
Citation: Piscaglia, F.; Ghioldi, F.

GPU Acceleration of CFD

Simulations in OpenFOAM.

Aerospace 2023, 10, 792. https://

doi.org/10.3390/aerospace10090792

Academic Editor: Bing Wang

Received: 11 August 2023

Revised: 1 September 2023

Accepted: 4 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

GPU Acceleration of CFD Simulations in OpenFOAM
Federico Piscaglia * and Federico Ghioldi

Department of Aerospace Science and Technology (DAER), Politecnico di Milano, Via La Masa 34,
20156 Milan, Italy; federico.ghioldi@polimi.it
* Correspondence: federico.piscaglia@polimi.it

Abstract: We introduce algorithmic advancements designed to expedite simulations in OpenFOAM
using GPUs. These developments include the following. (a) The amgx4Foam library, which connects
the open-source AmgX library from NVIDIA to OpenFOAM. Matrix generation, involving tasks such
numerical integration and assembly, is performed on CPUs. Subsequently, the assembled matrix is
processed on the CPU. This approach accelerates the computationally intensive linear solver phase
of simulations on GPUs. (b) Enhancements to code performance in reactive flow simulations, by
relocating the solution of finite-rate chemistry to GPUs, which serve as co-processors. We present
code verification and validation along with performance metrics targeting two distinct application
sets, namely, aerodynamics calculations and supersonic combustion with finite-rate chemistry.

Keywords: GPU acceleration; OpenFOAM; CFD; reactive flows; amgx4Foam; PoliMi/DAER

1. Introduction

Computational Fluid Dynamics (CFD) has become a mature technology in engineering,
where it contributes strongly to industrial competitiveness and sustainability across a wide
range of sectors [1,2]. On the other hand, the current and future growth of CFD depends
upon the exploitation of massively parallel High-Performance Computing (HPC) hardware
technology, which in recent years has seen a significant evolution towards the exascale.
One example is Graphical Processing Units (GPUs). GPUs are best suited for numerical
applications that prioritize high throughput and involve processing large quantities of
independent datasets [3]. A GPU can work together with a Central Processing Unit (CPU)
to accelerate scientific, analytic, engineering, and enterprise applications. There is a fun-
damental difference in architectural design between a GPU and CPU. GPUs are basically
many-core processors having thousands of cores designed to deliver high computational
throughput, whereas CPUs sacrifice the computational throughput of the processor to
increase the performance of a single core. This different design philosophy necessitates
the development of specialized algorithms to exploit the potential performance of GPU
hardware. The implementation of GPU porting in CFD is interesting due to its capacity to
enhance performance, decrease computational time, manage substantial datasets, stream-
line multiphysics simulations, support optimization and design exploration efforts, and
contribute to scientific progress by enabling simulations of heightened complexity and
precision. The main benefits of using GPUs for CFD simulations are currently justified by
their reduced hardware cost and limited power consumption. HPC and GPU computing
is expected to have a significant impact on multiphysics CFD [4–7]. In multiphysics CFD
simulations, multiple governing equations representing different physics, such as fluid
flow, heat transfer, fluid–spray particle interaction, chemical reactions, and solid mechan-
ics can be solved. These equations may have different nonlinearities and couplings that
make it difficult to solve them as a single system of equations. In CFD solvers, operator
splitting [8] is a way to break down complex problems into simpler subproblems, possibly
with different timescales that can be solved sequentially as separate sets of equations. Such
computations are very common in aeronautics and aerospace, where the solution of fluid

Aerospace 2023, 10, 792. https://doi.org/10.3390/aerospace10090792 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10090792
https://doi.org/10.3390/aerospace10090792
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-3888-1451
https://orcid.org/0000-0002-3711-7208
https://doi.org/10.3390/aerospace10090792
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10090792?type=check_update&version=1

Aerospace 2023, 10, 792 2 of 26

transport is coupled to Lagrangian Particle Tracking in spray simulations, the deformation
of solids in aeroelastic calculations, or the solution of finite-rate chemistry problems in
reactive flow/combustion simulations. The main feature of operator splitting is that it
allows for the use of different numerical methods and algebra solvers optimized for each
specific subproblem; this has traditionally been done to achieve improved overall stability
and efficiency of the solution. Operator splitting can facilitate optimization of the CFD
software for exascale hardware. Developers can fine tune and adapt different solvers for
each subproblem to take full advantage of the available computational power, memory
bandwidth, and interconnections in exascale systems [9,10]. The study of methods to accel-
erate computation is a traditional subject in Computational Fluid Dynamics (CFD). Many
research papers and articles have been published exploring the acceleration of various
CFD solvers using GPUs [7,11–29]. These papers often discuss implementing paralleliza-
tion strategies, porting solvers to GPU architectures, and optimizing computation to take
advantage of GPU capabilities.

1.1. Motivation of This Work

The primary goal of this research is to introduce advanced algorithmic enhance-
ments targeted at accelerating Computational Fluid Dynamics (CFD) computation in the
aerospace domain by utilizing Graphics Processing Units (GPUs) within the OpenFOAM
framework. The focus is centered on porting algebraic solvers for both Partial Differential
Equations (PDEs) and Ordinary Differential Equations (ODEs) on GPUs. These solvers are
the fundamental elements of multiphysics CFD software enabling numerical simulation
of complex fluid flow phenomena. The extent of acceleration provided by the GPU varies
based on the specific problem, necessitating progressive software development, collabo-
rative redesign, and crucially, enhancements in solver technology algorithms to facilitate
targeted simulation capabilities.

Because this is a fairly new area there is only a limited body of literature addressing
multiphysics CFD simulations and the porting of these simulations to GPUs. Specifically,
there has not been very much discussion about which improvements in algorithms can be
helpful for solving practical multiphysics CFD problems. To the best of our knowledge,
there are no examples in which fast GPU simulations have been demonstrated for com-
plex multiphysics CFD problems that are important in real world applications within the
OpenFOAM framework. Thus, we explore these aspects in this paper.

1.2. Highlights

This paper elaborates on the theoretical foundations of evolutionary advancements
made by the authors in the open-source CFD software OpenFOAM aimed at achieving
exascale capabilities through the utilization of GPU potential. To achieve this goal, two
key strategies are employed: (a) the acceleration of iterative sparse linear system solutions
through the implementation of the external module amgx4foam, linking OpenFOAM to the
NVIDIA AmgX library [21,30]; and (b) the vectorization/hybridization of GPGPU reactive
flow solvers, which involves the migration of compute-intensive operations to GPUs which
function as co-processors. The verification of these software components is conducted on
benchmark test cases where reference solutions are available. Furthermore, assessment
is carried out on impactful applications within the automotive and aerospace domains,
namely, accelerating the solution of aerodynamics for external flows and enhancing the
speed of combustion simulations.

Algorithmic advancements are realized in the form of an external library module
that is dynamically linked to the latest releases of OpenFOAM [31,32]. This module
serves to accelerate all types of solvers present in the legacy code, spanning compressible,
incompressible, and reacting multiphase scenarios.

Aerospace 2023, 10, 792 3 of 26

1.3. Paper Structure

This paper’s structure is outlined as follows. Initially, we describe the operator splitting
technique used in Finite Volume (FV) Computational Fluid Dynamics (CFD) solvers in
Section 2. This provides insight into the architecture of the CFD code and underscores
the close relationship between software architecture, GPU porting strategies, and the
underlying numerical methods. Section 3 is dedicated to the adaptation of algebraic
solvers for the Partial Differential Equations (PDEs) governing fluid transport to GPU
platforms. We present performance metrics obtained from a benchmark case involving
external aerodynamics calculations in which the solution of the linear algebra problem is
offloaded to the NVIDIA AmgX library. In Section 4, we shift our focus to accelerating
Ordinary Differential Equations (ODEs), which are commonly used in submodels for
multiphysics CFD simulations. This section explores the intricate interplay between flow
transport, species transport, and finite-rate chemistry, discussed in detail in Section 4.1,
and the rationale behind the implementation of a fast GPGPU solver in FV CFD solvers,
discussed in Sections 4.2 and 4.3. We then present the validation and verification results for
the implemented methodologies in Section 4.4. In Section 4.6, we apply and validate these
techniques to simulate supersonic combustion in a scramjet engine. Performance metrics
for reactive flow simulations are provided in Section 4.8. The conclusions of our study are
summarized in Section 5.

2. Implicit Segregated Solution Method of the Flow Transport for All Flow Speeds

In a CFD solver, the sequential solution of the governing equations for the flow
transport in a Eulerian frame of reference reads

∂ρ

∂t
+∇ · (ρU) = 0 (1)

∂(ρU)

∂t
+∇ · (ρUU) = −∇p +∇ · R + SU (2)

∂(ρE)
∂t

+∇ · (ρUE) +∇ · (U p) = −∇ · q +∇ · (R ·U) + Q̇ + Se (3)

where ρ, U, p, and T are the fluid density, velocity, pressure, and temperature, respectively;
R is the viscous part of the stress tensor; E = e + |U|2/2 is the total energy density, with e
being the specific internal energy; the diffusive heat flux q := λ∇T is defined as positive
for cooling, where λ is the thermal conductivity of the flow; the terms SU and Se are the
sources and sinks for momentum and energy, respectively; and Q̇ is the heat released by
chemical reactions, if present. The flow transport problem (Equations (1)–(3)) is solved
by a SIMPLE-type pressure-based compressible unsteady segregated flow solver [33] for
unstructured polyhedral grids for all flow speeds [8]. The linearized equations for the
velocity components, species transport, energy, and pressure correction are solved in turn
until the coupling of the primary variables is reached. As all terms are discretized by a fully
implicit scheme, nonlinear terms (fluxes and source terms) are linearized and computed at
the new time level and the equations are solved iteratively. In the fully implicit unsteady
solver, outer iterations (denoted as m in the following) are repeated multiple times while
solving across the time interval [n; n + 1]; the outer loop ends when the entire set of
nonlinear equations satisfies the solver’s stopping criteria. These iterations are different
from the inner ones, which are performed on linear systems with fixed coefficients. Similar
to the procedure employed by SIMPLE-type methods for incompressible flows [33], the
momentum equations (where the pressure gradient can be neglected) are used to calculate
an intermediate velocity field U∗:

∂(ρU)

∂t

∣∣∣∣∗
n
+∇ · (ρm−1Un ·U∗) = −∇pm−1 +∇ · R + SU (4)

Aerospace 2023, 10, 792 4 of 26

In Equation (4), the density ρm−1 comes from the previous outer iteration m− 1. If
the flow viscosity depends on the temperature or other variables, the viscous terms are
computed using quantities from the previous iteration. The velocity field U∗ obtained via
the linearized momentum equations structured on the old pressure and density values
does not satisfy the mass conservation equation. In fact, when the mass fluxes computed
using these velocities and the old density are inserted into the continuity equation, a mass
imbalance is produced in the volume V and must be eliminated by a correction method:

∂ρ

∂t

∣∣∣∣m
n

V + ∑
f
(ṁ∗f + ṁ′f) = 0 (5)

where

ṁ f = ṁ∗f + ṁ′f = (ρ∗ + ρ′) f (U
∗ + U ′) f S f = (6)

= (ρ∗U∗) f · S f︸ ︷︷ ︸
ṁ∗f

+ (ρ∗U ′ + ρ′U∗ +�
��ρ′U ′) f · S f︸ ︷︷ ︸

pressure correction ṁ′f

The second-order term in Equation (6) is assumed to go to zero more rapidly than the
other terms, and as such is neglected. This approximation does not have any influence on
the convergence rate or impact on the final solution, as it tends to zero at convergence. It
follows that

ṁ′f = (ρ∗U ′ + ρ′U∗) · S f (7)

in which S f is the surface normal vector and U ′ and p′ are defined from

Um = U∗ + U ′ (8)

pm = pm−1 + p′ (9)

while
ρm = ρm−1 + ρ′. (10)

While the pressure gradient only corrects the flow velocity in low-Mach implementations,
in pressure-based compressible solvers the pressure correction acts on the density. The first
term of Equation (7) is similar to the term for incompressible flows, while the second term
includes a density correction that goes to zero in cases with a low Mach number.

The intermediate velocity field U∗ calculated from the predictor step (Equation (4))
must be corrected by a pressure gradient to enforce mass conservation in the domain. The
combination of Equations (5) and (6) written in differential form reads

∂ρ

∂t

∣∣∣∣m
n
+∇ · (ρ′U∗) +∇ · (ρ∗U ′) = −∇ · ρ∗U∗ (11)

Equation (11) is called the pressure correction equation; its solution determines the
correction to be applied to the mass fluxes computed via the use of the intermediate
velocity field U∗. As the correction is carried out using the pressure, the thermodynamic
state depends on the correction procedure as well. The time derivative in Equation (11) can
be decomposed as follows:

∂ρ

∂t

∣∣∣∣m
n
=

∂ρ

∂t

∣∣∣∣∗
n
+ AP

∂ρ′

∂t
=

∂ρ

∂t

∣∣∣∣∗
n
+

(
APψ

∆t

)
p′ (12)

In Equation (12), ψ is the fluid compressibility (see Appendix A), while the AP coeffi-
cient depends on the adopted time differencing scheme. For the three-time-level scheme

Aerospace 2023, 10, 792 5 of 26

(backward Euler method) AP = 3
2 , while for the two-level first order implicit method

AP = 1. In addition (see Appendices A and B, respectively), we have

∇ · (ρ′U∗) = ∇ ·
(
U∗ψ p′

)
(13)

and

∇ · (ρ∗U ′) = −ρ∗
(

∆t
AP

)
∇2 p′ (14)

with the final form of the pressure correction equation written as follows:(
APψ

∆t

)
p′ +∇ ·

(
U∗ψp′

)
− ρ∗

(
∆t
AP

)
∇2 p′ = −

[
∂ρ

∂t

∣∣∣∣∗
n
+∇ · (ρ∗U∗)

]
(15)

Equation (15) includes an incompressible divergence term to correct the mass fluxes and a
compressible convective term to correct the density. They alternatively become dominant
when the flow is largely incompressible or compressible, respectively, making the pressure-
correction strategy applicable over a wide range of applications at all flow speeds [8]. At
low Mach number values, the ∇p′ correction term dominates and Equation (15) assumes
an elliptic form for incompressible flow cases, while at high Mach numbers the contribution
of the term containing p′ is enlarged and Equation (15) assumes a hyperbolic form. Upon
solving the pressure-correction equation, velocity and density are updated to obtain Um

and ρ∗; these values are used to solve the energy equation at the next step, from which
the updated internal energy em is obtained. In turn, the temperature Tm is determined via
thermodynamics. The new density is computed from the EoS (see Appendix A):

ρ = ψT (16)

and the velocity is updated
Un+1 = U∗ +∇p′. (17)

To achieve closure of the system, constitutive relations are needed. Their formulation
depends on the properties of the continuous medium. The following set of constitutive
relations is used:

- The generalized form of the Newton’s law of viscosity:

R = µ
[
∇U + (∇U)T

]
+

(
2
3

µ∇ · U
)

I (18)

in which µ is the dynamic viscosity and I is the identity matrix.
- A nine-coefficient polynomial computes the thermodynamic properties in the standard

state for each gaseous specie, as in the NASA chemical equilibrium code [34], to define
the internal energy as a function of the pressure and temperature.

- The Equation of State (EoS) for the gas, which is assumed to be mixture of Ns species:

p = ρR0T
Ns

∑
i=1

Yi
Wi

= ρ
R0

W
T with

1
W

=
Ns

∑
i=1

Yi
Wi

(19)

where W is the mean molecular weight of the mixture. All the species of the mixture
are treated as perfect gases with a common temperature T; each species is described
by Mendeleev–Clapeyron EoS pk = ρk

R0
Wk

T, with R0 = 8.314 J/(mol K) being the
perfect gas constant and pi and ρi the partial pressure and density of the i-th species,
respectively, with p = ∑Ns

i=1 pi (Dalton law). Despite the assumption of a mixture
of perfect gases being applied in this work, the solver natively supports real gas
formulations as well.

- Eddy–viscosity based models for turbulence closure.

Aerospace 2023, 10, 792 6 of 26

3. Solution of Large Sparse Linear Systems in Segregated Solvers

In a segregated solver, these systems are constructed as part of the nonlinear process
for a number of steps that varies with the specific algorithm (steady, unsteady) used to solve
the governing equations. While all of the algorithms solve the same governing equations,
they differ in how they loop over the equations. At every iteration, either the coefficient
matrix changes or does not, while the right-hand side and the solution change from one
step to the next. In Figure 1, the Semi-Implicit Method for Pressure Linked Equations
(SIMPLE) and the Pressure Implicit with Splitting of Operator (PISO) are shown. These
represent the most common algorithms in the FVM for steady and unsteady incompressible
flow calculations respectively.

(a) SIMPLE (b) PISO

Figure 1. Segregated solution of the fluid transport for incompressible flows in the Finite Volume
Method for steady and unsteady problems: (a) Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) and (b) Pressure Implicit with Splitting of Operator (PISO). Each equation implies the
solving of a large sparse linear system.

In both the algorithms, the incompressibility constraint is used to bypass fast acoustic
waves and allow the solution to evolve on a convective timescale, which is relevant for
many engineering problems. This leads to a very stiff Poisson problem; thus, the pressure
solver typically encompasses the majority of the solution time (over 60% of the time for
a single step of computation in the SIMPLE algorithm [9,21]). The computation of the
predictor step is usually not very expensive, and the speed-up provided by the GPU
is negligible.

Behind any solution method for the fluid transport in the Finite Volume method lies
the solution of large sparse linear systems, which we write as

AX = b (20)

where the coefficient square sparse matrix A is ∈ Rn×n, while X and b ∈ Rn×1. The
sparsity graph of the square matrix A generated through the discretization of an advection–
diffusion-reaction problem using Finite Volume exhibits two main properties: (a) the
diagonal elements consistently align with non-null elements and (b) the sparsity pattern
displays symmetry. In OpenFOAM, a square matrix is represented as a data structure that
stores its values along with a pointer to its associated sparsity pattern, which is depicted
using two integer vectors. The length of such vectors is equal to the number of faces, and
indicates the labels of the owner and the neighboring cell, respectively. Saving the sparsity
pattern prevents redundant storage of identical pattern structures when multiple matrices
share the same sparse pattern. The combination of the three mentioned vectors defines
the Co-Ordinate List format (COO), which is usually an ordered list. For a nonsymmetric
square matrix, the LDU factorization is A = LDU, where L is a unit lower triangular
matrix, U is an upper triangular matrix, and D is a diagonal matrix. The diagonal matrix
is stored compactly as a vector, and its pattern is implied. Because the sparsity pattern

Aerospace 2023, 10, 792 7 of 26

of the upper triangular matrix (U) is the same as the lower triangular matrix (L), saving
the pattern of either matrix is sufficient. For symmetric matrices, only the values of U
require storage. The Compressed Sparse Row (CSR) format is another general compressed
sparse matrix format supported by High Performance Computing (HPC) libraries [35–38]
for scientific and computational applications, and can help to save memory and improve
computational efficiency in operations involving large sparse matrices. It is in fact possible
to completely access the matrix elements by saving only the indices of the start of a new
line, reducing the total number of indices needed to represent a matrix from M to N. This
reduction in the number of indices translates directly to a reduction of the amount of data
needing to be transferred from the main memory to the processors for Sparse Matrix Vector
Multiplication (SpMVM) operations. The NVIDIA AmgX library [30] includes a collection
of methods employing various selector and interpolation strategies. It incorporates many
standard preconditioned Krylov subspace iterative methods [41? ?], offering a range
of smoothers and preconditioners. The work presented in this section builds on the
foundation laid out in [21]. A wrapper is developed for AmgX to offload the linear solver
tasks onto distributed NVIDIA GPUs. Because AmgX works with CSR matrices, the
conversion of the OpenFOAM LDU matrix format into CSR form [42] has been refactored
and seamlessly integrated into the dynamic library amgx4Foam, designed to be compatible
with any OpenFOAM solver. The library’s architecture is designed for enhanced ease of
use, installation, and maintenance while ensuring compatibility with both current and
future software releases. The current approach carries out matrix assembly on the CPUs.
This implies that there must be a balance between the number of available GPU cards and
CPU cores. Having a large number of GPUs with only a small number of CPUs would not
yield significant performance improvements, as data input/output and matrix assembly
could become bottlenecks in the computations. Hence, for the calculations presented in
this section (acceleration of flow tranport calculations), the optimal hardware configuration
assumes one GPU per CPU node. This principle does not hold true in scenarios involving
solving ordinary differential equations (ODEs) within reacting flow computations. In such
cases, as the number of GPU cards increases, the capacity to simultaneously solve a larger
number of systems of ODEs (up to the mesh size) grows as well. This contradicts the
previously mentioned balance between GPU cards and CPU cores. In this context, having
more GPUs in the same cluster node can enhance the capacity to handle multiple systems of
ODEs simultaneously, potentially leading to improved performance. However, in scenarios
where matrix assembly remains a computational bottleneck, the relationship between GPU
cards and CPU cores as discussed earlier continues to hold. It is worth clarifying that the
code implementation remains unaffected by the hardware configuration, and is capable of
accommodating any number of CPU cores and GPU cards per node. Offloading the linear
algebra solution to the GPU involved several additional steps, including converting the
matrix format from LDU to CSR and transferring data between RAM and GPU memory.
These processes introduce time overheads; thus, the overall computational efficiency of the
GPU needs to consider the net performance gain. It is reasonable to anticipate that larger
problem sizes would realize greater speedup benefits from GPU utilization.

The resulting implementation has undergone testing to accelerate the solution of
steady aerodynamics for external flows. Performance testing was conducted on a cluster
node featuring an Intel Xeon Gold 6248 CPU (2.50 GHz) and an NVIDIA Tesla V100. The
tests were performed on a steady-state incompressible single-phase multi-dimensional
Finite Volume solver (simpleFoam). The k-omega Shear Stress Transport (SST) model
was employed as the turbulence model. The calculations for the momentum predictor
and turbulence transport had minimal impact on the computations [8]. Thus, the GPU
offloading was exclusively applied to the solution of the pressure (Poisson) equation. All
computations were carried out in double precision. The Algebraic Multi-Grid (AMG) solver
supported by AmgX [21] was employed as a preconditioner for various iterative Krylov
outer solvers.

Aerospace 2023, 10, 792 8 of 26

Performance comparisons were conducted as follows: CFD simulations were executed
in OpenFOAM on the motorbike tutorial test case using different grid sizes (S, M, L). These
simulations were run on 8, 16, and 32 CPU cores. Two solver configurations were compared:
(a) Conjugate Gradient (CG) with simplified Diagonal-based Incomplete Cholesky (DIC)
preconditioning and (b) Geometric Algebraic Multi-Grid (GAMG).

The predicted drag and lift forces are in strong agreement, confirming that the numer-
ical setups used on the different technologies were consistent. This is apparent from the
visual representations in Figures 2 and 3 as well, which depict nearly identical pressure
and velocity distributions around the motorbike for both the GPU and CPU methods. In
addition, the differences in the predicted values of Cd and CL are negligible (within 0.1%),
validating the consistency of the numerical setups across various technologies, see Table 1.
It is worth noting, however, that the implementation of implicit linear solvers within sepa-
rate library codes varied for the GPU and CPU, as did the definition of the stopping criteria.
While the fundamental theory governing the linear algebra solvers remains consistent, a
direct one-to-one correspondence between OpenFOAM and AmgX is not present.

(a)

0

1

2 P1 P2

0

1

2 P3 P4

1 0 1
0

1

2 P5

1 0 1

P6

160

120

80

40

0

40

80

120

Pr
es

su
re

(b)

0

1

2 P1 P2

0

1

2 P3 P4

1 0 1
0

1

2 P5

1 0 1

P6

160

120

80

40

0

40

80

120

Pr
es

su
re

(c)

Figure 2. Contour plots of the pressure variations across different equally-spaced cross-sections of
the studied case. Mesh size: M (18 M cells). (a) Computational mesh (M); (b) CPU; (c) GPU.

(a) (b)

Figure 3. Contour plots of pressure and velocity fluctuations in the symmetry plane of the investigated
case. Mesh size: M (18E6 cells). (a) CPU and (b) GPU. Pressure is denoted as the pressure differential
relative to the ambient atmospheric pressure.

Table 1. Quantitative results for the motorbike test case using the same mesh discretization. Legend:
Cd is the drag coefficient, CL is the lift coefficient, Cm,i represents the moment coefficients over x, y,
and z, and Cs is the side force coefficient.

Iter Method Cd CL Cm,x Cm,y Cm,z Cs

1000

S 0.82% 1.2% 0.3% 0.15% 1.1% 0.96%

M 0.7% 0.9% 0.1% 0.2% 1% 0.8%

L 0.62% 0.8% 0.25% 0.18% 1.05% 0.89%

Aerospace 2023, 10, 792 9 of 26

Considering the objective of this section to assess the consistency of the results between
the two methods, the focus is not directed towards the specific physical quantities acquired
or the intricacies of modeling choices. Instead, a conventional aerodynamic simulation con-
figuration is adopted, with the primary aimed of examining deviations and computational
speed enhancements.

Furthermore, the focus of this study was to compare the performance of a solitary
CPU node with that of a single GPU card. This approach was chosen to isolate and evaluate
the speedup attributed to a singular GPU card. Notably, the software configuration allows
for scalability, making it possible to accommodate larger core counts and operations across
multiple GPU cards. Subsequently, the wall clock times presented for each simulation
pertain to 1000 steps. Strong linear scaling as calculated by Amdahl’s Law was evident in
nearly all conducted tests, a finding corroborated by both CPU and GPU computations.

s =
T1

Tp
(21)

In Equation (21), s is the speedup attained by parallelizing a program, T1 denotes the
execution time of the program when utilizing a single processor, and Tp represents the
execution time of the program when employing p processors or cores.

The results of the parallel efficiency experiment are reported in Table 2. The definition
of parallel efficiency used here is

Efficiency = speedup/n. Procs× 100%. (22)

From Figure 4, it is apparent that the offloaded solution of the pressure equation on
the GPU card promotes a roughly two-fold speedup in all the tested cases. As expected,
the larger the grid size, the stronger the speedup, as the calculation is computationally
more intensive and the weight of the data transfer is proportionally less important. The
data illustrated in Figure 4 reveal that transferring the solution of the pressure equation
to the GPU yields a more then two-fold speed enhancement compared to employing the
PCG solver on the CPU. As expected, this speedup effect becomes more pronounced with
increasing grid sizes. This observation aligns with the projected outcome, as larger grids
entail more intricate calculations, thereby reducing the relative impact of data transfer.
However, in the case of the Geometric Algebraic Multi Grid (GAMG), substantial perfor-
mance gains were not evident. This can be attributed to the differing solver technology;
while the AMG solver within AmgX is directly constructed from the sparse system matrix,
OpenFOAM’s geometric multigrid (GAMG) relies on information about the underlying
geometric mesh. Consequently, their efficiencies differ. Thus, the comparison between
these two solvers encompasses both hardware technology and considerations pertaining to
the solver formulations.

Table 2. Strong scaling analysis for the three tested grids. In this context, “nProcs” refers to the
number of CPU cores used to decompose the computational domain.

nProcs 8 16 32

mesh CPU GPU CPU GPU CPU GPU
S 100% 100% 82.8% 83.3% 65% 70%
M 100% 100% 91% 89.8% 80% 79%grid

L 100% 100% 75% 100% 82% 98%

The speedup demonstrated in Figure 4 has the potential to increase further, particularly
when the pressure equation is iteratively solved multiple times within each iteration of
the solver. This scenario arises when mesh non-orthogonality correctors are used. Such
instances are common in simulations with strongly non-orthogonal grids or in unsteady
simulations employing transient solvers. In the latter case, the pressure equation is solved
a minimum of twice per time step.

Aerospace 2023, 10, 792 10 of 26

8 16 32
processor cores [-]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sp
ee

du
p

[-
]

PCG+DIC (CPU) vs AMG-CG cache (GPU)
CPU
AmgX

Mesh Size S (8.6 M cells, 1000 iters)

8 16 32
processor cores [-]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sp
ee

du
p

[-
]

PCG+DIC (CPU) vs AMG-CG cache (GPU)
CPU
AmgX

Mesh Size M (18 M cells, 1000 iters)

8 16 32
processor cores [-]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sp
ee

du
p

[-
]

PCG+DIC (CPU) vs AMG-CG cache (GPU)
CPU
AmgX

Mesh Size L (34 M cells, 1000 iters)

(a)

8 16 32
processor cores [-]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sp
ee

du
p

[-
]

GAMG (CPU) vs AMG-CG cache (GPU)
CPU
AmgX

Mesh Size S (8.6 M cells, 1000 iters)

8 16 32
processor cores [-]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sp
ee

du
p

[-
]

GAMG (CPU) vs AMG-CG cache (GPU)
CPU
AmgX

Mesh Size M (18 M cells, 1000 iters)

8 16 32
processor cores [-]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sp
ee

du
p

[-
]

GAMG (CPU) vs AMG-CG cache (GPU)
CPU
AmgX

Mesh Size L (34 M cells, 1000 iters)

(b)

Figure 4. Strong scalability (Ahmdal’s Law) calculated across three tested grids (S, M, L). The
simulation conducted with eight CPU cores served as the reference benchmark. (a) PCG-DIC (CPU)
vs. AMG-PCG (GPU) and (b) GAMG (CPU) vs. AMG-PCG (GPU).

4. Reactive Flows/Combustion Simulations

Another efficient use of accelerators can be achieved in the context of CFD multi-
physics, where improved code performance can be achieved by moving relevant compute-
intensive operations to GPUs used as co-processors. This is particularly beneficial when
handling large-scale simulations with subproblems involving Ordinary Differential Equa-
tions, as in Fluid–Structure Interaction (FSI), Lagrangian Particle Tracking (LPT), and (as
will be shown in this case) reactive flow/combustion simulations. The different charac-
teristics and properties of the subproblems to be solved in reactive flows with finite-rate
chemistry pose great challenges in the efficient treatment of the highly nonlinear partial
differential equations (PDEs) to describe the evolution of reacting flows. In solvers using
the operator splitting technique, the solution process is divided into separate problems,
specifically, the fluid transport and the chemical mass action. For each Control Volume
(CV), the chemical kinetics are integrated over the specified time step ∆t as a system of
Ns+1 stiff ordinary differential equations (ODEs) to compute the reaction rates and the heat
released by the reactions. The results from the fluid transport and the chemical mass action
are finally combined to provide the overall solution.

Several algorithmic developments to speed up the solution of ODEs in reactive
CFD solvers have been presented over the years in the form of reduction [43,44], tab-
ulation [45,46], and Artificial Neural Network-based strategies [47? ,48]. Their success in
finite-rate chemistry compared to Direct Integration (DI) is due to their speed, in particular
when dealing with detailed mechanisms. On the other hand, they usually require extensive
preprocessing operations [50] or case-dependent tuning of user-input parameters, which
is not required with DI. Heterogeneous GPGPU computing potentially represents a very
effective solution to accelerate the DI of chemistry problems, which can be solved on accel-
erators (GPU) while the fluid transport and turbulence are computed using conventional
CPU-based hardware technologies. However, such a strategy requires significant redesign,
i.e., software co-design [51,52].

4.1. Governing Equations

In addition to the governing equations for fluid flow described in Section 2, a set of
Ns − 1 convection–diffusion partial differential equations (PDEs) is solved to determine the

Aerospace 2023, 10, 792 11 of 26

local mass fraction Yi of each of the Ns chemical species transported by the reactive fluid
mixture in each Control Volume (CV):

∂(ρYi)

∂t
+∇ · (ρU)Yi = ∇ · (ρ Di∇Yi) + ω̇i for i ∈ [1, Ns − 1]. (23)

The mass fraction of the inert species Ns is determined as follows:

YNs = 1−
Ns−1

∑
i=1

Yi. (24)

In Equation (23), Di is the mass diffusion coefficient; in reactive simulations, ω̇i is
defined as

ω̇i = Ki ω̇i (25)

where the reaction rate of the i-th specie ω̇i is

ω̇i = Wi

NR

∑
j=1

νi,jQj (26)

and is scaled by a specific set of coefficients Ki depending on the selected combustion
model to eventually account for the interaction between turbulent mixing and chemistry
in the CV. With laminar combustion, the laminar finite rate model is used, and Ki = 1 in
Equation (25). In Equation (26), Wi is the molecular weight of the i-th species, νi,j is the
i-th species stoichiometric coefficient, and Qj is the non-equilibrium reaction rate of the
j-th reaction:

Qj = κ f ,j(T, p)∏
i∈P

(
ρYi
Wi

)ν′i,j
− κr,j(T, p) ∏

i∈R

(
ρYi
Wi

)ν′′i,j
. (27)

In Equation (27), κ f ,j(T, p) and κr,j(T, p) are the forward and reverse rate constants,

respectively, at the local fluid dynamic conditions [53], while the ratio
ρYi
Wi

is the molar

concentration of the i-th species, which in the following is named ci:

ci =
ρYi
Wi

(28)

The heat released by the combustion Q̇ is finally obtained as

Q̇ =
Ns

∑
i=1

(
ω̇i H f ,i

)
, (29)

where H f is the enthalpy of formation.
The solution of the chemical mass action (finite-rate chemistry problem) before the

flow transport is solved separately for each CV. Reaction rates from calculations of the
finite-rate chemistry are passed to the fluid transport problem (Figure 5) as a source
term in the species transport equations (Equation (23)). The reaction rate is used by the
combustion model to compute the source term Q̇ (Equation (29)), which in turn is added
to the energy equation. In this work, finite-rate chemistry computations are performed
on single or multiple Graphical Processing Units (GPUs). Transport properties such as
the mass diffusion coefficients, thermal conductivity, and viscosity of the species, along
with thermochemical data for the gas phase, are imported from the Cantera transport
database through the in-house canteraToFoam utility developed by the authors. As shown
in Figure 5, the GPU solver for the finite-rate chemistry can be coupled to any solver
available in OpenFOAM, regardless of whether it is pressure-based or density-based. In
the following, a shock-capturing density-based solver for the solution of supersonic flows,
chosen due to the physics simulated in the validation tests, is used for the fluid transport.

Aerospace 2023, 10, 792 12 of 26

Start simulation

End simulation

GPU

(a)

Start simulation

Dynamic mesh - update

End simulation

Turbulence modeling

GPU

(b)

Figure 5. Solution methods employed in the GPGPU compressible unsteady reactive flow solvers:
(a) pressure-based SIMPLE type and (b) density-based shock-capturing type. The calculation of the
chemical mass action ω̇i at each time step is performed on the GPUs.

4.2. Multi-Cell Approach to Accelerating the Chemical Solution on Hybrid CPU–GPU Systems

Combustion simulations with finite-rate chemistry involve the solution of a chemical
kinetics system of ordinary differential equations (ODEs). The cost of the computation is
proportional to the number of species, number of reactions, and number of grid points
in the domain. Nonlinearity in the formulation of reaction rate variables and the contem-
porary presence of species with very different characteristic time scales leads to very stiff
ODE systems; the smallest scales control the size of the integration time step to ensure
convergence of the solution, which can significantly impact the computational cost. The
time step of integration ∆tfluid of the Partial Differential Equations (PDEs) describing the
fluid transport problem must comply with the CFL condition, while the integration of the
ODE system of the kinetic problem is performed over a time interval ∆tchem that must
ensure computational stability [54]. If ∆tchem < ∆tfluid, a time step subcycling strategy is
used and the reaction rate ω̇i is computed over ∆tfluid = tn+1 − tn, as follows:

ω̇i =
(

cn+1
i − cn

i

) Wi
∆tfluid

= ρn (Y
n+1
i −Yn

i)

∆tfluid
(30)

Here, cn
i is the molar concentration of the i-th species at tn and cn+1

i is the concentration
at tn+1. The updating of the species concentration in the CV from time n to n + 1 is
computed by the selected ODE integrator. It is important to note that chemistry integration
for each CV is assumed to occur for a fixed mass of fluid at a constant pressure; therefore,
both the density and volume are changed during integration. When species source terms
are computed, they must relate exactly to the mass of fluid considered during integration
in order for mass to be conserved; this is achieved by multiplying the mass fractions that
results from integration by the old-time density, as it relates to the mass in the cell volume.
As a consequence, chemistry integration over a given time step does not depend on the
new-time properties of the fluid.

Implicit ODE solvers relying on variable-coefficient methods usually have the best
performance for the integration of the finite-rate chemistry problem, as they are capable
of extending the time step if the fast modes of the ODE system have already reached
their asymptotic values. Conversely, while explicit solvers are characterized by smaller
integration time-steps, they avoid the iterative solution and associated matrix inversions
required for implicit integration, meaning that they have an intrinsically parallel nature.
Therefore, they are well-suited to massive parallel GPU architectures that are optimized to
perform a large number of independent operations repeated multiple times. Additionally,
their locality reflects on memory usage [55], which is very low compared to implicit solvers.
In this work, explicit RK methods with adaptive time-stepping [56] have been selected to

Aerospace 2023, 10, 792 13 of 26

solve the ODE system. Embedded Runge-Kutta formulas [57,58] have several advantages:
(a) they can be used to construct high-order accurate numerical methods by few evaluation
functions and (b) their truncation error can be easily estimated and used to compute the
next step size.

The explicit Runge-Kutta Cash–Karp method (Equation (32)) linked to the butcher
tableau [59] of Table 3 has been implemented in CUDA. Inputs of the integration algorithm
are flow conditions and the global time step of integration. By considering

y = [Y , T] (31)

for a vector of Ns + 1 variables under the assumption of isobaric integration (dp/dt = 0)
within the time interval ∆tn

fluid ∈ [tn; tn+1], we have

y1 = yn + ∆tchem

(
a2,1

dyn

dt

)
yj = yn + ∆tchem

(
aj+1,1

dyn

dt
+

j

∑
i=2

(
aj+1,i

dyi−1

dt

))
j ∈ [2, 5] (32)

yn+1 = yn + ∆tchem

(
b1

dyn

dt
+

6

∑
i=2

(
bi

dyi−1

dt

))

For each step in Equation (32), an update
dy
dt

is needed. An error erry for each variable
in y (chemical mass fractions and temperature) is computed at the end of the procedure
shown in Equation (32):

erry = ∆tchem

(
e1

dyn

dt
+

6

∑
i=2

(
ei

dyi−1

dt

))
(33)

here ei is the difference between the 5th and 4th order solutions. With reference to Table 3,
ei = bi − b̃i.

Table 3. Runge-Kutta Cash–Karp extended Butcher tableau (right) with reference notation (left).

0 0 0 0

c2 a21 0
1
5

1
5

0

c3 a31 a32 0
3

10
3

40
9

40
0

c4 a41 a42 a43 0
3
5

3
10

− 9
40

6
5

0

c5 a51 a52 a53 a54 0 1 −11
54

5
2

−70
27

35
27

0

c6 a61 a62 a63 a64 a65 0
7
8

1631
55,296

175
512

575
13,824

44,275
110,592

253
4096

0

b1 b2 b3 b4 b5 b6
37

378
0

250
621

125
594

0
512
1771

(5th order)

b̃1 b̃2 b̃3 b̃4 b̃5 b̃6
2825

27,648
0

18,575
48,384

13,525
55,296

277
14,336

1
4

(4th order)

Finally, the maximum error

errmax = max(erry) (34)

is determined. Equation (33) is calculated locally in the computational cell; thus, conver-
gence is local to each GPU block and the GPU calculation is asynchronous. This limits the

Aerospace 2023, 10, 792 14 of 26

synchronization overhead and promotes the maximization of hardware performance. As
soon as the kernel calculation is over, the reaction rates and time step advancement for
each cell are first stored in the global GPU memory and then copied back to the CPU host.
In reactive flow simulations, the GPU solutions are eventually updated (on CPU) by the
flow solver. Because the solution of the chemistry is decoupled from the fluid transport, the
novel GPU–ODE chemistry integrator can be combined with any flow solver (compressible,
incompressible, multiphase) in which the operator splitting technique is applied. As shown
in Figure 6, there are three levels of tasks in the CUDA framework, namely, the grid, block,
and thread. The grid is made up of several blocks, which are lunched by a GPU kernel.
Blocks can be handled asynchronously by the same Streaming Multiprocessor (SM); as all
the resources between blocks are shared, communication among blocks is expensive. Each
block can execute a certain number of threads. There is only a lightweight synchronization
overhead between the threads in a block. All threads in a block run in parallel in the
Single Instruction Multiple Threads (SIMT) mode [60]; more precisely, each block contains
multiples of 32 threads called warps. Threads in a warp are executed concurrently on
a multiprocessor. Modern general-purpose GPUs have a large amount of (slow) global
memory and a small amount of (fast) shared memory. Best practice guidelines to improve
the performance of a GPU solver suggest (a) saturating the GPU with computational work
and balancing the load among all the threads; b) reducing data transfer/communication
between the CPU and GPU as much as possible; and (c) limiting threads’ access to the
global memory where possible. The chemistry solver presented in this work addresses
several of these issues based on profiling outputs. Load balancing, communication over-
head, latency, synchronization overhead, and data locality are important factors that may
affect performance. To hide latency, asynchronous GPU/CPU data transfer is adopted. To
reduce the synchronization overhead, the number of tasks running asynchronously should
be maximized. To reduce data transfer, the use of shared memory is rather critical [61], as
it limits the threads’ access to the global memory and favors an increase in the efficiency
of the algorithm; however, it may lead to divergence of threads [62]. To avoid thread
divergence, the code has been written in branchless form. Moreover, because of its lim-
ited size, the chunk of GPU shared memory is dynamically allocated at the beginning of
the simulation and is used by the GPU for the progressive explicit updating of chemical
concentrations and temperature, calculation of the production/consumption rate, and
determination of the maximum error. For the methodology proposed in this work, the
fat thread approach [63] has been applied, which has several effects on data structure and
organization. Data access time is minimized by relying on shared memory and registers, as
the data required by the threads are stored. To reduce the communication overhead of data
transfers between the CPU and GPU, time-dependent quantities are stored in the dynamic
global memory, accessed in a coalesced manner, and progressively stored in chunks of
shared memory for the amount of time needed for their use; these are defined as dynamic
data. Conversely, constant data are stored when the constant memory is allocated, i.e., at
the beginning of the simulation only. The molecular weights of the species, stoichiometric
coefficients and exponents of the reaction mechanism, ODE solver settings, and parameters
of the Butcher tableau are initialized on the host and then copied and stored in the GPU’s
constant memory. The settings of the ODE solver include solution controls (tolerances and
maximum number of iterations), scaling factors, and time scaling controls. Time-varying
quantities are copied in the GPU’s cached global memory. Thanks to the optimization
of the memory access time and latency from the threads, the fat thread approach is very
fast, allowing double parallelization of the chemistry problem to be achieved: the ODE
system is solved in parallel for the computational cells (on CPUs, this operation is per-
formed serially), and for each computational cell (i.e., block), each species in the reaction
mechanism is handled in parallel on multiple active threads (Figure 6). If the amount of
data to be transferred overcomes the maximum memory availability of the GPU(s), the
chemical problem is automatically split into mesh chunks, each containing a cluster of cells.
If the mesh dimension overcomes the maximum number of cells that can be concurrently

Aerospace 2023, 10, 792 15 of 26

treated by the GPU streaming multiprocessors, a queue is automatically generated and
the overall computational lag and latency is limited thanks to asynchrony. In addition, a
GPU block-level control over the cells is used to avoid unnecessary operations. Chemically
reactive cells are identified through their local temperature, which must be higher than a
given threshold. No ODE integration is performed on the other cells, which are cast off.
Finally, the chunk of memory allocated for each GPU block is freed as soon as the relative
ODE system is solved in order to move on to handling another cell.

Figure 6. Decomposition method for hybrid CPU/GPU computations. The heterogeneous solver
employs three-level parallelization on the fluid dynamic problem, the chemistry problem, and the
reaction mechanism.

4.3. Further Notes about Domain Decomposition in Heterogeneous CPU/GPU Systems

The GPU ODE solver is dynamically linked to the reactive flow solvers available in the
open-source software OpenFOAM (Figure 6). Two independent partitionings have been
applied to the chemistry problem and the flow domain, respectively. The computational
mesh is decomposed into a series of ordered subgroups by a parallel domain decomposition
algorithm over the available CPU processor cores. This procedure involves the use of MPI
libraries, and is completely independent of the subsequent treatment of the chemistry ODE
system. Memory allocation for the transfer of data to the device is produced automatically,
ensuring correct memory allocation for each processor based on the available dynamic
memory at the beginning of the simulation. Each CPU processor solves the fluid transport,
energy, and species transport equations over the assigned subdomain mesh. Multiple
GPU cards are managed as a whole and data are synchronized prior to the solution of the
fluid transport. At the GPU level, decomposition of the chemical problem is performed
independently and relies on a double subdivision over blocks and threads. In particular,
each cluster of cells is represented by a series of blocks in which the chemistry problem is
solved in parallel; for each block, the solution of the reaction mechanism is parallelized
over multiple threads. As a result, double parallelization of the calculation of the chem-
istry problem on cells/blocks and on species/threads is achieved. As such, three-level
parallelization is globally employed, as shown in Figure 6: (a) parallelization of the fluid
dynamic problem over CPU processor cores/mesh subdomains; (b) simultaneous solution
of the chemistry problem over clusters of cells; and (c) simultaneous/parallel solution
of the reaction mechanism in the block threads. The limit on the maximum number of
threads per block can be a potential bottleneck for parallelism. This is usually not the case
in reactive unsteady CFD simulations, where a 1024-species mechanism is considered a
very large mechanism to be solved at run-time. For problems involving larger numbers of
species (over a thousand), the thin thread approach [64] is preferred.

Aerospace 2023, 10, 792 16 of 26

4.4. Validation and Verification

The reaction mechanisms were subjected to testing across multiple chosen cases for
computations. These cases included:

- Auto-ignition in a single-cell batch reactor. This assessment aimed to verify the
solution of Direct Integration (DI) of kinetic mechanisms without considering fluid
transport calculations. The GPGPU algorithm’s performance was juxtaposed with
two alternatives: (a) an equivalent CPU version of the ODE solver already present in
OpenFOAM [31,32] and (b) the solution obtained from Cantera software [65]. This
set of simulations was designed to assess the influence of data transfer latency on
the overall computation time and to showcase that the various ODE solvers utilized
yielded similar results, facilitating a fair comparison.

- Reactive flow simulations on multi-cell domains. This evaluation targeted the holistic
performance of the GPGPU solver within the context of fluid transport in the presence
of multi-domain parallelization. The validation test cases encompassed the simulation
of a scramjet engine.

Chemical kinetics and polynomials describing the thermodynamic properties of the
species have been converted from the Cantera format using an in-house developed tool
canteraToFoam. All calculations on the GPUs were performed in double precision.

4.5. Auto-Ignition in Single-Cell Batch Reactors

To ensure the accuracy of the CPU/GPU method in solving chemical ODE systems,
we utilize direct integration of kinetic mechanisms within single-cell batch reactors. This
involves comparing solutions generated by the hybrid CPU/GPU code with those from
Cantera [65]. This comparison was conducted for each mechanism under study.

Starting from initial conditions, data synchronization between the CPU and GPU
occurs at every integration time step (see Figure 7). However, this synchronization is
primarily relevant when fluid transport equations are present. In cases involving single-
cell batch reactors, where such equations are absent, this synchronization step becomes
unnecessary. On the other hand, it is kept in this context to include the non-negligible time
required for data transfer in the estimation of the overall integration time.

GPU

Start simulation

End simulation

Figure 7. Solution of autoignition in single-cell batch reactors using a GPGPU solver.

The following quantities were monitored in the simulations:

- The spatial distribution of temperature and species mass fraction;
- The computational time required by the calculation;
- The cumulative mass fraction of the chemical species:

Ȳi =
1

∆t

∫ t

0
Yi dt. (35)

The averaged time integral values of Ȳi are used to calculate the error of the solution
against Cantera [65], which is assumed as the “reference”.

Aerospace 2023, 10, 792 17 of 26

erri,CPU =

∣∣Ȳi,CAN − Ȳi,CPU
∣∣

Ȳi,CAN
· 100 (36)

erri,GPU =

∣∣Ȳi,CAN − Ȳi,GPU
∣∣

Ȳi,CAN
· 100. (37)

Finally the difference of the results between the GPU and CPU is calculated as:

diffi =

∣∣Ȳi,CPU − Ȳi,GPU
∣∣

Ȳi,CPU
· 100 (38)

Hydrogen Combustion. The initial set of computations pertains to a stoichiometric
hydrogen–air mixture undergoing reactions at a constant pressure of 2.0 bar and an initial
temperature of 1000 K. The mechanism encompasses 10 species and 27 reactions [66]. The
absence of stiffness results from both the specific chemistry considered and the utilization
of a small global time step.

In Figure 8, the temporal evolution of the temperature and mass fraction of the inter-
mediate species is comparably depicted for both the CPU and the hybrid CPU/GPU solver.
The differences in solutions computed by these distinct methods are notably minimal, as
demonstrated in Figures 8 and 9. Discrepancies against the reference solution from Cantera
(as indicated in Equations (36) and (37)) are presented for each of the monitored species
in Figure 9a.

0.00000 0.00025 0.00050 0.00075 0.00100
Time [s]

1000

1200

1400

1600

1800

2000

2200

Te
m

pe
ra

tu
re

 [K
]

Cantera
Explicit CPU
Explicit CPU/GPU

(a)

0.00000 0.00025 0.00050 0.00075 0.00100
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Y H
 [-

]

×10 3

Cantera
Explicit CPU
Explicit CPU/GPU

(b)

0.00000 0.00025 0.00050 0.00075 0.00100
Time [s]

0

1

2

3

4

5

6

7

8

Y H
2O

2 [
-]

×10 6

Cantera
Explicit CPU
Explicit CPU/GPU

(c)

Figure 8. Hydrogen/air auto-ignition predicted over time by the direct integration of the chemistry
problem on the hybrid CPU/GPU code by an explicit CPU solver and by Cantera [65]. (a) temperature;
(b) evolution in time of YH ; (c) evolution in time of YH2O2 .

AR H H2 H2O H2O2 HO2 O O2 OH
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
r
[%

]

CPU
CPU/GPU

(a)

AR H H2 H2O H2O2 HO2 N2 O O2 OH
0.000

0.632

1.264

1.897

2.529

di
ff
 [%

]

(b)

Figure 9. Hydrogen/air batch reactor: (a) cumulative mass fraction discrepancy based on
Equations (36) and (37); (b) difference between CPU and CPU/GPU based on Equation (38).

Through this testing, it is observed that the maximum relative discrepancy in GPU
integration remains below 2%, while the highest relative discrepancy encountered in the
CPU is 4%. This outcome underscores the strong agreement and limited variations between
the hybrid CPU/GPU solver and the CPU counterpart.

4.6. Validation Test: Supersonic Combustion in a Scramjet Engine

The three-dimensional simulation of supersonic combustion in a scramjet engine by
the DLR combustor facility [67–69] was used to validate the proposed GPGPU solver.

Aerospace 2023, 10, 792 18 of 26

The geometrical features of the scramjet engine geometry are reported in [70–72] and
summarized in Figure 10. The configuration consists of a one-sided divergence channel
that confines preheated air and a wedge-shaped flame stabilizer. The upper wall diverges
to compensate for the expansion of the boundary layer.

1
 m

m

2.4 mm

12°

Figure 10. Geometry of the scramjet test case [67–69]. In the experimental setup, a transparent
window for high-speed camera visualizations is located in the region marked by the red dashed line.

Fuel injection occurs from the reference origin along the x direction. Each fuel in-
jection hole has a diameter of 1 mm, and each of the 15 circular holes is separated by
2.4 mm [70–72].

The boundary conditions of the problem are summarized in Table 4. Fixed values of
pressure, velocity and temperature are set at the air and fuel inlets. The inlet air enters
the domain with Ma = 2. It is preheated and includes a fraction of water in gaseous form.
Hydrogen is injected by the circular fuel inlets at Ma = 1. The chamber and wedge walls
are adiabatic. In the literature, the combustor has been analysed considering one [70,72],
three [71], and five [71] of the fifteen injectors, while neglecting the effects of the side walls.
In the current study, the three-nozzle configuration [71] has been considered. The boundary
layers of the upper and lower walls are not resolved [70], as this aspect was out of scope
for the present work and requires further study.

Table 4. Physical boundary conditions for the operation of the scramjet engine [70–72].

U [m/s] T0 [K] p [Pa] YN2 [-] YH2 [-] YH2O [-] YH2 [-]

Air 730 600 105 0.736 0.232 0.032 0

Fuel 1200 300 105 0 0 0 1

The computational domain is reported in Figure 11. In regions with large temperature
gradients, Adaptive Mesh Refinement (AMR) is dynamically applied at run-time to the
initial body-fitted hexahedral mesh of 1.5 M cell elements. The flow field was initialized by
a precursor cold-flow simulation to reproduce the complex shock wave pattern (duration
1.5× 10−3 s), and the duration of the reactive simulation is 5× 10−3 s. A hot spot in the
recirculating region is set to ignite the mixture.

centerline

Figure 11. Body-fitted hexahedral Finite Volume (FV) mesh of the scramjet engine. Adaptive Mesh
Refinement (AMR) is dynamically applied at run-time in proximity to large temperature gradients
between neighboring cells. The number of cell elements ranges between 1.5 M (initial mesh) and
15 M.

4.7. Simulation of Supersonic Combustion in the Scramjet Engine

Beginning with the flow field established through an initial cold-flow simulation,
subsequent calculations were performed to simulate reactive flows. The dynamic evolution
within the reactive region induces modifications in the shock pattern downstream of the
structural injector. The emergence of recirculation regions promotes flame stabilization.

Aerospace 2023, 10, 792 19 of 26

Upon impingement on the structural element, the supersonic flow generates two oblique
shocks that subsequently interact with the upper and lower walls, rebounding towards
the central area. The core flow at the center experiences heightened turbulence due to
ongoing combustion. Consequently, the previously orderly shock wave pattern in the far
region of the combustor becomes disrupted as the core region expands. For validation, a
comparative analysis is presented in Figure 12 between an experimental Schlieren image
and the corresponding numerical density gradient plot from the reactive simulation. The
visualization window in Figure 12 corresponds to the region delineated by the red dashed
line in Figure 10. The comparison reveals satisfactory agreement in both the evolution and
enlargement of the core region.

Figure 12. Comparison of density gradients for the hot simulation: Schlieren image [70] (left) vs.
numerical solution (right).

The behaviour of the pressure at the base largely varies when compared to the non-
reactive case. The pressure slightly increases (see Figure 13) and the core wake becomes
quasi-parallel to the freestream flow, as observed in [70,73]; thus, only small waves are
observed further downstream. From this, it can be derived that only small variations in
pressure are experienced towards the outlet of the combustor.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Position [m]

0.10

0.12

0.14

0.16

0.18

0.20

Pr
es

su
re

[M
Pa

]

Menon
Fureby
CPU

Figure 13. Pressure distribution at the bottom wall for the reactive flow simulation: comparison
between simulations and experiments [70]. Legend: Menon () [70]; Fureby () [73]; CPU ().

Flow temperature was investigated quantitatively by comparing coherent anti-Stokes
Raman spectroscopy solutions at x = 11 mm, 58 mm, and 166 mm (Figure 14). The tempera-
ture peaks predicted at the first location are slightly higher than the measured counterparts,
while the symmetric profile of the experiments is correctly captured. A better agreement is
appreciable downstream (Figure 14b,c), even though the region where combustion takes
place is slightly larger than the experimental one (Figure 14b). The reactive simulation
was run once more using the GPU–ODE integrator, thereby exploiting a heterogeneous
application. The results in green shown in Figure 14 confirm the good agreement with the
full-CPU solutions used as a reference.

Aerospace 2023, 10, 792 20 of 26

0.00 0.01 0.02 0.03 0.04 0.05
Position [m]

250

500

750

1000

1250

1500

1750

2000

2250

Te
m

pe
ra

tu
re

[K
]

Experimental
Menon [70]
Fureby [73]
Zhang [72]
CPU
GPGPU

(a)

0.00 0.01 0.02 0.03 0.04 0.05
Position [m]

250

500

750

1000

1250

1500

1750

2000

Te
m

pe
ra

tu
re

[K
]

Experimental
Menon [70]
Fureby [73]
Zhang [72]
CPU
GPGPU

(b)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Position [m]

400

600

800

1000

1200

1400

Te
m

pe
ra

tu
re

[K
]

Experimental
Menon [70]
Fureby [73]
Zhang [72]
CPU
GPGPU

(c)

Figure 14. Mean temperature (K) at different positions along the flowpath: (a) x = 11 mm;
(b) x = 58 mm; (c) x = 106 mm.

Finally, Figure 15 (upper line) reports the temperature flow distribution within a
threshold, and is used to highlight the shape of the flame at two different timesteps. The
shape of the flame clearly highlights the presence of flow instabilities and small recirculating
regions at the interface. Large recirculation vortices are present within the core region;
these are generated behind the struct and carried towards the end of the domain as they
evolve. The penetration of the fuel jet is lower than in the nonreacting case. Again, it is
clear that the the shear layer instabilities generated at the corners of the flame stabilizer
do not converge toward the centerline, instead interacting with the recirculation bubble
behind the struct.

(a) (b)

Figure 15. Combustion simulation at two different time steps, showing a representation of the flame
via the threshold (top) and density field (bottom): (a) 5× 10−4 s; (b) 7× 10−4 s.

4.8. Performance

Scalability testing of the reactive simulations by the GPGPU solver was investigated
considering the initial coarse mesh used for the supersonic test case over a span of the
first 100 time steps (including the time to read the mesh from disk). As the AMR was
not active in this test, the grid counted a limited number of cells (1.5 M). Unlike the
cases including flow transport only, the computational load in reactive flow simulations
is mostly provided by the solution of the finite rate chemistry, e.g., the size of the kinetic
mechanism, rather than by the mesh size. The scalability for the cold flow simulation,
e.g., without finite-rate chemistry calculations, is linear only within a limited range up to
about 24 cores (see Figure 16a). The same holds if chemical species are tracked without
reactions (Figure 16b). Finally, if combustion with finite-rate chemistry is triggered, the
computational load increases. This is because (a) the number of convection–diffusion
equations is larger due to the tracking of the intermediate species and (b) the solution of
finite-rate chemistry ODEs is now active. In this case, linear scalability is preserved for a
higher number of cores (Figure 16c).

Aerospace 2023, 10, 792 21 of 26

1 8 16 24 32 40 48 56 64
Number of cores [-]

0

10

20

30

40

50

60

Sp
ee

du
p

fa
ct

or
 [-

]

Linear trend
Simulation

(a)

1 8 16 24 32 40 48 56 64
Number of cores [-]

0

10

20

30

40

50

60

Sp
ee

du
p

fa
ct

or
 [-

]

Linear trend
Simulation

(b)

1 8 16 24 32 40 48 56 64
Number of cores [-]

0

10

20

30

40

50

60

Sp
ee

du
p

fa
ct

or
 [-

]

Linear trend
Simulation

(c)

Figure 16. Scalability of the reactive flow solver on the initial coarse mesh (1.5 M cells, AMR
deactivated): (a) cold flow simulation; (b) cold-flow simulation with species-transport (combustion
off); (c) reactive flow simulation with finite-rate chemistry calculations.

Scalability testing of the GPGPU solver for reactive simulations was conducted, focus-
ing on the initial coarse mesh utilized in the supersonic test case for the first 100 time steps
(inclusive of mesh reading time). For this test, Adaptive Mesh Refinement (AMR) was not
active, resulting in a limited cell count of 1.5 million.

In contrast to cases involving flow transport alone, the computational load in reactive
flow simulations is primarily determined by the solution of the finite-rate chemistry, e.g.,
the size of the kinetic mechanism used, rather than the mesh size. Scalability in cold flow
simulations without finite-rate chemistry calculations demonstrates linear behavior only
within a restricted range up to approximately 24 cores, as shown in Figure 16a. The same
linear trend is observed when tracking chemical species without reactions (Figure 16b).

However, when combustion with finite-rate chemistry is introduced, the computa-
tional load increases, which is due to two factors: (a) the greater number of convection–
diffusion equations resulting from tracking intermediate species and (b) the active involve-
ment of finite-rate chemistry ODE solutions. In this scenario, linear scalability is sustained
over a broader range of cores (Figure 16c).

Let tCPU and tGPU represent the respective computation times for solving the finite-
rate chemistry problem on the CPU and GPU. Additionally, we define tf,GPU as the time
required for GPU memory allocation, CPU data collection, and the forward data transfer
(CPU-to-GPU), tk,GPU as the time for the kernel call and actual ODE integration on the GPU,
and tr,GPU as the duration for completing the backward data transfer (GPU-to-CPU). The
use of GPGPU solver is advantageous if

tCPU > tGPU = t f ,GPU + tk,GPU + tr,GPU. (39)

From Equation (39), it is evident that the speedup resulting from the vectorization
employed by the GPU during chemistry problem calculations becomes increasingly advan-
tageous as the problem size expands.

In the context of reactive flow simulations, utilizing the GPGPU solver with 24 cores
and an NVIDIA Tesla V100card demonstrates a 9.3× improvement in speed compared to
the same solver running exclusively on 24 CPU cores. The developed GPGPU solution in-
herently supports computations across multiple nodes and GPU cards. The tests presented
herein were conducted using a single GPU to examine its operational behavior.

5. Conclusions

Our focus in this study centered on the synergies between numerical methods and the
code architecture within Finite Volume (FV) software, with the aim of devising accelerated
algorithms to enhance Computational Fluid Dynamics (CFD) simulations encompassing
governing equations and submodels for combustion chemistry. We demonstrate that
leveraging GPUs for solving the linear algebra of Partial Differential Equations (PDEs)
proves particularly advantageous in a segregated solver, especially when applied to the

Aerospace 2023, 10, 792 22 of 26

most computationally intensive equation, namely, the pressure equation. The extent of
this advantage becomes even more pronounced if the pressure equation is iteratively
solved multiple times within each iteration of the solver. This scenario arises when dealing
with mesh non-orthogonality correction or in transient simulations employing a transient
solver. The efficiency gain brought about by GPUs in solving linear algebra is remarkably
satisfactory, as observed in comparisons with similar solver technologies. On another note,
fully exploiting GPUs’ potential for CFD necessitates executing a coupled matrix assembly
with the entire code running directly on the GPU(s). Such an approach could significantly
minimize data transfer time and harness the substantially parallel architecture of GPUs.
This aspect of our work is presently in the development phase.

A second part of this investigation pertained to accelerating Ordinary Differential
Equation (ODE) solvers, which are commonly employed in multiphysics problems. A
specific case is that of reactive/combustion CFD simulations. In solvers predicated on
the operator splitting technique, the scalability of the solver is interconnected with the
resolution of two distinct subproblems, namely, linear algebra and ODEs. By offloading
computationally intensive operations to GPUs a nearly ten-fold acceleration was achieved
in simulations, causing the scalability range to shift towards a higher core count.

Author Contributions: Conceptualization, F.P. and F.G.; methodology, F.P. and F.G.; software, F.P.
and F.G.; validation, F.P. and F.G.; formal analysis, F.P. and F.G.; investigation, F.P. and F.G.; re-
sources, F.P. and F.G.; data curation, F.P. and F.G.; writing—original draft preparation, F.P. and F.G.;
writing—review and editing, F.P. and F.G.; visualization, F.P. and F.G.; supervision, F.P.; project
administration, F.P.; funding acquisition, F.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has received funding from the European High-Performance Computing Joint
Undertaking (JU) under Grant Agreement No 956416 (project: exaFoam [9]). The JU receives support
from the European Union’s Horizon 2020 Research and Innovation Programme, as well as from
France, the United Kingdom, Germany, Italy, Croatia, Spain, Greece, and Portugal.

Acknowledgments: The authors gratefully acknowledge the Laboratory Computing Resource Center
(LCRC) at Argonne National Laboratory (Lemont, US) for the computing resources provided. Special
thanks are extended to the OpenFOAM HPC Technical Committee and ESI-OpenCFD Ltd. for their
invaluable contributions through constructive technical discussions during the development and
testing phases of this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Link between Density and Pressure Correction

The link between density correction and pressure correction is provided by

ρ =
∂ρ

∂p

∣∣∣∣
T

p = ψp, (A1)

where

ψ =
∂ρ

∂p

∣∣∣∣
T

(A2)

is the compressibility of the fluid; with

ρ′ = ρ∗ − ρm−1 = ψpm − ψpm−1 = ψ(pm − pm−1) = ψp′, (A3)

it follows that
ρ′ = ψp′. (A4)

Aerospace 2023, 10, 792 23 of 26

Appendix B. Link between Veocity and Pressure Correction

At the m-th outer iteration within the time step integration from time n to n+1, the
momentum equation can be written as

∂(ρm−1U)

∂t

∣∣∣∣∗
n
+∇ · (ρm−1Un ·U∗) = −∇pm−1 +∇ · R(U∗) + SU(U∗). (A5)

In addition, the corrected velocity and pressure must satisfy

∂(ρm−1U)

∂t

∣∣∣∣m
n
+∇ · (ρm−1Un ·U∗) = −∇pm +∇ · R(U∗) + SU(U∗). (A6)

By subtracting Equation (A5) from (A6), it follows that

1
∆t

APU ′ = −∇p′, (A7)

where
∂(ρm−1U)

∂t

∣∣∣∣m
n
− ∂(ρm−1U)

∂t

∣∣∣∣∗
n
=

∂(ρm−1U ′)
∂t

=
1

∆t
APU ′, (A8)

where in turn we have

AP =

{
1 with a first-order time differencing scheme with two time levels,
3
2 with a second-order time differencing scheme with three time levels,

From Equation (A8), the time differencing scheme applied for temporal discretization
appears only in the coefficient AP. Equation (A7) can be manipulated and written as

ρ∗U ′ = −ρ∗
(

∆t
AP

)
∇p′, (A9)

where ρ∗ is the density updated at the current outer iteration m (e.g., ρ∗ ≡ ρm). Finally,

∇ · (ρ∗U ′) = −ρ∗
(

∆t
AP

)
∇2 p′. (A10)

References
1. Resolved Analytics, CFD Software Comparison. Available online: https://www.resolvedanalytics.com/theflux/comparing-cfd-

software (accessed on 15 August 2023).
2. NVIDIA. The Computational Fluid Dynamics Revolution Driven by GPU Acceleration. Available online: https://developer.

nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/ (accessed on 10 August 2023).
3. Kiran, U.; Sharma, D.; Gautam, S.S. GPU-warp based finite element matrices generation and assembly using coloring method.

J. Comput. Des. Eng. 2019, 6, 705–718. [CrossRef]
4. Accelerating ANSYS Fluent using NVIDIA GPUs, NVIDIA. 2014. Available online: https://www.nvidia.com/content/tesla/

pdf/ansys-fluent-nvidiagpu-userguide.pdf (accessed on 11 August 2023).
5. Siemens Digital Industries Software. Simcenter STAR-CCM+, version 2023; Siemens: Munich, Germany, 2023.
6. Martineau, M.; Posey, S.; Spiga, F. OpenFOAM solver developments for GPU and arm CPU. In Proceedings of the 18th

OpenFOAM Workshop, Genova, Italy, 11–14 July 2023.
7. Piscaglia, F. Modern methods for accelerated CFD computations in OpenFOAM. In Proceedings of the Keynote Talk at the 6th

French/Belgian OpenFOAM Users Conference, Grenoble, France, 13–14 June 2023.
8. Ferziger, J.H.; Perić, M.; Street, R.L. Computational Methods for Fluid Dynamics, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2020.
9. exaFoam EU Project. Available online: https://exafoam.eu/ (accessed on 6 August 2023).
10. The European Centre of Excellence for Engineering Applications (EXCELLERAT P2). Available online: https://www.excellerat.eu/

(accessed on 6 August 2023).
11. Ghioldi, F.; Piscaglia, F. GPU Acceleration of CFD Simulations in OpenFOAM. In Proceedings of the 18th OpenFOAM Workshop,

Genova, Italy, 11–14 July 2023.
12. Wichman, I.S. On the use of operator-splitting methods for the equations of combustion. Combust. Flame 1991, 83, 240–252.

[CrossRef]

https://www.resolvedanalytics.com/theflux/comparing-cfd-software
https://www.resolvedanalytics.com/theflux/comparing-cfd-software
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/
http://doi.org/10.1016/j.jcde.2018.11.001
https://www.nvidia.com/content/tesla/pdf/ansys-fluent-nvidiagpu-userguide.pdf
https://www.nvidia.com/content/tesla/pdf/ansys-fluent-nvidiagpu-userguide.pdf
https://exafoam.eu/
https://www.excellerat.eu/
http://dx.doi.org/10.1016/0010-2180(91)90072-J

Aerospace 2023, 10, 792 24 of 26

13. Descombes, S.; Duarte, M.; Massot, M. Operator Splitting Methods with Error Estimator and Adaptive Time-Stepping. Application
to the Simulation of Combustion Phenomena. In Splitting Methods in Communication, Imaging, Science, and Engineering; Springer
International Publishing: Cham, Switzerland, 2016; pp. 627–641. [CrossRef]

14. Yang, B.; Pope, S. An investigation of the accuracy of manifold methods and splitting schemes in the computational implementa-
tion of combustion chemistry. Combust. Flame 1998, 112, 16–32. [CrossRef]

15. Singer, M.; Pope, S.; Najm, H. Modeling unsteady reacting flow with operator splitting and ISAT. Combust. Flame 2006,
147, 150–162. [CrossRef]

16. Ren, Z.; Xu, C.; Lu, T.; Singer, M.A. Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations.
J. Comput. Phys. 2014, 263, 19–36. [CrossRef]

17. Lu, Z.; Zhou, H.; Li, S.; Ren, Z.; Lu, T.; Law, C.K. Analysis of operator splitting errors for near-limit flame simulations. J. Comput.
Phys. 2017, 335, 578–591. [CrossRef]

18. Xue, W.; Jackson, C.W.; Roy, C.J. An improved framework of GPU computing for CFD applications on structured grids using
OpenACC. J. Parallel Distrib. Comput. 2021, 156, 64–85. [CrossRef]

19. Ghioldi, F.; Piscaglia, F.; Ghioldi, F.; Piscaglia, F. A CPU-GPU Paradigm to Accelerate Turbulent Combustion and Reactive-Flow
CFD Simulations. In Proceedings of the 8th OpenFOAM Conference, Virtual, 13–15 October 2020.

20. Ghioldi, F.; Piscaglia, F.; Ghioldi, F.; Piscaglia, F. GPU-Accelerated Simulation of Supersonic Combustion in Scramjet Engines by
OpenFOAM. In Proceedings of the 33rd International Conference on Parallel Computational Fluid Dynamics—ParCFD2022,
Manhattan, NY, USA, 25–27 May 2022.

21. Martineau, M.; Posey, S.; Spiga, F. AmgX GPU Solver Developments for OpenFOAM. In Proceedings of the 8th OpenFOAM
Conference, Virtual, 13–15 October 2020.

22. Nagy, D.; Plavecz, L.; Hegedűs, F. The art of solving a large number of non-stiff, low-dimensional ordinary differential equation
systems on GPUs and CPUs. Commun. Nonlinear Sci. Numer. Simul. 2022, 112, 106521. [CrossRef]

23. Jaiswal, S.; Reddy, R.; Banerjee, R.; Sato, S.; Komagata, D.; Ando, M.; Okada, J. An Efficient GPU Parallelization for Arbitrary
Collocated Polyhedral Finite Volume Grids and Its Application to Incompressible Fluid Flows. In Proceedings of the 2016 IEEE
23rd International Conference on High Performance Computing Workshops (HiPCW), Hyderabad, India, 19–22 December 2016;
pp. 81–89. [CrossRef]

24. Ghioldi, F. Fast Algorithms for Highly Underexpanded Reactive Spray Simulations. Master’s Thesis, Politecnico di Milano,
Milan, Italy, 2019. Available online: https://hdl.handle.net/10589/146075 (accessed on 11 August 2023).

25. Trevisiol, F. Accelerating Reactive Flow Simulations via GPGPU ODE Solvers in OpenFOAM. Master’s Thesis, Politecnico di
Milano, Milan, Italy, 2020. Available online: https://hdl.handle.net/10589/170955 (accessed on 11 August 2023).

26. Ghioldi, F. Development of Novel CFD Methodologies for the Optimal Design of Modern Green Propulsion Systems. Ph.D. Thesis,
Politecnico di Milano, Milan, Italy, 2022. Available online: https://hdl.handle.net/10589/195309 (accessed on 11 August 2023).

27. Dyson, J. GPU Accelerated Linear System Solvers for OpenFOAM and Their Application to Sprays. Ph.D. Thesis, Brunel
University London, Uxbridge, UK, 2016.

28. Molinero, D.; Galván, S.; Domínguez, F.; Ibarra, L.; Solorio, G. Francis 99 CFD through RapidCFD accelerated GPU code. IOP
Conf. Ser. Earth Environ. Sci. 2021, 774, 012016. [CrossRef]

29. Jacobsen, D.A.; Senocak, I. Multi-level parallelism for incompressible flow computations on GPU clusters. Parallel Comput. 2013,
39, 1–20. [CrossRef]

30. Naumov, M.; Arsaev, M.; Castonguay, P.; Cohen, J.; Demouth, J.; Eaton, J.; Layton, S.; Markovskiy, N.; Reguly, I.; Sakharnykh, N.;
et al. AmgX: A Library for GPU Accelerated Algebraic Multigrid and Preconditioned Iterative Methods. SIAM J. Sci. Comput.
2015, 37, S602–S626. [CrossRef]

31. The OpenFOAM Foundation. Available online: http://www.openfoam.org/dev.php (accessed on 15 August 2023).
32. ESI OpenCFD OpenFOAM. Available online: http://www.openfoam.com/ (accessed on 15 August 2023).
33. Caretto, L.S.; Gosman, A.D.; Patankar, S.V.; Spalding, D.B. Two calculation procedures for steady, three-dimensional flows with

recirculation. In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics; Lecture Notes in Physics;
Cabannes, H., Temam, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1973; Volume 1, pp. 60–68.

34. Gordon, S.; McBride, B. Computer Program for Calculation of Complex Equi- librium Compositions, Rocket Performance, Incident and
Reflected Shocks, and Chapman-Jouguet Detonations; NASA Techical Report SP-273; National Aeronautics and Space Administration:
Washington, DC, USA, 1971.

35. Intel one API Math Kernel Library (MKL) Developer Reference. Available online: https://software.intel.com/content/www/
us/en/develop/articles/mkl-reference-manual.html (accessed on 15 August 2023).

36. Balay, S.; Abhyankar, S.; Adams, M.F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.M.; Dalcin, L.; Dener, A.;
et al. PETSc Web Page. 2023. Available online: https://petsc.org/ (accessed on 15 August 2023).

37. NVIDIA cuSPARSE Library. Available online: https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSPARSE
(accessed on 15 August 2023).

38. Algebraic Multigrid Solver (AmgX) Library. Available online: https://github.com/NVIDIA/AMGX (accessed on 15 August 2023).
49. Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; van der Vorst, H. Templates

for the Solution of Linear Systems: Building Blocks for Iterative Methods; Society for Industrial and Applied Mathematics: Philadelphia,
PA, USA, 1994. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-41589-5_19
http://dx.doi.org/10.1016/S0010-2180(97)81754-3
http://dx.doi.org/10.1016/j.combustflame.2006.06.007
http://dx.doi.org/10.1016/j.jcp.2014.01.016
http://dx.doi.org/10.1016/j.jcp.2017.01.044
http://dx.doi.org/10.1016/j.jpdc.2021.05.010
http://dx.doi.org/10.1016/j.cnsns.2022.106521
http://dx.doi.org/10.1109/HiPCW.2016.020
https://hdl.handle.net/10589/146075
https://hdl.handle.net/10589/170955
https://hdl.handle.net/10589/195309
http://dx.doi.org/10.1088/1755-1315/774/1/012016
http://dx.doi.org/10.1016/j.parco.2012.10.002
http://dx.doi.org/10.1137/140980260
http://www.openfoam.org/dev.php
http://www.openfoam.com/
https://software.intel.com/content/www/us/en/develop/articles/mkl-reference-manual.html
https://software.intel.com/content/www/us/en/develop/articles/mkl-reference-manual.html
https://petsc.org/
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSPARSE
https://github.com/NVIDIA/AMGX
http://dx.doi.org/10.1137/1.9781611971538

Aerospace 2023, 10, 792 25 of 26

49. Saad, Y. A Flexible Inner-Outer Preconditioned GMRES Algorithm. SIAM J. Sci. Comput. 1993, 14, 461–469. [CrossRef]
41. Vogel, J.A. Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems. Appl. Math. Comput. 2007, 188, 226–233.

[CrossRef]
42. Bna, S. foam2CSR. 2021. Available online: https://gitlab.hpc.cineca.it/openfoam/foam2csr (accessed on 15 August 2023).
43. Liang, L.; Stevens, J.G.; Raman, S.; Farrell, J.T. The use of dynamic adaptive chemistry in combustion simulation of gasoline

surrogate fuels. Combust. Flame 2009, 156, 1493–1502. [CrossRef]
44. Goldin, G.M.; Ren, Z.; Zahirovic, S. A cell agglomeration algorithm for accelerating detailed chemistry in CFD. Combust. Theory

Model. 2009, 13, 721–739. [CrossRef]
45. Singer, M.A.; Pope, S.B. Exploiting ISAT to solve the reaction–diffusion equation. Combust. Theory Model. 2004, 8, 361–383.

[CrossRef]
46. Li, Z.; Lewandowski, M.T.; Contino, F.; Parente, A. Assessment of On-the-Fly Chemistry Reduction and Tabulation Approaches

for the Simulation of Moderate or Intense Low-Oxygen Dilution Combustion. Energy Fuels 2018, 32, 10121–10131. [CrossRef]
47. Blasco, J.; Fueyo, N.; Dopazo, C.; Ballester, J. Modelling the Temporal Evolution of a Reduced Combustion Chemical System With

an Artificial Neural Network. Combust. Flame 1998, 113, 38–52. [CrossRef]
48. Nikitin, V.; Karandashev, I.; Malsagov, M.Y.; Mikhalchenko, E. Approach to combustion calculation using neural network. Acta

Astronaut. 2022, 194, 376–382. [CrossRef]
49. Ji, W.; Qiu, W.; Shi, Z.; Pan, S.; Deng, S. Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics. J. Phys. Chem.

A 2021, 125, 8098–8106. [CrossRef]
50. Tap, F.; Schapotschnikow, P. Efficient Combustion Modeling Based on Tabkin® CFD Look-up Tables: A Case Study of a Lifted

Diesel Spray Flame. In Proceedings of the SAE Technical Paper; SAE International: Warrendale, PA, USA, 2012. [CrossRef]
51. Haidar, A.; Brock, B.; Tomov, S.; Guidry, M.; Billings, J.J.; Shyles, D.; Dongarra, J.J. Performance analysis and acceleration

of explicit integration for large kinetic networks using batched GPU computations. In Proceedings of the 2016 IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA USA, 13–15 September 2016; pp. 1–7.

52. Wilt, N. The CUDA Handbook: A Comprehensive Guide to GPU Programming; Addison-Wesley: Boston, MA, USA, 2013.
53. Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion, 3rd ed.; CNRS: Paris, France, 2012.
54. Van Der Houwen, P.; Sommeijer, B.P. On the Internal Stability of Explicit, m-Stage Runge-Kutta Methods for Large m-Values.

J. Appl. Math. Mech. 1980, 60, 479–485. [CrossRef]
55. Volkov, V. Better performance at lower occupancy. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,

Austin, TX, USA, 15–21 November 2008.
56. Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes in C, 2nd ed.; Cambridge University Press: Cambridge,

UK, 1997.
57. Fehlberg, E. Some Experimental Results Concerning the Error Propagation in Runge-Kutta Type Integration Formulas; NASA Techical

Report; National Aeronautics and Space Administration: Washington, DC, USA, 1970.
58. Fehlberg, E. Low-order Classical Runge-Kutta Formulas with Stepsize Control and Their Application to Some Heat Transfer Problems;

NASA Technical Report TR-R-315; National Aeronautics and Space Administration: Washington, DC, USA, 1969.
59. Cash, J.; Karp, A. A Variable Order Runge-Kutta Method for Initial Value Problems with Rapidly Varying Right-Hand Sides.

Acm Trans. Math. Softw. 1990, 16, 201–222. [CrossRef]
60. Nickolls, J.; Dally, W.J. The GPU Computing Era. IEEE Micro 2010, 30, 56–69. [CrossRef]
61. Lindholm, E.; Nickolls, J.; Oberman, S.; Montrym, J. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro

2008, 28, 39–55. [CrossRef]
62. Branch Statistics. Available online: https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/

cudaexperiments/kernellevel/branchstatistics.htm (accessed on 3 February 2023).
63. NVIDIA; Vingelmann, P.; Fitzek, F.H.P. CUDA, Release: 10.2.89. 2020. Available online: https://developer.nvidia.com/cuda-

toolkit (accessed on 11 August 2023).
64. Klingbeil, G.; Erban, R.; Giles, M.; Maini, P.K. Fat versus Thin Threading Approach on GPUs: Application to Stochastic Simulation

of Chemical Reactions. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 280–287. [CrossRef]
65. Goodwin, D.G.; Speth, R.L.; Moffat, H.K.; Weber, B.W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics,

Thermodynamics, and Transport Processes. Version 2.4.0. 2018. Available online: https://www.cantera.org (accessed on
15 August 2023). [CrossRef]

66. Hong, Z.; Davidson, D.F.; Hanson, R.K. An improved H2/O2 mechanism based on recent shock tube/laser absorption
measurements. Combust. Flame 2011, 158, 633–644. [CrossRef]

67. Guerra, R.; Waidmann, W.; Laible, C. An Experimental Investigation of the Combustion of a Hydrogen Jet Injected Parallel
in a Supersonic Air Stream. In Proceedings of the AIAA 3rd International Aerospace Conference, Washington, DC, USA,
3–5 December 1991.

68. Waidmann, W.; Alff, F.; Bohm, M.; Claus, W.; Oschwald, M. Experimental Investigation of the Combustion Process in a Supersonic
Combustion Ramjet (SCRAMJET); Technical Report; DGLR Jahrestagung: Erlangen, Germany, 1994.

69. Waidmann, W.; Alff, F.; Böhm, M.; Brummund, U.; Clauss, W.; Oschwald, M. Supersonic Combustion of Hydrogen/Air in a
Scramjet Combustion Chamber. Space Technol. 1994, 6, 421–429.

http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1016/j.amc.2006.09.116
https://gitlab.hpc.cineca.it/openfoam/foam2csr
http://dx.doi.org/10.1016/j.combustflame.2009.02.008
http://dx.doi.org/10.1080/13647830903154542
http://dx.doi.org/10.1088/1364-7830/8/2/009
http://dx.doi.org/10.1021/acs.energyfuels.8b01001
http://dx.doi.org/10.1016/S0010-2180(97)00211-3
http://dx.doi.org/10.1016/j.actaastro.2021.10.034
http://dx.doi.org/10.1021/acs.jpca.1c05102
http://dx.doi.org/10.4271/2012-01-0152
http://dx.doi.org/10.1002/zamm.19800601005
http://dx.doi.org/10.1145/79505.79507
http://dx.doi.org/10.1109/MM.2010.41
http://dx.doi.org/10.1109/MM.2008.31
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/branchstatistics.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/branchstatistics.htm
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://dx.doi.org/10.1109/TPDS.2011.157
https://www.cantera.org
http://dx.doi.org/10.5281/zenodo.1174508
http://dx.doi.org/10.1016/j.combustflame.2010.10.002

Aerospace 2023, 10, 792 26 of 26

70. Génin, F.; Menon, S. Simulation of Turbulent Mixing Behind a Strut Injector in Supersonic Flow. AIAA J. 2010, 48, 526–539.
[CrossRef]

71. Potturi, A.; Edwards, J. Investigation of Subgrid Closure Models for Finite-Rate Scramjet Combustion. In Proceedings of the 43rd
Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013; pp. 1–10. [CrossRef]

72. Zhang, H.; Zhao, M.; Huang, Z. Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM. Fuel 2020,
282, 118812. [CrossRef]

73. Berglund, M.; Fureby, C. LES of supersonic combustion in a scramjet engine model. Proc. Combust. Inst. 2007, 31, 2497–2504.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/1.43647
http://dx.doi.org/10.2514/6.2013-2461
http://dx.doi.org/10.1016/j.fuel.2020.118812
http://dx.doi.org/10.1016/j.proci.2006.07.074

	Introduction
	Motivation of This Work
	Highlights
	Paper Structure

	Implicit Segregated Solution Method of the Flow Transport for All Flow Speeds
	Solution of Large Sparse Linear Systems in Segregated Solvers
	Reactive Flows/Combustion Simulations
	Governing Equations
	Multi-Cell Approach to Accelerating the Chemical Solution on Hybrid CPU–GPU Systems
	Further Notes about Domain Decomposition in Heterogeneous CPU/GPU Systems
	Validation and Verification
	Auto-Ignition in Single-Cell Batch Reactors
	Validation Test: Supersonic Combustion in a Scramjet Engine
	Simulation of Supersonic Combustion in the Scramjet Engine
	Performance

	Conclusions
	Link between Density and Pressure Correction
	Link between Veocity and Pressure Correction
	References

