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Abstract— The formulation presented in [1] valid for 
magnetic and conductive wires of circular cross-sections is 
extended to the case of rectangular cross-sections. The new 
formulation is validated with canonical examples and then 
applied to the computation of eddy current losses in armors of 
tripolar submarine cables. 

Keywords— Integral equation formulation, magnetostatics, 
magneto-quasi-statics, eddy current losses. 

I. INTRODUCTION 
Rectangular wires are extensively used in many 

technological components that play a fundamental role in the 
infrastructures of electrical systems. For example, they are 
used in transformers or in armors of submarine cables. 
Depending on the application, such wires can be purely 
conductive or both conductive and ferromagnetic. An accurate 
numerical simulation of the electromagnetic behavior of these 
wires is required to calculate the power losses due to induced 
eddy currents and hysteresis in the case of ferromagnetic 
materials.  

Standard formulations based on the Finite Element 
Method (FEM) typically lead to a large computational burden. 
On the other hand, integral formulations are a valid 
alternative. As a matter of fact, by reducing the computational 
geometry solely to the wires themselves, without the need of 
discretizing the surrounding volume as in FEM, they can 
significantly reduce the computational burden by requiring a 
lower number of degrees of freedom. An integral formulation 
for the calculation of eddy currents and hysteresis losses in 
rectangular wires is presented here. 

II. FORMULATION 

A. Magnetostatic Integral Formulation for a Single Wire 
The present formulation is derived starting from the work 

developed in [1]-[3], which focused on wires of circular cross-
section. In the presence of a wire with relative magnetic 
permeability 𝜇𝜇𝑟𝑟 ∈ ℝ , the three-dimensional space can be 
partitioned into Ω𝑀𝑀, which is the domain occupied by the wire, 
and Ω0, which is the remaining part, namely air. Under the 
influence of an external, known magnetostatic field 𝐁𝐁0  the 
wire is magnetized with a magnetization 𝐌𝐌. The field 𝐁𝐁𝑀𝑀 due 
to such a magnetization can be expressed with the well-known 
Biot-Savart integral formula [1]. 

Being 𝐁𝐁 = 𝐁𝐁0 + 𝐁𝐁𝑀𝑀 the total flux density in the wire, the 
relation between magnetization and flux density is given by 
the integral equation 

 

𝐌𝐌(𝐱𝐱) = 𝜇𝜇𝑟𝑟−1
𝜇𝜇0𝜇𝜇𝑟𝑟

�𝐁𝐁0(𝐱𝐱) + 𝐁𝐁𝑀𝑀(𝐱𝐱)�, 𝐱𝐱 ∈ Ω𝑀𝑀 (1) 

B. Discretization 
In order to apply the collocation method with constant 

elements, the wire is discretized into rectangular cuboids with 
thickness 𝑑𝑑, width 𝑤𝑤 and height ℎ, as shown by Fig. 1. 

 

 

Fig. 1. Rectangular wire discretization. Collocation point 𝐱𝐱(𝑖𝑖) is the origin 
for the local coordinate system 𝐞𝐞1

(𝑖𝑖), 𝐞𝐞2
(𝑖𝑖), 𝐞𝐞3

(𝑖𝑖). 

The geometric center of each cuboid will be indicated as 
𝐱𝐱(𝑖𝑖) ∈ Ω𝑀𝑀, being 𝑖𝑖 ∈ ℕ an index to identify the cuboid. Point 
𝐱𝐱(𝑖𝑖)  is the collocation point where the supposed uniform 
magnetization is considered. In each collocation point a local 
frame of reference 𝐞𝐞1

(𝑖𝑖), 𝐞𝐞2
(𝑖𝑖) , 𝐞𝐞3

(𝑖𝑖) is placed. The face of each 
cuboid perpendicular to the local direction 𝐞𝐞3

(𝑖𝑖) is referred to as 
the cross-section, 𝑆𝑆, and its area is given by 𝑆𝑆 = 𝑤𝑤 ⋅ 𝑑𝑑. 

It is convenient to formulate the discretized problem in 
terms of the integral of the magnetization over the cross-
section, i.e. 𝓜𝓜 = ∫ 𝐌𝐌(𝐱𝐱′)𝑑𝑑2𝐱𝐱′𝑆𝑆 . Indicating with 𝓶𝓶(𝑖𝑖) =
𝐌𝐌�𝐱𝐱(𝑖𝑖)� ⋅ 𝑆𝑆, collocating (1) in 𝐱𝐱(𝑖𝑖) leads to the linear system 

 

�𝑰𝑰 − (𝜇𝜇𝑟𝑟−1)𝑆𝑆
𝜇𝜇𝑟𝑟𝜇𝜇0 

𝑨𝑨� ⋅ 𝒎𝒎 = (𝜇𝜇𝑟𝑟−1)𝑆𝑆
𝜇𝜇𝑟𝑟𝜇𝜇0 

𝒃𝒃 (2) 

 

where 𝑰𝑰 ∈ ℝ3𝑛𝑛×3𝑛𝑛  is the identity matrix, with 𝑛𝑛  the 
number of collocation points, whereas 
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𝑨𝑨 = �
𝑨𝑨(1,1) ⋯ 𝑨𝑨(1,𝑛𝑛)

⋮ ⋱ ⋮
𝑨𝑨(𝑛𝑛,1) ⋯ 𝑨𝑨(𝑛𝑛,𝑛𝑛)

� , 𝒎𝒎 = �
𝓶𝓶(1)

⋮
𝓶𝓶(𝑛𝑛)

� , 𝒃𝒃 = �
𝑩𝑩0

(1)

⋮
𝑩𝑩0

(𝑛𝑛)
� 

 

The accurate computation of submatrices 𝑨𝑨(𝑖𝑖,𝑖𝑖), defined as 
“self-elements”, is crucial for the overall accuracy of the 
proposed method. In the full paper a new procedure based on 
the two-dimensional simulation of an infinite straight wire in 
a uniform magnetic field will be presented in detail. 

C. Extension to the Magneto-quasi-static Case 
As shown in [1]-[3], if the external magnetic field is time-

harmonic, the effects of the presence of eddy currents in an 
infinitely long, straight magnetic wire with circular cross 
section can be mimicked, in an otherwise magnetostatic 
simulation, by substituting the physical value of the relative 
permeability of the wires with a complex tensor that can be 
computed analytically. In the case of rectangular cross section, 
the equivalent permeability tensor must be computed with 2D 
FEM simulations. 

III. NUMERICAL RESULTS 
The formulation is first implemented in magnetostatics for 

two 2D canonical test cases: two infinitely long straight 
rectangular conductors with cross-section of width 𝑤𝑤 =
12 [mm] and thickness 𝑑𝑑 = 3 [mm] (Fig. 2) are immersed in 
a uniform magnetostatic field oriented as the x-axis (for test 
case of Fig. 2a) and as y-axis (for test case of Fig. 2b). Both 
conductors have 𝜇𝜇𝑟𝑟 = 300 . In this case the unknowns are 
𝓶𝓶(1) for fist conductor and 𝓶𝓶(2) for the second one and for 
symmetry 𝓶𝓶(1) = 𝓶𝓶(2). The reference solution is obtained 
with FEM commercial software [4].  

In Fig. 3 the relative error on the x and y component of 𝓶𝓶 
is plotted vs. the normalized distance Δ𝑦𝑦 𝑑𝑑⁄  for test case of 
Fig. 2a. Correspondingly in Fig. 4 the relative error on the x 
and y component of 𝓶𝓶 is plotted vs. the normalized distance 
Δ𝑥𝑥 𝑤𝑤⁄  for test case of Fig. 2b. 

 

 
(a) (b) 

Fig. 2. Geometry of the magnetostatic test cases. 

Then, the formulation is implemented to compute eddy 
current and hystheresis losses of an armor of a three-phase 
submarine cable made of ferromagnetic and conductive 
rectangular wires. Results are in good agreement with those 
of FEM [4] (model in Fig. 5). In the full paper all the details 
on the geometry and material parameters of the submarine 
cable will be provided and the proposed method will be 
compared with FEM for two different geometries. 

 

 

Fig. 3. Relative error on the x and y component of 𝓶𝓶 vs. the normalized 
distance Δ𝑦𝑦 𝑑𝑑⁄  for test case of Fig. 2a. 

 

Fig. 4. Relative error on the x and y component of 𝓶𝓶 vs. the normalized 
distance Δ𝑥𝑥 𝑤𝑤⁄  for test case of Fig. 2b. 

 

Fig. 5. FEM model of a tripolar submarine cable with armor made of 
rectangular wires. 
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