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An absolute phase estimation algorithm for interferometric applications is introduced. The approach is
Bayesian. Besides coping with the 27-periodic sinusoidal nonlinearity in the observations, the proposed meth-
odology assumes a first-order Markov random field prior and a maximum a posteriori probability (MAP) view-
point. For computing the MAP solution, we provide a combinatorial suboptimal algorithm that involves a mul-
tiprecision sequence. In the coarser precision, it unwraps the phase by using, essentially, the previously
introduced PUMA algorithm [IEEE Trans. Image Proc. 16, 698 (2007)], which blindly detects discontinuities
and yields a piecewise smooth unwrapped phase. In the subsequent increasing precision iterations, the pro-
posed algorithm denoises each piecewise smooth region, thanks to the previously detected location of the dis-
continuities. For each precision, we map the problem into a sequence of binary optimizations, which we tackle
by computing min-cuts on appropriate graphs. This unified rationale for both phase unwrapping and denoising
inherits the fast performance of the graph min-cuts algorithms. In a set of experimental results, we illustrate
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the effectiveness of the proposed approach. © 2009 Optical Society of America
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1. INTRODUCTION

There are nowadays many applications based on phase
images, e.g., interferometric synthetic aperture radar (In-
SAR) [1], magnetic resonance imaging [2], adaptive optics
[3,4], vibration and deformation measurements [5], and
diffraction tomography [6]. InSAR is being successfully
applied, e.g., to the generation of digital elevation models
and in the monitoring of land subsidence; among the
plethora of magnetic resonance imaging applications, we
emphasize venography (and angiography as well) [7] and
tissue elastography [8]; concerning adaptive optics, we
point to applications in medicine and industry [9].
Interferometry-based vibration and deformation mea-
surements are widespread among metrology techniques,
and diffraction tomography finds application in, e.g., geo-
physical subsurface prospection and 3D microscopic
imaging.

In all of these imaging systems, the acquisition sensors
read only the sine and the cosine of the absolute phase;
that is, we have access only to the phase modulo 27, the
so-called interferogram. Besides this sinusoidal nonlin-
earity, the observed data are corrupted by some type of
noise. Because of these degradation mechanisms, abso-
lute phase estimation is known to be a very difficult prob-
lem. In particular, if the magnitude of absolute phase
variation between neighboring pixels is larger than 7, i.e.,
if the so-called Itoh condition [10] is violated, then the in-
ference of the absolute phase is an ill-posed problem [11].
These violations may be due to spatial undersampling,
original phase discontinuities, or noise. The goal in this
paper is to present an algorithm to solve this nonlinear
inverse problem: the so-called absolute phase estimation
problem.

The structure of the observation models relating the
noisy wrapped phase with the true phase depends on the
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system under consideration (see, e.g., [12-14] for an ac-
count of observation models in different coherent imaging
systems). The essence of most of these observation mecha-
nisms is, however, captured by the relation

z=Ae®+n, A>0,
= [ele/ P+, 1

where ¢ is the true phase value (the so-called absolute
phase value), n=n;+jngq is complex-valued zero-mean cir-
cular white additive noise with variance o2 (i.e., n; and nQ
are zero-mean independent Gaussian random variables
with variance ¢2/2), and ¢, is the phase due to n.

Let us define W, the wrapping operator, such that

y=anglez) =W(¢+¢,), Yel[-mm). (2)

Operator YV maps the noisy phase ¢+ ¢, into the principal
phase interval [, ). For ¢, =0, there is an obvious link
between the wrapped phase # and the nonwrapped abso-
lute phase ¢, ¢p=y+27k, yc[-m,w), where k is an inte-
ger. The basic unwrapping problem is to reconstruct
d(x,y), (x,y) e XC72, from the observations i(x,y). There
is, of course, no one-to-one relation between the wrapped
and the absolute phases. It is, however, straightforward
to show that, in the absence of noise, if the phase differ-
ence A¢ between any two neighboring pixels is smaller
than 7 in magnitude (i.e., the Itoh condition is verified),
then the correspondent wrapped phase difference is the
same, i.e.,

Ad=W(AY). (3)

We are, then, able to compute (unwrap) the absolute
phase for every other pixel, up to a constant, by integrat-
ing the wrapped differences W(A¢). This is the basis of

© 2009 Optical Society of America



2094 J. Opt. Soc. Am. A/Vol. 26, No. 9/September 2009

the path-following phase unwrapping algorithms [15]. It
happens, quite often, that phase images have discontinui-
ties, areas of high phase rate, and noise. In this case, the
Itoh condition may fail, and therefore different integra-
tion paths may lead to different unwrapped phase values.

To cope with these difficulties, there are in the litera-
ture two main classes of algorithms: the basic phase un-
wrapping type, which solves only the 27-multiples prob-
lem [15-17,19], and the estimation type (or regularization
type), in which the absolute phase is estimated
[13,20-23], and thus the estimation type has a broader
scope.

A. Contributions
The main contribution of this paper is twofold:

1. A new approach to absolute phase estimation. Con-
trary to the majority of absolute phase methods, we first
apply unwrapping and only then denoising. By using a
discontinuity-preserving prior, the unwrapping algorithm
not only infers the 277 multiples of the absolute phase, but
also implicitly detects the discontinuity locations. This is
crucial information for the effectiveness of the phase de-
noising that would not be available if this step were ap-
plied prior to unwrapping.

2. A unified rationale for both phase unwrapping and
denoising. This is achieved through the proposal of a
(state-of-the-art competitive) multiprecision combinato-
rial optimization algorithm based on graph cuts. The mul-
tiprecision technique improves the performance by de-
creasing the algorithm’s complexity.

B. Related Work

In the field of phase unwrapping, we refer to [12] and ref-
erences therein. References [17-19,24] introduce phase
unwrapping algorithms with discontinuity-preserving ca-
pabilities. Furthermore, PUMA [25] is a state-of-the-art
phase unwrapping algorithm, while Z#M [13] and
PEARLS [26] are state-of-the-art absolute phase estima-
tion algorithms. Regarding ZwM, the present work ex-
tends it by allowing a wider family of Markov random
fields (MRFs), namely, nonconvex pairwise potentials,
which brings the discontinuity-preservation ability. The
PEARLS algorithm [26] employs PUMA for phase un-
wrapping and differs from ours essentially in the denois-
ing technique: specifically, it applies denoising before un-
wrapping. This is a sensitive issue, since the effectiveness
of the denoising step depends on the knowledge of the lo-
cation of the discontinuities. PEARLS implements a fil-
tering technique based on local polynomial approximation
with a varying adaptive neighborhood used in reconstruc-
tion (see [26] for details). The adaptive mechanism trades
bias with variance in such a way that the window size
stretches in areas where the underlying true phase is
smooth and shrinks otherwise, that is, in the presence of
discontinuities.

In this paper, we circumvent the need of filtering the
interferogram (noisy wrapped phase image) by basically
first using PUMA to unwrap the interferogram; only then
is denoising applied after PUMA has implicitly located
the discontinuities. Compared with PUMA [25], the
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present work also goes further by both allowing denoising
and improving the performance of each binary step in the
optimization sequence.

C. Integer Optimization
With respect to the optimization referred to above, we
deal with a labeling problem on first-order Markovian
random field made of unary (one-variable dependence)
and pairwise on difference (two-variable difference depen-
dence) terms. If the unary and pairwise terms are convex,
this problem is known as the dual of the convex cost net-
work flow problem which is extensively discussed in the
literature (see, e.g., [27-30]). References [13,25,31] at-
tacked particular instances of the dual of the convex cost
network flow problem by solving a sequence of descent bi-
nary optimization problems, each of which may be solved
by computing the max-flow/min-cuts on appropriate
graphs. This is a relevant practical advantage, as there
are max-flow/min-cut algorithms specifically tuned to im-
age processing and computer vision problems [32].
References [29,33-35] introduced and characterized
generalizations of the descent algorithms [13,25,31] to
dual of the convex cost network flow problems containing
pairwise and unary terms. An even more general class of
functions, the so-called L-convex and L *-convex functions,
was considered in [36]. References [33,34], in addition to
introducing new results, give an excellent account of the
connections between the dual of the convex cost network
flow problems and of L-convex and L*-convex based prob-
lems. Concerning Markovian first-order objective func-
tions (having unary and pairwise terms), we still should
refer to [37] (pairwise term depending on the difference of
the two values involved), which, although being theoreti-
cally very appealing, seems not very practical for most of
the computer vision problems; we should also refer to
[38], which deals with general first-order submodular ob-
jective functions. In practical terms, we can think about a
submodular function as a discrete analogue of a convex
function. A binary pairwise interaction function E(-,-) is
submodular iff £(0,0)+E(1,1)<E(1,0)+E(0,1). Concern-
ing this subject we refer to [36] and references therein.
Discontinuity-preserving pairwise interaction terms
are, quite often, nonconvex. In this case, the underlying
optimization problem is NP-hard [39], and none of the
cited algorithms applies. The source of difficulties is two-
fold: (a) a sequence of descent optimizations leads to a lo-
cal minimum, and (b) each subproblem can no longer be
mapped onto a max-flow/min-cut. In the vein of [25] we
insist, however, in the descent approach, which, in the
case of phase unwrapping, leads systematically to high-
quality results. Concerning each binary subproblem, we
replace the objective function with a convex majorizer,
thus adopting the majorization—minimization framework
[40].

D. Paper Organization

In the next section, we present the core ideas and con-
cepts of the proposed approach. Subsection 2.A character-
izes the posterior density of the proposed Bayesian frame-
work; then Subsection 2.B concerns the roles of
unwrapping and denoising in the optimization process to
compute the maximum a posteriori (MAP); and subse-
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quently Subsection 2.C establishes and discusses the op-
timization technique in some detail. Finally, Section 3
presents a series of experimental results, and then Sec-
tion 4 provides some concluding remarks.

2. PROPOSED APPROACH

Let G=(V,€) be an undirected graph associated with a
first-order MRF where the set of nodes V represents im-
age pixels and the set of edges £ represents pairs of neigh-
boring pixels. We assume that if (i,j) € £, then (j,i) & .

In this paper, we consider first-order MRF's, and there-
fore the set of edges £ represents the set of horizontal and
vertical neighbors. Nevertheless, all the concepts and re-
sults presented are valid for any set of pairwise interac-
tions.

A. Posterior Function

We follow the Bayesian framework. Accordingly, we need
to build the posterior density function p(¢|z) of the phase
image ¢ e RV given the observed complex image z e CM (C
denotes the complex field). Invoking the Bayes law we
have p(¢|z)=p(z|d)p(¢), where p(z|¢) is the likelihood
function measuring the data fit and p(¢) is the prior den-
sity encoding a priori knowledge about the phase image
b.

Let us assume conditional independence in the obser-
vation mechanism, i.e., p(z|¢)=II;c\p(z;|¢;). Further-
more, let us consider priors such that logp(¢)
=—uZ;j)Vijdi—¢j)+c, where c is an irrelevant constant,
u>0 is a scale parameter often termed the regularization
parameter, and V; ;(-) is the so-called potential associated
with edge (i,7). In these circumstances, computing the
MAP estimate is equivalent to minimize the negative
logarithm of the posterior density E:RM— R U{+x} given
by

E(p)= 2 D(¢) +p > V-9,
ieV (ij)e€ (4)

Data fidelity term Prior term

where D;(¢;)=-log p(z;| ¢;).
MAP Estimation. Given the observation mechanism in-
troduced in Eq. (2), we have (see, e.g., [13])

1 .
|z — &2
p(2i|¢i)=w—2,6( i~ 4AFY )

and, thus, by dropping some irrelevant constants we get
D;(z;) = = \; cos(¢; — ;)

with \;=2A|z;|/(6) and ,=angle(z;); i.e., the log likeli-
hood function is proportional to a shifted cosine. The MAP
absolute phase estimate is then obtained by minimizing
the negative of the log posterior function given by

E(p) =2, —N\cos(di— ) +p > Viidi—&)).

Nd S ee , (5)

fori eV,

~
Data fidelity term Prior term

Notice that u, the so-called regularization parameter, sets
the relative weight between the data fidelity term and the
prior term.
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We emphasize that the MAP estimation gives place to
minimizing the log posterior function (5). For a given im-
age phase ¢ candidate to a MAP solution, this function
comprises a data fidelity term, which measures the misfit
between the observed data and ¢, and a prior term, which
measures the lack of plausibility of ¢, induced by the po-
tentials V; ;(-); roughly, enforcing smooth surfaces implies
convex potentials, whereas enforcing piecewise smooth-
ness, and thus preserving surfaces discontinuities, im-
plies nonconvex potentials.

Assume that the noise approaches zero. Then, \;
=2Alz;|/(0%) — +=, and any MAP solution satisfies cos(¢;
—i;)=1, implying the constraints

¢i=;+2mk; forieVandk; eZ. (6)

Therefore, computing the MAP solution reduces to mini-
mizing the prior term in Eq. (5) under constraints (6).
This the so-called phase unwrapping problem, which is an
integer optimization problem well known to be a difficult
task to perform [41]. The phase unwrapping is even more
tricky because, usually, the phase images are very large
(e.g., 108 variables for a 1000 X 1000 image). Such a prob-
lem is addressed by the PUMA algorithm [25], which
yields, in polynomial time, exact or approximate solutions
as long as the potential V in Eq. (5) is, respectively, con-
vex or nonconvex. In fact, in the latter case, we cannot
hope to achieve more than approximate solutions, as the
problem is NP-hard [32,42].

Aiming at simultaneous noise filtering and discontinu-
ity preservation, we use in this paper half-quadratic-type
[43,44] potentials, all with the same shape V, ;=V given

by
v Jc?
=) 22 e if > 7

if x| <=

(7)

with 0<p<1 and thus nonconvex. Figure 1 plots this
function for p=0.4. These potentials are quadratic near
the origin, thus modeling Gaussian noise, and with a flat-
ness trend for phase magnitudes larger than =, in order
to preserve discontinuities [45]. When we do not have dis-
continuities to deal with, we simply employ quadratic (or
near quadratic) potentials. In any case, the concepts and
ideas introduced next are valid for a wide class of poten-
tial functions.

2

0
=20 -15  -10 -5 0 ] 10 15 20

Fig. 1. (Color online) Graph of a half-quadratic potential em-
ployed in this paper (p=0.4).
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B. Optimization
Our goal is to compute

¢ =arg m;n[E (@)1, (8

where E(¢) is given by Eq. (5). This is a hard problem be-
cause both data fidelity and prior terms are nonconvex.

First Unwrap, then Denoise. Very often, in interfero-
metric applications, we are just interested in computing
the 27 multiple in the representation ¢;=;+2mk;, the so-
called phase unwrapping problem. Since the data fidelity
term, D;(¢;=y;+2mk;)=-\;, does not depend on k;, then
the unwrapping optimization problem consists in mini-
mizing the prior term of Eq. (5) with respect to ¢
ell; .\ {¢;+27k;:k; € 7}. In our previous works [25,31], we
introduced a descent method that, depending on the po-
tentials, yields exact (in the case of convex potentials) or
approximated (in the case of nonconvex potentials) solu-
tions. Each step of this method solves a binary problem by
computing the min-cut of an appropriate graph.

We note that the basic phase unwrapping step can be
viewed as a discretization of the original domain, using a
sampling interval of 27r. A consequence of this discretiza-
tion is that the resulting objective function is easier to
deal with, since, for ¢ ell;.\{y;+2mk;:k; € 7}, it does not
depend on the nonconvex data terms —\; cos(¢;— ;).

After the unwrapping step, we get absolute phase esti-
mates given by (Aﬁi =i+ 277]%. Even if the integer image es-
timate is exact, we still have error in ¢; due to the noise
present in ; [please see expression (2)]. In order to filter
out the noise, we compute a sequence of binary descent
optimizations, using a multiprecision schedule. The preci-
sion ¢ €{0,1,...,N} corresponds to a sampling interval of
A=27/29. Thus, the coarser precision implements phase
unwrapping and the following denoising.

We highlight the following qualitative characteristics of
the approach just described:

1. The PUMA algorithm [25], used for phase unwrap-
ping, is able to deal with discontinuities and implicitly lo-
cate them.

2. The PUMA solution yields an error much smaller
than 7 in magnitude in most of the pixels.

3. Given that for precisions ¢ >0 we have, for most ¢
e V,|¢;— ;| <, then most of the unary terms —X\; cos(¢;
— ;) behave as convex functions, rendering a much easier
optimization problem.

One expectable advantage of coarse-to-fine multipreci-
sion schedule is computation time. However, in our sce-
nario this is not, perhaps, the most important feature: ow-
ing to the nonconvexity of the problem, the algorithm very
likely would have become stuck in a local minimum if we
had begun with the highest precision.

C. Algorithm
Algorithm 1 shows the pseudocode for the optimization,
where we use the following sets:

MY(¢',A) ={p e RM:¢; = ¢} + 5A},
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MP(¢',A)={p e RM:g; = ¢} - 5A},

where 5, €{0,1}, AeR.
Our Algorithm 1:

Algorithm 1. Combinatorial absolute phase estimation.
Initialization: ¢=y {Interferogram}, successup="false,
successdown =false

1: for A=27x{2° 271 ... 27N} do

2: while (successup=false OR successdown="false) do

3: if successup=false then

4: fi):arg min(;,EMU(d,,A)E‘(&)
5: if E(¢)<E(¢) then

6: = (}5

7 else

8: successup=true

9: end if

10: end if

11: if successdown=false then
12: d=arg min(;,EMD{(,),A)E'((})
13: if E($)<E(¢) then
14: b=

15: else

16: successdown=true
17: end if

18: end if

19: end while

20: end for

engages in a greedy succession of up and down binary
optimizations. The precision interval A starts with the
value 27 and ends with the value 27/(2Y), where N is a
depth of precision. In order to characterize the algorithm,
we start by assuming E($)=E(¢) and the terms D;andV;;
in expression (4) to be convex. Then, for each precision
interval A, Algorithm 1 finds, in finite time, a minimizer of
E in a grid of size A. More precisely, we have the following.

Theorem 1. If the unary and pairwise terms of E, de-
fined in Eq. (4), respectively, D;(-) for i e V, and V() for
(,j) € &, are convex, then, at a given precision interval A
=27/29, for g €{0,...,N}, the following holds:

1. The output of the while loop is a minimizer of E(¢)
in the set {¢p e RM: ¢;= iy +2,A,2; € 7).

2. The number of while iterations at each precision g
€{0,...,N} is bounded by K,+1, where K,=K;2? is the
range of the 27 multiples variables at precision q.

Proof: For the precision interval A, the pseudocode em-
braced by the while loop (lines between 2 and 19) finds a
minimizer of E(¢) in {¢ e RV: ¢;= ¢’ +2;A,2; € 7}, where ¢’
is the minimizer obtained in the previous precision.
Proofs are given in [25], in the absence of unary terms,
and in [33,35], for the general case, i.e., when E contains
unary and pairwise terms.

Since the successive precisions are powers of (1/2) we
can write ¢ =y;+[;A, where ¢; and ¢; are the ith compo-
nents of ¢’ and ¢, respectively, and /; is an integer. There-
fore, it follows that {¢e R‘V‘:d)i: @' +z;A,z; € 7} ={¢
ER‘Vli(f)i:l/li'l-ZiA,ZiEZ}. O

As already pointed out, we solve the binary minimiza-
tions displayed in lines 5 and 14 of Algorithm 1 by com-
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puting max-flows/min-cuts on appropriate graphs. Denot-
ing by T(n,m) the time complexity of the max-flow/min-
cut algorithm used, where n is the number of graph nodes
and m the number of edges, then Algorithm 1 takes the
pseudopolynomial time O(K,T(n,m)) to find a minimum
of E at the precision q.

The rationale underlying the multiprecision minimiza-
tion is that of a minimum length search for a minimizer of
E. Still considering the convex scenario, given a mini-
mizer at a precision g, say ¢7, there exists a minimizer at
the precision g +1 such that ||¢?— ¢?*1|..<n [36, Theorem
7.18], where |x|..=max;x; is the [ norm of x. Therefore,
the algorithm takes at most n iterations to find a mini-
mizer at resolution g +1 [25]. Consequently, the number of
iterations to find a minimizer of E is bounded by
O(n log Ky). In practice, we have observed systematically
|¢?-¢?*1|..<n, and very often we have |¢?—¢?*1|.,<2,
making the algorithm highly efficient from the time com-
plexity point of view. This behavior is illustrated in Fig.
4(c) below, where we show the evolution of Algorithm 1 in
a convex scenario, both with and without multiprecision.
Notice that in the former case the number of up and down
iterations (lines 6 and 14 of Algorithm 1) to find a mini-
mum, in a given precision, is 2 X (K, +1).

To solve the binary optimizations shown in lines 4 and
12, we use the graph cuts techniques. The main idea,
which was introduced into computer vision in [46], and
popularized in [37,39,41,47], is a one-to-one mapping of a
submodular binary function onto the set of cuts of a cer-
tain source-terminal graph. As referred to at the very be-
ginning of this section, to each pixel of the image to be in-
ferred there corresponds a node. Each node is in general
linked, through edges, with each neighbor (either vertical
or horizontal in our case) and, furthermore, to the source
(s) and/or to the sink (¢) (the edges always have either
positive or null weights, the latter corresponding to non-
existence of the edge). An s—t cut C=(S,T) is a partition
of the set of vertices V into two disjoint sets S and 7', such
that s € S and ¢ € T. The cost of the cut is the sum of costs
of all edges between S and 7. A min-cut is a cut of mini-
mum cost. After computing an s—¢ min-cut, each node v
ends having the binary value 1 if v € S or binary value 0
otherwise.

Figure 2 illustrates the building of such a graph. As
long as the binary function is submodular, the exact glo-
bal minimum of the function is attained [39]. According to
the Ford—Fulkerson theorem [48], the min-cut is equal to
the max-flow. As there are plenty of efficient low-order
polynomial complexity algorithms to compute min-cuts/
max-flows, it turns out that each binary problem is effi-
ciently solved. We have followed the mapping proposed in
[49], which gives an improvement relative to [39].

In our case, neither the unary nor the pairwise energy
[Eq. (4)] interaction terms, D;(¢;) and V; j(¢;— ¢;), respec-
tively, are convex. First, this means that we cannot map
the binary optimizations discussed above into min-cuts on
suited graphs, because the resulting binary energy is non-
submodular [39]; moreover, we do not meet the conditions
in which Theorem 1 applies. We address this problem by
approximating energy E(¢) with E(¢). This approxima-
tion consists in replacing the nonsubmodular pairwise
terms V; ; with submodular majorizers. Then we apply the
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Source Source

E(1,0)-E(0,0),
E(1)-E(0)

E(0,1)+E(1,0)-E(0,0)-E(1,1)

(a) Sink (b) Sink

Fig. 2. (Color online) Elementary graph representing a unary
and a pairwise interaction energy term. Nodes s and ¢ represent
source and sink, respectively, and v and v’ represent the two pix-
els involved in the interaction; pixel v also has a unary term at-
tached to it. In this case E(1)-E(0)>0, E(1,0)-E(0,0)>0, and
E(1,0)-E(1,1)>0. We note that the two edges linking pixels s
and ¢ are equivalent to a single edge with weight E(1)-E(0)
+E(1,0)-E(0,0). (b) Illustration of the graph obtained at the
end: it results from adding elementary graphs.

majorize—minimize principle [40]. Figure 3 illustrates the
process of finding the majorizer.
We note that although we employ the approximation

E(¢) to compute the optimizations, the evaluation of de-
scending energy in lines 5 and 13 of Algorithm 1 is made
through E(¢), the true energy.

We now emphasize two facts:

e For the first precision (A=2m) there is no unary term

in the energy E(¢) [Eq. (4)]. This means that with E we
are in a convex scenario.
e For the subsequent precisions the nonconvex sinu-

soidal unary terms in E are not null; however, for these
small precisions, we are likely to be in a convex attraction

basin of E(d)) because, as already referred to in Subsec-
tion 2.B, |¢;— ;| < 7 for most of the unary terms.

Figure 4 illustrates the virtues of employing a multi-
precision approach. In the first example [Figs. 4(a)—4(c)]
we intend to illustrate the pure effect of the algorithm’s
speed enhancing. For that, we consider a convex energy
Eq. (4), for which we set D;(z;)=|¢;—;|?, instead of the

Majorizer energy terms s ..
: 5 EY(1,0) = EY(1)

A [ 00 - B - Eo)
0 1 ,:’/ 0 1

A N

> )
Original nonsubmodular energy terms

"Majorizer" energy terms: a limit case
Two possible
energy approximations
by increasing EY(0,1)

El(0,1) = Eli(-1)

Fig. 3. Replacing nonsubmodular energy terms by submodular
ones; we end up with an approximate energy. One of the possible
approximations is to increase E¥(0,1).
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Fig. 4. (Color online) (a) Discretized pyramid with additive Gaussian noise (0=1). (b) Image in (a) denoised by Algorithm 1 (convex
energy). (c) Energy decrease versus iterations for (b): dots indicate an increase of precision; the other curve corresponds to using the
finest precision only. (d) Wrapping of a clipped Gaussian with 147 rad height. (e) Perfect unwrapping obtained by Algorithm 1 using the
multiprecision approach. (f) Completely failed unwrapping, running the algorithm with finest precision only. (g) Energy evolution either
(e) with or (f) without multiprecision; dots indicate increase of precision; the other curve corresponds to using the finest precision only.

sinusoidal nonconvex observation data model, and V(x)
=|x| for the pairwise interaction, discontinuity-preserving,
potential. In this example, ¢ plays the role of a noisy ob-
servation of ¢ in a Gaussian additive model. Figure 4(a)
shows an image that corresponds to a discretized pyramid

with additive Gaussian noise (o=1). Figure 4(b) shows
the image in Fig. 4(a) denoised by applying algorithm 1;
the result is very good. Figure 4(c) illustrates the energy
decreasing versus iterations. The curve with dots repre-
sents the energy evolution obtained by using multipreci-
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sion; each dot corresponds to a change of precision. The
other curve corresponds to a performance of the algorithm
in the finest precision from the beginning. It can be seen
that both ways we end up with the same energy (and in
fact the same denoised image), as expected by using a
convex energy function; however, multiprecision makes
the algorithm much faster. In the second example [Figs.
4(d)—4(g)] we illustrate the absolute phase estimation us-
ing the energy [Eq. (4)] as almost elsewhere in the paper.
Figure 4(d) shows the wrapped phase corresponding to a
true phase given by a clipped Gaussian with 147 rad
height. Figure 4(e) shows a perfect unwrapping obtained
by algorithm 1 with the multiprecision approach. Figure
4(f) displays the completely failed unwrapping that one
obtains by running the algorithm with the finest precision
from the very beginning. Finally, Fig. 4(g) displays the en-
ergy evolutions both with and without multiprecision; the
curve with dots, corresponds to the multiprecision run
(each dot represents a precision change). These plots il-
lustrate that multiprecision avoids the poor-energy local
minima that are obtained without multiprecision. Again
multiprecision enhances the speed of the algorithm.

In the next section, we present a series of experiments
confirming the effectiveness of the proposed approach in
absolute phase estimation.

3. EXPERIMENTAL RESULTS

In this section, we present four experiments illustrating
the performance of the proposed algorithm: the first three
concern synthetic data generated according to the model
shown in Eq. (1) and with A=1; the fourth deals with In-
SAR data distributed with [12], which is a commonly used
benchmark to score absolute phase estimation algo-
rithms. In all the experiments, we have employed a depth
of precision (see Algorithm 1) N=8, which gives a mini-
mum precision interval of 27/28 rad=2.5x 1073 rad. The
regularization parameter u [see Eq. (5)] and the exponent
p [see Eq. (7)] of the half-quadratic discontinuity-
preserving potential were hand-tuned for the best perfor-
mance. We note, however, that in the four experiments
the regularization parameter takes values in the set
[0.2,0.4] and that the exponent p takes values close to 0.5
when the original absolute phase has discontinuities, and
equal to 2 when there are no discontinuities. These values
conform to the rationale given in Subsection 2.A: to pre-
serve discontinuities, the exponent p of the half-quadratic
potential must satisfy p <1, and thus it is nonconvex. On
the other hand, if there are no discontinuities to preserve,
convex potentials are preferable (e.g., p=2), as they im-
pose smoothness on the estimated surfaces and lead to
easier optimization problems.
In this section we use the following error measures:

1. RMSE=std(¢-¢), )
2. ISNR=10 log 10[e/?—e/¥|2/|e/¢—e/¥|?,

where ¢ is the true absolute phase, ¥ the noisy wrapped
phase, ¢ the estimated absolute phase, and std(-) denotes
the sample standard deviation. RMSE (root mean
squared error) is a measure of the total error, whereas
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ISNR (improvement in signal-to-noise ratio), introduced
in [26], is a measure of the noise reduction independent of
the phase unwrapping.

We note that in all the experiments, owing to disconti-
nuities (original phase differences with magnitude
greater than ), noise, or aliasing (due, e.g., to subsam-
pling), there is a huge number of neighboring pixels hav-
ing phase differences greater than 7 in magnitude, mak-
ing the absolute phase estimation a very difficult
problem.

A. Synthetic Data

In this section, the standard deviation of the Gaussian
noise is set to 0=0.5 which corresponds to a signal-to-
noise ratio SNR=1/0? [see generation model (1)] of
6.02dB. We should remark that in this scenario, which
poses a very hard task given the amount of noise, we have
run for each experiment a Monte Carlo simulation with
ten iterations.

1. Sheared Ramp

For this experiment, we set the prior parameter w=0.4
and the potential with exponent p=0.4. Figure 5(a) dis-
plays an image (100 X 150 pixels) corresponding to an ab-
solute phase surface formed by two equal sized planes
with slopes, respectively, of 1 and 0 rad/pixel (maximum
height difference is 99 rad); Fig. 5(b) displays the image
shown in Fig. 5(a) wrapped and noisy; Fig. 5(c) shows the
image in Fig. 5(b) unwrapped and denoised; and Fig. 5(d)
displays a wrapped version of estimated phase shown in
Fig. 5(c).

The original absolute phase image displays a vertical
discontinuity between the two planes. Thus, from the ab-
solute phase estimation point of view, the two planes cor-
respond to two disconnected images, rendering a very
hard estimation problem, if no external discontinuity in-
formation is used. Assuming that the phase estimation al-
gorithm is able to blindly detect discontinuities, the most
we can hope for is to obtain two planes correctly esti-
mated up to an unknown 27 multiple constant phase dif-
ference between them. The proposed algorithm accom-
plishes that almost perfectly, without any additional
information such as quality maps [12, Chap. 3]. The total
root mean square error RMSE=[(nivar;+nyvary)/(n;
+n9)]Y2, where n; and var; are, respectively, the number
of pixels and the sample variance of the estimated abso-
lute phase surface and i=1,2, is RMSE=0.14 rad. The
improvement in signal-to-noise ratio, as defined above, is
ISNR=8.99 dB. The number of wrong wrap counts (num-
ber of wrong multiples of 27 throughout the image) is 0
(Monte Carlo simulation).

Figure 5(h) displays the discontinuities that the un-
wrapping step is able to blindly detect, as mentioned in
Subsection 1.A. Figure 5(d) shows the rewrapped image
shown in Fig. 5(c). As already noted, the shear disconti-
nuity plus the noise poses a very hard task; the good un-
wrapping and denoising are noticeable. Figure 5(e) shows
a 3D rendering of the image shown in Fig. 5(c); Fig. 5(f)
shows a corresponding 3D rendering after unwrapping
and before denoising. Figure 5(g) shows the descending
objective function along the iterations of the minimization
algorithm.
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Fig. 5. (Color online) (a) Sheared ramp image (99 rad height) (b) Wrapped and noisy image shown in (a). (¢c) Image in (b) unwrapped and
denoised by our algorithm (RMSE=0.14 rad). (d) Image in (c) rewrapped. (e) 3D rendering of image in (c). (f) 3D rendering of the image
in (c¢) before denoising. (g) Objective function evolution along the iterations of the algorithm. (h) Discontinuities blindly detected by the

algorithm.
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2. Clipped Gaussian

For this experiment, we used prior parameter ©=0.4 and
the potential with exponent p=0.4. Figure 6 is analogous
to Fig. 5, but now the original absolute phase surface is a
100 X 100 pixel sized Gaussian elevation with a height of
147 rad and standard deviations of d=15 pixels (verti-
cally) and d=10 pixels (horizontally); additionally, in a
quarter of the plane the Gaussian has zero height, intro-
ducing surface discontinuities. We stress that this is a
hard absolute phase estimation problem given these dis-
continuities plus the noise. The absolute phase estimate
shown in Fig. 6(c) has RMSE=0.7rad and ISNR
=7.85 dB. The number of wrong wrap counts in the image
is 20.4 (Monte Carlo simulation). The obtained recon-
struction is almost perfect.

In contrast to the shear ramp, there is just one con-
nected component in this example, and then, up to a 27
multiple constant phase, the solution is unique. The rea-
son is that, for a given data mismatch, the adopted poten-
tial minimizes the number of discontinuities, and any
other solution having the same data mismatch would
have more discontinuities.

We emphasize that the quarter of the Gaussian having
zero height, plus the noise, introduces a lot of discontinui-
ties, which the unwrapping algorithm is able to detect
(the algorithm also marks other pixels as discontinuities
as a result of noise plus high phase rate effects) as shown
in Fig. 6(h). The denoising effect is quite evident in Fig.
6(d). The 3D rendering of Figs. 6(e) and 6(f) illustrates the
unwrapping plus denoising and unwrapping effects, re-
spectively; in Fig. 6(g) is shown the evolution of the objec-
tive function along with the iterations.

We again mention that binary optimizations such as
those employed in lines 4 and 12 of Algorithm 1 are de-
manding not only because they handle objective functions
with a huge (typical of usual phase unwrapping problems)
number of discrete variables, but also because those func-
tions have, for nonconvex potentials, nonsubmodular
terms (see Subsection 1.C).

3. Gaussian

For this experiment we used prior parameter ©=0.4 and
the potential with exponent p=2. We found better results
with such a relatively high exponent p (compared with
the p used in the last presented results); this can be ex-
plained by the fact that the original surface does not have
discontinuities, although it has high phase rates that may
create problems when noise is added. Figure 7 is similar
to Fig. 6, but now the original absolute phase surface is a
100 X 100 pixel sized Gaussian elevation with a height of
147 rad and standard deviations of d=15 pixels (verti-
cally) and d=10 pixels (horizontally). Figure 6(c) exhibits
an almost perfect unwrapping and RMSE=0.15 rad. This
denoising corresponds to ISNR=5.74 dB and is quite evi-
dent in Fig. 7(d) where we show the rewrapped denoised
image. The 3D rendering of Figs. 7(e) and 7(f) illustrates
the unwrapping [Fig. 7(f)] and unwrapping plus denoising
effects [Fig. 7(e)]. In Fig. 7(g) we show the evolution of the
objective function along with the iterations. The wrong
wrap count is 0 (Monte Carlo simulation).
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B. Real Data

Finally, we illustrate the performance of the algorithm on
a (152x458 pixel) InSAR image. We have employed a
prior parameter ©=0.2 and a quadratic potential p=2.
Figure 8(a) displays an image corresponding to an abso-
lute phase surface generated by a (simulated) InSAR ac-
quisition for a real steep-relief area (Long’s Peak, Colo-
rado, USA, data distributed with book [12]), thus
inducing many discontinuities and posing a very hard ab-
solute phase estimation problem. Figure 8(b) displays a
corresponding wrapped and noisy image. In some areas
the characteristic fringes are destroyed because of typical
phenomena such as shadowing and layover (see, e.g.,
[12]). Figure 8(f) shows a quality map that is an input to
the algorithm: white color corresponds to pixels whose
phase value is meaningless, and gray corresponds to the
rest of the pixels. This information accounts for jamming
phenomena such as the above mentioned layover and
shadowing. Our algorithm is able to screen those white
pixels from the absolute phase estimation process (there-
fore those pixels do not contaminate the results for the
rest of the image), and this is the reason why we employ a
non-discontinuity-preserving quadratic potential. Obvi-
ously the error values here presented refer only to gray
image areas on the quality map (in fact we also do not
count pixels at the border of the gray image, as well as
those pixels from the first and the last columns of the im-
age; this is so because such values are outliers driven by
data acquisition artifacts). Figure 8(c) shows the un-
wrapped resulting image, with RMSE=0.18 rad corre-
sponding to ISNR=3.8 dB. Figure 8(d) displays the image
in Fig. 8(c) rewrapped. Comparing with the image shown
in Fig. 8(b), the denoising effect is apparent; this is made
quite clear by comparing the enlarged patches in Figs.
8(b) and 8(d). Figure 8(e) displays a 3D rendering of the
image in Fig. 8(c). We further add that the performance
took 35 iterations (within Algorithm 1), and we got one
wrap count error.

C. Benchmarking

In this section, we benchmark the proposed algorithm
CAPE (combinatorial absolute phase estimation) against
the state-of-the-art competitors PEARLS (phase estima-
tion using adaptive regularization based on local smooth-
ing), introduced in [26], and LPNO, presented in [12],
Chap. 5. The benchmarks are evaluated on the experi-
ments addressed in the previous sections, with the excep-
tion that we run the experiments for a set of noise values
0={0.1,0.3,0.5,0} (see Subsection 2.A for the definition of
o). We emphasize that we do not benchmark against 7Z7M
[13] (an algorithm that we have already mentioned above)
because both PEARLS and CAPE can be considered as ex-
tensions of it.

Table 1 summarizes the quantitative results obtained
for the benchmarks. The bullets indicate that, for our pur-
poses, that experiment is not relevant. In fact LPNO aims
at achieving phase unwrapping (not denoising) and thus
it is not fair to apply it to noisy phase images.

We further add that for noiseless cases (0=0) both
CAPE and PEARLS run in the phase unwrapping mode,
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Fig. 6. (Color online) (a) Gaussian image with 147 maximum height and with a quarter set to zero. (b) Wrapped and noisy image shown
in (a). (¢) Image in (b) unwrapped and denoised by our algorithm (RMSE=0.7 rad). (d) Image in (c) rewrapped. (e) 3D rendering of image
in (¢). (f) 3D rendering of the image in (c¢) before denoising. (g) Objective function evolution along the iterations of the algorithm. (h)

Discontinuities blindly detected by the algorithm.
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Fig. 7. (Color online) (a) Gaussian image with 147 maximum height. (b) Wrapped and noisy image shown in (a). (¢) Image in (b) un-

wrapped and denoised by our algorithm (RMSE=0.15 rad). (d) Image in (c) rewrapped. (e¢) 3D rendering of image in (c¢). (f) 3D rendering
of the image in (c¢) before denoising. (g) Objective function evolution along the iterations of the algorithm.
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Fig. 8. (Color online) (a) Absolute phase gray-level image generated by a (simulated) InSAR acquisition for a real steep-relief area. (b)
Wrapped and noisy image shown in (a). (c) Image in (b) unwrapped and denoised by our algorithm (RMSE=0.18 rad). (d) Image in (c)
rewrapped. (e) 3D rendering of the image in (c). (f) Quality map that is an input to the algorithm: white corresponds to pixels whose
phase value is meaningless, and gray corresponds to the rest of the pixels.

Table 1. Root Mean Square Error (rad)

Algorithms
Experiments CAPE PEARLS LPNO
Gaussian
=0 0 0 0
0=0.1 0.05 0.05 °
0=0.3 0.11 0.08 .
0=0.5 0.15 0.11 °
Shear ramp
o=0 0 0 1.21
0=0.1 0.06 0.07 °
0=0.3 0.10 0.09 o
0=0.5 0.14 0.11 o
Clipped Gaussian
o=0 0 0 5.48
0=0.1 0.13 0.85 °
0=0.3 0.4 0.90 °
0=0.5 0.7 0.98 o
Long’s Peak 0.18 0.20 °

i.e., CAPE runs with N=0 (see Algorithm 1), which corre-
sponds to running as PUMA [25], and PEARLS also runs
as PUMA in this case [26].

We note the following:

1. Both CAPE and PEARLS tend to outperform LPNO
in phase unwrapping (0=0 case) when discontinuities ex-
ist to deal with blindly.

2. CAPE tends to outperform PEARLS when there are
discontinuities. As we have previously stated, PEARLS
implements a local polynomial approximation (LPA) with
varying adaptive neighborhood. This adaptiveness trades
bias with variance in such a way that the neighborhood’s
window stretches in areas where the underlying true
phase is smooth and shrinks otherwise, namely, in the
presence of discontinuities. It happens that, sometimes,
this shrinkage is not enough, implying a few unwrapping
errors near these discontinuities. This phenomenon is il-
lustrated in the results for the clipped Gaussian.

3. PEARLS tends to outperform CAPE when there are
no discontinuities and the SNR is low. The adaptive win-
dow selection technique jointly with LPA results are very
powerful. This is illustrated in the Gaussian experiment.
In the Long’s Peak experiment PEARLS and CAPE tend
to behave very similarly (the slight difference in favor of
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CAPE is meaningless because, as we have already noted,
the error is evaluated in a subset of the image, which may
have slight differences in the experiments using both
PEARLS and CAPE).

To our knowledge, PEARLS is the state-of-the-art abso-
lute phase estimation algorithm. From all of the experi-
ments, CAPE can also be considered state-of-the-art. Fi-
nally, we remark that code has been run in a 2.2 GHz
Intel dual core processor, in a maximum of a few dozens of
seconds; CAPE has been consistently observed to be
faster than PEARLS (we should note that, even so, the
code is a mix of MATLAB and C++, and therefore is not
optimized).

4. CONCLUDING REMARKS

We have introduced a (discontinuity-preserving) denois-
ing Bayesian approach to absolute phase estimation in in-
terferometric applications. In the scientific community
there is still a lively debate of whether denoising should
be done after phase unwrapping, before phase unwrap-
ping, or any other solution in between. In this paper we
have chosen the first option in order to avoid having the
denoising step corrupt the phase unwrapping process.
The graph-cuts-based proposed algorithm, CAPE, first
performs phase unwrapping, with discontinuity-
preserving capabilities; then, basically using the same ra-
tionale, but with a multiprecision scheduling technique, it
achieves denoising. In the experimental results the sim-
plicity of the algorithm translates into fast execution and,
furthermore, high accuracy. We emphasize that a short
running time can be essential for some applications (e.g.,
some medical applications in magnetic resonance imag-
ing). A further step to speed up the algorithm may be ob-
tained in the future by using dynamic graph cuts [50].

The obtained experimental results for absolute phase
estimation have, to our knowledge, state-of-the-art accu-
racy; the running time is typically a few seconds in a
2.2 GHz Intel dual core for images of size 150X 100, and
was experimentally found to grow linearly with image
size. Theoretically, the worst-case complexity is O(kn?m)
(see [25]), where n=|V| and m=|&|, respectively, are the
number of nodes and edges of the graph that our algo-
rithm deals with, and % is the excursion of the 27 labels of
the nodes in the absolute phase. We emphasize that our
algorithm, in a set of representative experiments, turns
out to be faster than PEARLS [26].

In the future, we intend to explore diversity techniques
(e.g., Chinese remainder theorem) applied to absolute
phase estimation, in order to extend the set of the phase
images that we can unwrap (namely, images for which the
absolute phase exhibits high rates); we should note that
dealing with noise in such a scenario turns out to be quite
more challenging. We also intend to employ higher-order
Markov random fields; this is an effort to avoid the met-
rication artifacts well known to be associated with graph-
cut-based techniques [51]. In addition we intend to de-
velop learning schemes for the selection of the best prior
parameter u, given some absolute phase estimation
problem.
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