wrapped
hase, �̂ the estimated absolute phase, and std� · � denotes
he sample standard deviation. RMSE (root mean
quared error) is a measure of the total error, whereas
SNR (improvement in signal-to-noise ratio), introduced
n [26], is a measure of the noise reduction independent of
he phase unwrapping.

We note that in all the experiments, owing to disconti-
uities (original phase differences with magnitude
reater than �), noise, or aliasing (due, e.g., to subsam-
ling), there is a huge number of neighboring pixels hav-
ng phase differences greater than � in magnitude, mak-
ng the absolute phase estimation a very difficult
roblem.

. Synthetic Data
n this section, the standard deviation of the Gaussian
oise is set to �=0.5 which corresponds to a signal-to-
oise ratio SNR	1/�2 [see generation model (1)] of
.02dB. We should remark that in this scenario, which
oses a very hard task given the amount of noise, we have
un for each experiment a Monte Carlo simulation with
en iterations.

. Sheared Ramp
or this experiment, we set the prior parameter 	=0.4
nd the potential with exponent p=0.4. Figure 5(a) dis-
lays an image �100�150 pixels� corresponding to an ab-
olute phase surface formed by two equal sized planes
ith slopes, respectively, of 1 and 0 rad/pixel (maximum
eight difference is 99 rad); Fig. 5(b) displays the image
hown in Fig. 5(a) wrapped and noisy; Fig. 5(c) shows the
mage in Fig. 5(b) unwrapped and denoised; and Fig. 5(d)
isplays a wrapped version of estimated phase shown in
ig. 5(c).
The original absolute phase image displays a vertical

iscontinuity between the two planes. Thus, from the ab-
olute phase estimation point of view, the two planes cor-
espond to two disconnected images, rendering a very
ard estimation problem, if no external discontinuity in-
ormation is used. Assuming that the phase estimation al-
orithm is able to blindly detect discontinuities, the most
e can hope for is to obtain two planes correctly esti-
ated up to an unknown 2� multiple constant phase dif-

erence between them. The proposed algorithm accom-
lishes that almost perfectly, without any additional
nformation such as quality maps [12, Chap. 3]. The total
oot mean square error RMSE= ��n1var1+n2var2� / �n1
n2��1/2, where ni and vari are, respectively, the number
f pixels and the sample variance of the estimated abso-
ute phase surface and i=1,2, is RMSE=0.14 rad. The
mprovement in signal-to-noise ratio, as defined above, is
SNR=8.99 dB. The number of wrong wrap counts (num-
er of wrong multiples of 2� throughout the image) is 0
Monte Carlo simulation).

Figure 5(h) displays the discontinuities that the un-
rapping step is able to blindly detect, as mentioned in
ubsection 1.A. Figure 5(d) shows the rewrapped image
hown in Fig. 5(c). As already noted, the shear disconti-
uity plus the noise poses a very hard task; the good un-
rapping and denoising are noticeable. Figure 5(e) shows
3D rendering of the image shown in Fig. 5(c); Fig. 5(f)

hows a corresponding 3D rendering after unwrapping
nd before denoising. Figure 5(g) shows the descending
bjective function along the iterations of the minimization
lgorithm.
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ig. 5. (Color online) (a) Sheared ramp image (99 rad height) (b) Wrapped and noisy image shown in (a). (c) Image in (b) unwrapped and
enoised by our algorithm �RMSE=0.14 rad�. (d) Image in (c) rewrapped. (e) 3D rendering of image in (c). (f) 3D rendering of the image
n (c) before denoising. (g) Objective function evolution along the iterations of the algorithm. (h) Discontinuities blindly detected by the

lgorithm.
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. Clipped Gaussian
or this experiment, we used prior parameter 	=0.4 and

he potential with exponent p=0.4. Figure 6 is analogous
o Fig. 5, but now the original absolute phase surface is a
00�100 pixel sized Gaussian elevation with a height of
4� rad and standard deviations of d=15 pixels (verti-
ally) and d=10 pixels (horizontally); additionally, in a
uarter of the plane the Gaussian has zero height, intro-
ucing surface discontinuities. We stress that this is a
ard absolute phase estimation problem given these dis-
ontinuities plus the noise. The absolute phase estimate
hown in Fig. 6(c) has RMSE=0.7 rad and ISNR
7.85 dB. The number of wrong wrap counts in the image

s 20.4 (Monte Carlo simulation). The obtained recon-
truction is almost perfect.

In contrast to the shear ramp, there is just one con-
ected component in this example, and then, up to a 2�
ultiple constant phase, the solution is unique. The rea-

on is that, for a given data mismatch, the adopted poten-
ial minimizes the number of discontinuities, and any
ther solution having the same data mismatch would
ave more discontinuities.
We emphasize that the quarter of the Gaussian having

ero height, plus the noise, introduces a lot of discontinui-
ies, which the unwrapping algorithm is able to detect
the algorithm also marks other pixels as discontinuities
s a result of noise plus high phase rate effects) as shown
n Fig. 6(h). The denoising effect is quite evident in Fig.
(d). The 3D rendering of Figs. 6(e) and 6(f) illustrates the
nwrapping plus denoising and unwrapping effects, re-
pectively; in Fig. 6(g) is shown the evolution of the objec-
ive function along with the iterations.

We again mention that binary optimizations such as
hose employed in lines 4 and 12 of Algorithm 1 are de-
anding not only because they handle objective functions
ith a huge (typical of usual phase unwrapping problems)
umber of discrete variables, but also because those func-
ions have, for nonconvex potentials, nonsubmodular
erms (see Subsection 1.C).

. Gaussian
or this experiment we used prior parameter 	=0.4 and

he potential with exponent p=2. We found better results
ith such a relatively high exponent p (compared with

he p used in the last presented results); this can be ex-
lained by the fact that the original surface does not have
iscontinuities, although it has high phase rates that may
reate problems when noise is added. Figure 7 is similar
o Fig. 6, but now the original absolute phase surface is a
00�100 pixel sized Gaussian elevation with a height of
4� rad and standard deviations of d=15 pixels (verti-
ally) and d=10 pixels (horizontally). Figure 6(c) exhibits
n almost perfect unwrapping and RMSE=0.15 rad. This
enoising corresponds to ISNR=5.74 dB and is quite evi-
ent in Fig. 7(d) where we show the rewrapped denoised
mage. The 3D rendering of Figs. 7(e) and 7(f) illustrates
he unwrapping [Fig. 7(f)] and unwrapping plus denoising
ffects [Fig. 7(e)]. In Fig. 7(g) we show the evolution of the
bjective function along with the iterations. The wrong
rap count is 0 (Monte Carlo simulation).
. Real Data
inally, we illustrate the performance of the algorithm on
�152�458 pixel� InSAR image. We have employed a

rior parameter 	=0.2 and a quadratic potential p=2.
igure 8(a) displays an image corresponding to an abso-

ute phase surface generated by a (simulated) InSAR ac-
uisition for a real steep-relief area (Long’s Peak, Colo-
ado, USA, data distributed with book [12]), thus
nducing many discontinuities and posing a very hard ab-
olute phase estimation problem. Figure 8(b) displays a
orresponding wrapped and noisy image. In some areas
he characteristic fringes are destroyed because of typical
henomena such as shadowing and layover (see, e.g.,
12]). Figure 8(f) shows a quality map that is an input to
he algorithm: white color corresponds to pixels whose
hase value is meaningless, and gray corresponds to the
est of the pixels. This information accounts for jamming
henomena such as the above mentioned layover and
hadowing. Our algorithm is able to screen those white
ixels from the absolute phase estimation process (there-
ore those pixels do not contaminate the results for the
est of the image), and this is the reason why we employ a
on-discontinuity-preserving quadratic potential. Obvi-
usly the error values here presented refer only to gray
mage areas on the quality map (in fact we also do not
ount pixels at the border of the gray image, as well as
hose pixels from the first and the last columns of the im-
ge; this is so because such values are outliers driven by
ata acquisition artifacts). Figure 8(c) shows the un-
rapped resulting image, with RMSE=0.18 rad corre-

ponding to ISNR=3.8 dB. Figure 8(d) displays the image
n Fig. 8(c) rewrapped. Comparing with the image shown
n Fig. 8(b), the denoising effect is apparent; this is made
uite clear by comparing the enlarged patches in Figs.
(b) and 8(d). Figure 8(e) displays a 3D rendering of the
mage in Fig. 8(c). We further add that the performance
ook 35 iterations (within Algorithm 1), and we got one
rap count error.

. Benchmarking
n this section, we benchmark the proposed algorithm
APE (combinatorial absolute phase estimation) against

he state-of-the-art competitors PEARLS (phase estima-
ion using adaptive regularization based on local smooth-
ng), introduced in [26], and LPN0, presented in [12],
hap. 5. The benchmarks are evaluated on the experi-
ents addressed in the previous sections, with the excep-

ion that we run the experiments for a set of noise values
= �0.1,0.3,0.5,0� (see Subsection 2.A for the definition of
). We emphasize that we do not benchmark against Z�M

13] (an algorithm that we have already mentioned above)
ecause both PEARLS and CAPE can be considered as ex-
ensions of it.

Table 1 summarizes the quantitative results obtained
or the benchmarks. The bullets indicate that, for our pur-
oses, that experiment is not relevant. In fact LPN0 aims
t achieving phase unwrapping (not denoising) and thus
t is not fair to apply it to noisy phase images.

We further add that for noiseless cases ��=0� both
APE and PEARLS run in the phase unwrapping mode,
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ig. 6. (Color online) (a) Gaussian image with 14� maximum height and with a quarter set to zero. (b) Wrapped and noisy image shown
n (a). (c) Image in (b) unwrapped and denoised by our algorithm �RMSE=0.7 rad�. (d) Image in (c) rewrapped. (e) 3D rendering of image
n (c). (f) 3D rendering of the image in (c) before denoising. (g) Objective function evolution along the iterations of the algorithm. (h)

iscontinuities blindly detected by the algorithm.
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ig. 7. (Color online) (a) Gaussian image with 14� maximum height. (b) Wrapped and noisy image shown in (a). (c) Image in (b) un-
rapped and denoised by our algorithm �RMSE=0.15 rad�. (d) Image in (c) rewrapped. (e) 3D rendering of image in (c). (f) 3D rendering

f the image in (c) before denoising. (g) Objective function evolution along the iterations of the algorithm.
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.e., CAPE runs with N=0 (see Algorithm 1), which corre-
ponds to running as PUMA [25], and PEARLS also runs
s PUMA in this case [26].
We note the following:

1. Both CAPE and PEARLS tend to outperform LPN0
n phase unwrapping (�=0 case) when discontinuities ex-
st to deal with blindly.

2. CAPE tends to outperform PEARLS when there are
iscontinuities. As we have previously stated, PEARLS
mplements a local polynomial approximation (LPA) with
arying adaptive neighborhood. This adaptiveness trades
ias with variance in such a way that the neighborhood’s
indow stretches in areas where the underlying true
hase is smooth and shrinks otherwise, namely, in the
resence of discontinuities. It happens that, sometimes,
his shrinkage is not enough, implying a few unwrapping
rrors near these discontinuities. This phenomenon is il-
ustrated in the results for the clipped Gaussian.

3. PEARLS tends to outperform CAPE when there are
o discontinuities and the SNR is low. The adaptive win-
ow selection technique jointly with LPA results are very
owerful. This is illustrated in the Gaussian experiment.
n the Long’s Peak experiment PEARLS and CAPE tend
o behave very similarly (the slight difference in favor of

a (simulated) InSAR acquisition for a real steep-relief area. (b)
d denoised by our algorithm �RMSE=0.18 rad�. (d) Image in (c)
is an input to the algorithm: white corresponds to pixels whose
els.
Table 1. Root Mean Square Error (rad)

Experiments

Algorithms

CAPE PEARLS LPN0

Gaussian
�=0 0 0 0

�=0.1 0.05 0.05 •
�=0.3 0.11 0.08 •
�=0.5 0.15 0.11 •

Shear ramp
�=0 0 0 1.21

�=0.1 0.06 0.07 •
�=0.3 0.10 0.09 •
�=0.5 0.14 0.11 •

Clipped Gaussian
�=0 0 0 5.48

�=0.1 0.13 0.85 •
�=0.3 0.4 0.90 •
�=0.5 0.7 0.98 •

Long’s Peak 0.18 0.20 •
ig. 8. (Color online) (a) Absolute phase gray-level image generated by
rapped and noisy image shown in (a). (c) Image in (b) unwrapped an

ewrapped. (e) 3D rendering of the image in (c). (f) Quality map that
hase value is meaningless, and gray corresponds to the rest of the pix
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APE is meaningless because, as we have already noted,
he error is evaluated in a subset of the image, which may
ave slight differences in the experiments using both
EARLS and CAPE).

To our knowledge, PEARLS is the state-of-the-art abso-
ute phase estimation algorithm. From all of the experi-

ents, CAPE can also be considered state-of-the-art. Fi-
ally, we remark that code has been run in a 2.2 GHz
ntel dual core processor, in a maximum of a few dozens of
econds; CAPE has been consistently observed to be
aster than PEARLS (we should note that, even so, the
ode is a mix of MATLAB and C��, and therefore is not
ptimized).

. CONCLUDING REMARKS
e have introduced a (discontinuity-preserving) denois-

ng Bayesian approach to absolute phase estimation in in-
erferometric applications. In the scientific community
here is still a lively debate of whether denoising should
e done after phase unwrapping, before phase unwrap-
ing, or any other solution in between. In this paper we
ave chosen the first option in order to avoid having the
enoising step corrupt the phase unwrapping process.
he graph-cuts-based proposed algorithm, CAPE, first
erforms phase unwrapping, with discontinuity-
reserving capabilities; then, basically using the same ra-
ionale, but with a multiprecision scheduling technique, it
chieves denoising. In the experimental results the sim-
licity of the algorithm translates into fast execution and,
urthermore, high accuracy. We emphasize that a short
unning time can be essential for some applications (e.g.,
ome medical applications in magnetic resonance imag-
ng). A further step to speed up the algorithm may be ob-
ained in the future by using dynamic graph cuts [50].

The obtained experimental results for absolute phase
stimation have, to our knowledge, state-of-the-art accu-
acy; the running time is typically a few seconds in a
.2 GHz Intel dual core for images of size 150�100, and
as experimentally found to grow linearly with image

ize. Theoretically, the worst-case complexity is O�kn2m�
see [25]), where n= �V� and m= �E�, respectively, are the
umber of nodes and edges of the graph that our algo-
ithm deals with, and k is the excursion of the 2� labels of
he nodes in the absolute phase. We emphasize that our
lgorithm, in a set of representative experiments, turns
ut to be faster than PEARLS [26].

In the future, we intend to explore diversity techniques
e.g., Chinese remainder theorem) applied to absolute
hase estimation, in order to extend the set of the phase
mages that we can unwrap (namely, images for which the
bsolute phase exhibits high rates); we should note that
ealing with noise in such a scenario turns out to be quite
ore challenging. We also intend to employ higher-order
arkov random fields; this is an effort to avoid the met-

ication artifacts well known to be associated with graph-
ut-based techniques [51]. In addition we intend to de-
elop learning schemes for the selection of the best prior
arameter 	, given some absolute phase estimation
roblem.
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