
Introduction
Problem Statement
Proposed Solution
Main Properties
Simulation Results
Concluding Remarks

Finite-time Average Consensus in a Byzantine
Environment Using Set-Valued Observers

D. Silvestre, P. Rosa, J. Hespanha and C. Silvestre

2014 American Control Conference
Portland, Oregon, USA.

5th June 2014

Silvestre, Rosa, Cunha, Hespanha and Silvestre Finite-time Average Byzantine Consensus 1/16



Introduction
Problem Statement
Proposed Solution
Main Properties
Simulation Results
Concluding Remarks

Outline

1 Introduction

2 Problem Statement

3 Proposed Solution

4 Main Properties

5 Simulation Results

6 Concluding Remarks

Silvestre, Rosa, Cunha, Hespanha and Silvestre Finite-time Average Byzantine Consensus 2/16



Introduction
Problem Statement
Proposed Solution
Main Properties
Simulation Results
Concluding Remarks

Motivation

Average Consensus Problem - m
nodes wish to agree on the average
of their initial values.

Robot Coordination - Fleet of
robots wishes to agree on
direction/speed or rendezvous
point.

Sensor Network - Compute the
mean of a noise corrupted set of
sensor measurements.
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Gossip Consensus

Pairs of nodes exchange their states at random times.

Nodes transmit only to adjacent nodes in the connectivity
graph.

Both nodes average their states.

See S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah,
”Randomized gossip algorithms,” IEEE Transactions on
Information Theory, vol.52, no.6, pp.2508 - 2530, June 2006.
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Motivating Example

Take the network given by the following
graph and state at time instant k,
x(k) = [1, 2, 3, 4]ᵀ

The consensus algorithm will
asymptotically converge to all the nodes
having xav = 2.5
If an attacker controlling one node in one
time instant resets the state to
x̃1(k) = x1(k) + m(c− xav)
In this example c = 5, but the attacker
can force the network to converge to any
constant c!

Gossip Algorithm[2]

• Nodes transmit at random times, 

exponentially distributed, i.e.

• Each node transmits only to one adjacent 

node at each time.

• Both nodes average their values (symmetric 

communications).

[2] S. Boyd, A. Ghosh,B. Prabhakar, D. Shah, "Randomized gossip algorithms," 

Information Theory, IEEE Transactions on , vol.52, no.6, pp. 2508- 2530, June 2006

tlk+1 − tlk ∼ Exp(λ)
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Problem Outline

Take m agents running a consensus system of the form

{
x(k + 1) = A(k)x(k) + B(k)u(k)
y(k) = C(k)x(k)

u(k) is the attacker signal, B(k) the matrix selecting which
nodes are corrupted and A(k) a matrix randomly selected.

Byzantine Consensus Problem

Either detect non-zero signals u(k) using y(k) without the
knowledge of B(k) or compute the final consensus value.
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Problem Model

Each agent i has a system of the form

Si :





x(k + 1) =
(
A0 +

n∆∑

`=1

∆`(k)A`

)
x(k) + B(k)u(k)

yi(k) = Ci(k)x(k)

Each Si is a Linear Parameter-Varying (LPV) system

n∆ number of uncertainties

∆`(k) are scalar uncertainties with |∆`(k)| = 1
A` are constant matrices
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SVO

Proposed Solution

Without Sharing Estimates

Use Set-Valued Observers (SVOs) to generate a set X̃(k)
where the state can take values;

Each node only uses state measurements;

Conservative results but it communicates less information.

Sharing State Estimates

The state of each node is a vector defining a
hyper-parallelepiped overbound for the state estimates;

Requires exchanging set-valued estimates between
communicating neighbors;

Achieves finite-time consensus for any horizon value.
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SVO

SVOs

Given the previous set X(k):

Using SVOs, the algorithm predicts X̃(k + 1) using the
dynamics;
Then, the set is intersected with the measurement set
Y (k + 1).

X(k) X̃(k + 1)

Y (k + 1)

X(k + 1)
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SVO

SVOs with horizon N

Given the previous set X(k):

A possible way to reduce the conservatism is by considering
larger horizon values;
The previous set is propagated once and intersected with the
double propagation of the set from two time instants ago.

X(k)

X(k + 1)
X(k + 2)

X(k)

X(k + 1)
X(k + 2)
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SVO

Algorithm

Each node runs an independent
SVO that uses only local
information;

Each node computes a
hyper-parallelepiped overbound;

When communicating, nodes
exchange and intersect the vector
defining its overbound;

If the intersection is void a fault is
declared, otherwise nodes perform
an average consensus rule.

where we make the union for all the vertices θi and where
Mθi and mθi are obtained using (5). The convex hull, X̃(k+
1), of set X(k + 1) is then obtained by using the methods
described in [16], since, in general, the set X(k +1) is non-
convex even if X(k) is convex. For additional properties of
the set X̃(k), the interested reader is referred to [10] and
references therein.

Notice that using the method provided before to compute
M(k) and m(k) for the “fault-free” model gives a set of
states that are compatible with the sequence of measurements
obtained up to time k. If the intersection of these admissible
outputs with the vector of measurements y(k) results in an
empty set, then a fault is detected.

A relevant issue regarding the SVOs is their decentral-
ized construction, which is fundamental when dealing with
distributed systems. A node only requires the following:
signal y(k) that it measures when communicating with others
at time k; the matrix C(k) by identifying which nodes
it contacts; and its own previous set-valued state estimate.
All the matrices A∆! can be determined if the node has
access to the global network structure. Otherwise, all possible
links between nodes can be considered, although this is
only feasible in networks with a limited number of nodes.
However, in a practical scenario, in order to optimize the
convergence rate, the nodes will compute the matrix W in (2)
in a distributed fashion [17] and the global network structure
can be inferred as the support graph of the matrix W .

The SVOs can be used as an overlay to a consensus
algorithm that detects Byzantine faults such as in [10]. In this
paper, a novel algorithm is introduced that intersects local
estimates among neighbors to obtain improved estimates. In
the process, the set of possible states is reduced and the
consensus solution is reached in finite time.

We define the set generated by the SVO at each node
i as Xi(k). In general, the result of the Fourier-Motzkin
elimination method produces a polytopic set with a bounded
number of vertices. However, transmitting Xi(k) would
mean communicating the matrix Mi(k) and vector mi(k).
Since the dimension of Mi(k) depends on the number of
vertices, we might need to communicate a large amount of
information, which may not be feasible in many applications.

For that reason, we can overbound this uncertainty set by
a hyper-parallelepiped Set

(
M̂i(k), m̂i(k)

)
, with

M̂i(k) = I ⊗
[

1
−1

]

and m̂i(k) = zi(k) ∈ R2nx , where m̂i(k) is defined
such that Set

(
M̂i(k), m̂i(k)

)
contains Xi(k). Using this

approach, zi will be the only vector that we need to transmit
between neighbors. Thus, the zi’s represent state boundaries
for the other agents and are obtained through the previously
described algorithm to compute the SVO (5) using local
information available when communicating with neighbors.

The algorithm can be briefly described as, in each discrete
time instant, each node that does not communicate with
its neighbors updates its set-valued state estimates of the
corresponding SVO using (5).

If node i and j communicate, then they intersect both set-
valued state estimates followed by a consensus phase. Notice
that zi and zj are state boundaries from the perspective of
node i and j. Thus, s" — the concatenation of [zi]2i−1 and
[zi]2i for each node i — is such that s" ∈ Set(M̂i, zi) and
s" ∈ Set(M̂j , zj) (see Fig. The concept of s" and state

i
j

"

s"

zi =




−2
2

−2.9
−0.5
−2.9

0




zj =




−2
−1
−2
2

−2.8
−0.5




z# =




−2
−1
−2.5
−1
−2.5
2.5




Fig. 1: Example of the set-valued estimates boundaries of
node i (yellow), node j (green) and node " (red), where for
each node there is no uncertainty regarding its own state
and where s" represents the full state of the system that is
contained in all three state boundaries.

boundaries are illustrated in Fig. 1. A fault is declared by
node i, whenever it receives zj with [zi]2j−1 > [zj ]2j−1 ∨
[zi]2j > [zj ]2j since there is not a vector s" satisfying the
observations made by node i and j.

The intersection step is described using the maximum
function (z variables were defined to have the maximum of
the boundary with a negative sign, see Fig. 1 for a numeric
example) by operating on the state of both nodes i and j

zi(k) = zj(k) = max(zi(k), zj(k)) (6)

where the max function operates row-wise.
At each time k, the consensus phase runs in both commu-

nicating nodes and is defined for node i communicating with
node j by the following linear iteration, similarly to what is
done in [17]:

zi(k+1) =

[(
1
2
(ei−ej)(ej−ei)ᵀ +Inx

)
⊗I2

]
zi(k) (7)

where, as previously mentioned, the variable zi is the vector-
valued estimate of node i of all the states of the nodes. It
should be noticed that, for node i, we have [zi]2i = [zi]2i−1

since the node has access to its own state at all time instants
and thus there is no uncertainty associated to it.

IV. MAIN PROPERTIES

This section starts by providing a result regarding the
convergence of the proposed algorithm to robust consensus
for detecting Byzantine faults and performing the detection
using the information of the estimates of each node.

Theorem 1: Take the consensus algorithm defined by
equations (6) and (7). If the matrix of probabilities W is
strongly connected, then the algorithm converges in:

• expectation
• mean square sense
• almost surely.

Proof: The proof follows a similar reasoning as in [17].
We start by noticing that from equation (6) and that, for node
i, [zi]2i−1 and [zi]2i are always equal to the node state. Thus,
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SVO

Algorithm steps

(8)zi(k) = zj(k) = max(zi(k), zj(k))

(9)zi(k+1) =

[(
1
2

(ei−ej)(ej−ei)ᵀ+Inx

)
⊗I2

]
zi(k)

X(k)

New
Iteration

i commu-
nicates
with j?

Compute
X(k + 1)
with SVO

Overbound
X(k) to
get zi(k)

Intersect
with (8)zj(k)

Consensus
with (9)

Build
X(k + 1)

from
zi(k + 1)

yes

no

Fig. 2: Flowchart of the algorithm with the intersection phase
to share observations between neighbors.

IV. MAIN PROPERTIES

This section starts by providing a result regarding the
convergence of the proposed algorithm to robust consensus
for detecting Byzantine faults and performing the detection
using the information of the estimates of each node.

Theorem 1: Take the consensus algorithm defined by
equations (8) and (9). If the matrix of probabilities W is
strongly connected, then the algorithm converges in:

• expectation
• mean square sense
• almost surely.

Proof: The proof follows a similar reasoning as in [18].
We start by noticing that from equation (8) and that, for node
i, [zi]2i−1 and [zi]2i are always equal and with no uncertainty
as the node has access to its own consensus value. Thus we
stack these states for each node and prove the convergence

of the whole system. Let us introduce variable z:

z =




[z1]1
[z1]2
[z2]3
[z2]4

...
[zm]2nx−1

[zm]2nx




(10)

with z ∈ R2nx , where nx is the number of nodes. Then, one
can write

z(k + 1) = Ukz(k) (11)

where Uk is a matrix randomly selected from {Qij} with

Qij =

(
1
2
(ei − ej)(ej − ei)ᵀ + Inx

)
⊗ I2 (12)

for each pair of nodes i and j communicating with each
other with probability wij gathered in the probability matrix
W .

Let us define
R = E[Uk].

where E is the expected value operator. Then

E[z(k + 1)] = RE[z(k)]

due to the probability distributions wij being independent.
By applying iteratively we get

E[z(k + 1)] = RkE[z(0)]

Rearranging our variables using the transformation T
ᵀ
QijT

with

Tij =





1, if j = 2i− 1 ∧ i ≤ nx

1, if j = 2(i− nx) ∧ i > nx

0, otherwise
(13)

we get

T
ᵀ
RT = I2 ⊗

(
(1− 1

nx
)Inx

+
1
nx

W
)

The eigenvalues of R are the eigenvalues of (1− 1
nx

)Inx +
1

nx
W counted twice. We can use the fact

λ((1− 1
nx

)Inx +
1
nx

W ) = (1− 1
nx

)Inx +
1
nx

λ(W )

and since W is a doubly stochastic matrix with a strongly
connected support graph with all but one eigenvalues less
than 1. The λ(W ) = 1 is associated to the eigenvector
1nx

. Thus, limk→∞Rk = I2 ⊗ 1nx
/nx which proves the

convergence in expectation.
In order to prove convergence in the mean square sense,

let us compute

E[z(k + 1)ᵀz(k + 1)] = R2E[z(k)ᵀz(k)]

where R2 = R due to the fact that Qᵀ
ijQij = Qij .

Therefore, using the same argument as for the convergence
in expectation, the algorithm converges in the mean square
sense. Almost surely convergence is given by using the fact
that E[z(k+1)] = RkE[z(0)], which means that convergence
is achieved at an exponential rate. Using the Borel-Cantelli
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Properties

In the absence of faults, the algorithm converges almost surely,
in expectation and in mean square to the average consensus;

Finite-time average consensus is achieved for any horizon
value for some communication patterns;

Using a token-passing scheme implements the type of
communication patterns;

It enables finite-time consensus with low computational
burden when compared to the setup where nodes do not
exchange estimates.
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Simulation Results (1/2)

Setup: 5 node network and initial states xi(0) = i− 1 and a
nominal bound |xi| ≤ 5 and a horizon N = 1.

In a typical run, the proposed
algorithm achieves finite-time
consensus.

Without sharing state estimates,
the size of the estimate set
decreases slowly.

Mean volume of the estimate set
across all nodes.

In addition to achieving finite-time
consensus, the results are less
conservative.
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Simulation Results (1/2)

Setup: 5 node network and initial states xi(0) = i− 1 and a
nominal bound |xi| ≤ 5 and a horizon N = 1.

In a typical run, the proposed
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Simulation Results (2/2)

Running a 1000 Monte-Carlo runs, we depict the histogram of the
stopping time.

For a horizon N = 1, 21.9% of the
runs did not achieve finite-time
consensus.

Using the same communication
pattern, if N = 5 only 13.4% did
not stop within the 300 time
instants of the simulation.

To get 100%, either increase the
horizon N or the runtime. 0 50 100 150 200 250 300
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Concluding Remarks

Contributions:

Finite-time consensus is shown to be a property of the SVOs
at the expenses of large horizon values;

The introduction of an algorithm that shares set estimates to
obtain less conservative results:

Possible conservativeness due to the overbound;
Finite-time consensus for any horizon value.

In Simulation is shown:

The algorithm halts faster than when no estimates are
exchanged;
Set volume is smaller leading to faster fault detection.
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The end

Thank you for your time.
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