
ATG

Algebraic & Geometric
Topology

msp

Volume 23 (2023)

Rigidity at infinity for the Borel function of
the tetrahedral reflection lattice

ALESSIO SAVINI



msp
Algebraic & Geometric Topology 23:4 (2023) 1583–1600

DOI: 10.2140/agt.2023.23.1583
Published: 14 June 2023

Rigidity at infinity for the Borel function of
the tetrahedral reflection lattice

ALESSIO SAVINI

If � is the fundamental group of a complete finite volume hyperbolic 3–manifold,
Guilloux conjectured that the Borel function on the PSL.n;C/–character variety of
� should be rigid at infinity, that is it should stay bounded away from its maximum at
ideal points.

We prove Guilloux’s conjecture in the particular case of the reflection group associated
to a regular ideal tetrahedron of H3.

57T10; 53C35, 57M27

1 Introduction

Let � be the fundamental group of a finite volume complete hyperbolic 3–manifold M .
In the attempt to explore the rigidity properties of � , many mathematicians studied the
space of representations of � inside a semisimple Lie group G. For instance, when
G D PSL.n;C/, Bucher, Burger and Iozzi [7] introduced the Borel function on the
character variety X.�;PSL.n;C// using bounded cohomology techniques. The Borel
function is continuous with respect to the topology of pointwise convergence and
its absolute value is bounded by the volume of M multiplied by a suitable constant
depending on n. Additionally, the maximum is attained only by the conjugacy class
of the representation �n ı i (or by its complex conjugate), where i W � ! PSL.2;C/
is the standard lattice embedding and �n W PSL.2;C/! PSL.n;C/ is the irreducible
representation. When n D 2 the Borel function boils down to the volume function
introduced for instance by Dunfield [11] or Francaviglia [12] and its rigid behavior can
be translated in terms of the Mostow rigidity theorem [20].

Beyond their intrinsic interest, the previous results have several important consequences
for the birationality properties of the character variety X.�;PSL.n;C//. For example,
both Dunfield [11] and Klaff and Tillmann [18] used the properties of the volume
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function to prove that the component of the variety X.�;PSL.2;C// containing the
holonomy of M is birational to its image through the peripheral holonomy map, which
is obtained by restricting any representation to the fundamental groups of the cusps.
A similar result has been obtained by Guilloux [17] for the geometric component of
the PSL.n;C/–character variety, but the author needed to conjecture that outside of an
analytic neighborhood of the class of the representation �n ı i the Borel function is
bounded away from its maximum value.

In this paper we focus our attention on the reflection group associated to a regular ideal
tetrahedron and we prove a weak version of [17, Conjecture 1] for every n� 2.

Theorem 1.1 Let � be the reflection group associated to the regular ideal tetrahe-
dron .0; 1; e�i=3;1/ and let �0 < PSL.2;C/ be a torsion-free finite index subgroup
of � . Let �k W �0 ! PSL.n;C/ be a sequence of representations and assume that
each �k admits an equivariant measurable map 'k W P1.C/! F.n;C/. Suppose that
limk!1 ˇn.�k/D

�
nC1
3

�
Vol.�0nH3/. Then there must exist a sequence .gk/k2N of

elements in PSL.n;C/ such that for every 
 2 �0,

lim
k!1

gk�k.
/g
�1
k D .�n ı i/.
/;

where i W �0! PSL.2;C/ is the standard lattice embedding and

�n W PSL.2;C/! PSL.n;C/

is the irreducible representation.

This phenomenon, called rigidity at infinity, was proved by the author and Francav-
iglia [14, Theorem 1.1] for nD2 and any nonuniform lattice of PSL.2;C/— notice that
the same phenomenon holds for all rank-one representations of any rank-one lattice [21].
However, since in that case our proof exploited the existence of natural maps for
nonelementary representations — see for instance Besson, Courtois and Gallot [2; 3; 4]
and Francaviglia [13] — we could not use the same argument here.

For our purposes, the existence of a boundary map 'k is crucial. Indeed, the possibility
to express the Borel invariant ˇn.�k/ as the integral over a fundamental domain for
�0nPSL.2;C/ of the pullback of the Borel cocycle along the boundary map 'k together
with the maximality hypothesis allows us to prove the existence of a suitable sequence
.gk/k2N of elements in PSL.n;C/ such that the sequence .gk'k.
�//k2N is bounded,
where �D .0; 1; e�i=3;1/ and 
 is any element of �0. The boundedness of the previous
sequence implies the boundedness of .gk�kg�1k .
//k2N for every 
 2 �0 and hence
we reach our conclusion.
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Organization

Section 2 is dedicated to preliminary definitions. We start with the notion of bounded
cohomology for a locally compact group, then we recall the definition of the Borel
cocycle and the Borel class. We finally introduce the Borel invariant for a representation
� W �! PSL.n;C/ and we recall its rigidity property. Section 3 is devoted to the proof
of the main theorem.
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2 Preliminary definitions

2.1 Bounded cohomology of semisimple Lie groups

Given a locally compact group G there exist several ways to introduce the notion of
continuous bounded cohomology of G. The standard one relies on the complex of
continuous bounded functions on tuples of G. Since we will deal only with semisimple
Lie groups and their lattices, we are going to follow a different approach. Indeed,
in this case, one can introduce the continuous bounded cohomology of G via the
complex of essentially bounded measurable functions on the Furstenberg boundary. This
definition is equivalent to the standard one thanks to the work by Burger and Monod [9,
Corollary 1.5.3]. More generally, one can use any strong resolution of R via relatively
injective G–modules to compute the continuous bounded cohomology of G. For a
more detailed exposition about these notions, we refer the reader to Monod’s book [19].

Let G be a semisimple Lie group of noncompact type and let B.G/ be its Furstenberg
boundary. The latter can be identified with G=P , where P is a minimal parabolic
subgroup of G. For instance, when G D PSL.2;C/, its Furstenberg boundary is
B.G/DP1.C/. Recall that B.G/ admits a canonical quasi-invariant measure obtained
by the Haar measurable structure on the group G.

We define the space of bounded measurable functions on the Furstenberg boundary as

B1.B.G/nC1;R/ WD ff W B.G/nC1!R j f is measurableg:

Algebraic & Geometric Topology, Volume 23 (2023)
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By introducing the usual equivalence relation f � g, where f and g are equivalent
if and only if they coincide up to a measure zero subset, we can define the space of
essentially bounded measurable functions as

L1.B.G/nC1;R/ WD B1.B.G/nC1;R/=�:

From now on, with an abuse of notation, we are going to write only f when we refer
to its equivalence class Œf ��.

The space L1.B.G/nC1;R/ admits a natural G–module structure given by

.gf /.�0; : : : ; �n/ WD f .g
�1�0; : : : ; g

�1�n/

for every element g 2 G, every function f 2 L1.B.G/nC1;R/ and almost every
�0; : : : ; �n 2 B.G/. Together with the standard homogeneous coboundary operator

ın W L1.B.G/nC1;R/! L1.B.G/nC2;R/;

ınf .�0; : : : ; �nC1/D

nC1X
iD0

.�1/if .�0; : : : ; �i�1; �iC1; : : : �nC1/;

we obtain a cochain complex .L1.B.G/�C1;R/; ı�/.

If we define the space of G–invariant functions as

L1.B.G/nC1;R/G WD ff 2 L1.B.G/nC1;R/ j gf D f for all g 2Gg;

we can restrict the coboundary operators to that collection of spaces getting a subcom-
plex .L.B.G/�C1;R/G I ı�

j
/.

Definition 2.1 The continuous bounded cohomology of G is the cohomology of the
subcomplex .L1.B.G/�C1;R/G I ı�

j
/ and it is denoted byH �cb.G;R/. In a similar way,

if � < G is a lattice, its bounded cohomology groups are given by the cohomology of
the subcomplex .L1.B.G/�C1;R/� I ı�

j
/ and they are denoted by H �

b
.�;R/.

Notice that in the case of a lattice we omitted the subscript c, since the topology
inherited by � from G is the discrete one and the continuity issue becomes trivial. For
both the groupG and its lattices, from now on, we are going to omit the real coefficients
when we refer to the continuous bounded cohomology groups.

Remarkably, one can consider the complex of bounded measurable functions

.B1.B.G/�C1;R/; ı�/

to gain precious information about the continuous bounded cohomology of G. Here ı�

still denotes the standard coboundary operator.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proposition 2.2 [8, Proposition 2.1] If we add to the complex .B1.B.G/�C1;R/; ı�/
the inclusion of coefficient R ,! B1.B.G/;R/, we get back a strong resolution of R.
Hence there exists a canonical map

c� WH �.B1.B.G/�C1;R/G/!H �cb.G/:

We conclude the section by observing that both Definition 2.1 and Proposition 2.2
are still valid if we consider the subcomplex of alternating cochains. Recall that an
essentially bounded function or a bounded measurable function f W B.G/nC1!R is
alternating if for every permutation � 2 SnC1, it holds that

f .x�.0/; : : : ; x�.n//D sgn.�/f .x0; : : : ; xn/;

where sgn is the sign of the permutation.

2.2 The Borel cocycle

A complete flag F of Cn is a sequence of nested subspaces

F 0 � F 1 � : : : F n�1 � F n

where dimC F
i D i for i D 1; : : : ; n. Let F.n;C/ be the space parametrizing all the

possible complete flags of Cn. This is a complex variety which can be thought of
as a homogeneous space obtained as the quotient of PSL.n;C/ by any of its Borel
subgroups. In this way F.n;C/ is the realization of the Furstenberg boundary associated
to PSL.n;C/.

An affine flag .F; v/ of Cn is a complete flag F together with a decoration

v D .v1; : : : ; vn/ 2 .Cn/n

such that
F i DCvi CF i�1

for i D 1; : : : n. For any 4–tuple of affine flags F D ..F0; v0/; : : : ; .F3; v3// of Cn

and given a multi-index J 2 f0; : : : ; n� 1g4, we set

Q.F ;J / WD
�
hF

j0C1
0 ; : : : ; F

j3C1
3 i

hF
j0
0 ; : : : ; F

j3
3 i

I .v
j0C1
0 ; : : : ; v

j3C1
3 /

�
:

In the notation above we denoted by ŒV; .x0; : : : ; xk/� the equivalence class of a com-
plex m–dimensional vector space V together with a .kC1/–tuple of spanning vectors
.x0; : : : ; xk/ 2 V

kC1 modulo the diagonal action of GL.m;C/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Since the hyperbolic volume function Vol W P1.C/4!R can be thought of as defined
on .C2 nf0g/4, we can actually extend it on .C2/4. Using such an extension, we define
the cocycle Bn as

(1) Bn..F0; v0/; : : : ; .F3; v3// WD
X

J2f0;:::;n�1g4

VolQ.F ;J /;

where we consider the volume function exactly when the dimension of the vector space
appearing in Q.F ;J / is equal to 2, and we set the volume equal to zero otherwise.

In the particular case of generic flags (see Definition 2.7), the definition of the Borel
cocycle is given by Goncharov [15]. Its extension to the whole space of 4–tuples of
flags is due to Bucher, Burger and Iozzi, who proved the following.

Proposition 2.3 [7, Corollary 13, Theorem 14] The function Bn does not depend on
the decoration used to compute it and hence it descends naturally to a function

Bn W F.n;C/
4
!R

on 4–tuples of flags which is defined everywhere. Moreover , that function is a mea-
surable PSL.n;C/–invariant alternating cocycle whose absolute value is bounded by�
nC1
3

�
�3, where �3 is the volume of a positively oriented regular ideal tetrahedron

in H3.

As a consequence of Proposition 2.2, the function Bn naturally determines a bounded
cohomology class in H 3

cb.PSL.n;C//, which we are going to denote by ˇb.n/.

Definition 2.4 The cocycle Bn is called a Borel cocycle and the class ˇb.n/ is called
a bounded Borel class.

Bucher, Burger and Iozzi [7, Theorem 2] proved that the cohomology group

H 3
cb.PSL.n;C//

is a one-dimensional real vector space generated by the bounded Borel class. This
generalizes a previous result by Bloch [5] for PSL.2;C/.

We are going now to recall the main rigidity property of the Borel cocycle. Denote by
Vn W P1.C/! F.n;C/ the Veronese map. Recall that, if V in.�/ is the i–dimensional
space of the flag Vn.�/ and � has homogeneous coordinates Œx W y�, then we define
Vn�in .�/ as the .n�i/–dimensional subspace with basis�

0; : : : ; 0; xi ;
� i
1

�
xi�1y; : : : ;

� i
j

�
xi�jyj ; : : : ;

� i

i�1

�
xyi�1; yi ; 0; : : : ; 0

�T
where the first are k zeros and the last are n� i �k�1 zeros, for kD 0; : : : ; n�1� i .

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 2.5 Let .F0; : : : ; F3/ 2 F.n;C/4 be a 4–tuple of flags. We say that the
4–tuple is maximal if

jBn.F0; : : : ; F3/j D
�nC1

3

�
�3:

Maximal flags can be described in terms of the Veronese embedding. More precisely:

Theorem 2.6 [7, Theorem 19, Corollary 20] Let .F0; F1; F2; F3/ be a maximal
4–tuple of flags in F.n;C/. Then there must exist a unique element g 2 PSL.n;C/
such that

g.F0; F1; F2; F3/D .Vn.0/;Vn.1/;Vn.˙e
i�
3 /;Vn.1//

where the sign˙ reflects the sign of Bn.F0; : : : ; F3/. Additionally , if .F0; F1; F2; F3/
and .F0; F1; F2; F 03/ are both maximal with the same sign , then F3 D F 03.

Now we discuss the continuity property of the Borel cocycle. The latter is measurable
and not continuous since for instance one can consider a maximal 4–tuple of flags
.F0; F1; F2; F3/ and apply the sequence .�n.g/k/k2N to it, where g 2 PSL.2;C/ is
loxodromic and �n W PSL.2;C/! PSL.n;C/ is the irreducible representation. In this
way we get a sequence of maximal 4–tuples which degenerates at the limit and for that
sequence the Borel cocycle is not continuous.

Nevertheless one can say something relevant about continuity when a 4–tuple of flags
.F0; F1; F2; F3/ satisfies a particular condition called general position.

Definition 2.7 Let .F0; F1; F2; F3/ 2F.n;C/4 be a 4–tuple of flags. We say that the
flags are in general position if

dimChF
j0
0 ; : : : F

j3
3 i D j0C : : :C j3;

whenever j0C : : :C j3 � n.

For a 4–tuple of flags in general position and a multi-index J such that

j0C � � �C j3 D n� 2;

the projection of the 4–tuple .vj0C10 ; : : : ; v
j3C1
3 / to the 2–dimensional vector space

appearing in Q.F ;J / gives us back a 4–tuple of distinct points on a projective line.
Since such a 4–tuple varies continuously and the volume function Vol is continuous on
4–tuples of distinct points in P1.C/, we get that the Borel cocycle is continuous on
PSL.n;C/–orbits of 4–tuples of flags in general position.

The Borel cocycle can be used to understand when 4 flags are in general position.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 2.8 Let .F0; F1; F2; F3/ 2 F.n;C/4 be a 4–tuple of flags. Ifˇ̌̌
Bn.F0; F1; F2; F3/�

�nC1
3

�
�3

ˇ̌̌
< "

for some " > 0 sufficiently small , then the flags are in general position.

Proof We are going to denote by Ck.n/ the number of all the possible partitions of
n by k integers.

Our proof will follow the line of [7, Lemma 15]. We will argue by induction on n.
Suppose nD2. The flags boil down to lines in C2 and those lines are in general position
only if they are distinct. Since the Borel invariant is equal to zero when evaluated at
two lines that coincide, the claim follows.

Assume now that the statement is true for n�1. Given a flag F 2F.n;C/ we are going
to denote by F 2 F.Cn=hF 10 i/ the complete flag of the quotient Cn=hF 10 i obtained
by projecting F . Take the minimal value j such that F 10 � F

j
1 .

We define the sets

J1 WD fJ 2 f0; : : : ; n� 1g4 j j0 D j1 D 0; 0� j2; j3 � n� 2g;

J2 WD fJ 2 f0; : : : ; n� 1g4 j j0 D 0; 0 < j1 � n� 2; 0� j2; j3 � n� 2g;

J3 WD fJ 2 f0; : : : ; n� 1g4 j 0 < j0 � n� 2; 0� j1; j2; j3 � n� 2g:

By following the same computation of Bucher, Burger and Iozzi [7, Equation 8,
Lemma 17], we have

(2) " >
�nC1

3

�
�3�Bn.F0; : : : ; F3/

D C4.n� 2/�3�
X

J2f0;:::;n�1g4

VolQ.F ;J /

D

�
C4.n� 3/�3�

X
J3

VolQ.F ;J /
�
C

�
C3.n� 3/�3�

X
J2

VolQ.F ;J /
�

C

�
C2.n� 2/�3�

X
J1

VolQ.F ;J /
�
;

where we used the fact that C4.n� 2/D
�
nC1
3

�
and the recursive relation

Ck.n/D Ck�1.n/CCk.n� 1/:

Notice that in the last line of the equation we removed the vanishing terms whose
multi-index J does not lie in any Ji for i D 1; 2; 3.

Algebraic & Geometric Topology, Volume 23 (2023)
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It follows that if the Borel invariant is "–near to its maximal value, then the sums over
the sets J1, J2 and J3 are "–near to their maximal values. By the symmetry in the
roles played by the indices appearing in J , we must haveX

j0Dj2D0
0�j1;j3�n�2

VolQ.F ;J / > C2.n� 2/�3� ":

Using the particular choice of j and following the same argument of [7, Lemma 15],
we get that

.j � 1/�3 � C2.n� 2/�3� "D .n� 1/�3� ";

and since " is sufficiently small and j is an integer, j must be equal to n. This implies
that F 10 � F

n
1 nF

n�1
1 . A similar condition holds also for F2 and F3. In this way we

get that

F i
k
D F ik;

for k D 1; 2; 3 and 0� i � n� 1, whereas

F i0 D F
i�1
0 ;

for i � 1.

Consider now 0 � j0; j1; j2; j3 � n such that j0 C j1 C j2 C j3 � n. The case
j0 D : : :D j3 D 0 is trivial, so we will assume j0 � 1. By (2) we know that the sum
over J3 is "–near to its maximal value C4.n�3/�3. Thanks to [7, Equation 9], we can
write

Bn�1.F 0; : : : ; F 3/D
X
J3

VolQ.F ;J /� C4.n� 3/�3� ":

Hence F 0; : : : ; F 3 are in general position by the inductive hypothesis. In this way we
get

dimChF
j0
0 ; : : : ; F

j3
3 i D dimChF

j0
0 ; : : : ; F

j3
3 iC 1

D dimChF
j0�1
0 ; F

j1
1 ; : : : ; F

j3
3 iC 1

D .j0� 1/C j1C j2C j3C 1

D j0C j1C j2C j3;

and this finishes the proof of the lemma.

The previous result is crucial in the proof of the following:
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Lemma 2.9 Let .F .k/0 ; : : : ; F
.k/
3 /k2N be a sequence of 4–tuples of flags such that

lim
k!1

Bn.F
.k/
0 ; : : : ; F

.k/
3 /D

�nC1
3

�
�3:

Given a positively oriented regular ideal tetrahedron � D .�0; : : : ; �3/, there exists a
sequence .gk/k2N of elements gk 2 PSL.n;C/ such that

lim
k!1

gkF
.k/
i D Vn.�i /

for i D 0; : : : ; 3.

Proof By hypothesis we know that for k large enough,ˇ̌̌
Bn.F

.k/
0 ; : : : ; F

.k/
3 /�

�nC1
3

�
�3

ˇ̌̌
< "

for " > 0 fixed. By Lemma 2.8, up to discarding the first terms of the sequence, we
can suppose that F .k/0 ; F

.k/
1 ; F

.k/
2 ; F

.k/
3 are in general position. If F0 and F1 are flags

and L is a line, using the transitivity of PSL.n;C/ on triples .F0; F1; L/ in general
position [7, Lemma 23], we can find a unique element gk 2 PSL.n;C/ such that

gkF
.k/
0 D Vn.�0/; gkF

.k/
1 D Vn.�1/; gk.F

.k/
2 /1 D V1n.�2/:

On the subset of 4–tuples of flags .F0; F1; F2; F3/ in general position such that
F0 D Vn.�0/, F1 D Vn.�1/ and F 12 D V1n.�2/ the Borel cocycle is continuous (since
we fixed a set of representatives in the PSL.n;C/–orbits) and thus we argue that

lim
k!1

gk.F
.k/
3 /1 D V1n.�3/:

Imitating the inductive argument in the proof of [7, Theorem 19] one can show that the
same holds for the other subspaces of the flags F .k/2 and F .k/3 .

2.3 The Borel invariant for representations into PSL.n; C/

Let � be a nonuniform lattice of PSL.2;C/ without torsion and let � W �! PSL.n;C/
be a representation. Define M WD �nH3. It is well known that we can decompose
the manifold M as M D N [

Sh
iD1 Ci , where N is a compact core of M and for

every i D 1; : : : ; h the component Ci is a cuspidal neighborhood diffeomorphic to
Ti � .0;1/, where Ti is a torus. Since the fundamental group of the boundary @N
is abelian, the maps i�

b
WHk

b
.M;M nN/!Hk

b
.M/ induced at the level of bounded

cohomology groups are isometric isomorphisms for k � 2; see [6]. Moreover, it holds
that Hk

b
.M;M nN/ŠHk

b
.N; @N / by homotopy invariance of bounded cohomology.

Algebraic & Geometric Topology, Volume 23 (2023)
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If we denote by c WHk
b
.N; @N /!Hk.N; @N / the comparison map, we can consider

the composition

H 3
b .PSL.n;C//

��
b
�!H 3

b .�/ŠH
3
b .M/

.i�
b
/�1

���!H 3
b .N; @N /

c
�!H 3.N; @N /;

where the isomorphism that appears in this composition holds by Gromov’s mapping
theorem [16].

Definition 2.10 The Borel invariant associated to a representation � W �! PSL.n;C/
is given by

ˇn.�/ WD h.c ı .i
�
b /
�1
ı .��b //ˇb.n/; ŒN; @N �i;

where the bracket h � ; � i indicates the Kronecker pairing and ŒN; @N � 2H3.N; @N / is
a fixed fundamental class.

The definition of the Borel invariant ˇn.�/ is due to Bucher, Burger and Iozzi [7]. One
can check that ˇn.�/ does not depend on the choice of the compact core N and it
can be suitably extended also to lattices with torsion. We want to remark that there
exist other different approaches to the Borel invariant, for instance the one given by
Dimofte, Gabella and Goncharov [10]. However, since they are all equivalent, we will
consider [7] as our main reference.

The Borel invariant ˇn.�/ remains unchanged on the PSL.n;C/–conjugacy class
of a representation �; hence it naturally defines a function on the character variety
X.�;PSL.n;C// which is continuous with respect to the topology of the pointwise
convergence (this is a consequence of Proposition 2.12, for instance). This function,
called the Borel function, satisfies a strong rigidity property.

Theorem 2.11 [7, Theorem 1] Given any representation � W �! PSL.n;C/,

jˇn.�/j �
�nC1

3

�
Vol.M/

and equality holds if and only if � is conjugate to �n ı i or its complex conjugate �n ı i ,
where i W �! PSL.2;C/ is the standard lattice embedding and

�n W PSL.2;C/! PSL.n;C/

is the irreducible representation.

Algebraic & Geometric Topology, Volume 23 (2023)
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We want to conclude this section by expressing the Borel invariant in terms of boundary
maps between Furstenberg boundaries. We first recall the definition of the transfer map
trans� WH 3

b
.�/!H 3

cb.PSL.2;C//. We can define the map

trans� W L1.P1.C/nC1;R/� ! L1.P1.C/nC1;R/PSL.2;C/;

trans�.c/.x0; : : : ; xn/ WD
Z
�nPSL.2;C/

c. Ngx0; : : : ; Ngxn/d�. Ng/;

where Ng stands for the equivalence class of g in �nPSL.2;C/ and � is any invariant
probability measure on �nPSL.2;C/. Since trans� is a cochain map, we get a well-
defined map

trans� WH �b.�/!H �cb.PSL.2;C//:

Given a representation � W �! PSL.n;C/ we can consider the composition

H 3
cb.PSL.n;C//

��
b
�!H 3

b .�/
trans�
���!H 3

cb.PSL.2;C//:

We have the following:

Proposition 2.12 [7, Propositions 26 and 28] Considering the composition of the
map ��

b
with the transfer map trans� ,

.trans� ı ��b /.ˇb.n//D
ˇn.�/

Vol.M/
ˇb.2/:

Given a measurable �–equivariant map ' W P1.C/!F.n;C/, we can rewrite the above
equation in terms of cochains as

(3)
Z
�nPSL.2;C/

Bn.'.g�0/; : : : '.g�3// d�.g/D
ˇn.�/

Vol.M/
Vol.�0; : : : ; �3/

for every .�0; : : : ; �3/ 2 P1.C/4.

3 Proof of the main theorem

In this section we prove our main theorem. The proof will follow the strategy adopted
by Bucher, Burger and Iozzi for proving [7, Theorem 29].

Let � be the reflection group associated to the regular ideal tetrahedron of vertices
.0; 1; e�i=3;1/ 2 P1.C/4 and let �0 < PSL.2;C/ be a torsion-free subgroup of � of
finite index. From now until the end of the paper, with an abuse of notation, we are
going to denote by g both a general element in PSL.2;C/ and its equivalence class in
�0nPSL.2;C/.
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Lemma 3.1 Letƒ be a torsion-free lattice of PSL.2;C/. Suppose �k Wƒ!PSL.n;C/
is a sequence of representations which satisfy limk!1 ˇn.�k/ D

�
nC1
3

�
Vol.ƒnH3/.

Assume there exists a measurable map 'k W P1.C/!F.n;C/ which is �k–equivariant.
Then , up to passing to a subsequence , for almost every g 2 Isom.H3/,

lim
k!1

Bn.'k.g�0/; : : : ; 'k.g�3//D
�nC1

3

�
Vol.g�0; : : : ; g�3/;

where .�0; : : : ; �3/ 2 P1.C/4 are the vertices of a regular ideal tetrahedron.

Proof Let .�0; : : : ; �3/2P1.C/4 be the vertices of a regular ideal tetrahedron. Without
loss of generality we can assume that Vol.�0; : : : ; �3/D �3. By Proposition 2.12 we
know that (3) holds everywhere and hence we can write

(4)
Z
ƒnPSL.2;C/

Bn.'k.g�0/; : : : ; 'k.g�3// d�ƒnG.g/D
ˇn.�k/

Vol.ƒnH3/
�3

for every k 2 N, where �ƒnG is the measure induced by the Haar measure and
renormalized to be a probability measure. Since by hypothesis

lim
k!1

ˇn.�k/D
�nC1

3

�
Vol.ƒnH3/;

by taking the limit on both sides of (4) we get

(5) lim
k!1

Z
ƒnPSL.2;C/

Bn.'k.g�0/; : : : ; 'k.g�3//d�ƒnG.g/D
�nC1

3

�
�3:

Since by Proposition 2.3 the Borel cocycle satisfies jB.F0; : : : ; F3/j �
�
nC1
3

�
�3,�nC1

3

�
�3�Bn.F0; : : : ; F3/D

ˇ̌̌�nC1
3

�
�3�Bn.F0; : : : ; F3/

ˇ̌̌
for every .F0; : : : ; F3/ 2 F.n;C/4. If we denote by

'4k WƒnPSL.2;C/! F.n;C/4; '4k.g/ WD .'k.g�0/; : : : ; 'k.g�3//;

then (5) implies

lim
k!1




Bn ı'4k � �nC13 �
�3





L1.ƒnPSL.2;C/;�ƒnG/

D 0:

Since L1–convergence implies the convergence almost everywhere of a suitable subse-
quence [1, Section 7], we can extract a subsequence .'k`/`2N such that

lim
`!1

Bn.'k`.g�0/; : : : ; 'k`.g�3//D
�nC1

3

�
�3
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for �ƒnG–almost every g 2ƒnPSL.2;C/. By the equivariance of the maps 'k` , the
equality above holds for �G–almost every g 2 PSL.2;C/.

If � is a reflection along any face of .�0; : : : ; �3/, the same argument can be adapted to
a tetrahedron .��0; : : : ; ��3/ with negative maximal volume Vol.��0; : : : ; ��3/D��3.
Hence the statement follows.

We can apply the previous theorem for a sequence of representations �k W�0!PSL.n;C/
with boundary maps 'k W P1.C/! F.n;C/ such that

lim
k!1

ˇn.�k/D
�nC1

3

�
Vol.�0nH3/:

With an abuse of notation we are going to denote by .'k/k2N the subsequence that we
get from Lemma 3.1.

Our goal now is to show that, up to translating each boundary map 'k by an element
gk 2 PSL.n;C/, the sequence gk'k tends to the Veronese embedding on the vertices
of the tiling of H3 by an ideal regular simplex. Denote by Treg � P1.C/4 the subset
of 4–tuples which are the vertices of regular ideal tetrahedra. For every element
�D .�0; : : : ; �3/we denote by �� the subgroup of Isom.H3/ generated by the reflections
along the faces of �.

We start with the following:

Lemma 3.2 Let � 2 T1 be a regular tetrahedron. Consider a sequence of measurable
maps 'k W P1.C/! F.n;C/. Define

(6) T1 WD
n
� 2 Treg

ˇ̌
lim
k!1

Bn.'k.�//D
�nC1

3

�
Vol.�/

o
where 'k.�/WD.'k.�0/; : : : ;'k.�3// for every regular tetrahedron �D.�0; : : : ; �3/2Treg.
Suppose that for every 
 2 �� we have that 
� 2 T1. Then there exists a sequence
.gk/k2N , where each gk is an element of PSL.n;C/, such that

lim
k!1

gk'k.˛/D Vn.˛/

for every ˛ 2
S3
iD0 ���i .

Proof Since by hypothesis the tetrahedron � is an element of T1, by Lemma 2.9 we
can find a sequence .gk/k2N of elements in PSL.n;C/ such that

lim
k!1

gk'k.�i /D Vn.�i /;

for i D 0; : : : ; 3.
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We want now to verify that the sequence .gk/k2N is the one we were looking for. In
order to do this we need to verify that

lim
k!1

gk'k.
�i /D Vn.
�i /

for i D 0; : : : ; 3 and for every 
 2 �� . If 
 is an arbitrary element of �� we can write
it as 
 D rN � rN�1 � � � r1, where each ri is a reflection along a face of the tetrahedron
ri�1 � � � r1� . We are going to prove the statement by induction on N . If N D 0 there is
nothing to prove. Assume the statement holds for 
 0D rN�1 � � � r1. Denote by �D 
 0� .
We know that for the vertices of � we have

lim
k!1

gk'k.�i /D Vn.�i /

for i D 0; : : : ; 3. We want to prove that

lim
k!1

gk'k.rN�i /D Vn.rN�i /

for i D 0; : : : ; 3. Assume rN is the reflection along the face of � whose vertices are �1,
�2 and �3. In particular we have that rN�i D �i for i D 1; 2; 3, so for these vertices
the statement holds. We are left to prove that

lim
k!1

gk'k.rN�0/D Vn.rN�0/:

The sequence .gk'k.rN�0//k2N is a sequence of points in F.n;C/, which is compact.
Hence we can extract a subsequence which converges to a point ˛0 2 F.n;C/. By
Lemma 2.8 we know that the 4–tuple gk'k.�/ is eventually in general position. By
the continuity of the Borel cocycle on the set of 4–tuples in general position we get

lim
k!1

Bn
�
gk'k.rN�0/; gk'k.�1/; : : : ; gk'k.�3/

�
D Bn.˛0;Vn.�1/; : : : ;Vn.�3//:

At the same time, by hypothesis it follows that

lim
k!1

Bn.gk'k.rN�//D
�nC1

3

�
Vol.rN�/D�

�nC1
3

�
Vol.�/:

On the other hand,

Bn.Vn.rN�//D
�nC1

3

�
Vol.rN�/D�

�nC1
3

�
Vol.�/:

Hence, by a simple comparison argument, we get

Bn.Vn.rN�0/;Vn.�1/; : : : ;Vn.�3//D Bn.˛0;Vn.�1/; : : : ;Vn.�3//D˙
�nC1

3

�
�3:
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As a consequence we must have ˛0 D Vn.rN�0/, but this is equivalent to saying that
the sequence .gk'k.rN�0//k2N satisfies

lim
k!1

gk'k.rN�0/D Vn.rN�0/

for any convergent subsequence of .gk'k.rN�0//k2N . The statement follows.

We are now ready to prove the main theorem.

Proof of Theorem 1.1 Define the set

T1� WD f� 2 T
1
j 
� 2 T1 for all 
 2 ��g:

We claim that this set is a set of full measure in Treg. By Lemma 3.1, we already know
that T1 defined by (6) is a set of full measure. For any �2 Treg we define the evaluation
map

ev� W Isom.H3/! Treg; ev�.g/ WD g�:

SetG1 WD ev�1� .T1/ andG1� WD ev�1� .T1� /. Let �Dg�. Then � 2 T1� if and only if
for any 
 2�� we have that 
� D 
g�2 T1. Since �� D�g� D g��g�1, any element

 2 �� can be written as 
 D g
0g�1, where 
0 2 �� . Thus, by a simple substitution,
we get that � 2 T1� if and only if for every 
0 2 �� we have that g
0� 2 T1. This
argument implies that we can write

G1� D
\

02��

G1
�10 :

All the sets G1
�10 are sets of full measure, since they are right-translates of the set of
full measure G1 by the element 
�10 . Being a countable intersection of full measure
sets, G1� also has full measure. Hence also T1� has full measure, as claimed.

Since all regular ideal tetrahedra are in a unique Isom.H3/–orbit, up to conjugating each
representation �k , we can assume that � D .0; 1; e

�i
3 ;1/ 2 T1� . With this assumption

we have that �� D � , the reflection lattice we started with. By applying Lemma 3.2,
there must exist a sequence .gk/k2N of elements gk 2 PSL.n;C/ such that

lim
k!1

gk'k.
�/D Vn.
�/D �n.
/Vn.�/

for every 
 2 � and hence for every 
 2 �0, where �n W �0 ! PSL.n;C/ is the
irreducible representation and Vn W P1.C/! F.n;C/ is the Veronese embedding. For
every k 2N we define Q'k WD gk'k and Q�k WD gk�kg�1k . We get that

lim
k!1

Q�k.
/ Q'k.�/D lim
k!1

Q'k.
�/D Vn.
�/D �n.
/Vn.�/
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for every 
 2�0. In particular notice that both sequences .'k.�//k2N and .'k.
�//k2N

converge. The element 
 acts as �n.
/ at the limit, so the sequence . Q�k.
//k2N cannot
diverge and it remains bounded in PSL.n;C/. Hence the sequence of representations
. Q�k/k2N has to be bounded in the character variety X.�0;PSL.n;C// and there must
exists a subsequence of . Q�k/k2N converging to a suitable representation �1.

By the continuity of the Borel function on the character variety X.�0;PSL.n;C// with
respect to the pointwise topology, it follows that

ˇn.�1/D lim
k!1

ˇn. Q�k/D lim
k!1

ˇn.�k/D
�nC1

3

�
Vol.�0nH3/:

By [7, Theorem 1] the representation �1 must be conjugate to the representation
.�n ı i/, where i W �0! PSL.2;C/ is the standard lattice embedding and

�n W PSL.2;C/! PSL.n;C/

is the irreducible representation. Since the argument above holds for every convergent
subsequence of . Q�k/k2N , the theorem follows.

We conclude by noticing that in the proof we exploited crucially the combinatorial
structure of the reflection group � . For this reason it seems unlikely the proof will
adapt to more general lattices.
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