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ABSTRACT

The recently developed extension of Wave Digital Filters based
on vector wave variables has broadened the class of circuits with
linear two-port elements that can be modeled in a modular and
explicit fashion in the Wave Digital (WD) domain. In this paper,
we apply the vector definition of wave variables to nonlinear two-
port elements. In particular, we present two vector WD models
of a Bipolar Junction Transistor (BJT) using characteristic equa-
tions derived from an extended Ebers-Moll model. One, implicit,
is based on a modified Newton-Raphson method; the other, ex-
plicit, is based on a neural network trained in the WD domain and
it is shown to allow fully explicit implementation of circuits with
a single BJT, which can be executed in real time.

1. INTRODUCTION

Virtual Analog (VA) modeling [1] is an audio signal processing
field of research which focuses on the digital emulation of ana-
log audio equipment. Over recent years, a lot of research effort
has been dedicated to the faithful and efficient digital implementa-
tion of circuit nonlinearities, which concur to the well appreciated
timbral characteristics of analog audio gear. Forming the core of
countless amplifier models used in a broad range of audio equip-
ment, Bipolar Junction Transistors (BJTs) are arguably the most
relevant components in this regard.

In the literature, VA modeling approaches can be generally di-
vided into two categories: black-box approaches that infer a global
model of a reference circuit relying on pairs of observed input/out-
put data using, e.g., Volterra series [2] or neural networks [3], and
white-box approaches that emulate the reference circuit by sim-
ulating the corresponding system of ordinary differential equa-
tions, e.g., using state-space methods [4], the port-Hamiltonian
method [5], or Wave Digital Filters (WDFs) [6].

Among white-box techniques, WDFs have proved to be a very
promising framework for creating digital models of reference ana-
log circuits. Developed in the 70s by A. Fettweis to derive digi-
tal implementations of passive analog filters [7], WDFs rely on a
port-wise linear mapping of Kirchhoff pairs of variables (voltage
and current) into pairs of wave variables (incident and reflected)
with the introduction of a scalar free parameter per port called port
resistance. Circuit elements and topological connection networks
are modeled separately, in a modular fashion. The reference circuit
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is represented in the Wave Digital (WD) domain as an intercon-
nection of one-port and multi-port WD blocks, characterized by
implicit scattering relations between wave variables, called delay-
free loops. By proper choice of port resistances (through the so-
called adaptation process) and making use of stable discretization
methods [8] (e.g., trapezoidal rule), circuits containing linear one-
port elements can be implemented in a fully explicit fashion, i.e.,
removing all delay-free loops [7]. Furthermore, a WD structure
which relies on a scalar definition of wave variables is able to ac-
commodate a single nonlinear one-port circuit element by placing
it at the root of a tree-like structure and connecting it to an adapted
(reflection-free) port of a WD junction [9, 10]. In order to design
an explicit WDF, since nonlinear one-port elements cannot be gen-
erally adapted, the reflection-free port of the junction is necessary,
otherwise the instantaneous wave reflection from the junction back
to the nonlinearity would result in a delay-free loop [9, 10]. Such
a WDF design methodology, originally conceived for static non-
linearities, has been further extended to reference circuits with a
single nonlinear one-port element with memory [11, 12].

The previous considerations on traditional WDFs with a single
nonlinear one-port element are not directly applicable to WDFs
with a single nonlinear multi-port element. In fact, in that case,
computability issues might arise due to unavoidable delay-free
loops. More in general, when both ports of a generic two-port ele-
ment are connected to the same multi-port junction, as in Fig. 1, a
double delay-free loop passing through the element and the junc-
tion always arises, and it cannot be eliminated even in the case
in which both ports of the junction are locally made reflection-
free [13, 14, 15].

Figure 1: Example of traditional WDF based on a scalar definition
of waves that includes a WD two-port element. The dashed circles
indicate two delay-free loops that arise in the WDF.
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Several works in the literature of WDFs are devoted to the
modeling of multi-port nonlinearities and specifically to the mod-
eling of BJTs. Werner et al. [16] proposed a hybrid Kirchhoff/Wave
approach based on the K-method [4, 17, 18] to solve circuits with
multiple/multi-port nonlinearities that are grouped at the root of
the digital structure. Olsen et al. [19] used the Newton-Raphson
(NR) method to speed-up the computation of the same digital struc-
tures described in [16]. In [20], et al. defined a general WD model
for 3-terminal devices, whose number of ports can vary from 1 to
6, along with explicit WD realizations of MOSFET and JFET tran-
sistors and an implicit WD realization of BJTs based on the Ebers-
Moll model and implemented using a robust modified Newton-
Raphson solver. Kolonko et al. [21] introduced a modified Ebers-
Moll model where the forward and reverse conducting diodes are
considered individually and then connected through a suitable WD
junction.

All the WD models of BJT transistors presented in the liter-
ature are based on scalar definitions of port variables and this of-
ten causes unavoidable delay-free loops when two-port models are
employed. The recently introduced Vector WDFs [22] generalized
the scalar port-wise definition of wave variables in linear two-port
elements to a vector definition. Eventually, this allowed to over-
come several computability issues, such as delay-free loops that
are formed when connecting a two-port to a topological junction.

In this paper, we apply Vector WDFs to the implementation
of circuits containing a single two-port WD model of a BJT. The
nonlinear two-port element can be accomodated at the root of the
WDF, which allows to implement explicit WD structures preserv-
ing the modularity of Fettweis’ traditional WDFs [7]. We first pro-
pose an extension of the Ebers-Moll model [23] of a BJT and we
present two vector wave-based WD realizations. The first one is
implicit and it relies on a modified Newton-Raphson method [20]
to solve the characteristic equation derived from the extended Ebers-
Moll model. The second one is explicit and it is characterized by
a Multi-Layer Perceptron network trained in the WD domain; this
accompanies a growing trend in the WDF literature [24, 25, 26],
in which data-driven neural models of nonlinear devices are con-
nected to “traditional” WD blocks.

The remainder of this manuscript is organized as follows. In
Section 2, the design of WDFs containing a single nonlinear two-
port element is discussed. Section 3 introduces the two proposed
BJT models based on vector waves. In Section 4, the developed
methods are applied for the emulation of the input stage of a guitar
distortion pedal. Conclusions are drawn in Section 5.

2. VECTOR WAVE DIGITAL FILTERS

2.1. Scalar Waves

The design of WDFs is based on a port-wise description of a ref-
erence analog circuit. Circuit elements and topological connection
networks are modeled using one- or multi-port WD blocks char-
acterized by scattering relations. In traditional WDFs based on
voltage waves, each pair of Kirchhoff variables at a generic port j
of a circuit element, i.e., the port voltage vj and the port current
ij , is substituted with a pair of scalar WD variables defined as [7]

aj = vj + Zjjij , bj = vj − Zjjij , (1)

where aj is the incident wave, bj is the reflected wave and Zjj ̸= 0
is a free real-valued parameter, usually called reference port re-
sistance and here renamed as reference one-port resistance. This

free parameter is set to adapt linear one-port circuit elements, thus
obtaining explicit WD scattering relations in the discrete-time do-
main in which the reflected wave does not instantaneously depend
on the incident wave [7, 8].

N -port topological connection networks, characterized by a
vector of port voltages vJ = [vJ1, . . . , vJN ]T and a vector of port
currents iJ = [iJ1, . . . , iJN ]T , are modeled in the WD domain
using N -port junctions characterized by the wave variables

aJ = vJ + ZJiJ , bJ = vJ − ZJiJ , (2)

where aJ = [aJ1, . . . , aJN ]T is the vector of waves incident to the
junction, bJ = [bJ1, . . . , bJN ]T is the vector of waves reflected
by the junction, while ZJ = diag [Z1, . . . , ZN ] is a diagonal ma-
trix having one-port resistances as diagonal entries. The relation
between aJ and bJ is

bJ = SaJ , (3)

where S is a N × N scattering matrix. General formulas for
computing the scattering matrix of arbitrary reciprocal or non-
reciprocal connection networks in the WD domain are discussed
in [27, 15].

When two-port circuit elements are present, a WDF struc-
ture based on scalar port-wise wave definition is generally affected
by computability problems. In Fig. 1, a generic WDF structure
based on scalar wave variables includes a (linear or nonlinear)
two-port element whose ports are both connected to the same topo-
logical junction. As highlighted by the dashed paths, two delay-
free loops involving cross-dependencies between wave variables
are unavoidably formed in the WDF: they cannot be eliminated
through any choice of the free parameters.

2.2. Vector Waves

With the purpose of encompassing both ports of the same two-
port element, we introduce the following vector definition of wave
variables [22], which generalizes (1):[

a1

a2

]
=

[
v1
v2

]
+

[
Z11 Z12

Z21 Z22

] [
i1
i2

]
[
b1
b2

]
=

[
v1
v2

]
−

[
Z11 Z12

Z21 Z22

] [
i1
i2

]
.

(4)

[v1, v2]
T is the vector of the two port voltages, [i1, i2]T is the vec-

tor of the two port currents, [a1, a2]
T is the vector of the waves in-

cident to the two-port element, [b1, b2]T is the vector of the waves
reflected by the two-port element and

Z1,2 =

[
Z11 Z12

Z21 Z22

]
(5)

is a full-rank 2×2 matrix of real free parameters Zıȷ, with ı ∈ 1, 2
and ȷ ∈ 1, 2, which we refer to as reference two-port resistance.
Since Z1,2 is full-rank, we have

|Z1,2| = det [Z1,2] = Z11Z22 − Z12Z21 ̸= 0 . (6)

The inverse mapping from WD variables to Kirchhoff variables
can be expressed as[

v1
v2

]
=

1

2

([
a1

a2

]
+

[
b1
b2

])
[
i1
i2

]
=

1

2|Z1,2|

[
Z22 −Z12

−Z21 Z11

]([
a1

a2

]
−

[
b1
b2

])
.

(7)
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Analogously to one-port linear elements, a two-port WD element
based on the proposed vector definition of waves (4) can be adapted
through the assignment of Z1,2, which eliminates the instanta-
neous dependency between the vector of reflected waves [b1, b2]T

from the vector of incident waves [a1, a2]
T in the scattering rela-

tion .
The approaches described for the WD modeling of topological

connection networks can be generalized for the design of topolog-
ical multi-port WD junctions based on mixed scalar and vector
definitions of waves [22]. An N -port topological junction which
is connected to other WD blocks through P two-port connections
and N − 2P one-port connections is characterized by the same
wave variable definition in (2), where ZJ is in this case a full-
rank block-diagonal matrix of free parameters (not simply a diag-
onal matrix as in WDFs solely based on scalar waves). Assuming,
without loss of generality, to number the P two-port connections
before the N − 2P one-port connections, ZJ can be written as

ZJ =



Z1,2 . . . 0 [0, 0]T . . . [0, 0]T

...
. . .

...
...

. . .
...

0 . . . Z2P−1,2P [0, 0]T . . . [0, 0]T

[0, 0] . . . [0, 0] Z2P+1 . . . 0
...

. . .
...

...
. . .

...
[0, 0] . . . [0, 0] 0 . . . ZN


(8)

where Z1,2, . . . ,Z2P−1,2P are 2 × 2 full-rank submatrices and
Z2P+1, . . . , ZN are scalar parameters different from zero.

The resulting WD junctions can be used to interconnect one-
port elements based on traditional scalar waves and two-port el-
ements based on vector waves, thus solving many of the com-
putability problems that would arise using just scalar definitions,
while preserving modularity, i.e., modeling circuit elements and
topology in a separate fashion.

2.3. WDFs with a Single Vector Nonlinear Two-Port Element

WDFs with a single nonlinearity can be organized into tree-like
structures called connection trees [10, 8]. Three types of consti-
tutive blocks can be identified in such WD connection trees: the
root, i.e., the nonlinearity, which has no upward-facing ports and
whose downward-facing ports cannot be adapted; nodes (typically
multi-port topological junctions), which have one upward-facing
port and one or more downward-facing ports; leaves, which have
upward-facing ports and no downward-facing ports [10, 8]. A WD
structure of the sort can be solved without employing any itera-
tive solver if the nonlinearity is characterized by an explicit map-
ping in the WD domain. In fact, delay-free loops can be removed
through the adaptation of all the leaves and upward-facing ports of
junctions. It follows that a WDF based on traditional scalar waves
and containing a single nonlinear one-port element with an explicit
scattering relation can be implemented in a fully explicit fashion.
As outlined in the above description of Fig. 1, a WDF based on
scalar waves with a single nonlinear two-port placed at the root
would instead be characterized by unavoidable delay-free loops.
However, the adoption of a vector definition of waves for modeling
the nonlinear two-port element allows us to make also this kind of
WD structures fully explicit, again, under the assumption that the
nonlinearity is characterized by an explicit WD mapping. In fact,
as shown in Fig. 2, through proper assignment of the free param-
eters Z11, Z12, Z21 and Z22 constituting the reference two-port

Figure 2: WD structure featuring a WD nonlinear two-port ele-
ment based on vector waves connected to a topological junction.
The T-shaped stub indicates port adaptation.

resistance Z1,2, it is possible to make the pair of junction ports
at which the nonlinear two-port element is connected reflection-
free. This means that the nonlinear element does not introduce any
delay-free loop despite being connected to the junction through a
double port connection.

(a) (b)

Figure 3: (a) Symbol of a BJT as a three-terminal device and (b)
corresponding two-port element definition.

3. BJT MODELS BASED ON VECTOR WAVES

A BJT is an electronic device characterized by three terminals
called base, emitter and collector - shown in Fig. 3(a) as node B,
E and C, respectively. Through the modeling approach discussed
in [20], it can be described as a two-port element, as shown in
Fig. 3(b). In fact, its behavior is completely described by the volt-
ages v1 (across base-emitter port) and v2 (across base-collector
port). In the following, we introduce an extension to the Ebers-
Moll model (EMM) [23], probably the most widespread large sig-
nal BJT model appearing in the literature. As shown in Fig. 4,
a series and a parallel resistor are introduced at each of the two
ports: (Rs1, Rp1) at port 1 and (Rs2, Rp2) at port 2. The series
resistances encapsulate the contribution of several structural resis-
tances of the device, while the parallel ones are mainly due to cur-
rent leakage at the two p-n junctions forming the BJT. Typically,
Rp1, Rp2 have high values, while Rs1, Rs2 are very low [28]. The
introduced resistors also attenuate numerical problems that might
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Figure 4: Proposed extended Ebers-Moll model.

arise when regions of the v-i characteristic curves of the diodes
with extremely high (or extremely low) slopes are visited, espe-
cially when dealing with large-amplitude signals [8, 29].

Our extended EMM is mathematically described by the fol-
lowing system of equations{

i1 = i′1 +
v1−i1Rs1

Rp1

i2 = i′2 +
v2−i2Rs2

Rp2

, (9)

where

i′1 = Is1

(
e

(
v1−i1Rs1

ηfVt

)
− 1

)
− αrIs2

(
e

(
v2−i2Rs2

ηrVt

)
− 1

)
i′2 = Is2

(
e

(
v2−i2Rs2

ηrVt

)
− 1

)
− αfIs1

(
e

(
v1−i1Rs1

ηfVt

)
− 1

)
.

(10)
In equations (9) and (10), i1 is the current through the base-emitter
port, i2 is the current through the base-collector port, αf is the for-
ward common-base current gain, αr is the reverse common-base
current gain, v1 is the base-to-emitter voltage, v2 is the base-to-
collector voltage, Vt is the thermal voltage, Is1 is the saturation
current of the base-emitter p-n junction, Is2 is the saturation cur-
rent of the base-collector p-n junction, ηf is the ideality factor of
the base-emitter p-n junction and ηr is the ideality factor of the
base-collector p-n junction.

3.1. Implicit WD Model based on Modified NR Method

Reformulating (9), the BJT two-port model in Fig. 4 can be char-
acterized by the following system of nonlinear equations in the
Kirchhoff domain

h

([
v1
v2

]
,

[
i1
i2

])
=

[
i′1 +

v1−i1Rs1
Rp1

− i1

i′2 +
v2−i2Rs2

Rp2
− i2

]
= 0 , (11)

where [v1, v2]T is the vector of port voltages, [i1, i2]T is the vector
of port currents. Since (11) is composed of two coupled transcen-
dental implicit equations, finding an explicit scattering relation in
the WD domain is not possible in general, even though some ex-
plicit WD mappings based on simplifications have been proposed
in some particular cases [30]. To overcome that difficulty, we ad-
just the NR method to the local resolution of two-port nonlinear
WD blocks based on a vector wave definition. To this aim, rela-
tionships between port vector variables, (4) and (7), are rewritten
as follows [30],[

i1
i2

]
=

1

|Z1,2|

[
Z22 −Z12

−Z21 Z11

]([
a1

a2

]
−

[
v1
v2

])
, (12)

[
b1
b2

]
= 2

[
v1
v2

]
−

[
a1

a2

]
. (13)

Replacing (12) into (11) leads to a vector nonlinear equation g (φ)

= 0, where φ = [v1, v2]
T . Given the vector wave [a1, a2]

T =[
a
(k)
1 , a

(k)
2

]T
incident to the nonlinear two-port element and the

reference two-port resistance Z1,2, which is set in such a way to
make reflection-free the pair of junction ports to which the non-
linear two-port element is connected, the equation g (φ) = 0 can
be solved using the NR algorithm characterized by the following
update rule

φ(k+1) = φ(k) −
[
J
(
φ(k)

)]−1

g
(
φ(k)

)
, (14)

where φ(k) =
[
v
(k)
1 , v

(k)
2

]T
and φ(k+1) =

[
v
(k+1)
1 , v

(k+1)
2

]T
indicate the values of φ evaluated at iterations k and k+1, respec-

tively, and
[
J
(
φ(k)

)]−1

is the inverse of the Jacobian matrix of

g evaluated at φ(k). Solving g (φ) = 0 requires:

- taking a suitable initial guess φ(0);

- repeating (14) up to convergence, i.e., up to the case in
which ||φ(k+1) − φ(k)|| < ϵv and ||g

(
φ(k+1)

)
|| < ϵg ,

where ϵv and ϵg are small positive scalar thresholds.

Iterative solvers based on the NR method are arbitrarily accurate
and generally more efficient than tabulation methods [31]. The
main drawback of such iterative solvers is that their convergence
is generally not ensured, since it strongly depends on the chosen
initial guess φ(0) and it is further compromised by numerical is-
sues related to finite word length representation. To mitigate the
effect of such problems, the modified NR (MNR) method intro-
duced in [20] enforces control over the variables v

(k)
1 and v

(k)
2

iteration by iteration, through the use of compensation functions,
ϕ1 and ϕ2, designed to prevent overshooting and to increase the
NR method convergence rate (we hereby omit their definition for
reasons of space; the reader is kindly referred to [20] for a detailed
analysis on the topic). The update equation (14) is thus modified
according to

φ̃(k+1) = φ(k) −
[
J
(
φ(k)

)]−1

g
(
φ(k)

)
, (15)

where φ̃(k+1) =
[
ṽ
(k+1)
1 , ṽ

(k+1)
2

]T
, φ(k) =

[
v
(k)
1 , v

(k)
2

]T
, and

the two components of the vector φ(k+1) are given by

v
(k+1)
1 = ϕ1

(
φ̃(k+1)

)
, v

(k+1)
2 = ϕ2

(
φ̃(k+1)

)
. (16)
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Once the NR convergence condition is met, the two-port volt-

ages are set to [v1, v2]
T =

[
v
(k)
1 , v

(k)
2

]T
= φ(k) and the vector

of waves [b1, b2]
T reflected by the two-port nonlinear element is

computed by means of (13).

3.2. Explicit WD Model based on Neural Network

Even though a vector definition of waves allows us to eliminate
all the delay-free loops of WD structures containing up to a single
nonlinear two-port element, in the previous subsection, we have
shown that we still need a local iterative solver to compute the im-
plicit vector scattering equation of the nonlinear WD block char-
acterized by the extended EMM. In this subsection we aim at de-
signing an explicit WD BJT model, thus obtaining a fully explicit
WD structure with a single two-port nonlinearity. We propose a
data-driven model whose WD mapping approximates the nonlin-
ear scattering relation

b = f (a) , (17)

which relates vectors of incident waves a = [a1, a2]
T to vectors

of reflected waves b = [b1, b2]
T in a fully explicit fashion.

The two-port element behavior can be characterized through
suitable simulation or measurement campaigns: sets of port volt-
ages [v1, v2]T and port currents [i1, i2]T measures can be collected
forming a Kirchhoff domain dataset for the BJT model. The vector
definition of wave variables (4), where, again, Z1,2 is set in such a
way to make reflection-free the pair of junction ports to which the
nonlinear two-port is connected, allows us to transform the Kirch-
hoff domain dataset into a vector WD domain dataset of known
solutions to the nonlinear vector function (17). The task of mod-
eling the function f (·) can be consequently seen as a regression
problem, i.e.,

b̂ = f̃(a; θWD) (18)

where f̃ is the function approximation given by a suitable neural
network architecture [32, 33] whose parameters θWD are obtained
by training the network to predict the current value of the reflected
vector waves b̂ given the current value of the incident vector waves
a as input.

Since the adopted reference model of the BJT is characterized
by an instantaneous (static) nonlinearity, it is not necessary to rely
on neural network structures with memory, such as Recurrent Neu-
ral Networks [34] or LSTM networks [35]. For this reason, in the
next section, we employ a Multi-Layer Perceptron (MLP) network
composed of 2 fully-connected layers with 16 hidden units each
and Rectified Linear Unit (ReLU) activation functions (354 train-
able parameters).

4. CASE STUDY

As a case study, we develop a Virtual Analog model of the common-
emitter amplifier constituting the input stage of the Big Muff Pi
distortion pedal - see Fig. 5. The circuit is characterized by a single
nonlinear element, namely a 2N5089 BJT, whose extended EMM
parameters are reported in Table 1.

The implemented WD structure is shown in Fig. 6 and it is
characterized by series/parallel adaptors (S1, S2, P1, P2, P3) de-
signed according to [7] and a 6-port WD topological junction R1

implemented following [15], based on the vectorial definition of
waves at the ports of the BJT. Indeed, the matrix of free parame-
ters ZR1 of the junction R1 has a 2×2 submatrix Z1,2 positioned

Table 1: 2N5089 BJT: values of the extended EMM parameters.

Parameter Value Description
Vt 25.85 mV thermal voltage
αf 0.9993 BJT forward current gain
αr 0.5579 BJT reverse current gain

Rs1, Rs2 10−5 Ω BJT series port resistance
Rp1, Rp2 1011, 108 Ω BJT parallel port resistance
ηf , ηr 1 BJT ideality factor
Is1 5.9151 fA B-E junction saturation current
Is2 10.595 fA B-C junction saturation current

at the ports where the BJT is connected. All the linear elements
at the leaves and all the upward facing ports of the junctions are
adapted according to traditional WDF principles [7]. The nonlin-
ear two-port element Q1 is the root of the designed connection
tree structure. The free parameters of the port resistance matrix
Z1,2 are set to zero out the four entries of the first 2 × 2 block on
the diagonal of the junction scattering matrix SR1 . As previously
mentioned in Section 2.3, this makes the pair of junction ports at
which Q1 is connected reflection-free.

Figure 5: Big Muff Pi input stage.

4.1. Dataset and Model Training

In order to generate a suitable Kirchhoff domain dataset for the
2N5089 BJT, we implement the extended EMM using Mathworks
Simscape and the model parameters reported in Table 1. The non-
linear characteristic of the model is sampled devising specific port
voltage signals to reproduce common device operating ranges. In
particular, the base-to-collector voltage v2 is assumed to vary in
the range [−10, 0] V, while the base-to-emitter voltage v1 varies
in the range [−0.8, 0.8] V. To sample the device, v2 is set to
103 different equally spaced DC values extracted from its oper-
ating range and, for each of these values, v1 is linearly increased
for a duration of 0.1 seconds to cover its entire operating range;
the corresponding base-to-collector current i2 and base-to-emitter
current i1 are acquired with a sample rate fs = 96 kHz. The
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Table 2: Values of the parameters of the Big Muff Pi input stage circuit shown in Fig. 5.

R2 R9 R13 R14 R22 Rout C1 C4 C10 Vcc

39 kΩ 470 kΩ 10 kΩ 47 kΩ 100 Ω 101 kΩ 1 µF 1 µF 470 pF 9 V

Figure 6: WDF realization of the circuit shown in Fig. 5.

complete simulation of the Kirchhoff domain signals v1, i1, v2, i2
amounts to 100 seconds.

The formed dataset can be expressed in the WD domain by us-
ing the vector wave transformation (4), where the free parameters
Z11, Z12, Z21 and Z22 are set according to the already discussed
port adaptation condition. From the total amount of data, the 80%
are used for training, while the 20% are held out for evaluation
purposes. The pairs of corresponding input and output wave vari-
ables

(
[a1, a2]

T , [b1, b2]
T
)

are assembled in batches containing
256 elements.

The MLP network described in Section 3.2 is implemented in
Python using Pytorch [36] and it is trained for 500 epochs using
Adam [37] to minimize the following loss function:

L = E
(
b1, b̂1

)
+ E

(
b2, b̂2

)
(19)

where

E (y, ŷ) =

∑
k (yk − ŷk)

2∑
k y

2
k

(20)

is the Normalized Mean Squared Error (NMSE). Notably, the two
terms summed in the loss function (19) are related to the two com-
ponents of the output vector. To evaluate the model, we compute
the model predictions over the evaluation set. The NMSE com-
puted over those predictions is equal to 1.02× 10−8.

4.2. Results

In this subsection, we discuss the numerical results obtained from
the simulation of the nonlinear WD structure shown in Fig. 6 us-
ing the two different WD BJT models presented in Sec. 3.1 and
Sec. 3.2, respectively. Remarkably, thanks to the modularity of
WDFs, it is possible to test both the WD BJT implementations
employing the same WD structure and just substituting the nonlin-
ear WD block at the root. In case the MNR method-based model

is used, an iterative solver is needed to solve the two-port nonlin-
earity, while, in case the neural network-based model is used, the
WD structure can be implemented in fully explicit fashion, since
the nonlinearity is also expressed as an explicit wave mapping.

The circuit is tested with an input signal Vin = A sin(2πk
f0/fs), where k is the sampling index, while fs = 96 kHz and
f0 = 1 kHz are the sampling frequency and the fundamental fre-
quency, respectively. According to the circuit analysis in [38], we
set the input signal amplitude to A = 0.7 V to force the input stage
into saturation, therefore causing asymmetric clipping. The input
signal has a duration of one second. All the simulation algorithms
of the WD structures are implemented as MATLAB scripts and are
run on a laptop-mounted Intel Core i5-1240P 1.70 GHz CPU.

The simulation results related to the last 5 periods of the in-
put signal are reported in Fig. 7(a) and Fig. 7(b). Both the WD
implementations of the BJT closely match the same reference sig-
nal resulting from a Mathworks Simscape simulation of the cir-
cuit in Fig. 5, where the BJT has been modeled employing the ex-
tended EMM. The deviation between the reference Simscape sig-
nal and the neural network-based WD simulation is quantifiable
by a NMSE of 2.32 × 10−5, while the MNR method-based WD
simulation is able to achieve an NMSE of 1.88× 10−6.

For measuring the computational cost associated to the two
different WD implementations, Γ = 1000 identical simulations of
the two WD structures are executed and the Real Time Ratio (RTR)
is computed. The RTR is a dimensionless quantity indicating how
fast the simulation is with respect to real time. If we consider Γ
simulations having X samples as input and an execution time tci
for a single iteration over the input, the RTR can be computed
as RTR = (1/Γ)

∑Γ
i=1 (tci/ (X/fs)), where fs is the sampling

frequency. The algorithm runs in real time if RTR < 1.
We obtain RTR ≃ 1.65 for the MNR method-based WD im-

plementation and RTR ≃ 0.21 for the neural network-based WD
implementation. While the MNR method guarantees arbitrarily
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Figure 7: Voltage Vout measured across the resistor Rout. (a) Comparison between the MNR method-based BJT WD implementation and
Mathworks Simscape. (b) Comparison between the neural network-based BJT WD implementation and Mathworks Simscape.

good results in terms of accuracy, the iterative solver consider-
ably increases the algorithm execution time. However, with almost
comparable accuracy results, the WD structure containing the ex-
plicit neural network-based WD BJT model proves to be far more
efficient as far as execution time is concerned, being able to run in
real time in the MATLAB environment.

5. CONCLUSIONS

In this paper, we have shown that, by adopting a vector definition
of waves, it is possible to design WDFs which contain a single
two-port nonlinearity connected to a topological junction through
a pair of ports with no delay-free loops. It follows that, when the
two-port nonlinearity is characterized by an explicit WD mapping,
the resulting WDF is fully explicit. The proposed approach al-
lows us to preserve the desirable modularity property of traditional
scalar WDFs, according to which circuit elements and connection
networks are modeled with separate input-output blocks.

We proposed two vector wave-based models of BJT transis-
tors described with an extended EMM. The first one is implicit,
and it relies on a MNR method to solve its nonlinear scattering re-
lation. The second is fully explicit, as it relies on a neural network
model which approximates the explicit scattering equation relat-
ing the input vector of incident waves to the corresponding vector
of reflected waves. We finally provided an accuracy and perfor-
mance comparison of the two WD BJT models with reference to
a specific VA application scenario. The fully explicit WD struc-
ture including as root a neural network-based model of a two-port
BJT proved to be an excellent compromise between accuracy and
computational cost. This shows that the integration of efficient
data-driven blocks of nonlinear devices into the WDFs framework
might lead the way towards the real time implementation of in-
creasingly complex nonlinear circuits.

Future work might concern the application of vector WDFs
for the modeling of generic N -port nonlinear elements. A note-
worthy extension would also be considering data-driven methods
for the characterization of multi-port nonlinearities with memory,
leveraging models or experimental measurements of transistors or
vacuum tubes. Finally, the proposed strategy should be validated
from a broader perspective, comparing it to other approaches de-
veloped in the literature.
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