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A B S T R A C T

Advancements in the process industry require building more complex simulations and performing compu-
tationally intensive operations like optimization. To overcome the numerical limit of conventional process
simulations a surrogate model is a viable strategy. In this work, a surrogate model of an industrial amine
scrubbing digital twin has been developed. The surrogate model has been built based on the process simulation
created in Aspen HYSYS and validated as a digital twin against real process data collected during a steady-state
operation. The surrogate relies on an accurate Design of Experiments procedure. In this case, the Latin-
Hypercube method has been chosen and several nested domains have been defined in ranges around the
nominal steady state operative condition. Several machine learning models have been trained using cross-
validation, and the most accurate has been selected to predict each target. The resulting surrogate model
showed a satisfactory performance, given the data available.
1. Introduction

The role of the digital twin will be central in revolutionizing the
chemical engineering industry in the near future (Liu et al., 2021;
VanDerHorn and Mahadevan, 2021). More and more industrial ap-
plications start from the development of a digital twin of the pro-
cess (Kritzinger et al., 2018). The role of the digital twin is becoming
critical to generate competitive solutions in a wide variety of use
cases, such as process operation or maintenance (Errandonea et al.,
2020), risk control and prevention (Bevilacqua et al., 2020), process
design (Damiani et al., 2018), smart manufacturing (Hu et al., 2018),
process optimization (Jeon and Schuesslbauer, 2020), asset lifecycle
management (Macchi et al., 2018), process monitoring (Zipper et al.,
2018), decision making support (Zhou et al., 2021).

VanDerHorn and Mahadevan (2021) defined the digital twin as a
virtual representation of a physical system that is updated through
information exchange between the physical and virtual systems. Based
on this definition, the digital twin can exist only when a physical asset is
present, thus a process simulation model may not be technically defined
as a digital twin unless the process is actually built and the simulation
is updated accordingly. However, in the design phase of engineering
a new process, even though it should not be called a rigorous digital
twin, a reliable process simulation can be used for the same kind of

∗ Corresponding author.
E-mail address: flavio.manenti@polimi.it (F. Manenti).

applications. Moreover, designing an optimal process configuration is
of utmost importance, and the usage of non-rigorous digital twins helps
in achieving it (Tian et al., 2018). In any case, the process simulation,
also called non-rigorous digital twin, might be the first building block
for constructing a rigorous digital twin, dynamically integrated with
the physical system.

Process simulations and digital twins may be based on fundamental
models which can be computationally demanding, thus impeding real-
time or highly iterative applications, e.g. optimization (Zhao et al.,
2022), model predictive control (Kannapinn et al., 2022), etc. The al-
ternative to fundamental models is offered by data-driven approaches.
Even though their training or fitting phase could be slow, e.g. for
deep neural networks (Bishop, 2008), their application is orders of
magnitude faster than fundamental models since the data-driven ones
are direct and do not require iterative solutions, differently from any
kind of differential systems of equations or convergence procedures,
e.g. for solving the multi-component vapor–liquid (flashing) problem.
However, purely data-driven models cannot make accurate predictions
far from the domain within which they were trained.

The scientific challenge is to retain the accuracy of the rigorous
models with the time-to-solution of data-driven models. One of many
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Fig. 1. Visual representations of (a) a 4 × 4 latin square with 4 objects (A, B, C, D), and (b) a two-dimensional latin hypercube design of experiment with 4 total samples (in
ight blue, it is highlighted that a sample does not share the row or the column with any other sample).
Fig. 2. Comparison of a two-dimensional uniform latin hypercube design of experiments with 7 samples between (a) a poorly space-filled configuration and (b) a better space-filling
design.
Fig. 3. Two-dimensional qualitative example for the stratified design of experiments
using two domains. In red, data points contained in the internal, more concentrated,
domain. In blue, data points belonging to the external, more sparse, domain.
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approaches for solving this challenge might be model order reduc-
tion (Agarwal and Biegler, 2013), extensively used in computational
fluid dynamics (Lassila et al., 2014). This method has the advantage
of maintaining a great extent of the rigorous approach. However, one
of its drawbacks is that model reduction must be performed after an
accurate mathematical study of the specified system, thus precluding
an automated and repetitive approach adaptable to different systems.
Moreover, accuracy cannot be guaranteed if the assumptions on which
the order reduction is based are too heavy. Another promising path
is surrogate modeling. Surrogate models are input–output metamodels
that approximate mathematical functions (Barton, 1992). These black-
box models can be constructed with many different strategies, starting
from simpler linear regression models all the way to more complex deep
neural networks (Bhosekar and Ierapetritou, 2018; Westermann and
Evins, 2019; Shokry et al., 2020). The main idea is to take data samples
from the mathematical function to be approximated, e.g. digital twins,
and tune the data-driven models to obtain the best fit on the data
samples.

Finally, a very interesting alternative to the aforementioned ap-
proaches relies in the gray-box modeling, or hybrid modeling. This
hybrid approach has been recently gaining more and more interest
given the high accuracy obtainable in the prediction and the physical
reliability of the generated models (Xiong and Jutan, 2002; von Stosch
et al., 2014; Zendehboudi et al., 2018; Asprion et al., 2019; Sansana
et al., 2021; Guo et al., 2022; Rajulapati et al., 2022). In fact, gray-
box modeling tries to merge the rigorousness of first-principles models,
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Fig. 4. Process flow diagram of the amine scrubbing process of the Itelyum exhausted oil refinery of Pieve Fissiraga.
Fig. 5. Aspen HYSYS simulation for the absorber section of the amine scrubbing process.
or white-box models, with the versatility and accuracy of data-driven
and machine learning models, or black-box models. This approach has
been applied successfully for the metamodeling of chemical processes,
especially for surrogate-based optimization (Bajaj et al., 2018; Pedrozo
et al., 2021).

In the framework of black-box and gray-box modeling, the data
sampling represents a very crucial procedure since the quality of the
sampling greatly affects the quality of the surrogate model. Moreover,
it is usually the most time-consuming step in the whole surrogate
model creation. Data is generally collected through Design of Exper-
iments (DoE) techniques that can be classified as conventional or
unconventional. In the conventional category lie the traditional space-
filling sampling techniques (Kleijnen, 2010; Pronzato and Müller, 2012;
Kleijnen, 2015; Damblin et al., 2013; Sanchez and Wan, 2015) with
the Latin Hypercube Design (LHD) being the most popular, as re-
ported by Viana (2013). The unconventional DoE comprises mainly the
adaptive sampling techniques of which an extensive review has been
conducted by Liu et al. (2018).
3

In this work, a framework for the automated surrogate model
creation of digital twins using black-box machine learning models is
proposed. The choice of applying this particular modeling technique
resides in the fact that the whole work is aimed at setting a base
ground for crafting automation procedures for creating metamodels
of any generic chemical process where a digital twin or process sim-
ulation is available. Both white-box and gray-box models have been
neglected given the need for a human intervention in the pipeline of
the model creation, by means of development and definition of rigor-
ous models and associated constraints. Thus rendering the automated
procedure useless. The digital twins are exploited through a nested
Latin-Hypercube Design of Experiments to generate sample points to
be used in the training, performed through cross-validation, of several
machine learning algorithms. The machine learning algorithms applied
in this study (listed in Section 2.3) are among the most common
ones (with an exception for shallow artificial neural networks and
Gaussian process regression models which both may require a separate
special treatment) and they vary in model complexity and number
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Fig. 6. Aspen HYSYS simulation for the regeneration section of the amine scrubbing process.

Fig. 7. Histograms of the distributions of features for the absorbers section. On the y-axes, the number of samples is reported and its corresponding value is indicated on the
x-axes. The plot is in log scale on the y-axis.
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Fig. 7. (continued).
of parameters. Even though it is always better to favor less complex
models, for increased explainability and reduced overfitting potential,
in this case complexity is not accounted for and the sole parameter
for model selection is accuracy. However, large scale machine learning
5

models, such as Deep Neural Networks, are neglected entirely given
the necessary conditions required to obtain useful results. In particular,
the data availability and variability must be extremely high (Thebelt
et al., 2022). Generally, this condition may not hold true when the



Computers and Chemical Engineering 174 (2023) 108252A. Galeazzi et al.
Fig. 8. Histograms of the distributions of features for the regenerator section. On the y-axes, the number of samples is reported and its corresponding value is indicated on the
x-axes. The plot is in log scale on the y-axis.
fundamental model, to which a surrogate is needed, is already compu-
tationally expensive and cannot be exploited to maximize data volume
and variance effectively for a large scale machine learning model.

The remaining of the article is structured as follows: in Section 2
the general methods for the simulation, the design of experiments, and
the machine learning modeling are introduced; in Section 3, the results
of the application of the methods proposed are presented and a broad
description of the process is given; in Section 4, the conclusions are
drawn.

2. Methods

2.1. Industrial process modeling

The process selected for the digital twin development and conse-
quent surrogate model creation is an amine scrubbing process, from
the exhausted oil refinery of Itelyum Regeneration S.p.A. in Pieve Fis-
siraga (Lodi), Italy. Itelyum currently owns two oil refineries located
6

in Pieve Fissiraga (LO, Italy) and Ceccano (FR, Italy), which have a
combined treatment capacity of approximately 200 kt per year. Waste
oil is produced by regenerating lube oil through combined thermal
de-asphalting and hydrofinishing, according to the patented Revivoil
technology (Minana et al., 1994). The off-gases coming from the hy-
drofinishing process are treated in the amine scrubbing process, using
Diethanolamine (DEA). A more extensive process description is given
in Section 3.1.

The digital twin has been created by modeling the amine scrubbing
process with Aspen HYSYS V11. The simulation is developed in steady-
state, due to the process being subjected to small time-dependent
operating condition variations during normal operations. The valida-
tion of the simulation model, required to define it as a digital twin, has
been done with plant data taken from the Yokogawa Exaquantum data
historian complemented by previous Itelyum laboratory measurements,
especially for stream compositions. The thermodynamic modeling of
the chemical components has been carried out using the Aspen Tech-
nology ‘‘Acid Gas - Chemical Solvents’’ property package (Dyment
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Fig. 8. (continued).
and Watanasiri, 2015) which employs the Peng and Robinson (1976)
equation of state for the vapor phase and the electrolyte non-random
two-liquid (eNRTL) activity coefficient model for the liquid phase (Song
and Chen, 2009).

2.2. Data sampling

Before starting the data generation procedure it is very important to
carefully define the input and output variables. In surrogate models, the
former are referred as features, while the latter become the predicted
variables, or targets (Jiang et al., 2020).

The quality of the surrogate model is directly related to the data
quality. The data exploited for the surrogate model has been gener-
ated by automatically solving multiple times, at different input condi-
tions, the HYSYS simulation. These input conditions have been selected
through the DoE. Precisely, the conventional Latin Hypercube Design
(LHD) method has been applied (McKay et al., 1979).
7

The LHD method has been selected among other strategies after an
extensive literature review that demonstrated its capabilities regarding
flexibility and adaptability to more complex DoE strategies (McKay
et al., 1979; Morris and Mitchell, 1995; Loh, 1996; Helton and Davis,
2003; Cioppa and Lucas, 2007; Viana, 2013, 2016; Li et al., 2017;
Sheikholeslami and Razavi, 2017; Panwar and Michael, 2018; Donovan
et al., 2018). In particular, when tackling high dimensional problems,
with exponentially high sampling volumes, most of the one-shot DoE
strategies that show a remarkable efficiency in low dimensional prob-
lems (Navid et al., 2018), e.g. the Sobol’ (1967) quasi-random low
discrepancy sequences, do not produce a sensible improvement over
LHD (Manteufel, 2000; Bhattacharyya, 2018) and, moreover, do not
provide the same amount of flexibility that LHD does (Helton and
Davis, 2003).

Latin Hypercube Sampling (LHS) is a sampling strategy derived
from the ‘‘Latin square’’ concept of combinatorial mathematics in which
an 𝑚 × 𝑛 matrix is filled with objects that only appear once in each
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Fig. 9. Histograms of the distributions of targets for the absorbers section. On the y-axes, the number of samples is reported and its corresponding value is indicated on the x-axes.
The plot is in log scale on the y-axis.
row and each column as shown in Fig. 1(a). The latin square can be
generated with many different permutations. The number of permuta-
tions increases exponentially with the increase of the array dimensions.
Since LHS can have many different configurations for the same design
of experiments, as shown in Fig. 2, it can be upgraded with optimization
techniques to maximize particular features (Helton and Davis, 2003;
Sheikholeslami and Razavi, 2017; Li et al., 2017; Vořechovský and
Mašek, 2020) and find the optimal one that satisfies the specified con-
straints. One example is space-filling maximization (see Fig. 2), where
an optimization routine is iteratively applied to a conventional LHS in
order to find a DoE configuration that is able to better homogeneously
8

fill the whole experimental domain. However, these optimization pro-
cedures may be computationally costly, especially when the dimensions
of the problem are high and the LHS could be shaped in a huge amount
of different configurations. Moreover, when applying the simpler and
faster LHD in high dimensional problems, the probability of obtaining
a particular unwanted shape, like the one of Fig. 2(a), is exponentially
lower as the amount of input variables increases and the slower op-
timization methods may fail to provide a sensible improvement. For
higher dimensional problems, sequential strategies are better suited
to define a more efficient DoE (Li et al., 2017; Sheikholeslami and
Razavi, 2017; Bhattacharyya, 2018; Xu et al., 2018). In this case, the
experimental domain may be sliced in several portions, e.g. nested
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Fig. 9. (continued).
hypercubes, and each one of them studied with a specific design of
experiments. The sequential strategy is applied in order to add new
sample points where required based on a particular metric, e.g. to
increase prediction accuracy of specific areas.

An important aspect in the DoE creation is the definition of the
boundaries within which each variable can vary. In this study, several
nested domains have been defined for the DoE, in a similar fashion to
9

what already proposed by Qian (2012), Liu et al. (2016) and Xu et al.
(2018). The inner domains, closer to the nominal condition of steady
state operation, have a higher concentration of points, while the outer
ones, further away from the actual operating conditions, are more and
more sparse. A graphical representation is shown in Fig. 3.

The internal domains are supposed to be formulated in a way to
guarantee feasibility everywhere throughout the entire sub-domain.
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Fig. 10. Histograms of the distributions of targets for the regenerator section. On the y-axes, the number of samples is reported and its corresponding value is indicated on the
x-axes. The plot is in log scale on the y-axis.
External domains, however, are more explorative in nature and can
be constructed in a way to gather knowledge in really uncommon
areas of operation. Sparsity helps in reducing the total amount of
computation expense required. One of the benefits of this exploration is
to corroborate the actual feasibility domain, by possibly studying how
far it can extend.

The volume of a single hypercube generated by a uniformly dis-
tributed and discretized sampling domain can be calculated as follows:

𝑉 =
𝑚
∏

𝑖=1

𝑚𝑈𝐵
𝑖 − 𝑚𝐿𝐵

𝑖
𝑠𝑖

(1)

where 𝑉 is the hypercube volume, 𝑚 is the number of feature variables,
𝑚𝑈𝐵
𝑖 and 𝑚𝐿𝐵

𝑖 are, respectively, the upper and lower bounds of feature
𝑚𝑖, and 𝑠𝑖 is the discretization step of each variable 𝑚𝑖. Thus, the
sampling frequency grows exponentially with (𝑛𝑚) as the number
of dimensions added to the problem increases. For example, with an
hypercube of order 10, i.e. with 10 input features, and a grid of 10 nodes
10
the total amount of points that can be sampled is 1e+10. If we let a
rigorous model to take just 1 second to obtain a solution we would need
approximately 317 years of computational time to sample the whole
discretized hypercube.

The trade-off that must be sought after is the one between the
amount of samples, the computational expense and the explained vari-
ance (Loh, 1996; Manteufel, 2000; Helton and Davis, 2003; Donovan
et al., 2018; Ledolter and Kardon, 2020). A higher amount of samples
means a higher computational expense but does not necessarily mean
an improvement in explaining the variance. Thus, the optimum should
be to maximize the explained variance by keeping both number of
sample and computational expense to a minimum.

The features selected for the black box model are, first of all, those
stream related variables that are necessary to fix all the degrees of
freedom of the system, in addition to several other design variables.
In particular, the former are Temperature (𝑇 ), Pressure (𝑃 ), array of
compositions (�̄�), and Flowrate (𝐹 ). However, this is just one of the
many ways in which a flow-stream can be thermodynamically and
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physically defined. For example, instead of pressure, the density could
be specified, and, instead of compositions and flowrate the individual
components flowrate could be fixed. Nevertheless, the surrogate model
and the framework developed should be agnostic with respect to the
specific variable selected, since no fundamental relationships or rules
are implemented for each kind of variable. The approach can be
eventually defined as purely data-driven.

However, one important factor affecting the number of sample
points usable in generating the metamodel, during data generation, is
the feasibility of the process simulation. Especially when complex non-
linear processes and advanced thermodynamics are taking place, it is
not rare to encounter unfeasible working conditions if moving too far
from the nominal operating point. This problem consequently affects
the quality of the surrogate model itself by reducing the data available
during the training of the machine learning models.

2.3. Modeling approach

The models investigated in this study for the creation of the sur-
rogate metamodel fall under the umbrella of machine learning algo-
rithms. Precisely, the ones considered are, in order of complexity: linear
regression, polynomial regression, support vector regression (SVR) (Awad
and Khanna, 2015), decision tree regression, random forest (Ho, 1995,
1998), AdaBoost (Freund and Schapire, 1995), gradient boosting (Fried-
man, 2001, 2002). For an extensive explanation of the aforementioned
techniques the reader can refer to Bishop (2008). These algorithms
were chosen among the most widely utilized regarding the surrogate
modeling topic, and applied in their conventional form using the Scikit-
Learn library (Pedregosa et al., 2011; Hao and Ho, 2019) for the Python
programming language (Van Rossum and Drake, 2009).

Each model is fit to the sampled data using all the feature variables,
i.e. the input to the black box as described in Section 2.2, while
the target is a single output of the applied black box at a time. The
data set available is initially split with a 80/20 rule in training and
11
test, respectively, then the models are trained with a k-fold Cross-
Validation (CV) (with 𝑘 = 5) on the training set. After the training
phase, only the best-fit model is selected as the definitive predictor of
the target variable and, after retraining it on the entire training set,
its performance is evaluated on the test set. The procedure is then
repeated for every target, generating a set of optimal models (a single
one for each target). The selection of the best models goes through the
minimization of the cross-validation MAE of the target.

The indicators used to evaluate the performance are defined as
follows,

𝑅2(𝑦, �̂�) = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
(2)

RMSE(𝑦, �̂�) =

√

√

√

√
1
𝑛

𝑛−1
∑

𝑖=0
(𝑦𝑖 − �̂�𝑖)2 (3)

MAE(𝑦, �̂�) = 1
𝑛

𝑛−1
∑

𝑖=0
|𝑦𝑖 − �̂�𝑖| (4)

MAPE(𝑦, �̂�) = 1
𝑛

𝑛−1
∑

𝑖=0

|

|

𝑦𝑖 − �̂�𝑖||
|

|

𝑦𝑖||
(5)

where 𝑖 is the 𝑖th data sample, 𝑦 is the true value, �̂� is the value
predicted by the model, and 𝑛 is the total number or samples.

Several authors have argued that the MAE is a better estimator
with respect to the Root Mean Squared Error (RMSE) (Willmott and
Matsuura, 2005; Willmott et al., 2009), shown in Eq. (3), and while
this could be true the RMSE is still a good indicator of model per-
formance (Chai and Draxler, 2014) and it is a good strategy to look
at both the MSE and the RMSE in assessing the capabilities of a fit
model (Chai and Draxler, 2014; Karunasingha, 2022). For a better
understanding of the quality of the fit, the other statistical metrics
described above are evaluated on the test set, i.e. the 𝑅2 coefficient
(Eq. (2)), the RMSE (Eq. (3)), the MAE (Eq. (4)), and the Mean Average
Percent Error (MAPE, in Eq. (3)). 𝑅2 is a traditional indicator of the
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Fig. 11. Parity plot of the target variables for the absorbers section. Reported on the y-axes are the model predictions while on the x-axes are the digital twin ground truth values.
The solid black lines represent the parity line while the dashed lines are selected error intervals.
goodness of fit of linear regressions that scales from −∞, when there
is no correlation between the model and the data, to 1, when they are
perfectly correlated. However, it must be noted that the 𝑅2 estimator
may not be used in the formulation of Eq. (2) for comparing non-linear
regression models. In that case, the mathematical formulation must be
adjusted accordingly (Kvalseth, 1985; Miles, 2014).

The MAPE, on the other hand, gives better insights on errors of
values with small absolute magnitude since the MAPE tends to infinity
when 𝑦𝑖, at the denominator of Eq. (5), tends to zero.

3. Results & discussion

3.1. Amine scrubbing process

The chemical process chosen as the case study for the creation of
the surrogate model is the amine scrubbing section of the exhausted oil
refinery of Itelyum located in Pieve Fissiraga (LO, Italy), as mentioned
in Section 2.1. This process is operated to treat the off-gases coming
12

from the hydrofinishing section of the plant. The treatment of such
gases is necessary to remove dangerous pollutants, i.e. H2S, and recover
valuable components, i.e. H2 and light hydrocarbons (C1–C5). The
solvent used for the chemical absorption is Diethanolamine (DEA) in
a water mixture of a molar ratio of 25/75, respectively. The layout of
the process is reported in the Process Flow Diagram (PFD) of Fig. 4.

Two main sections compose the process, i.e. the absorbing section
and the regeneration section. The absorbing section includes a high-
pressure absorber (HP or T-504, in Fig. 4) and a low-pressure absorber
(LP or T-505, in Fig. 4). The regeneration section only has a single
column (REG or T-506, in Fig. 4) used to regenerate the spent amine
coming from the upstream HP and LP absorbers. The actual number of
stages of the columns was not at disposal for this study since only the
theoretical stages were reported and due to the aging of the plant those
values were deemed inaccurate. Thus, a correction of the theoretical
number of stages has been assumed from literature studies (Kohl and
Nielsen, 1997) and set equal to 20 for all the columns. The nominal
operating conditions of the columns are shown in Table 1 while the
design specifications for the absorbers and the regeneration are shown

in Table 2.
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Fig. 11. (continued).
Table 1
Operating nominal conditions for the absorbers and regenerator column. The tempera-
ture value is referred to in the middle tray while pressure is referenced at the bottom
of the unit.

Unit Tag Temperature Pressure Pressure drop
(°C) (bar) (mbar)

HP absorber T-504 30 107.6 40
LP absorber T-505 55 4.3 0
Regenerator T-506 135 2.8 0

Table 2
Design specification used to simulate the amine scrubbing system.

Unit Tag Specification Value

HP absorber T-504 Number of stages 20
LP absorber T-505 Number of stages 20
Regenerator T-506 Number of stages 20
Regenerator T-506 H2S recovery 0.98

Between the two sections, the E-509 heat exchanger is an econo-
13

izer used to heat up the spent amine exiting the absorbers and at the
same time cool down the regenerated amine flowing from the bottom
of the regenerator T-506. The air cooler EA-504 is used to further cool
down the regenerated DEA entering the LP absorber. The top product
of column T-506 is partially condensed using the air cooler EA-505 and
the uncondensed gases are transferred to a Sulfur Recovery Unit (SRU),
as shown in Fig. 4.

The composition and flowrate values of all the input and output
streams are reported in Table 3. Except for the utilities, namely, the
steam sent to the reboiler of the T-506 column and the amine make-up,
the only input streams entering the process are F14 and F24. These two
streams originate from different sections of the plant and differ slightly
in composition but heavily in flowrate value.

3.2. Process simulation and validation

As mentioned in Section 2.1 the process simulation has been per-
formed using Aspen HYSYS software with the ‘‘Acid Gas - Chemical
Solvents’’ thermodynamic property package. Temperatures, pressures,
and flowrate values come from the DCS during a steady-state oper-
ation of the process. On the other hand, due to the lack of on-line
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Fig. 12. Parity plot of the target variables for the regenerator section. Reported on the y-axes are the model predictions while on the x-axes are the digital twin ground truth
values. The solid black lines represent the parity line while the dashed lines are selected error intervals.
Table 3
Flowrates and normalized compositions averaged between the start of the run and the end of the run for the input–output streams of the amine scrubbing process.

Stream H2O DEA H2 H2S Methane Ethane Propane i-Butane n-Butane n-Pentane Flowrate (kg∕h)

F14 1.14e−3 0.00e+0 9.43e−1 1.08e−3 3.08e−2 8.36e−3 3.96e−3 1.25e−3 1.59e−3 8.92e−3 2221.96
F24 3.41e−2 0.00e+0 7.77e−1 4.85e−3 3.81e−2 2.45e−2 1.69e−2 6.51e−3 9.37e−3 8.89e−2 118.29
cond1 9.98e−1 0.00e+0 1.29e−3 1.53e−4 6.49e−5 2.15e−5 7.21e−6 2.41e−6 2.36e−6 8.87e−6 7.02
cond2 – – – – – – – – – – 0
F19 4.99e−4 3.29e−9 9.45e−1 3.02e−8 3.08e−2 8.37e−3 3.97e−3 1.25e−3 1.60e−3 8.93e−3 2192.65
F3 – – – – – – – – – – 0
F8 3.03e−2 3.83e−7 7.84e−1 2.07e−6 3.85e−2 2.47e−2 1.70e−2 6.55e−3 9.43e−3 8.94e−2 111.92
F20 – – – – – – – – – – 0
F12 5.80e−2 0.00e+0 3.66e−3 9.34e−1 5.14e−4 5.83e−4 4.24e−4 2.45e−4 1.77e−4 2.20e−3 24.71
measurements of chemical compositions, the available data for such
quantities are infrequent laboratory measurements. With such measure-
ments, only light hydrocarbons up to C4 are sampled, thus leaving the
remaining heavier hydrocarbons unmeasured. The assumption made
in this regard is to consider the trailing amount of undistinguished
hydrocarbons as pure n-Pentane. The normalized average composition
between the start and the end of the run, i.e. from a clean start-up to a
manual shut-down for maintenance and cleaning, have been taken and
used for the purpose of simulating the amine scrubbing process. Such
values are reported in Table 3.

The convergence of the simulation is rather slow given the presence
of two recycle loops, one inside the regeneration section and the other
between them, and, most importantly, the complex thermodynamic
system. The time required to obtain such a solution is in the order of
14

one to ten seconds and for the data generation procedure described in
Section 2.2 this is hindering, since a large number of runs is needed.
To overcome this obstacle, the simulation has been split into two
independent, individually sampled, sections, shown in Figs. 5 and 6.

In order to validate the process simulation and be able to define
it as a digital twin, it is necessary to compare the simulation results
with process data. To do so, a single variable has been chosen as
the key performance indicator for the accuracy of prediction and it
is the stream flowrate since it is the most abundant measurement
throughout the process. Unfortunately, it is not possible to measure
every variable or stream inside a real plant due to the costs associated
with the instrumentation. For this particular case, the flowrate variables
measured are the ones of stream F3, F4, F6, F7, F8, F9, F12, F13, F19,
and F23. The residual absolute relative error calculated on the data
available is approximately 4%. Considering the assumptions made and

the quality of data this residual amount can be considered low enough



Computers and Chemical Engineering 174 (2023) 108252A. Galeazzi et al.

s
t
a

Fig. 12. (continued).
Table 4
Mass flow, in kg∕h, for selected streams in the amine scrubbing process.

F18 F9 F8 F5 F4 F7

Digital twin 2196.52 4019.19 111.92 2428.13 2307.40 1371.34
Process data 2202.56 4029.00 113.00 2466.00 2448.00 1568.00

to define this process simulation as a digital twin. An example is shown
in Table 4.

3.3. Data generation

Given the process model described in Section 3.2, the data gen-
eration can start only after the definition of the feature variables, as
mentioned in Section 2.2, and their variability domains. The variables
chosen as features are reported in Table 5 for the absorbers section
while in Table 6 for the regeneration section.

To reduce the dimensionality, thus the complexity, of the problems
only the methane concentration is made to vary, and the other hy-
drocarbons are bounded in a constant proportion with respect to the
methane content during the design of experiments procedure. This ratio
is calculated using the averaged experimental measurements for both
streams F14 and F24. The assumption made is that the distribution of
hydrocarbon molecules found in the flue gases exiting the hydrofin-
ishing process is constant. In Table 7 the molar ratios with respect to
methane are reported.

For each of the two sections in Figs. 5 and 6, 6000 simulations have
been run with inputs generated through the Latin-Hypercube design
of experiments described in Section 2.2. However, the simulation con-
vergence is not guaranteed everywhere inside the domains reported in
Tables 5 and 6. For the absorbers section, 2000 simulations have been
designed each inside the nominal domain, the relaxed domain, and
the extended domain. The resulting convergence rates are respectively,
97.35%, 3.50%, and 7.50%. The converging simulations of the absorbing
plit are therefore only 2086 out of 6000. For the regeneration section,
he convergence rate reported was lower than the absorbers thus two
15

dditional DoE runs have been added, as reported in Table 6 with the
names Extra range 1 and Extra range 2. In this case, 2000 simulations
were designed for the nominal domain, 2000 more for the extended
domain, 1000 for the first extra domain, and another 1000 for the
second extra domain. The convergence rate reported is respectively
40.35%, 12.50%, 40.40%, and 70.20%. Globally, only 2203 simulations
out of 6000 found a feasible solution. In Figs. 7 and 8, the resulting
distributions of feature variables are presented while in Figs. 9 and
10, the distributions of target variables generated through the DoE are
shown.

3.4. Surrogate model

The surrogate model creation starts with the training of the selected
machine learning models described in Section 2.3. The training of such
algorithms is performed using a 5-fold cross-validation method in order
to select the best performing model which is then retrained on the
entire CV data set without folding and the resulting error is evaluated
on the test set, previously separated from the original whole data set,
as described in Section 2.3.

3.4.1. Absorbers section results
The results for the absorbing section are reported in Table 8 and

shown graphically in Fig. 11. For this case, the majority of variables
have been modeled using the random forest method, since this al-
gorithm outperformed all the others in the CV phase. A few notable
exceptions are the pressure variables which are modeled using linear
regression. This is reasonable since in the process simulation all the
pressure drops of the units are linear, thus this method is able to
perfectly interpolate that behavior. By looking at streams F19 and F8 in
Table 8, it can be noted that the error found in the composition values
of the hydrocarbon components is very similar. This is explained by the
fact that during the data generation procedure discussed in Section 3.3
these variables are strongly correlated due to the ratio imposed as a
constraint, as reported in Table 7.

To better understand why some particular models are under-per-
forming the expectations it is necessary to look at the distribution

of data reported in Figs. 7 and 9. For example, both temperature



Computers and Chemical Engineering 174 (2023) 108252A. Galeazzi et al.

o

Table 5
Nominal values and design of experiments domains for the absorbers section. Variable 𝑆𝑅 is defined as the split ratio of each splitter, SP1 and SP3. 𝑁Stages is the number of stages
f each absorbing unit.
Stream Variable UoM Nominal value Nominal range Relaxed range Extended range

F14 𝑇 (°C) 40 36–44 24–56 10–80
F14 𝑃 (bar) 117 105.3–128.7 70.2–163.8 50–200
F14 𝐹 (kg∕h) 2200 1980–2420 1320–3080 1–20 000
F14 𝑥H2O (−) 0.001 0.0009–0.0011 0–0.1 0–0.1
F14 𝑥CH4

(−) 0.03 0.027–0.033 0.001–0.2 0.001–0.2
F14 𝑥H2S (−) 0.001 0.0009–0.0011 0–0.2 0–0.2
F24 𝑇 (°C) 60 54–66 36–84 10–200
F24 𝑃 (bar) 4.3 3.87–4.73 2.58–6.02 1–100
F24 𝐹 (kg∕h) 120 108–132 72–168 1–20 000
F24 𝑥H2O (−) 0.03 0.027–0.033 0–0.1 0–0.1
F24 𝑥CH4

(−) 0.04 0.036–0.044 0.001–0.1 0.001–0.1
F24 𝑥H2S (−) 0.005 0.0045–0.0055 0–0.2 0–0.2
F4 𝑇 (°C) 55 49.5–60.5 33–77 1–15 000
F4 𝐹 (kg∕h) 504.3 453.87–554.73 302.58–706.02 0–1
F7 𝑇 (°C) 55 49.5–60.5 33–77 1–15 000
F7 𝐹 (kg∕h) 1568 1411.2–1724.8 940.8–2195.2 5–50
F4, F7 𝑥DEA (−) 0.16 0.144–0.176 0.1–0.3 10–200
F4, F7 𝑥H2S (−) 0.0002 0.00018–0.00022 0–0.2 10–200
SP1, SP3 𝑆𝑅 (−) 0 0–1 0–1 0.1–0.3
T-504, T-505 𝑁Stages (−) 20 18–22 5–50 0–0.2
Table 6
Nominal values and design of experiments domains for the regeneration section. Variable 𝛼 represents the vapor fraction, 𝑥𝐶1−𝐶5 ,tot is the total content of light hydrocarbons, and
𝑅BoilUp is the boil up ratio of the column.

Tag Variable UoM Nominal value Nominal range Extended range Extra range 1 Extra range 2

F9c 𝑇 (°C) 95 57–133 30–300 1890–2310 1890–2310
F9c 𝑃 (bar) 2.9 1.74–4.06 1–300 85.5–104.5 85.5–104.5
F9c 𝐹 (kg∕h) 2100 1260–2940 1–20 000 2.61–3.19 2.61–3.19
F9c 𝑥𝐶1−𝐶5 ,tot (−) 0 – 0–0.1 0–0.1 –
F9c 𝑥H2S (−) 0.01 0.001–0.1 0.001–0.2 0.001–0.2 0.001–0.1
F9c 𝑥H2

(−) 0 – 0–0.1 0–0.1 –
F9c 𝑥DEA (−) 0.16 0.1–0.2 0.1–0.3 0.1–0.3 0.1–0.2
F11 𝛼 (−) 0.073 0.005–0.5 0.005–1 0.005–1 0.005–0.5
T-506 𝑁Stages (−) 20 10–30 10–50 10–50 10–30
T-506 𝑅BoilUp (−) 1.4 1–2 0.5–3 0.5–3 1–2
Table 7
Molar ratio of the hydrocarbon concentration with respect to methane in streams F14,
entering the HP absorber, and F24, entering the LP absorber. The ratio is calculated
as 𝑥𝑖∕𝑥CH4

.

Component F14 F24

Methane 1 1
Ethane 0.2717 0.6430
Propane 0.1288 0.4441
i-Butane 0.0405 0.1708
n-Butane 0.0518 0.2460
n-Pentane 0.2898 2.3332

variables of streams F9b and F8 show (see Fig. 11) an unusually straight
vertical cloud of points in the middle of the parity plot. These vertical
conglomerates mirror exactly the distribution of data found in Fig. 9.
In fact, around that value it is possible to find a dense cluster of
numerous points. It is plausible that such skewed distribution of data
is introducing an unwanted bias during the training of the models.

The worst-performing model of Table 8, which is the random forest
of the flowrate variable of stream F9b, is not performing well in the test
set, and is also near to the nominal value, i.e., the range in which the
sample points are more numerous. This unsatisfactory performance is
possibly originating from the data samples of higher magnitude, found
on the far right of the distribution (see Fig. 9), which could have a bias
effect in shifting the error reduction during training at higher absolute
values.

3.4.2. Regenerator section results
The results concerning the regeneration sub-process are shown in

Table 9 and in Fig. 12. In this case, it is possible to note that several
16
target variables have an 𝑅2 coefficient which is highly negative, indi-
cating that there is no correlation between the data and the models.
This is true for most of the compositions of stream F10b (see Table 9),
especially the hydrocarbon molecules. The reason for this behavior
can be better understood by looking at stream’s F10b compositions in
Fig. 12. Indeed the ground truth values (on the x-axes) are actually
zero while the models predict values which are non-zero but yet very
small, in the order of 10−26 to 10−30. Moreover, from a physical point
of view, stream F10b is the outlet at the bottom of the regenerator and
it should contain only water and DEA, thus the negligible amount of
other components is explaining the extremely low values of the MAE
and RMSE. On the other hand, it is possible to see huge MAPE values
for H2 and H2O compositions of stream F12 even though the other
metrics are indicating a fairly good fit. This condition is signaling the
presence of errors where the truth value is very low, or maybe even
zero (Pedregosa et al., 2011), and the prediction has a higher order of
magnitude (for example the same order of magnitude of the MAE or
RMSE), see Eq. (5). In fact, by inspecting the parity plot of variable
𝑥H2

of stream F12 it is possible to find a small cluster of points in the
bottom left of the graph, where the true values are closer to zero. Again,
as in the case of the absorbing section described above, the metrics of
the hydrocarbon compositions are very close to each other for stream
F12, since they are highly correlated, see Table 7.

4. Conclusions

Complex process simulations or digital twins have inherent numer-
ical difficulties in terms of computational time required to obtain a
solution plus the feasibility of the solution, or convergence, is often
not guaranteed in an extended domain around the design specification
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Table 8
Performance results on the test set of the best models selected after the cross-validation step and retrained on the entire cross-validation set.

Tag Variable UoM Best model Nominal value 𝑅2 RMSE (UoM) MAE (UoM) MAPE (%)

F9b 𝑇 (°C) Linear Regression 5.37e+01 0.59 1.12e+0 8.51e−1 1.584
F9b 𝑃 (bar) Linear Regression 4.30e+00 1.00 8.49e−16 7.20e−16 0.000
F9b 𝐹 (kg∕h) Random Forest 2.10e+03 0.23 8.29e+1 6.86e+1 3.306
F9b 𝑥DEA (−) Random Forest 1.58e−01 0.45 6.48e−3 5.27e−3 3.333
F9b 𝑥H2

(−) Random Forest 4.14e−05 1.00 1.31e−7 1.04e−7 0.248
F9b 𝑥H2S (−) Random Forest 1.07e−02 0.98 3.12e−4 2.39e−4 6.239
F9b 𝑥H2O (−) Random Forest 8.31e−01 0.47 6.56e−3 5.33e−3 0.637
F9b 𝑥CH4

(−) Random Forest 5.80e−06 0.92 1.37e−7 1.11e−7 1.838
F9b 𝑥Ethane (−) Random Forest 6.57e−06 0.82 2.63e−7 2.13e−7 3.118
F9b 𝑥Propane (−) Random Forest 4.73e−06 0.76 3.31e−7 2.67e−7 3.753
F9b 𝑥i−Butane (−) Random Forest 1.95e−06 0.71 6.12e−7 4.95e−7 4.562
F9b 𝑥n−Butane (−) Random Forest 2.77e−06 0.80 2.16e−7 1.74e−7 3.268
F9b 𝑥Pentane (−) Random Forest 2.44e−05 0.66 4.56e−7 3.68e−7 5.254
F8 𝑇 (°C) Linear Regression 5.50e+01 0.67 1.55e+0 1.18e+0 2.142
F8 𝑃 (bar) Linear Regression 4.30e+00 1.00 8.49e−16 7.20e−16 0.000
F8 𝐹 (kg∕h) Random Forest 1.18e+02 0.99 5.49e−1 4.03e−1 0.340
F8 𝑥DEA (−) Random Forest 1.01e+01 0.65 6.58e−8 4.81e−8 12.183
F8 𝑥H2

(−) Polynomial Order 2 7.84e−01 0.97 1.97e−3 1.48e−3 0.185
F8 𝑥H2S (−) Random Forest 3.75e−06 0.70 4.52e−7 3.19e−7 13.423
F8 𝑥H2O (−) Random Forest 3.03e−02 0.70 2.39e−3 1.79e−3 5.810
F8 𝑥CH4

(−) Random Forest 3.85e−02 1.00 1.02e−4 7.58e−5 0.188
F8 𝑥Ethane (−) Random Forest 2.47e−02 1.00 6.53e−5 4.88e−5 0.188
F8 𝑥Propane (−) Random Forest 1.70e−02 1.00 6.52e−5 4.87e−5 0.188
F8 𝑥i−Butane (−) Random Forest 9.43e−03 1.00 6.53e−5 4.87e−5 0.188
F8 𝑥n−Butane (−) Random Forest 6.55e−03 1.00 6.51e−5 4.86e−5 0.188
F8 𝑥Pentane (−) Random Forest 8.94e−02 1.00 6.52e−5 4.87e−5 0.188
F19 𝑇 (°C) Linear Regression 4.31e+01 0.84 1.09e+0 8.59e−1 1.967
F19 𝑃 (bar) Linear Regression 1.17e+02 1.00 9.66e−15 6.16e−15 0.000
F19 𝐹 (kg∕h) Random Forest 2.17e+03 0.84 1.82e+2 1.33e+2 9.719
F19 𝑥DEA (−) Random Forest 8.30e−09 0.87 1.08e−9 7.63e−10 158.836
F19 𝑥H2

(−) Polynomial Order 2 9.44e−01 1.00 8.75e−5 6.23e−5 0.007
F19 𝑥H2S (−) Random Forest 1.39e−07 0.91 8.63e−5 6.08e−5 50.986
F19 𝑥H2O (−) Random Forest 7.50e−04 0.98 1.50e−5 1.09e−5 1.323
F19 𝑥CH4

(−) Polynomial Order 2 3.08e−02 1.00 2.74e−6 2.01e−6 0.007
F19 𝑥Ethane (−) Polynomial Order 2 8.37e−03 1.00 7.33e−7 5.44e−7 0.007
F19 𝑥Propane (−) Polynomial Order 2 3.97e−03 1.00 7.35e−7 5.45e−7 0.007
F19 𝑥i−Butane (−) Polynomial Order 2 1.60e−03 1.00 7.28e−7 5.48e−7 0.007
F19 𝑥n−Butane (−) Polynomial Order 2 1.25e−03 1.00 7.45e−7 5.47e−7 0.007
F19 𝑥Pentane (−) Polynomial Order 2 8.93e−03 1.00 7.39e−7 5.49e−7 0.007
Table 9
Performance results on the test set of the best models selected after the cross-validation step and retrained on the entire cross-validation set for the regeneration section.

Tag Variable UoM Best model Nominal value 𝑅2 (1) RMSE (UoM) MAE (UoM) MAPE (%)

F12 𝑇 (°C) Random Forest 1.23E+02 0.68 3.37e+0 2.70e+0 2.235
F12 𝑃 (bar) Linear Regression 2.49E+00 1.00 2.24e−15 1.64e−15 0.000
F12 𝐹 (kg∕h) SVR 1.10E+02 0.76 9.69e+1 7.90e+1 21.434
F12 𝑥DEA (−) Random Forest 0.00E+00 1.00 0.00e+0 0.00e+0 0.000
F12 𝑥H2

(−) Random Forest 0.00E+00 0.94 1.31e−2 6.07e−3 3.25e+10
F12 𝑥H2S (−) SVR 1.19E−01 0.43 7.05e−2 5.81e−2 8.168
F12 𝑥H2O (−) SVR 8.81E−01 0.91 2.74e−3 1.67e−3 2.11e+14
F12 𝑥CH4

(−) Random Forest 0.00E+00 0.95 2.09e−3 9.21e−4 8.333
F12 𝑥Ethane (−) Random Forest 0.00E+00 0.95 2.06e−3 9.26e−4 11.406
F12 𝑥Propane (−) Random Forest 0.00E+00 0.95 2.05e−3 9.06e−4 8.851
F12 𝑥i−Butane (−) Random Forest 0.00E+00 0.95 2.03e−3 9.12e−4 14.519
F12 𝑥n−Butane (−) Random Forest 0.00E+00 0.95 2.02e−3 8.82e−4 9.509
F12 𝑥Pentane (−) Random Forest 0.00E+00 0.95 2.06e−3 9.12e−4 11.965
F10b 𝑇 (°C) Polynomial Order 2 1.35E+02 0.90 2.26e+0 1.75e+0 1.214
F10b 𝑃 (bar) Linear Regression 2.50E+00 1.00 1.96e−15 1.51e−15 0.000
F10b 𝐹 (kg∕h) Polynomial Order 2 1.98E+03 0.90 1.04e+2 8.54e+1 5.715
F10b 𝑥DEA (−) Polynomial Order 2 1.76E−01 0.76 3.70e−2 2.86e−2 11.536
F10b 𝑥H2

(−) Random Forest 0.00E+00 −2.38e+7 1.51e−32 1.70e−33 0.000
F10b 𝑥H2S (−) SVR 0.00E+00 −0.05 1.25e−3 4.12e−4 1.32e+6
F10b 𝑥H2O (−) Polynomial Order 2 8.24E−01 0.90 2.26e+0 1.75e+0 1.214
F10b 𝑥CH4

(−) Decision Tree 0.00E+00 −1.10e+7 3.35e−30 5.47e−31 0.000
F10b 𝑥Ethane (−) SVR 0.00E+00 −7.17e+5 1.44e−27 1.22e−27 0.000
F10b 𝑥Propane (−) Decision Tree 0.00E+00 −1.50e+8 1.17e−29 2.05e−30 0.000
F10b 𝑥i−Butane (−) Decision Tree 0.00E+00 −4.21e+6 2.79e−27 2.76e−27 0.000
F10b 𝑥n−Butane (−) Decision Tree 0.00E+00 −5.90e+8 3.76e−29 1.91e−29 0.000
F10b 𝑥Pentane (−) Gradient Boosting 0.00E+00 −3.72e+7 3.12e−30 4.27e−31 0.000
of the process. Black box surrogate models can overcome this problem
by using metamodels which are inherently continuous and defined
in a much broader domain and, except for the training phase of the
17
model, do not require an iterative complicated numerical solution.
The models that respect these claims are the typical ones found in

machine learning applications. In particular, linear regression, higher
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order polynomial regression, support vector regression (SVR), decision
tree regression, random forest, AdaBoost, and gradient boosting. By
developing a surrogate model using these models it is possible to more
easily conduct computationally heavier operations, like, e.g., process
optimization.

In this work, the amine scrubbing plant of Itelyum Regeneration
S.p.A. in Pieve Fissiraga has been simulated using the Aspen HYSYS
process simulator and validated as a digital twin against real process
data of a steady-state operation, taken from the DCS. Then, a surrogate
model has been developed on top of the digital twin. In several cases,
the results obtained, in terms of residual error between the surrogate
model and the digital twin data of the target variables, showed a great
performance. In a few cases, the performance was poorer. These results
show that extreme caution must be put into the design of experiments
phase and the definition of the black box boundaries because it is im-
portant to sample the operational domain with enough points in order
to give the models the possibility to interpret the behavior of the target
variables more accurately. However, the intrinsic dimensionality of the
problem is a burden since a black box that contains too many features
grows exponentially in the dimension of the sample set required to
obtain enough information on the system. In other words, the more a
process grows in dimension and complexity (number of units, streams,
recycles, complex thermodynamics, nonlinear units, etc.) the more
difficult it becomes to create an accurate surrogate model with fewer
data. In any case, the methods and the framework proposed in this
work can be adapted to surrogate process simulation black boxes of any
dimension and of any kind of digital twin. However, it must be noted
that with higher problem complexity, and especially, dimensionality,
the data sampling procedure needs to scale exponentially. Thus, a
compromise should be found between the problem complexity and
dimensionality and the capacity of generating enough sample data.
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