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Abstract

The path integral approach is applied to describe the propagation of pho-
tons in bounded homogeneous turbid media. Introducing a new controlled
perturbative expansion centred on the diffusion limit, new analytic solutions
for continuous wave reflectance and transmittance are determined, as relevant
for non-invasive measurements of tissue optical properties based on continu-
ous wave photon migration instruments. A comparative analysis with the
diffusion approximation of radiative transfer theory is made to show that
non-diffusive effects are enhanced in turbid regions with increasing absorp-
tion coefficients and decreasing reduced scattering coefficients as well as when
the distance between interface boundaries increases. The relation between the
transport equation (which is the starting point for the path integral approach)
and multiple scattering theory is also discussed.

1 Introduction

The analysis of photon migration in strongly scattering or turbid media has for a
long time been considered in connection with the numerous fruitful applications to
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astrophysics, atmospheric optics and biomedical imaging [1]-[5]. In these studies the
propagation of electromagnetic waves through a turbid medium is described by the
radiative transfer theory [1, 2]. In this theory the collective motion of the multiply
scattered photons corresponds to the propagation of a radiation wave which satisfies
the Boltzmann transfer equation,[

1

v

∂

∂t
+ ŝ · ∇+ µt(r)

]
I(r, ŝ, t) = µs(r)

∫
Ψ(ŝ, ŝ′)I(r, ŝ′, t)dŝ′ + S(r, ŝ, t), (1)

where I(r, ŝ, t) is the intensity or power per unit area, per unit solid angle at point
r, from propagation direction ŝ and at time t, S(r, ŝ, t) is the source function, µs is
the scattering coefficient of the turbid medium and µt its transport coefficient given
by µt = µa + µs where µa is the absorption coefficient. The photon propagation
velocity v is given by v = c/n with c the speed of light in the vaccum and n the
refractive index of the turbid medium. The phase function Ψ(ŝ, ŝ′) represents the
probability density of a photon scattering from direction ŝ′ into ŝ and is normalized
so that ∫

Ψ(ŝ, ŝ′)dŝ′ = 1. (2)

It should be noted that in the radiative transfer theory wave effects, such as difrac-
tion, interference and polarization, are neglected. However, the approach contains
implicitly information about the correlation of fields because the intensity I(r, ŝ, t)
is related by a Fourier transform to the mutual coherent function defined in the
analytic multiple scattering formulations beginning with the wave equations and a
statistical description of the scattering media [2]. Moreover, polarization degrees
of freedom may be introduced using the Stokes matrix [2]. The theory has thus a
wider scope than that anticipated at first sight. Still, it remains an approximate
description of the electromagnetic dynamics in turbid media with solutions based
on assumptions which in many realistic situations may become too restrictive.

Appendix A provides a derivation of the transfer equation from the fundamental
integral equations of multiple scattering theory. It is based on the derivation pre-
sented by Ishimaru [7] (also described in [2]). The transfer equation is obtained
after three main implicit and/or explicit assumptions:

1. The scatterers are independent, in the sense that the probability of finding
scatterer s at rs is independent of the position rt of scatterer t.

2. The correlation function should be a slowly varying function of r (slow variation
over the correlation distance of the field).

3. The far-field approximation should be valid for the field scattered at point s when
observed at any other scatterer t.
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This last assumption is equivalent to saying that the medium has low density on the
scale of the wavelength, meaning l� λ, with l the average inter-particle distance.

The three assumptions mentioned above are quite well satisfied by sparse particle
suspensions, for example drops of water in air, polystyrene microspheres suspended
in water or air bubbles trapped in a solid matrix. However, when dealing with bio-
logical media, there is a reasonable doubt that these assumptions may be sustained.
Indeed, it is reasonable to keep assumption 2, but not the other two. Scattering
in biological media is mainly due to the cell nucleus, the cell organelles (specially
the mitochondria) and the cell walls [8, 9]. Hence, for visible light it is l ∼ λ and
assumption 3 is not valid. However, still for visible light, one may argue that con-
dition 3 is not valid only within the volume of approximately one cell (typical size
∼ µm), containing a relatively small number of scatterers, and expect that the error
introduced by still assuming condition 3 is small. Finally, the ordered structure of
biological tissue means a correlated distribution of scatterers, particularly the nuclei
and the cell walls. Thus, one may not sustain condition 1 (for example, the position
of nucleus t is not independent of position of nucleus s, since they are arrayed in a
quasi-periodic structure). It should be noted that the correlation of the nucleus po-
sitions should be very significant for ∼ 10 to ∼ 100 neighbours, meaning the volume
of ∼ 103 to ∼ 1003 cells. So, in this sense, keeping assumption 1 would mean an
error ∼ 103 to ∼ 106 times larger than the one introduced by keeping assumption 3.

Accordingly, we tried to re-derive the transfer equation following the guidelines of
[7], but introducing the effect of a pair correlation function. This is presented also in
the appendix. The result is that a Boltzmann transfer equation is still obtained, but
with an effective phase function obtained from the true phase function by adding
a correction proportional to the Fourier transform of the pair correlation function.
The interpretation of this result may be the following: the correlation between the
scatterers implies that the role (on the global multiple scattering process) of radi-
ation scattered at specific single scattering angles may be enhanced or suppressed.
The effective phase function takes into account this effect. Hence, the procedures
adopted in the remaining of the paper can be also applied to the case of correlated
scatterers, with the adequate interpretation of the phase function term. However,
the systems directly addressed in this work are suspensions of particles (not neces-
sarily sparse) and disordered biological media such as blood or cell suspensions.

In near-infrared biomedical imaging the diffusion approximation (DA) to the Boltz-
mann equation [2], [6]-[15] has been extensively used. Indeed, for the propagation
of near-infrared photons in biological tissue, it is not a severe reduction to consider
that the mean free path of a photon is much smaller than the distance between
light sources and detectors and that the absorption rate is much smaller than the
scattering rate. In this conditions the number of interactions is very large and the
photons may be considered to be diffusive.

3



In the DA the fluence rate or power per unit area I(r, t) associated with the source
function S(r, t) satisfies the following diffusion equation [2, 15],

1

v

∂

∂t
I(r, t)−∇ · [D(r)∇I(r, t)] + µa(r)I(r, t) = S(r, t), (3)

where D = 1/[3(µa + µs
′)] is the diffusion coefficient with µs

′ = (1− g)µs denoting
the reduced scattering coefficient associated with µs and g, the anisotropy parameter
given by

g =
∫

Ψ(ŝ, ŝ′)ŝ · ŝ′dŝ′. (4)

The diffusion coefficient D and the photon transport mean free path l∗ are related
by D = l∗/3.

However, random diffusive photons lose too much information to be able to produce
the high quality images needed for clinical applications. In addition, realistic clinical
measurements involve non-diffusive conditions such as the presence of complex sets
of boundaries, the existence of turbid regions where the absorption coefficient is not
negligible and the detection of photons with a short time of flight. Hence, improving
the clinical relevance of near-infrared imaging requires the analysis of the Boltzmann
equation beyond the DA.

One way to achieve this is to apply the Feynman path integral (PI) formalism to
the analysis of the photon migration process [16]-[22]. In this approach the solution
of the Boltzmann transfer equation is written as a PI involving an effective particle
lagrangian [18, 19]. The solution is constructed to preserve causality and contains
information about non-diffusive photons which propagate in the continuous turbid
media and scatter anisotropically. In the context of time domain systems for optical
tomography, the method identified the most probable photon path around which
the photon trajectories cluster and was able to generate new and accurate analytic
solutions in the non-diffusive regime [18]-[22].

In this paper we extend the PI time domain analysis [18]-[22] and apply the approach
to describe the migration of photons in the context of continuous wave systems built
for optical tomography. In the next section we present a brief review of the PI for-
malism taking the opportunity to include the effect of a non-negligible absorption
coefficient. In Sections 3 and 4 we introduce a new perturbative method to calcu-
late the PI photon propagator and use it to determine new analytic solutions for the
continuous wave reflectance and transmittance functions, as relevant to non-invasive
measurements of tissue optical properties based on continuous wave photon migra-
tion instruments. In Section 3 we discuss the perturbative method and construct a
new analytic expansion for the PI photon propagator centered on the diffusion limit.
In Section 4 we apply this expansion to determine new analytic solutions for the
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continuous wave fluence rate in three representative geometric configurations: the
infinite unbounded medium, the semi-infinite medium and the infinite slab geometry.
The corresponding solutions for the continuous wave reflectance and transmittance
are then calculated for the latter two geometries. We compare with the DA to
show that non-diffusive effects are more important in turbid regions with higher
absorption coefficients and lower reduced scattering coefficients. We also analyse
the influence of approaching interface boundaries and show that non-diffuse effects
increase when the distance between boundaries increases. In section 5 we present
our conclusions.

2 PI approach

In the PI approach the migration of photons through a highly scattering or turbid
medium is considered to be a statistical random walk problem [19]. Let us take a
turbid medium characterized by an absorption coefficient µa, a scattering coefficient
µs, an anisotropy parameter g and a refractive index n. If the medium is homoge-
neous these optical parameters are simply constants and the propagation velocity
of the photons in the medium is v = c/n with c denoting the speed of light in the
vaccum.

Consider one of such photons and assume that at time ti it is at point ri moving
in the direction defined by the unit vector ŝi. After a series of N scattering events
located at points (rj, ŝj, tj), j = 1, · · · , N , the photon arrives at the detection point
(rf , ŝf , tf ). Suppose that at time tj it reaches the point rj coming from the direction
ŝj acquired after a scattering event at (rj−1, tj−1). The photon is then deflected
to a direction ŝj+1 by an angle θj = θ(ŝj+1, ŝj) and at time tj+1 arrives at point
rj+1. Since the photon must always move with speed v the probability density
Pj = P (rj+1, ŝj+1, tj+1; rj, ŝj, tj) for this scattering event is given by

Pj = Nj δ(ṙ2j − v2)Ψ(θj) exp(−vµa∆tj), (5)

where Nj is a normalization factor, δ(x) is the Dirac delta distribution, ∆tj =
tj+1 − tj and ṙj = ∆rj/∆tj with ∆rj = rj+1 − rj. The decaying exponential is the
probability density for the photon not to be absorbed while moving from rj to rj+1

when the absorption of photons is assumed to obey Fick’s law. Ψ(θj) is the phase
function giving the probability density for a photon with propagation direction ŝj
to be deflected by an angle θj into direction ŝj+1.

In an homogeneous turbid medium with optical parameters µa, µs and g, the average
distance travelled by a photon between each collision is the photon transport mean
free path l∗ = 1/(µa+µs

′), where µs
′ = µs(1−g) is the reduced scattering coefficient.
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A small scattering angle is then approximately given by θj ≈ |∆rj−∆rj−1|/l∗. In this
context the phase density is well described by a gaussian function. Then writting
r̈j = (∆rj − ∆rj−1)/∆t

2
j and using v∆tj ≈ l∗ the probability density (5) is well

approximated by

Pj = Nj δ(ṙ2j − v2) exp

[
−
(
vµa +

l∗
2v3

r̈2j

)
∆tj

]
. (6)

The probability density for the photon to start at point (ri, ŝi, ti) and end at point
(rf , ŝf , tf ) after the N scattering events distributed by the points (rj, ŝj, tj), j =
1, · · · , N , is given by the successive product of the probability densities (6) and the
probability density P0 = P (r1, ŝ1, t1; r0, ŝ0, t0) associated to the unscattered propa-
gation from (r0, ŝ0, t0) ≡ (ri, ŝi, ti) to (r1, ŝ1, t1),

P0 = N0 δ(ṙ
2
0 − v2) exp(−vµa∆t0). (7)

The probability amplitude Pfi = P (rf , ŝf , tf ; ri, ŝi, ti) for the photon to be emitted
at (ri, ŝi, ti) and detected at (rf , ŝf , tf ) is then obtained integrating over all possible
independent intermediate coordinates rj, j = 1, · · · , N . We find

Pfi = Nfi
∫ N∏

j=1

drj

(
v

l∗

)N+1 N∏
j=0

δ(ṙ2j − v2) exp

− N∑
j=0

(
vµa +

l∗
2v3

r̈2j

)
∆tj

 , (8)

where Nfi is the probability normalization factor.

Using the exponential representation of the Dirac delta distribution,

δ(ṙ2j − v2) =
1

2π

∫
dpj exp

[
ipj(ṙ

2
j − v2)

]
, (9)

we obtain

Pfi = Nfi
∫ N∏

j=1

drj

(
v

2πl∗

)N+1 N∏
j=0

dpj exp

− N∑
j=0

(
vµa +

l∗
2v3

r̈2j

)
∆tj



× exp

i v
l∗

N∑
j=0

pj(ṙ
2
j − v2)∆tj

 . (10)

Taking the double limit N →∞,∆tj → 0 we are lead to the Feynman prescription
[23] for the following PI

Pfi =
∫
Dr(t)J [ṙ(t)] exp

{
−
∫ tf

ti
dt

[
vµa +

l∗
2v3

[r̈(t)]2
]}

, (11)
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where the path density functional J [ṙ(t)] is given by

J [ṙ(t)] =
∫
Dp(t) exp

{
i
v

l∗

∫ tf

ti
dtp(t)

(
[ṙ(t)]2 − v2

)}
(12)

and ensures that the photon velocity is kept equal to the speed of light v at every
point along the trajectory. The integrals over all possible intermediate points of the
trajectory are constrained by the geometric configuration of the turbid region.

The PI probability given by (11) and (12) defines the photon propagator P (r, t; r′, t′)
associated with the electromagnetic migration process. The fluence rate I(r, t; r′, t′)
generated by a source function S(r, t; r′, t′) is then given by Huygen’s principle as
the time-ordered convolution of the propagator with the source,

I(r, t; r′, t′) =
∫
P (r, t; r′′, t′′)S(r′′, t′′; r′, t′)dr′′dt′′. (13)

3 PI propagator

For any geometry without a dense set of boundaries the convolution (13) is only
sensitive to the propagator in the interior of the turbid region. This propagator
coincides with the time domain fluence rate in an infinite medium. Indeed, in the
time domain the photon source is S(r, t; r′, t′) = δ(r−r′)δ(t− t′) and so (13) implies
that Ifi = I(rf , tf ; ri, ti) = Pfi.

Using the exact infinite series which defines the exponential function, the PI prop-
agator (11) may be written as follows

Pfi =
∫
Dr(t)J [ṙ(t)] exp

(
−
∫ tf

ti
dtvµa

) +∞∑
j=0

1

j!

[
− l∗

2v3

∫ tf

ti
[r̈(t)]2

]j
(14)

Close to the diffusion limit we may neglect the angular dependence of the scat-
tering phase function. In this near diffusive regime we just keep the lowest order
contribution j = 0. Then (14) is approximated by

Pfi =
∫
Dr(t)J [ṙ(t)] exp

(
−
∫ tf

ti
dtvµa

)
. (15)

The path density J [ṙ(t)] is itself a non-trivial PI. A good approximation in the
isotropic regime is to consider that only the average photon speed is kept equal to
v and write

J [ṙ(t)] = NJδ
[∫ tf

ti
dt
(
[ṙ(t)]2 − v2

)]
, (16)
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where NJ is the path density normalization factor. Expanding r as a Fourier sine
series with fundamental period ∆tfi [23] the isotropic PI propagator (15) may then
be shown to be given by [19]

Pfi =
1

2πv2∆t3fi
B−1

(
3

2
,
v∆tfi
4D

+ 1
)

exp(−vµa∆tfi)

×
[
1−

∆r2fi
v2∆t2fi

] v∆tfi
4D

θ

(
v∆tfi
|∆rfi|

− 1

)
, (17)

where D = l∗/3 is the diffusion coefficient, θ(x) is the unit step function and B(α, β)
is the Beta function [24, 25]. Since Pfi = 0 for |∆rfi| > v∆tfi causality is automat-
ically ensured. In (17) the normalization has been fixed by imposing the condition
that scattered photons which are not absorbed must be found somewhere in space,

1

v

∫ +∞

−∞
Pfi exp(vµa∆tfi)drf = 1. (18)

The propagator density (17) is a new PI solution to describe isotropic photon mi-
gration in turbid media with a non-zero absorption coefficient µa. It naturally
generalizes the corresponding propagator associated with purely scattering turbid
media [19]. In figures 1 and 2 we present some examples of propagator densities
P = P (r, t; 0, 0) = P (r, t) for r = |r| = 100 mm and v = 0.225 mm/ps.

Figure 1: Plots of P = P (100, t) for
µs
′ = 0.05 mm−1. P is measured in

units of 2.0 × 10−8 mm−2ps−1, µa in
mm−1 and t in ps.

Figure 2: Plots of P = P (100, t) for
µs
′ = 0.5 mm−1. P is measured in units

of 1.0 × 10−11 mm−2ps−1, µa in mm−1

and t in ps.

For fixed µs
′ the propagator has a maximum intensity peak which decreases and

moves towards smaller values of t when µa increases. The spread around the peak
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increases with decreasing µa. When µa decreases the purely scattering regime with
µa = 0 is approached continuously. For fixed µa increasing µs

′ decreases the peak
intensity (note that as indicated in the plot labels the scale for P is different in
figures 1 and 2) and moves it towards larger values of t. The corresponding spread
also increases. In figures 3 and 4 we consider different values of r for µs

′ = 0.05 mm−1.
As expected when r decreases the maximum peak increases (note again the different
scales for P ) and is shifted to smaller values of t. The corresponding spread increases
with r.

Figure 3: Plots of P = P (50, t) for
µs
′ = 0.05 mm−1. P is measured in

units of 2.0 × 10−7 mm−2ps−1, µa in
mm−1 and t in ps.

Figure 4: Plots of P = P (150, t) for
µs
′ = 0.05 mm−1. P is measured in

units of 5.0 × 10−9 mm−2ps−1, µa in
mm−1 and t in ps.

It should be noted that the isotropic regime of the PI approach does not reduce
to the DA. This only happens in the diffusion limit around which the PI photon
propagator (17) has a well defined perturbative expansion. Indeed, for late photons
satisfying |∆rfi| << v∆tfi we may write

[
1−

∆r2fi
v2∆t2fi

] v∆tfi
4D

= exp

[
v∆tfi
4D

ln

(
1−

∆r2fi
v2∆t2fi

)]

= exp

(
−

∆r2fi
4vD∆tfi

)
exp

{
−

∆r4fi
8Dv3∆t3fi

[
1 +

2∆r2fi
3v2∆t2fi

+O
(

∆r4fi
v4∆t4fi

)]}
. (19)

On the other hand using the properties of the Gamma function [24, 25],

Γ(z + 1) = zΓ(z), 22z−1Γ(z)Γ
(
z +

1

2

)
=
√
π, (20)
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we find that the Beta function satisfies

B−1
(

3

2
, z + 1

)
=

4
(
z + 3

2

) (
z + 1

2

)
Γ(2z)

z22zΓ2(z)
. (21)

When |∆rfi| << v∆tfi we should also take D << v∆tfi. Then consider the asymp-
totic expansion [24, 25]

ln Γ(z) =
(
z − 1

2

)
ln z − z + ln

√
2π +

n−1∑
j=1

B2j

2j(2j − 1)
z1−2j +Rn(z), (22)

where n ≥ 2, B2j are the Bernoulli numbers, B2 = 1/6, B4 = −1/30, · · · and Rn(z) is
the expansion residue. Since z = v∆tfi/(4D) is a real number the expansion residue
Rn(z) satisfies |Rn(z)| < |B2n|/(2n(2n − 1)|z|2n−1) and is always smaller than the
last term retained in the series. To order n = 3 we find

Γ(z) = exp
[(
z − 1

2

)
ln z − z + ln

√
2π
] [

1 +
1

12z
+

1

288z2
− 139

51840z3
+O

(
1

z4

)]
.

(23)
Then we obtain

∆t−3fi B
−1
(

3

2
,
v∆tfi
4D

+ 1
)

= 2πv3(4πvD∆tfi)
− 3

2

×
[
1 +

15D

2v∆tfi
+

65D2

8v2∆t2fi
+O

(
D3

v3∆t3fi

)]
. (24)

Since for |∆rfi| << v∆tfi the step function is just equal to one (17) may be written
as

Pfi = PDA

fi

[
1 +

15D

2v∆tfi
+

65D2

8v2∆t2fi
+O

(
D3

v3∆t3fi

)]

× exp

{
−

∆r4fi
8Dv3∆t3fi

[
1 +

2∆r2fi
3v2∆t2fi

+O
(

∆r4fi
v4∆t4fi

)]}
, (25)

where PDA
fi = PDA(rf , tf ; ri, ti) is the well known solution of the time domain Boltz-

mann transport equation in the DA [6],

PDA

fi = v(4πvD∆tfi)
− 3

2 exp

(
−

∆r2fi
4vD∆tfi

− vµa∆tfi
)
. (26)

In figures 5 to 8 we consider P = P (r, t; 0, 0) = P (r, t) and compare the PI propaga-
tor (17) with its approximated expansion (API) given by (25) and the lowest order
DA (26).
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Figure 5: Plots of P = P (50, t) for
µs
′ = 0.05 mm−1 and µa = 0.008 mm−1.

P is measured in units of 5.0 ×
10−8 mm−2ps−1 and t in ps.

Figure 6: Plots of P = P (100, t) for
µs
′ = 0.05 mm−1 and µa = 0.008 mm−1.

P is measured in units of 2.0 ×
10−9 mm−2ps−1 and t in ps.

Figure 7: Plots of P = P (100, t) for
µs
′ = 0.05 mm−1 and µa = 5.0 ×

10−4 mm−1. P is measured in units of
5.0× 10−9 mm−2ps−1 and t in ps.

Figure 8: Plots of P = P (100, t) for
µs
′ = 0.1 mm−1 and µa = 0.008 mm−1.

P is measured in units of 5.0 ×
10−10 mm−2ps−1 and t in ps.

For fixed µs
′ and µa figures 5 and 6 show that when r increases (25) improves as

an approximation to (17). The same happens if µa decreases for fixed r and µs
′

(see figures 6 and 7), and if µs
′ increases for fixed r and µa (see figures 6 and

8). Figures 5 to 8 also show that (25) is clearly a better approximation than (26).
Keeping enough higher order terms (25) may approximate (17) to the desired degree
of accuracy. Naturally, the specific number of terms to be kept in the series depends
on the turbid medium. Note that when compared to the DA the PI approach as
been shown to provide a much better fit to time domain experimental data [22],
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a fact clearly establishing it as a more accurate description of photon propagation
in turbid media. As a consequence, the API expansion (25) is indeed an improved
approximated description of photon propagation in turbid media.

4 Continuous wave systems

In continuous wave systems built for optical tomography the photon source may be
considered to be a Dirac delta distribution in space with constant amplitude S [5].
For simplicity, let us consider that it is located at the origin r = (0, 0, 0) and that
emission starts at time t = 0,

S(r, t) = Sδ(r)θ(t). (27)

Because the continuous wave fluence rate depends on the geometric configuration
of the turbid region let us now analyse three representative examples: the infinite
medium, the semi-infinite medium and the infinite slab geometry.

4.1 Infinite medium

Since the photon propagator (17) is only nonzero for |∆rfi| = r < v∆tfi = vt the
continuous wave fluence rate is given by

I(r, t) =
S

2πv2

∫ t−r/v

0
dτ

(t− τ)−3

B
[
3
2
, v(t−τ)

4D
+ 1

][1− r2

v2(t− τ)2

] v(t−τ)
4D

exp[−vµa(t− τ)],

(28)
As it is the fluence rate integral is still a complicated formula which may only be
determined numerically. An approximate analytic evaluation is nevertheless possible
if the photon propagator is expanded around the DA. As we have seen such an
expansion exists and is given by (25). With enought terms kept in the series we
have shown that it is an excellent approximation to the path integral solution (17).
Consequently, an accurate analytic evaluation of I(r) is expected to be possible
with (25). Changing the integration variable in (28) first to y = t − τ and then to
x = 4vDy/r2 we find

I(r, t) =
S

4Drπ3/2

∫ 4Dvt/r2

4D/r
dxx−3/2

[
1 +

30D2

r2x
+

130D4

r4x2
+O

(
D6

r6x3

)]

× exp

{
−1

x
− µar

2x

4D
− 8D2

r2x3

[
1 +

32D2

3r2x2
+O

(
D4

r4x4

)]}
. (29)
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Now for D << r and vt >> r2/D the fluence rate becomes independent of time and
may be written as follows

I(r) =
S

4Drπ3/2

∫ +∞

0
dxx−3/2

[
1 +

30D2

r2x
+

130D4

r4x2
+O

(
D6

r6x3

)]

× exp

{
−1

x
− µar

2x

4D
− 8D2

r2x3

[
1 +

32D2

3r2x2
+O

(
D4

r4x4

)]}
. (30)

Expanding the exponential around the diffusion limit,

exp

{
−1

x
− µar

2x

4D
− 8D2

r2x3

[
1 +

32D2

3r2x2
+O

(
D4

r4x4

)]}
= exp

(
−1

x
− µar

2x

4D

)

×
+∞∑
j=0

(−8)j

j!

D2j

r2jx3j

[
1 +

32D2

3r2x2
+O

(
D4

r4x4

)]j
, (31)

we obtain

I(r) =
S

4Drπ3/2

+∞∑
j=0

aj(r)Ij(r), (32)

where Ij(r) is given in terms of the modified Bessel function of the third kind
Kj+1/2(z) [24, 25] by

Ij(r) =
∫ +∞

0
dxx−3/2−j exp

(
−1

x
− µar

2x

4D

)

= 2

(
µar

2

4D

)(1+2j)/4

Kj+1/2

(
r

√
µa
D

)
(33)

and a0(r) = 1, a1(r) = 30D2/r2, a2(r) = 130D4/r4, · · ·.

To estimate the form of the fluence rate let us consider that besides D << r we still
have Dµa << 1. Then expanding in the small parameter ε ≈ µaD ≈ D/r << 1 we
find

I(r) = IDA(r)
[
1− r

√
Dµ3/2

a − 6Dµa +
1

2
r2Dµ3

a +O(ε3/2)
]
, (34)

where

IDA(r) =
S

4πDr
exp

(
−r
√
µa
D

)
(35)

is the DA contribution. In figures 9 and 10 we present comparative results for
ln[rI(r)] taking S = 1000 ps−1. Clearly, smaller reduced scattering coefficients µs

′

and higher absorption coefficients µa lead to larger differences between the DA and

13



API. Note that both µa and 1/µs
′ must be sufficiently small to keep the approxima-

tion valid. Note also that for a fixed turbid medium the ratio between the API and
the DA depends slowly on r, the dominant effect being almost a constant shift.

Figure 9: Plots of ln[rI(r)] for
µs
′ = 0.05 mm−1. I is measured in

mm−2ps−1, µa in mm−1 and r in mm.

Figure 10: Plots of ln[rI(r)] for µs
′ =

0.1 mm−1. I is measured in mm−2ps−1,
µa in mm−1 and r in mm.

4.2 Semi-infinite medium

A semi-infinite medium is an infinite region with a single boundary plane located at
z = 0. For simplicity to determine the fluence rate we apply the method of images
to ensure that it satisfies a Dirichlet boundary condition at z = 0, I(x, y, 0, t) = 0
[6]. The image sources are placed at z = ±z0, where z0 = 1/µs

′ is the z coordinate
of the point where the photons are assumed to be initially scattered. The image
source distribution is then given by

S(r, t) = Sδ(x)δ(y) [δ(z − z0)− δ(z + z0)] θ(t). (36)

Note that this approximated framework is only expected to be valid if measurements
are made at distances much larger than z0 and than an eventual boundary extrapo-
lation length. In this circunstances, uncertainties in the value of z0 and corrections
due to the extrapolated boundary length should be negligible [6].

Applying the convolution (13) the fluence rate satisfying the Dirichlet boundary
condition is given by

I(ρ, z, t) = I−(ρ, z, t)− I+(ρ, z, t), (37)

with

I±(ρ, z, t) =
S

2πv2

∫ t−
√

[(z±z0)2+ρ2]/v2

0
dτ

(t− τ)−3

B
[
3
2
, v(t−τ)

4D
+ 1

][1− (z ± z0)2 + ρ2

v2(t− τ)2

] v(t−τ)
4D

14



× exp[−vµa(t− τ)], (38)

where in cylindrical coordinates ρ =
√
x2 + y2. Taking as before D << r, r << vt,

vt >> r2/D and Dµa << 1 to expand around the diffusion limit we are lead to

I±(ρ, z) = IDA

± (ρ, z)
[
1− r±

√
Dµ3/2

a − 6Dµa +
1

2
r2±Dµ

3
a +O(ε3/2)

]
, (39)

where r± =
√

(z ± z0)2 + ρ2 and

IDA

± (ρ, z) =
S

4πDr±
exp

(
−r±

√
µa
D

)
(40)

are the contributions of the DA.

In the infinite half-space the experimentally relevant quantity is the reflectance
R(ρ, t) defined as the amplitude of the photon current J(ρ, z, t) at the boundary
plane z = 0, R(ρ, t) = |J(ρ, 0, t)| [6]. This current is determined using Fick’s law,

J(ρ, z, t) = −D∇I(ρ, z, t). (41)

Calculating the gradient of the fluence rate we find

J(ρ, 0) = JDA(ρ, 0)

1− 6Dµa −
r20µ

2
a

1 + r0
√
µa/D

(
1− 1

2
r0
√
Dµ3/2

a

)
+O(ε3/2)

 ,
(42)

where r0 =
√
ρ2 + z20 and the diffusion limit contribution is

JDA(ρ, 0) = − Sz0

2πr30
exp

(
−r0

√
µa
D

)(
1 + r0

√
µa
D

)
, (43)

with z0 = (0, 0, z0). Consequently, the reflectance is given by

R(ρ) = RDA(ρ)

1− 6Dµa −
r20µ

2
a

1 + r0
√
µa/D

(
1− 1

2
r0
√
Dµ3/2

a

)
+O(ε3/2)

 , (44)

where

RDA(ρ) =
Sz0
2πr30

exp
(
−r0

√
µa
D

)(
1 + r0

√
µa
D

)
. (45)

To compare with the DA it is convenient to plot ln[r30R(ρ)] as we do in figures 11
and 12 for S = 100 ps−1. Just like for the unbounded infinite space, non-diffusive
effects are enhanced for decreasing reduced scattering coefficients µs

′ and increasing
absorption coefficients µa.
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Figure 11: Plots of ln[r30R(ρ)] for
µs
′ = 0.05 mm−1. R is measured in

mm−2ps−1, µa in mm−1 and r0 in mm.

Figure 12: Plots of ln[r30R(ρ)] for µs
′ =

0.1 mm−1. R is measured in mm−2ps−1,
µa in mm−1 and r0 in mm.

4.3 Infinite slab

The analysis applied to the semi-infinite medium may be generalized to the infinite
slab geometry [6]. In this configuration there are two plane boundaries located at
z = 0 and z = d, where d is the thickness of the slab. The solution to this problem is
obtained considering an infinite number of dipole sources placed at regular intervals
in the z axis, z = 2jd ± z0, where j = 0,±1,±2, · · ·. The continuous wave source
distribution is thus

S(r, t) = Sδ(x)δ(y)
+∞∑
j=−∞

[δ(z − 2jd− z0)− δ(z − 2jd+ z0)] θ(t). (46)

The fluence rate satisfying Dirichlet boundary conditions at z = 0 and z = d is then
given by

I(ρ, z, t) =
+∞∑
j=−∞

[I−j(ρ, z, t)− I+j(ρ, z, t)] , (47)

with

I±j(ρ, z, t) =
S

2πv2

∫ t−
√

[(z−2jd±z0)2+ρ2]/v2

0
dτ

(t− τ)−3

B
[
3
2
, v(t−τ)

4D
+ 1

] exp[−vµa(t− τ)]

×
[
1− (z − 2jd± z0)2 + ρ2

v2(t− τ)2

] v(t−τ)
4D

. (48)
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The corresponding time independent expansion around the diffusion phase point is

I±j(ρ) = IDA

±j (ρ)
[
1− r±j

√
Dµ3/2

a − 6Dµa +
1

2
r2±jDµ

3
a +O(ε3/2)

]
, (49)

where

IDA

±j (ρ) =
S

4πDr±j
exp

(
−r±j

√
µa
D

)
(50)

are the DA contributions and r±j =
√

(z − 2jd± z0)2 + ρ2.

The experimentally relevant quantities are the reflectance R(ρ, t) and the transmit-
tance T (ρ, t) defined as the amplitudes of the photon current J(ρ, z, t), respectively,
at z = 0 and z = d, R(ρ, t) = |J(ρ, 0, t)| and T (ρ, t) = |J(ρ, d, t)|. Let us first con-
sider the reflected photon current J(ρ, 0, t). Evaluation of the fluence rate gradient
leads to

J(ρ, 0) =
+∞∑
j=−∞

JDA

j (ρ, 0)

1−
r20jµ

2
a

1 + r0j
√
µa/D

(
1− 1

2
r0j
√
Dµ3/2

a

)

−6Dµa +O(ε3/2)
]
, (51)

where r0j =
√
ρ2 + (2jd+ z0)

2 and the diffusion limit contributions to the infinite
sum are

JDA

j (ρ, 0) = − Sz0j

2πr30j
exp

(
−r0j

√
µa
D

)(
1 + r0j

√
µa
D

)
, (52)

with z0j = (0, 0, 2jd + z0). Since J(ρ, 0) is a real vector for which only the z
component Jz(ρ, 0) is non-zero the reflectance is simply equal to

R(ρ) =
+∞∑
j=−∞

RDA

j (ρ)

1−
r20jµ

2
a

1 + r0j
√
µa/D

(
1− 1

2
r0j
√
Dµ3/2

a

)

−6Dµa +O(ε3/2)
]
, (53)

where the diffusion limit contributions are

RDA

j (ρ) =
Sz0j
2πr30j

exp
(
−r0j

√
µa
D

)(
1 + r0j

√
µa
D

)
, (54)

with z0j = 2jd + z0. The infinite half-space result is given by the j = 0 term,
naturally obtained in the limit d → +∞. In figures 13-16 we present plots of
ln[ρ3R(ρ)] for S = 100 ps−1. The results for fixed d (see figures 13 and 14) again
show that non-diffusive effects increase with the absorption coeficient µa and when
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the reduced scattering coefficient µs
′ diminishes. On the other hand figures 13, 15

and 16 show that the isotropic non-diffusive effects increase with d.

Figure 13: Plots of ln[ρ3R(ρ)] for d =
100 mm, µs

′ = 0.05 mm−1. R is mea-
sured in mm−2ps−1, µa in mm−1 and ρ
in mm.

Figure 14: Plots of ln[ρ3R(ρ)] for d =
100 mm, µs

′ = 0.1 mm−1. R is mea-
sured in mm−2ps−1, µa in mm−1 and ρ
in mm.

Figure 15: Plots of ln[ρ3R(ρ)] for d =
50 mm, µs

′ = 0.05 mm−1. R is mea-
sured in mm−2ps−1, µa in mm−1 and ρ
in mm.

Figure 16: Plots of ln[ρ3R(ρ)] for
ρ = 80 mm, µs

′ = 0.05 mm−1 and
µa = 0.008 mm−1. R is measured in
mm−2ps−1 and d in mm.

Similarly, rearraging the terms in the infinite sum, we find for the transmitted current
the following expression,

J(ρ, d) =
+∞∑
j=−∞

JDA

j (ρ, d)

1−
r̂20jµ

2
a

1 + r̂0j
√
µa/D

(
1− 1

2
r̂0j
√
Dµ3/2

a

)
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−6Dµa +O(ε3/2)
]
, (55)

where now r̂0j =
√
ρ2 + [d(2j − 1) + z0]

2 and the diffusion limit contributions are

JDA

j (ρ, d) =
Sẑ0j

2πr̂30j
exp

(
−r̂0j

√
µa
D

)(
1 + r̂0j

√
µa
D

)
, (56)

with ẑ0j = (0, 0, d(1− 2j)− z0). The transmittance is then given by

T (ρ) =
+∞∑
j=−∞

TDA

j (ρ)

1−
r̂20jµ

2
a

1 + r̂0j
√
µa/D

(
1− 1

2
r̂0j
√
Dµ3/2

a

)

−6Dµa +O(ε3/2)
]
, (57)

where the diffusion limit contributions are

TDA

j (ρ) =
Sẑ0j
2πr̂30j

exp
(
−r̂0j

√
µa
D

)(
1 + r̂0j

√
µa
D

)
, (58)

with ẑ0j = d(1−2j)−z0. Clearly, T (ρ)→ 0 as d→ +∞, as it should be for the semi-
infinite medium. In practice, it is suficiently accurate to consider a finite number of
terms in the fluence rate solution. Such number depends on the specific experimental
setup [6]. In our calculations we have considered |j| ≤ 5 for the reflectance and
|j| ≤ 10 for the transmittance. Transmittance results and comparison with the
diffusion approximation are presented in figures 17 to 20 where S = 100 ps−1. These
figures confirm that non-diffusive isotropic effects increase with µa, 1/µs

′ and d.

Figure 17: Plots of ln[ρ3T (ρ)] for d =
100 mm, µs

′ = 0.05 mm−1. T is mea-
sured in mm−2ps−1, µa in mm−1 and ρ
in mm.

Figure 18: Plots of ln[ρ3T (ρ)] for d =
100 mm, µs

′ = 0.1 mm−1. T is mea-
sured in mm−2ps−1, µa in mm−1 and ρ
in mm.
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Figure 19: Plots of ln[ρ3T (ρ)] for d =
50 mm, µs

′ = 0.05 mm−1. T is mea-
sured in mm−2ps−1, µa in mm−1 and ρ
in mm.

Figure 20: Plots of ln[ρ3T (ρ)] for
ρ = 80 mm, µs

′ = 0.05 mm−1 and
µa = 0.008 mm−1. T is measured in
mm−2ps−1 and d in mm.

5 Conclusions

In this paper we have considered the application of the path integral (PI) approach to
describe the propagation of photons in homogeneous turbid media characterized by
an absorption coefficient µa, a reduced scattering coefficient µs

′ and a refractive in-
dex n. We have extended the time domain analysis [18]-[22] to include more general
source functions and introduced a new analytic perturbative method to determine
the PI photon propagator, the root object needed to define relevant physical quan-
tities required for non-invasive measurements of tissue optical properties. Working
for simplicity in the isotropic regime, we have determined a new analytic expansion
for the PI propagator centered on the diffusion limit. We have shown that this
expansion defines new approximated PI propagators which relative to the diffusion
approximation (DA) lead to improved descriptions of photon propagation in turbid
media.

To illustrate the application of this approach we have considered the example of
continuous wave systems designed for optical tomography. We have determined
new analytic solutions for the continuous wave fluence rate in three representative
geometric configurations: the infinite unbounded medium, the semi-infinite medium
and the infinite slab. For the latter two geometries we have calculated the cor-
responding reflectance and transmittance functions. Our method allows a direct
comparison with the DA, the center of the perturbative expansion. Based on such
a comparative analysis we have shown that non-diffusive effects are enhanced in
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turbid regions with increasing absorption coefficients and decreasing reduced scat-
tering coefficients as well as when the distance between boundaries increases. In a
forthcoming work we will also analyse frequency domain systems and compare with
experimental results.
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Appendices A: Derivation of the transport equation from
the multiple scattering theory

A.1. Fundamental equations

In this appendix we derive the Boltzmann transfer equation from the multiple scat-
tering theory. Introductory considerations have already been made in the second to
the fifth paragraphs of the Introduction and will not be repeated here.

Consider a random distribution of N particles (not necessarily identical) located at
r1, r2, · · ·, rN in a volume V . We consider a scalar field ψa at a point ra between
the scatterers. This field may be one of the rectangular components of the electric
or magnetic field and satisfies the wave equation (∇+ k2)ψ = 0, where k = 2π/λ
is the wave number in the medium surrounding the particles.

Ishimaru [7] has derived the transport equation from the Twersky equation [26, 27]:

〈ψaψb∗〉 = 〈ψa〉〈ψb∗〉+
∫
vasv

b∗
s 〈|ψs|

2〉ρ (rs) d
3rs. (59)

Here 〈·〉 means ensemble average, ρ (rs) is the density and vas satisfies the integral
equation
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vas = uas +
∫
uat v

t
sρ (rt) d

3rt. (60)

In this equation uas is the single scattering operator that outputs the scattered field
Ua
s at ra, due the scatterer at rs, when the wave Ψs is incident on it: Ua

a = uasΨ
s.

The general convention is that the superscript refers to the observation point and
the subscript to the emission point. The Twersky equation (59) is obtained from an
averaging procedure of an integral equation approximation for the scattered field.
One of the underlying assumptions is that the particles location are independent of
each other, so that the joint probability of finding particle 1 at r1,· · ·, particle N at
rN may be factorized:

W (r1, · · · , rN) = w (r1)× · · · × w (rN) . (61)

This assumption is justified for systems where the density is low and the particle
size is much smaller than the average inter-particle distance. A typical system where
this is a good assumption is a sparse suspension of particles. However, for biological
systems the density is high and the distance between scatterers may be of the order
of magnitude of their size. The main contribution to scattering is thought to come
from the cell mitochondria, but also from the cell nucleus, the cell walls and the
other organelles [8]. In this case the position of the scatterers is not independent
from each other and it is appropriate to introduce a pair distribution function

Pst =
g (rs, rt)

V 2
(62)

where g (rs, rt) /V is the conditional probability that given scatterer s at rs, we find
scatterer t at rt and V is the volume of the system.

The question that arises naturally is to know if a transport equation can be derived
under these circumstances. In this appendix we generalize Ishimarus derivation of
the transport equation to the case of dense systems with correlated scatterers. To do
that we follow the heuristic prescription of Beard [28] to include the pair distribution
function in the Twersky equation:

〈ψaψb∗〉 = 〈ψa〉〈ψb∗〉+ ρ
∫
vasv

b∗
s 〈|ψs|

2〉d3rs + ρ2
∫ ∫

vasv
b∗
s 〈ψsψt∗〉G (rs, rt) d

3rsd
3rt,

(63)
with
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G (rs, rt) = 1−
∑
n

∑
m6=n

Pst/ρ
2 = 1− g (rs, rt) (N − 1) /N, (64)

where the summation is made on the particles, N is the total number of particles
and we have assumed a constant density ρ.

In the next section we present the original derivation of Ishimaru, starting from
(59), and emphasizing the conditions under which the derivation is made. In the
last section we extend the reasoning to the case of dense systems, by applying (63).

A.2. Derivation of the transport equation for independent scatterers

The geometry for the calculations presented in this section are depicted in Figure 21.
Ishimaru’s derivation of the transport equation is based on a series of approxima-
tions. The first one is to assume that the single scattering operator is given by the
far field approximation:

uas = f(ŝs−a, ŝs)
eik|ra−rs|

|ra − rs|
, (65)

where f(ŝ, ŝ′) is the scattering amplitude of the scatterer (
∫
4π|f |

2dΩ = σs, the scat-
tering cross-section), ŝs−a is the unit vector in the direction of rs to ra (that is, in
the direction of ra−rs) and ŝs means the unit vector in the direction of the incident
field at point rs. This is only true if the distance between scatterers is much larger
than the wavelength. It is then possible to show that vas has approximately the same
form:

vas = f(ŝs−a, ŝs)
eiK|ra−rs|

|ra − rs|
, (66)

with K = k + 2πρf(0)/k, f(0) = f(ŝs, ŝs).

The link between the Twersky equation and the transport equation is done through
the relation between the correlation function and the specific intensity I(r, ŝ):

〈ψ(ra)ψ
∗(rb)〉 ≈

∫
I(rcab, ŝcab)e

iKr ŝcab·rdabdŝcab. (67)

In the following we will adopt the following convention, in order to make the ex-
pressions self-readable: the subscript c denotes a centre point and the subscript d a
difference point. Accordingly, in this expression rcab = (ra + rb)/2, rdab = ra − rb,∫
dŝcab means angular integration on all directions ŝcab centred on point rcab and Kr
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is the real part of K. Expression (67) is valid when the correlation function is a
slowly varying function of r [29], specifically, it must vary slowly over the correlation
distance of the field. This is the second assumption implicit in Ishimaru’s derivation.
The coherent intensity is defined in the same way:

〈ψ(ra)〉〈ψ∗(rb)〉 ≈
∫
Ic(rcab, ŝcab)e

iKr ŝcab·rdabdŝcab. (68)

Figure 21: Geometry used in Section A.2. A square around a given point means
volume integration, a circle means integration in the space of directions and a rect-
angle a linear integration along a given direction. Top: variables and integrations
in (70). Bottom: variables and integrations used in going from (74) to (75).

Introducing (66) and (67) (with ra = rs = rs for |ψs|2) in (59) we obtain

〈ψaψb∗〉 = 〈ψa〉〈ψb∗〉+ Γab (69)

with
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Γab = ρ
∫
d3rs

eiK|ra−rs|−iK
∗|rb−rs|

|ra − rs||rb − rs|

∫
dŝsf(ŝs−a, ŝs)f

∗(ŝs−b, ŝs)I(rs, ŝs). (70)

The representation of the variables and integrations used in this expression are
depicted in Figure 21(top).

The next step is to introduce the centre and difference vectors in the above expression
through the approximations

|ra − rs| ≈ |rcab − rs|+
1

2
rdab · ŝs−cab (71)

|rb − rs| ≈ |rcab − rs| −
1

2
rdab · ŝs−cab (72)

1

|ra − rs||rb − rs|
≈ 1

|rcab − rs|2
. (73)

Consistently with the previous conventions, the subscript s−cab means the direction
from point s to the centre point between a and b. These approximations are valid
for |rdab| � |ra − rs|, |rb − rs|. Since the magnitude of |rdab| is generally limited
within the correlation distance of the field, these assumptions are justified in almost
all parts of the medium except in a small volume near the observation points a
and b. It should be noted that these approximations are consistent with taking
ŝs−a, ŝs−b ≈ ŝs−cab, which will be assumed.

Using the assumptions (71) to (73), one obtains

Γab = ρ
∫
d3rs

eiKr ŝs−cab·rdab−ρσt|rcab−rs|

|rcab − rs|2
∫
dŝs|f(ŝs−cab, ŝs)|2I(rs, ŝs), (74)

where use have been made of 2ImK = (4πρ/k)Imf(0) = ρσt, where σt = σa + σs is
the extinction cross-section and σa the absorption cross-section.

To group (67) and (68) with (74) one must rewrite the latter in order to have an
angular integration dŝcab. The solution is to make a change of variables. This
may be better understood with the aid of Figure 11 (bottom). Until now all the
vectors have been referenced to an unspecified system of axes with origin O. If we
now change the origin of coordinates to the point rcab (the centre point between a
and b), the vector rs (old coordinates) will be represented by a new vector s (new
coordinates) such that s = rs − rcab. Then

∫
d3rs =

∫
s2ds

∫
dŝcab, ŝs−cab → ŝcab and

exp (iKrŝs−cab · rdab)→ exp (iKrŝcab · rdab). This allows to write (67), (68) and (74)
with the same angular integration in dŝcab. Equation (69) then allows to factorization
of
∫

exp (iKrŝcab · rdab)(· · ·)dŝcab and becomes
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I(rcab, ŝcab) = Ic(rcab, ŝcab) + ρ
∫ rcab

r0

dse−ρσts
∫
dŝs|f(ŝcab, ŝs)|2I(s + rcab, ŝs). (75)

Since we have factored out the dŝcab integral, the above expression is valid for each
direction ŝcab. The integration in s is done for all points rs lying along a line in that
direction,whose extremes are rcab (the new origin) and a point in the border of V ,
along this line, represented by r0. At this point we may drop the subscript cab and
apply the directional derivative (d/ds) = ŝ · ∇r. The coherent intensity is expected
to obey

d

ds
Ic(r, ŝ) = −ρσtIc(r, ŝ), (76)

while in the last term we take the integrand at the point rs = r, which means
s = rs − r = 0 (see Figure 21(bottom): s is the vector from point cab to point s).
We finally obtain the equation of transfer:

d

ds
I(r, ŝ) = −ρσtIc(r, ŝ) + ρσs

∫
dŝ′p(ŝ, ŝ′)I(r, ŝ′), (77)

where we have introduced the phase function given by p(ŝ, ŝ′) = |f(ŝ, ŝ′)|2/σs. This is
the equation for stationary scatterers, but the equation for the time-varying intensity
may be obtained by a similar process [7].

A.3. Derivation of the transport equation for correlated scatterers

We now include the last term of (63).We call it Γ
(2)
ab The same conventions are

applied and we use again the far-field approximation (66) and the relation (67).
The geometry for the calculations presented in this section are depicted in Figure 22.
Also, we assume that G (rs, rt) = G (rs − rt) = G (rdst). We obtain

Γ
(2)
ab = −ρ2

∫
d3rsd

3rt
eiK|ra−rs|−iK

∗|rb−rs|

|ra − rs||rb − rs|
(78)

∫
dŝcstf(ŝs−a, ŝs)f

∗(ŝt−b, ŝt)I(rcst, ŝcst)G(rdst)e
iKr ŝcst·rdst ,

where rcst = (rs + rt)/2, rdst = rs− rt and ŝcst represents a generic direction centred
on point rcst. The geometry implicit is depicted in Figure 22(a), top.
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Figure 22: Geometry used in Section A.3. A square around a given point means vol-
ume integration, a circle means integration in the space of directions and a rectangle
a linear integration along a given direction. (a) Top: variables and integrations in
(78). (a) Bottom: variables and integrations in (79). (b) Top: change of integration
variables, from rs, rt to rcst, rdst. (b) Bottom: variables and integrations used to
obtain (85).

Finally, we also assume that the group of source points (s and t) and the group of
observation points (a and b) are separated in such a way that the distance between
points of the same group (|rs − rt| and |ra − rb|) is much smaller than the distance
between the groups (well represented by |rcst − rcab|). This is the natural extension
of the assumptions that led to (71)-(73). In this case it is legitimate to approximate
ŝt ≈ ŝs, ŝs−a, ŝt−b ≈ ŝcst−cab and ŝcst ≈ ŝs, which gives

Γ
(2)
ab = −ρ2

∫
d3rsd

3rt
eiK|ra−rs|−iK

∗|rb−rs|

|ra − rs||rb − rs|
(79)

∫
dŝs|f(ŝcst−cab, ŝs)|2I(rcst, ŝs)G(rdst)e

iKr ŝs·rdst .
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The geometry implicit for this expression is represented in Figure 22(a), bottom.

The approximations corresponding to (71)-(73) are now

|ra − rs| ≈ |rcab − rcst|+
1

2
ŝcst−cab · (rdab − rdst) (80)

|rb − rt| ≈ |rcab − rcst| −
1

2
ŝcst−cab · (rdab − rdst) (81)

1

|ra − rs||rb − rt|
≈ 1

|rcab − rcst|2
, (82)

leading to

Γ
(2)
ab = −ρ2

∫
d3rsd

3rt
eiKr ŝcst−cab·(rdab−rdst)−ρσt|rcab−rcst|

|rcab − rcst|2
(83)

·
∫
dŝs|f(ŝcst−cab, ŝs)|2I(rcst, ŝs)G(rdst)e

iKr ŝs·rdst .

We change the spatial variables of integration from rs, rt to rcst, rdst (Jacobian =1;
see Figure 22(b), top) and shift the origin of the coordinates from O to point rcab.
Then we define the new variable s = rcst − rcab, implying

∫
drcst =

∫
s2ds

∫
dŝcab,

ŝcst−cab → ŝcab and exp (iKrŝcst−cab · rdab) → exp (iKrŝcab · rdab). This process may
be better understood with the aid of Figure 22(b), bottom. When this new term is
added to (69),

〈ψaψb∗〉 = 〈ψa〉〈ψb∗〉+ Γab + Γ
(2)
ab , (84)

it is possible again to factorize
∫

exp (iKrŝcab · rdab)(· · ·)dŝcab, leading to a new form
of (75) with the extra term

−ρ2
∫ rcab

r0

dsd3rdste
−ρσts (85)

·
∫
dŝs|f(ŝcab, ŝs)|2G(rdst)I(s + rcab, ŝs)e

iKr(ŝcab−ŝs)·rdst

It is now easy to associate this extra term with the last term of (75), which becomes
(dropping the subscript cab and changing again the name ŝs → ŝ′)

I(r, ŝ) = Ic(r, ŝ) + ρ
∫ r

r0

dse−ρσts
∫
dŝ′|f(ŝ, ŝ′)|2 [1− Γ2(ŝ, ŝ

′)] I(s + r, ŝ′). (86)
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with

Γ2(ŝ, ŝ
′) =

ρ

|f(ŝ, ŝ′)|2
∫
d3ReiKr(ŝ−ŝ

′)·RG(R). (87)

The steps from (75) to (77) are applicable exactly in the same way, as long as we
substitute p(ŝ, ŝ′) by

P (ŝ, ŝ′) = p(ŝ, ŝ′) [1− Γ2(ŝ, ŝ
′)] . (88)

Hence, the equation of transfer for correlated scatterers is, within the approximations
presented,

d

ds
I(r, ŝ) = −ρσtIc(r, ŝ) + ρσs

∫
dŝ′P (ŝ, ŝ′)I(r, ŝ′). (89)

The equation is formally the same as in the case on uncorrelated scatterers. However,
P (ŝ, ŝ′) is not the phase function but a effective phase function. This means that the
formalism of the transport equation, especially the diffusion approximation, may be
applied. A brief discussion of this feature and the implications for this work were
already presented in the second to fourth paragraphs of the Introduction, and we
refer the reader to those lines.
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