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In an attempt to reduce acoustic pollution due to terminal flight phases (lift-offs and landings) in 
the surroundings of heliport, project MANOEUVRES developed a device capable of estimating the 
acoustic footprint of helicopters on the ground. This device requires knowledge of certain quantities 
that cannot be directly measured through physical sensors: the tip-path plane angle of attack and the 
main rotor thrust coefficient. Previous research has demonstrated that these quantities can be accurately 
estimated using observers that are properly fed with directly measurable flight mechanics and rotor state 
variables. However, these observers, which are based on linear mathematical models identified offline and 
employed through interpolation with respect to nominal airspeed, have shown poor robustness when 
the number of identification input cases is reduced, as required for a realistic design of observers in 
the field. This issue has particularly emerged when non-trimmed manoeuvres were considered during 
observation testing. To address this issue, this paper introduces a new baseline for the observation 
model, which includes dynamic pressure as an additional input. Moreover, a different model structure 
is considered depending on the observed variable. Specifically, for the tip-path plane angle of attack, a 
single model covers the entire airspeed range, while observation models for the rotor thrust coefficient 
are interpolated based on flight altitude. This new approach demonstrates results of comparable or 
superior quality to previous observation models. Furthermore, it exhibits increased robustness when 
the pool of identification cases used for observer synthesis is significantly reduced. Such improved 
performance and ease of synthesis pave the way for the setup and adoption of the proposed observers 
in the field.

© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Recent research efforts within the MANOEUVRES Clean Sky 
project [1] demonstrated that one method to reduce noise pol-
lution on rotorcraft during critical manoeuvres, such as approach 
and landing, is the use of devices capable of providing the pilot 
with accurate information on the noise footprint of the helicopter 
during its operation. This would enable the pilot to execute a ma-
noeuvre designed specifically to minimize the noise perceived on 
the ground.

These devices are conceived as composed of a new cockpit in-
strument, the Pilot Acoustic Indicator (PAI), that provides real-time 
acoustic impact information to the pilot, based on a noise estima-
tion algorithm from the calculation of the current Sound Pressure 
Level (SPL) distribution around the aircraft.

E-mail address: carlo.riboldi@polimi.it (C.E.D. Riboldi).
https://doi.org/10.1016/j.ast.2023.108536
1270-9638/© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open acc
creativecommons .org /licenses /by-nc -nd /4 .0/).
The PAI has been conceived as secondary flight navigation in-
strument of practical use [2]. It provides the pilot with an esti-
mated noise emission index and additional information on how 
to reduce it, suggesting vertical speed and direction adjustments. 
This may allow the pilot to react adequately in order to fly low-
noise procedures, with limited impact on his/her workload. Given 
that the PAI is a secondary flight navigation instrument, it can be 
deactivated by the pilot depending on the situation and is fully in-
tegrated into the aircraft multi-function display. The PAI has been 
currently conceived as an instrument that simply gives a graphi-
cal indication to the pilot. A further development could be that of 
processing the noise emission index computed by the PAI through 
the Automatic Flight Control System (AFCS) and set up low-noise 
trajectories, thus reducing the pilot workload.

Key measurements for feeding the PAI include the angle of at-
tack of the tip-path-plane (TPP-AOA), the main rotor thrust coef-
ficient (CT ), as well as other aerodynamic properties such as true 
airspeed (TAS) and altitude [3,4].
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With the exception of airspeed and altitude, these variables 
cannot be measured directly. However, as shown in [4–6], it is pos-
sible to estimate these variables, adapting an approach introduced 
and validated in the field of rotors for wind power generation [7,8], 
and based on the knowledge of the flapwise motion of the main 
rotor blades, as well as possibly other aero-mechanical quantities.

In its formulation, this approach, initially applied in the field of 
rotorcraft in [5], is based on a linear observer, featuring a structure 
inspired by the equations for the dynamics of the flapping blade. 
These equations lead to a set of equivalences which can be em-
ployed to set up a linear system, where the unknown quantities to 
be observed are defined as functions of a set of measurable phys-
ical variables. In particular, working on a theoretical model of the 
flapping blade, it can be shown that the variables to be observed 
here, i.e. the TPP-AOA and the thrust coefficient, can be obtained 
from basic measurements of flight mechanics quantities and of the 
flapwise motion of the rotor, i.e. the rotor blade coning, longitudi-
nal, and lateral flapping angles.

Despite the potential shown by the derived analytic model, 
it was found that more accurate results are obtained from ob-
servers synthesized employing model identification techniques, 
adopting observer structures as suggested by the theory (in par-
ticular, linear), but computing the coefficients from ad-hoc simu-
lations performed in virtual environment. The model identification 
approach [9], often applied in the helicopter field to try increas-
ing the fidelity of flight dynamics models with respect to purely 
theoretical predictions [10–12], carries a series of advantages that 
overcome some limits of a purely theoretical model. In particular, 
the theoretical model might employ assumptions and simplifica-
tions that do not match the complexity of the problem faced in the 
field. Furthermore, by employing a model identification approach, 
it is possible to configure the input of the observer and expand 
the set of measurement variables as required. This augmentation 
enables handling the sensitivity of the problem to unforeseen dis-
turbances, such as sideslip angle and spurious accelerations, which 
may pollute the input to the observer in real field trials. This 
method may result in extremely accurate results, provided that the 
set of measurements fed to the observer (for model synthesis trials 
and when online) is carefully selected.

Developing this research thread further, the present paper has 
a threefold objective.

Firstly, it aims to retrace and explain the recent development in 
the formulation of the observer [5], carried out in an attempt to in-
crease the accuracy of observations. This includes augmenting the 
array of measurements with the value of the tail rotor collective in 
[6]. In Section 2, this is briefly recalled and the corresponding ob-
server model, named K 2, is set as a benchmark to assess further 
improvements.

Secondly, this paper wants to show the effect of further extend-
ing the array of measurements with additional aero-mechanical 
parameters, namely main rotor collective angle, longitudinal cyclic 
angle, lateral cyclic angle, climb speed, climb angle, pitch angle, 
and roll angle. These variables have been added after an exten-
sive trial and error phase, during which many combinations of the 
aforementioned variables have been tested. The resulting observer 
model, named K 14, boosts the observation accuracy under both 
design and off-design conditions, despite a greater complexity due 
to the large number of measurements. This is explained in Sec-
tion 3.

Thirdly, a new observer structure is proposed based on a further 
theoretical insight from the aerodynamic of the flapping blade, 
leading to a significant simplification of the model. In details, the 
dynamic pressure is added within the set of measurements fed 
to the model. This allows to linearly link the observed variables 
with a measurement that is representative of the helicopter air-
speed. The corresponding new model, called S15, decouples the 
2

thrust coefficient estimation from that of the TPP-AOA, leading to 
two separate observation models. This research is presented in Sec-
tion 4.

Finally, Section 5 compares the three just mentioned models 
on many quantitative results obtained in virtual environment using 
the numerical model of an existing rotorcraft testbed. The observer 
performance is initially evaluated on the same data samples used 
for the identification phase. Subsequently, it is tested on different 
data samples representing design conditions, and ultimately in off-
design conditions where test manoeuvres very different from those 
considered in the identification phase are employed, introducing 
disturbances to constant-speed straight descents. Additionally, the 
model accuracy is assessed when using a reduced number of sam-
ples in the setup of the observer. This exploration aims to simulate 
a realistic synthesis procedure for the observer in the field, which 
may rely on a limited set of actual flight test data.

2. Theoretical structure of the observer and synthesis technique

In order to postulate the structure of an observer for a given 
set of desired aero-mechanical quantities, specifically the TPP-AOA 
αT P P and thrust coefficient CT , based on a set of assigned mea-
surements, it is useful to study the underlying physical relationship 
between these variables.

To this aim, the equations for the flapping blade [13,14] provide 
a comprehensive view of the relationships between the variables 
defining the state of the helicopter from the viewpoint of flight 
mechanics and those characterising the flapwise motion of the 
blade. These equations can be conveniently grouped in the system 
of equations

Q s = T̃ m̃ + q̃. (1)

The array sT = {αT P P , CT } includes the quantities to be ob-
served and array m̃T = {a0, a1s , b1s , θ0, B1} is made of the measure-
ments necessary for the observation. These measurements include 
the rotor blade coning angle a0, the longitudinal flap angle a1s , the 
lateral flag angle b1s , the collective pitch angle θ0, and the longi-
tudinal cyclic angle B1. The coefficients of the matrices Q and T̃
and of the array q̃ can be expanded as

Q =
[
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]
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where μ = V
�R is the advance ratio, comparing the TAS of the 

translational motion of the helicopter V with the tip speed of the 
blade, given by the product of the rotor radius R and the rotor 
rotational speed �. In the same matrix T̃ , the term e is the di-
mensional hinge offset, while Mb and Ib are the static moment of 
inertia and the moment of inertia for the flapping section of the 
blade respectively. The parameter σ = cNb

π R is the solidity of the 
rotor, where c is the chord of the blade and NB is the number 
of blades. The term γ = ρacR4

Ib
is the Lock number, the ratio be-

tween aerodynamic forces acting to lift up the rotor blades and 
inertial forces. Finally, vector q̃ contains also the blade linear twist 
angle θ1.
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Full derivation of Equation (2) can be found in [5]. The validity 
of Equation (2) is limited by the following assumptions:

• advanced, steady flight;
• linear aerodynamics (no stall and compressibility effects);
• absence of a reverse flow region on the rotor;
• blade motion consists only of first harmonic flapping and con-

ing;
• small-angle assumption.

By considering steady flight, Equation (2) does not include the ef-
fect of pitch and roll velocities on flapping angles. This effect was 
neglected for the sake of simplicity, considering the standard ap-
proach manoeuvres analysed in this work.

From the definition of matrix Q it is clear that no singular-
ity can be expected unless μ = 0, which happens only for hover 
conditions. As a consequence, it is always possible to left-multiply 
Equation (1) by the inverse of Q , yielding

s = T m̃ + q (3)

where T = Q −1 T̃ and q = Q −1q̃.
The system can be rewritten in homogeneous form, by aug-

menting the array of measurements m̃ with a unitary element and 
grouping the matrix T with the vector q, hence

s = K m (4)

where

K = [T |q] (5)

and

m =
{

m̃
1

}
. (6)

Equation (4) clearly indicates a suitable structure for the pro-
posed observer. Based on the considered derivation from the flap-
ping blade equation, the coefficients of the model matrix K de-
pend largely on constant geometrical and inertial properties of the 
considered helicopter rotor, namely Ib , Mb , σ , e, c and R . Fur-
thermore, they are functions of airspeed – through the advance 
ratio μ – and altitude – both explicitly through ρ and through the 
Lock number γ . Finally, assuming that the inertial properties stay 
constant during the approach manoeuvres of interest, Equation (4)
becomes

s = K (μ,ρ)m, (7)

highlighting the baseline observer structure suggested by theory.

2.1. Synthesis of the observation model: approach through parameter 
identification

The proposed analytic description of the observer structure rep-
resented by Equation (4) and the corresponding coefficients of 
matrix K offers some insight into the potential measurements nec-
essary to feed the observer. However, this analytic formulation is 
too simplistic to be safely adopted in real practice. Indeed, the 
analysis outlined above is obtained taking into account only the 
isolated rotor and incorporates various simplifications and assump-
tions made during the development of the analytic model for the 
flapping blade [14].

To cope with this, an approach based on model identification 
has been devised to determine the coefficients of matrix K , by uti-
lizing realistic datasets. One noteworthy characteristic of the model 
identification approach is that the coefficients of matrix K are 
3

computed based on the selection of data used to train the ob-
server. This dataset, referred to as the identification dataset, has 
to cover a wide range of αT P P and CT values, possibly consider-
ing a sufficient number of different flight conditions, capturing the 
essence of the relationship between the measurements mi and the 
observed variables si .

Then, through a suitable identification method, it is possible to 
compute the model matrix of a linear model K (μ̄, ρ̄) for a given 
value of the airspeed and altitude.

If the identification algorithm is suitable for the problem at 
hand, the model identification approach proves valuable in iden-
tifying and accounting for dependencies that may not have been 
explicitly captured in a purely analytic model.

Collecting the values of sT
i = {αT P P i , CTi } and mT

i = {m̃, 1} for 
i = 1, · · · , Np , where Np is the number of considered samples for 
the assigned advance ratio μ̄ and air density ρ̄ , the model matrix 
K (μ̄, ρ̄) will be such that[
s1 · · · sN p

] = K (μ̄, ρ̄)
[
m1 · · · mN p

]
. (8)

This can be rewritten synthetically as

S = K (μ̄, ρ̄)M, (9)

and the values of the coefficients of the model matrix for the 
assigned μ̄, ρ̄ can be obtained through a suitable identification 
method. For the problem under analysis a least-squares method 
has been considered. This yields

K̂ (μ̄, ρ̄) = S M T (M M T )−1 (10)

where the ˆ(·) sign indicates that the coefficients have been esti-
mated.

Once the coefficients of the model matrix are known, matrix 
K̂ (μ̄, ρ̄) can be employed online to obtain an estimation of the 
desired quantities ŝ from a measurement of the parameters m

ŝ = K̂ (μ̄, ρ̄)m, (11)

in the same fashion as highlighted by Equation (7).

2.2. Airspeed parameterization

As outlined in Section 2.1, the coefficients of the matrix K con-
tain altitude and airspeed terms. In particular, both matrix T and 
the array q in Equation (3) depend nonlinearly on μ and ρ . As a 
consequence, each observation model is valid just for a particular 
airspeed and altitude.

Both airspeed and altitude may vary during the approach ma-
noeuvres of interest here. Previous studies on the subject [5], 
suggest that even significantly different altitude values produce a 
small change on the coefficients of the model matrices, whereas 
the effect of airspeed is much more pronounced. Following this as-
sumption, the dependence of the model coefficients from altitude 
can be neglected, yielding the expression T = T (μ) and q = q(μ). 
Referring to the homogeneous form of the observer within Equa-
tion (4), the dependence with respect to μ will bear K = K (μ).

To effectively handle the varying parameter values, particularly 
airspeed, during model identification runs, a decision was made to 
organize the samples comprising the time histories of the mea-
sured signals into predetermined speed buckets. This approach 
aimed to appropriately distribute the data based on their corre-
sponding airspeed values.

Such buckets are centred in Nv equally spaced speed nodes, 
each corresponding to an assigned speed of the stream V̄ = V v . 
Depending on the instantaneous airspeed, every measurement 
sample si falls in the corresponding speed bucket, such that V ∈
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Table 1
Comparison in the composition of the arrays of measurements m for the K 2 and K 14 models.

Model a0 a1s b1s ρ W θT R θ0 B1 A1 V z γ f us θ f us φ f us

K2 X X X X X X
K14 X X X X X X X X X X X X X
[
V̄ − 
V , V̄ + 
V

]
. Buckets do not overlap and have an amplitude 


V = 1
2 (V v+1 − V v−1).

All samples attributed to a certain airspeed bucket will con-
tribute to the identification of the model corresponding to the 
reference airspeed V̄ = V v and the corresponding μ̄v , according 
to Equation (8).

To make use of the observer in an operational scenario where 
the advance ratio μ undergoes changes, it is necessary to store the 
coefficient values of K for a number of μ̄v buckets. The number of 
buckets should encompass the helicopter operational speed range 
for the considered class of manoeuvres (e.g. approach and land-
ing). During runtime, the model matrix associated with the actual 
value of the advance ratio μ will be interpolated online. In [5,6] a 
linear interpolation was considered between identification nodes, 
yielding

K (μ) = K v + (K v+1 − K v)
μ − μ̄v

μ̄v+1 − μ̄v
, μ̄v ≤ μ < μ̄v+1 (12)

for the model matrix related to the actual value of μ.

3. Augmenting the set of measurements

As highlighted in Section 2.1, it is possible to improve the re-
sults by modifying the array of measurements m beyond what 
is suggested by theory. For instance, as shown in [5], additional 
measurement variables may be included to address sensitivity 
to exogenous parameters. This modification can be implemented 
while keeping the identification procedure presented in Equa-
tion (8), (9) and (10) unchanged.

Thanks to the technology developed in previous research 
projects [4], we can consider the flap angles as available mea-
surements. Moreover, since all our manoeuvres of interest (see 
Section 5.1) can be assumed to be quasi-static, no significant dy-
namic phenomena should appear in the flapwise motion of blades. 
Hence, it can be safely assumed that the helicopter is moving 
in a trimmed flight condition. This in turn allows to hypothe-
size that there exists a relationship between the coefficients of 
the trimmed pitch input and those of the flapwise deflection. At 
first, this remark yields a reduction of the array of measurements 
m in Equation (6) to

m = {
a0, a1s , b1s , 1

}T
. (13)

However, from empirical studies [5], it turns out that flap an-
gles show a marked dependency also on the helicopter mass and 
altitude. Hence, to improve the model quality and to account for 
these dependencies on altitude and weight, air density ρ and 
weight W were added to the array of measurements yielding the 
new vector

m = {
a0, a1s , b1s , W , ρ, 1

}T
. (14)

By inspecting the quality of the measured signals in m from 
simulations in [6], it was noted that better knowledge of the 
lateral-directional state of the helicopter would be beneficial for 
the accuracy of the estimation. A way to provide such information 
starting from quantities typically available from the avionic data 
bus of a helicopter – thus without making the sensor chain more 
complicated – has been found in the augmentation of m with the 
4

tail rotor collective θT R . The simplest way to add this quantity to 
the array of measurements, similarly to what had been done al-
ready for the quantities ρ and W , is that of supposing a linear 
behaviour of the observation model with respect to it, yielding

m = {
a0, a1s , b1s , W , ρ, θT R , 1

}T
. (15)

Results from this scenario show remarkably limited errors in 
both design and off-design conditions. For instance, in design con-
ditions, the relative error on CT is always less than 0.2% and that 
on αT P P always less than 5% [6].

More recently, with the goal to improve the general quality of 
the observer even more, further attempts have been carried out 
to identify the optimal set of measurements, including helicopter 
attitude angles, trajectory angles, and controls. These additional 
measurements include:

• blade root collective pitch θ0
• blade longitudinal cyclic pitch B1
• blade lateral cyclic pitch A1
• helicopter vertical speed V z

• helicopter descent angle γ f

• helicopter pitch angle θ f

• helicopter roll angle φ f

Starting from this rich set, an extensive comparative analysis of 
many different observer models using different combinations of 
measurements has been performed. A total of 14 models have been 
derived, differing by the considered set of measurements. Each 
model has been designed as linearly scheduled with respect to the 
airspeed as explained in Section 2.2.

For the sake of brevity, this paper compares only two especially 
interesting models named as K 2 and K 14. In particular, the K 2
model uses the array of measurements in Equation (15), for a total 
of 6 measurements. The K 14 model adds other 7 measurements 
for a total of 13. The corresponding sets of measurements em-
ployed are detailed in Table 1. Results on the effect of the augmen-
tation will be presented in Section 5, assessing also the robustness 
of the observation chain through simulations in off-design condi-
tions.

It is worth noting that the observer relies on the availabil-
ity of on-board measurements of the rotor flapping motion, pilot 
commands, air density, weight, and other quantities such as TAS, 
rate of climb, pitch angle, and roll angle. The estimation of these 
parameters is usually not straightforward, as they might not be di-
rectly measurable themselves. Many of these quantities need to be 
derived from the aircraft air data system, fuel system, navigation 
system, and – in the case of flap angles – from the recently de-
veloped rotor state measurement system described in [4], which is 
still in early development stage. Uncertainties in each of the mea-
surements should be quantified by defining error bounds and/or 
confidence intervals. This unreliability of the measurements can 
propagate through the observer algorithm and affect the estimated 
values of αT P P and CT . In this work, we will assume that each 
measured variable is known without bias. Nevertheless, we believe 
that a thorough assessment of the observer accuracy should be 
done by considering the complete chain of uncertainties, especially 
in light of a possible real-life application.
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z].
4. Additional amendments to model structure

Before showing some results, further considerations on the 
structure of the model will be reported here. This further inves-
tigation has been suggested by the results obtained in practice, 
when trying to obtain more accurate observation at a lower com-
putational cost. In this regard, it should be recalled that the ob-
server synthesis may require a high number of dedicated runs 
(either in a high fidelity simulation environment or in the field). 
An increased number of parameters in the measurements m im-
plies a higher number of coefficients to be identified in K , and 
this in turn increases the number and diversity of cases to be fed 
to the identification procedure. The airspeed-scheduled structure 
of the observer outlined in the previous sections is another source 
of complexity which, as will be briefly outlined here, can be revis-
ited to better cope with the physics of the observation model at 
hand.

The following paragraphs explain the pathways followed in the 
rationalization of the model structure.

4.1. Dynamic pressure as an input

As it is going to be shown in Section 5, the effect of simply 
adding new measured variables to the set of measurements m, ap-
pears to bring limited benefit to the quality of the observation.

A reason for this is the nonlinear dependency of the model ma-
trix K coefficients on the advance ratio μ, and ultimately on the 
airspeed V .

In the models described above, the information about airspeed 
is embedded in the model matrix K and there exists a different 
matrix K for each value of the airspeed, considered by building 
different buckets with respect to a nominal value of the advance 
ratio μ̄, as shown.

However, the linear interpolation of matrix K as described in 
Equation (12), is not perfectly suited to deal with this nonlinearity. 
Given the linear nature of the selected identification method, we 
sought a way to retrieve linearity with respect to airspeed. Again, 
a useful insight in this sense comes from the physics behind the 
flapping blade equations used to set up the observer structure. In 
particular, as known, the lift acting on the i-th blade Li , is propor-
tional to the dynamic pressure qdyn as

Li = qdyn AbC̄L (16)

where Ab is the surface of the blade and C̄ L the average lift coeffi-
cient. The dynamic pressure is, by definition, a quadratic function 
of the airspeed V as

qdyn = 1

2
ρV 2. (17)

The linear relationship between lift and dynamic pressure sug-
gests the choice of qd as an additional element of the vector m.

Since the information about airspeed V is now embedded into 
the qdyn measurement, the model parameterization with respect 
to airspeed V as described in Section 2.2 is no longer required. 
This means that a unique matrix K can be identified, for all the 
airspeed conditions considered for identification, without resorting 
to the airspeed buckets employed in Equation (12).

4.2. Altitude parameterization

Section 2 pointed out that the matrix T̃ , and ultimately the 
model matrix K is a function of both the airspeed, through the 
advance ratio μ, and altitude, through the density of air ρ .

In particular, the first row of matrix T̃ , includes the effect of air 
density through the Lock number γ . The second row of the matrix, 
5

pertaining to the thrust coefficient CT , shows the altitude term ρ , 
always at the denominator. This comes as a consequence of the 
definition of the thrust coefficient as

CT = T

π R2ρ(�R)2
(18)

where T is the main rotor thrust. Equation (18) highlights another 
nonlinear relation between ρ (i.e. altitude) and CT .

Once again, empirical studies described in Section 5 will show 
that, for what concerns the estimation of CT , it is possible to re-
peat the bucketing technique of Equation (12) using altitude z as 
an independent variable for interpolation. Similar to the airspeed 
buckets, the altitude buckets are centred in Nz equally spaced alti-
tude levels, each corresponding to an assigned altitude z̄ = zz .

Depending on the instantaneous altitude, every measurement si
falls in the corresponding altitude bucket such that z ∈ [z̄ − 
z, ̄z + 


All samples attributed to a certain altitude bucket will con-
tribute to the identification of the model corresponding to the 
reference altitude z̄ = zz .

Also in this case, a linear interpolation was considered between 
altitude levels, yielding

K (z) = K z + (K z+1 − K z)
z − z̄z

z̄z+1 − z̄z
, z̄z ≤ z < z̄z+1 (19)

for the model matrix related to the actual value of z.

4.3. Split model: different measurements for each observed variable

Following the reasoning regarding the use of dynamic pressure 
as additional measurement and the non-linearity of the CT with 
respect to altitude, it was decided to separate the models for the 
observation of αT P P and CT .

Following several simulations and tests of the observer in de-
sign and off-design conditions, the observer model has been split 
according to the observed variable as follows

• αT P P : dynamic pressure qdyn is added to the vector of mea-
sured variables m and there is no parameterization with re-
spect to airspeed or altitude, i.e. there is a single matrix K
identified using all the data at different airspeed and altitude;

• CT : dynamic pressure qdyn is added to the vector of measured 
variables m but the identification data is divided into buck-
ets according to altitude. For every altitude bucket a model 
matrix K is identified. The observer employs the linear inter-
polation of Equation (19) in each observation case. Air density 
ρ is therefore eliminated from the vector of measurements, 
since its contribution is already steering the model parameter-
ization.

The so-obtained split model, making use of two different ob-
server structures for the TPP-AOA and the thrust coefficient, has 
been named S15. This identification wraps the two separate mod-
els just introduced for the observation of αT P P and CT , which are 
based on different sets of measurements, i.e. a different content of 
array m.

5. Results

5.1. Flight conditions for model identification

Since the goal of the PAI recalled in Section 1 is that of reduc-
ing helicopter noise during final approaches, the reference flying 
condition is that of a continuous trimmed descent, as depicted in 
Fig. 1.
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Fig. 1. Trimmed descent profile considered for identification.
Table 2
Flight parameters considered for the identification 
phase.

V [kn] β f [◦] W [kg] z [ft] γ f [◦]
30 -10 2,183 3,000 3
40 0 2,282 2,500 4
50 10 2,381 2,000 5
60 2,481 1,500 6
70 2,580 1,000 7
80 2,679 500
90 2,778
100 2,877
110 2,977
120 3,076

3,175

Similarly to [6], the observer has been developed and tested in 
virtual environment using the simulator RSim [15]. RSim imple-
ments a rigid model suitable for analysing the flight dynamics of 
the helicopter, plus a model of the flexible main rotor based on the 
theory found in [14,13] to simulate the rotor flapping dynamics.

The validated model of an existing lightweight, twin-engine, 
multi-purpose helicopter has been considered for all tests.

Each manoeuvre is simulated through a series of trimmed de-
scent points, starting at an altitude zin = 3,000 ft with a 500 ft 
decrement. The values of the helicopter TAS vary between 30 and 
120 kn. The helicopter is assumed to descend in steady flight. Since 
the descent angle γ f has a straightforward relationship with αT P P

— a larger descent angle should involve a larger angle of attack and 
therefore a bigger αT P P — angles from 3° to 7° were considered. 
Each descent was simulated at different angles of sideslip, varying 
from -10° to +10° every 10°. All the parameter values assumed for 
the simulated flight conditions for identification (i.e. for observer 
synthesis) are collected in Table 2.

With the whole set of combinations, a total of 9900 trim con-
ditions have been simulated.

5.2. Observation models

The observation models K 2, K 14 and S15 outlined in Sec-
tions 3 and 4.1 are here compared in their capacity to replicate the 
observed quantities αT P P and CT . For an easier referencing, Table 3
tries to summarise the differences between the three models.

As shown in Section 2.2, identification data is organised in air-
speed buckets for what concerns model K 2 and K 14. Each bucket 
corresponds to a nominal value of the TAS and contains all the 
data points with a TAS close to the nominal value within a maxi-
mum tolerance 
V = 10 kn.
6

On the other hand, model S15 makes use of altitude buckets 
(see Section 4.2) for the observation of the thrust coefficient CT . In 
this case, each bucket is 
z = 500 ft in width.

5.3. Quality of the identified model

Before proceeding to the evaluation of the observation results, 
the observer operation is checked on the same samples considered 
for identification. This observation should produce very accurate 
results except in case of issues to the selected structure of the 
observer, adopted identification technique, or unsuitability of the 
pool of cases considered for identification.

For every airspeed bucket (model K 2 and K 14), and altitude 
bucket (model S15 - CT only) a matrix K was identified using the 
aforementioned least-squares technique. These matrices are now 
tested on the same samples used to compute them.

The K 2, K 14, and S15 models are tested on all airspeed buck-
ets. Results are shown in Fig. 2. Because of the large number of 
simulations, K 2 and K 14 results are displayed for the 30 kn air-
speed bucket only. Conversely, for S15 model, the whole set of 
identification data is reported in a single plot.

In Fig. 2, the horizontal and the vertical axes represent the real 
and the observed values of the considered variable respectively, 
in this case αT P P . The red line is the ideal correlation line, while 
the blue squares are the observed samples. The closest the squares 
are to the correlation line, the more accurate the quality of the 
observation is.

The analysis of Fig. 2 indicates that K 2 model features the low-
est degree of accuracy, compared to K 14 and S15, with more data 
points lying further away from the ideal correlation line. On the 
contrary, the samples are much more concentrated around the 
ideal correlation line in Fig. 2(b) and (c). The disparity between 
K 2 and the other two models may be due to the smaller number 
of input measurements that the K 2 model employs (6 variables), 
compared to K 14 and S15 (13 and 14 respectively).

Interestingly, the K 14 model appears more accurate than the 
S15 model, despite the presence of one additional measurement, 
namely the dynamic pressure. However, it can be observed that in 
Fig. 2 a single S15 model matrix is identified based on the entire 
set of flight conditions, covering different values of the airspeed, 
ranging across all speed buckets. On the other hand, multiple K 14
model matrices are identified for every speed bucket, and here the 
K 14 model is being tested on the same data points used for iden-
tification, in this case the 30 kn cases.

In order to further assess the quality of the observer perfor-
mance, the value of the absolute error for every airspeed bucket 
has been calculated, as shown in Fig. 3. In particular, Fig. 3(a) 
shows the error on αT P P while Fig. 3(b) shows the error on CT . 
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Table 3
Summary of the proposed observer models.

Model ID Observed 
variables

Measured variables Bucketing parameter

K2
αT P P . {a0,a1s,b1s,ρ, W , θT R } Airspeed V
CT

K14
αT P P {

a0,a1s,b1s,ρ, W , θT R , θ0, B1, A1, V z, γ f , θ f , φ f
} Airspeed V

CT

S15
αT P P

{
a0,a1s,b1s,ρ, W , θT R , θ0, B1, A1, V z, γ f , θ f , φ f ,qdyn

}
None

CT
{

a0,a1s,b1s, W , θT R , θ0, B1, A1, V z, γ f , θ f , φ f ,qdyn
}

Altitude z

Fig. 2. Model quality check for αT P P on identification data. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
The black bars refer to the K 2 observer, the blue bars to K 14 and 
the yellow bars to S15. Firstly, the graphs highlight that the er-
ror values are remarkably limited, in all cases. Nevertheless, the 
higher value of the error with K 2 model is apparent in the low-
speed buckets for αT P P and all the speed buckets for CT , showing 
that the small number of measured variables may reduce accu-
racy in observation. K 14 features the best values of the absolute 
error on αT P P , but it is outperformed by S15 when considering 
CT . Fig. 3(c) and (d) show that the magnitude of the relative error 
on the two parameters can be used to drive the same conclusions. 
Considering the small numerical values assumed by αT P P ≈ [1, 10]
deg and CT ≈ [0.004, 0.009], we will only display absolute error 
graphs for the remainder of the paper.

The error values in Fig. 3 confirm what emerged from the qual-
itative analysis of Fig. 2. K 14 appears to be a better model for the 
αT P P estimation with respect to S15. However, it must be consid-
ered that the dataset used for K 14 identification uses a smaller 
but more homogeneous number of samples, with all the points 
falling within the same speed bucket. Therefore, K 14 model is ex-
pectedly very precise in reproducing the same data employed for 
identification. On the other hand, model S15 is identified with a 
wider set of data containing the whole range of airspeeds. Thus, 
7

the data provided to the model covers a wider set of conditions. 
This brings to a lower observation accuracy when tested on the 
same identification data, but should comparatively increase model 
generality and adaptability in different flight conditions, as will be 
shown shortly.

5.4. Observation in design conditions

To assess the quality of the observation algorithm, more sim-
ulations have been performed at intermediate airspeeds and in-
termediate angles of sideslip, not considered for identification. 
Even though they were carried out at intermediate airspeeds and 
sideslip angles, these conditions nonetheless consist of trimmed 
descent flights. They are therefore referred to as design conditions 
(as opposed to off-design conditions, shown later).

The airspeed values and sideslip angles considered for these ad-
ditional simulations are collected in Table 4(a) and (b).

Simulations are conducted for all the weights, altitudes and 
descent angles considered during the identification phase and re-
ported in Table 2.

A total of 7920 simulations are carried out for this testing 
phase.



F. Salucci, P. Parravicini, C.E.D. Riboldi et al. Aerospace Science and Technology 141 (2023) 108536

Fig. 3. Average absolute and relative error for simulations at various airspeeds. Observer checked on the same samples considered for identification.
Table 4
Flight parameters considered for observation in design conditions.

(a) Intermediate airspeed 
cases.

V [kn] β f [◦]
35 0
45
55
65

(b) Intermediate sideslip 
angle cases.

V [kn] β f [◦]
30 -5
40 5
50
60
70
80
90
100
110
120

5.4.1. Intermediate airspeed conditions
The intermediate airspeed cases, at 35, 45, 55 and 65 kn, with 

β = 0° are important to study the dependency of the model ma-
trix K with respect to the advance ratio μ or, ultimately, the 
airspeed V .

The model coefficients of K 2 and K 14 have been linearly inter-
polated as explained in Equation (12), based on the actual value of 
the airspeed of each sample in the new simulations.

Results in Fig. 4 show the agreement between real and ob-
served values for the K 2, K 14, and S15 models at intermediate 
airspeeds (blue squares at 35 kn, black diamonds at 45 kn, light 
blue circles at 55 kn and green triangles at 65 kn). It emerges that 
model K 2 samples are less concentrated around the identity line 
than K 14 and S15 samples, especially for low-speed conditions 
(35 kn). Contrarily, model K 14 and S15 show a better level of ac-
curacy with respect to K 2, although the K 14 observed samples for 
the low-speed cases (35 kn) lie below the identity line, highlight-
8

ing an underestimation of αT P P that appears proportionate to the 
magnitude of the quantity itself;

This fact is particularly evident if we look at relative errors in 
Fig. 5. Looking at the black bars representing the S15 model, the 
absolute error on αT P P observation is always lower than the K 2
or K 14 errors, except for the 65 kn case, where the three models 
perform equally well.

Concerning the CT observation, shown in Fig. 5(b), model S15
clearly outperforms the other two.

5.4.2. Intermediate angle of sideslip conditions
Further simulations have been run in two scenarios different 

from that considered for identification. In particular, simulations 
with β = -5°, +5°. These are still considered design conditions, 
since samples with β = ±10° were included in the identification 
process.

Fig. 6(a) shows the comparison between the absolute error of 
K 2, K 14 and S15 models for αT P P . As it can be observed therein, 
the additional measurements used by the K 14 model contribute to 
cut the value of the absolute error, especially compared to the K 2
model. This occurs for all the airspeed buckets. On the other hand, 
the absolute error of S15 is less than that of K 2 between 30 kn 
and 60 kn and over 100 kn.

Conversely, in Fig. 6(b) the absolute error on the CT observation 
for the S15 model plunges below K 2 and K 14 in all cases.

5.5. Observation in off-design conditions

In order to test the observer robustness, a few simulations that 
bring the helicopter out of design conditions have been considered. 
Two off-design scenarios have been developed:
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Fig. 4. Observation quality check for αT P P at intermediate airspeeds.

Fig. 5. Average absolute error for observations at intermediate airspeeds.
• Decelerated descents
• Unsteady manoeuvres

These tests of the observer on decelerated descents and unsteady 
manoeuvres represent quite a variation with respect to the sam-
ples used for the identification phase, i.e. trimmed steady descent 
flights. Nevertheless, the magnitude of deceleration and descent 
profile changes remain limited. Additional analyses should look at 
how the observation error increases as the flown trajectory pro-
gressively departs from nominal conditions. For instance, the mag-
nitude of the deceleration could be parametrically increased, or 
additional unsteady manoeuvres could be defined, involving flight 
conditions at increasing load factors.
9

5.5.1. Decelerated descents
In this first off-design scenario, the helicopter is considered fol-

lowing a decelerated descent trajectory. This flight condition is 
extremely important, since is one of the most recurrent and likely 
for a helicopter in real-life operation. Two possible subcases have 
been investigated:

• Decelerated descent with an initial airspeed V in =70 kn and a 
final airspeed V f in =50 kn

• Decelerated descent with an initial airspeed V in =50 kn and a 
final airspeed V f in =30 kn

The manoeuvre starts at an altitude z = 3,000 ft and ends at 
the final altitude z = 500 ft. The helicopter is assumed to end 
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Fig. 6. Average absolute error for observations at intermediate sideslip angle.
Table 5
Flight parameters considered for off-design observation 
phase.

V in ÷ V f in [kn] 
td [s] W [kg]
50 ÷ 30 300 2,183
70 ÷ 50 350 2,381

400 2,580
450 2,778

2,977
3,175

the descent in an amount of time 
td . The values of 
td consid-
ered are 300, 350, 400 and 450 s, yielding four different constant 
descent rates. Due to the time evolution imposed on the total 
airspeed of the helicopter and to the constraint on the vertical 
speed, the descent angle is not constant during the simulation. 
As far as it concerns the weight, values between 68.75%Wref and 
100%Wref with a 6.25%Wref increments were considered, where 
Wref = 3,175 kg is the helicopter reference weight. A total of 48 
manoeuvres were simulated and summarised in Table 5.

Results from these scenarios are presented in Figs. 7 and 8. Blue 
squares are decelerated descents from 50 to 30 kn, while black 
diamonds are decelerated descents from 70 to 50 kn. The accuracy 
of αT P P and CT observation is still good in all cases, for all the 
observer models. Still, S15 emerges globally as most accurate, with 
very low dispersion of data points around the ideal correlation line, 
as in Fig. 7(c), and little loss of accuracy in all the study cases, for 
both αT P P and CT , as in Fig. 8.

5.5.2. Unsteady manoeuvre
As an additional test, a specifically designed unsteady manoeu-

vre is simulated to prove the off-design performance of the ob-
server. The unsteady manoeuvre consists of four phases:

1. steady level flight at 90 kn for 10 s;
2. uniform deceleration in level flight for 40 s, slowing down 

from 90 to 50 kn;
3. steady descent with 9◦ descent angle for 30 s;
4. transition to steady level flight at 50 kn for 20 s.

In Fig. 9 the time histories of altitude, TAS, and descent angle 
(γ f ) of the unsteady manoeuvre are represented.

Figs. 10 and 11 show the time histories of the αT P P and CT

observations for the three models K 2, K 14 and S15. The real value 
of the parameter is represented by the continuous blue line, while 
the dotted blue line represents the observed value.

Looking at the figures, it turns out that model K 2 is by far the 
least accurate in both αT P P and CT estimations. Especially, this 
10
Table 6
Conditions for model identification in a desampled scenario.

V [kn] β f [◦] W [kg] z [ft] γ f [◦]
30 -10 2,183 3,000 3
40 0 3,175 500 7
50 10
60
70
80
90
100
110
120

model exhibits significant overshoots for αT P P when the real value 
undergoes abrupt changes.

The accuracy of the other two models in estimating αT P P is 
comparable, but model S15 performs better in estimating CT .

5.6. Sensitivity to the number of samples

This last subsection examines how the quality of the observer 
is impacted by a decrease in the quantity of data points (i.e. a 
desampling) employed during the identification phase to estimate 
the model matrix K .

As pointed out, this analysis is particularly significant, since in 
a real-life application of the observer, the necessary data for its 
synthesis could be accrued with flight test campaigns reproducing 
the identification manoeuvres described in Section 5.1. In this case, 
the considerable number of required flight tests would amount to 
9,900 descents at different airspeed and sideslip angles. This would 
make the synthesis of the observer through experimental data an 
impossible task. In such case, it would be necessary to dramatically 
cut the number of test cases to accomplish the model identifica-
tion.

For this analysis on desampling, the K 2 model has been left out 
due to its performance, which is often substantially poorer than 
that of the other two models K 14 and S15.

The same unsteady manoeuvre considered in Section 5.5.2 is 
chosen as the reference testing condition, since it puts the highest 
demands on the model adaptability.

A substantial desampling has been attempted, as reported in 
Table 6. This process produces a very important reduction of the 
amount of required input data, as reported in Table 7. Such a dras-
tic reduction in the number of simulations and data points would 
allow for conspicuous savings of both costs and human effort.
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Fig. 7. Observation quality check for αT P P in decelerated descents.

Fig. 8. Average absolute error in decelerated descents.
Table 7
Comparison of the size of the original and desampled datasets.

Dataset γ f W z β f Total of samples per TAS value

Standard 5 11 6 3 990
Desampled 2 2 2 3 24

The time histories in Figs. 12 and 13 show the application of 
the K 14 and S15 models, equally desampled as in Table 7.

The graphs show that the K 14 model observations, for both 
αT P P in Fig. 12(a) and CT in Fig. 13(a), are severely affected by 
the desampling. Specifically, the K 14 model is no longer able to 
correctly observe the desired quantities in a satisfactory way, es-
pecially in the first seconds of the levelled deceleration manoeuvre 
at the beginning of the time history, before the descent begins. On 
11
the other hand, S15 model shows no particular reduction in its 
accuracy.

6. Discussion and conclusion

The potential of an observer for the main rotor tip-path-plane 
angle of attack and thrust coefficient of a helicopter has been fur-
ther explored in this work, expanding previous research aiming at 
an increase in observation accuracy and practical applicability in 
the field.

After reinstating the theoretical grounds working as a base for 
the observer concept, its structure has been reconsidered following 
two directions.
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Fig. 9. Time histories of the unsteady manoeuvre.

Fig. 10. Time histories of the real and observed values of αT P P in the unsteady manoeuvre.
12
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Fig. 11. Time histories of the real and observed values of CT in the unsteady manoeuvre.

Fig. 12. Time histories of the real and observed values of αT P P in the reference unsteady manoeuvre - desampled case.

Fig. 13. Time histories of the real and observed values of CT in the reference unsteady manoeuvre - desampled case.
13
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First, the impact of expanding the set of measurements to in-
clude several flight mechanics parameters has been investigated.

Second, the observer structure has been emended, to include 
the dynamic pressure as an additional measurement, thus over-
coming the high sensitivity of the model coefficients to airspeed.

The overall findings demonstrate that a linear observer model 
can achieve a very high level of accuracy in monitoring non-
measurable properties of the main rotor if provided with a proper 
selection of input variables.

Results show a comparison between three different observer 
models. The first is the baseline model K 2, which employs a 
smaller number of input measurements, whereas the other two 
have been shortlisted as the most promising from a broader exper-
imentation campaign, and are namely the augmented model K 14, 
and the split model S15. Additional research has been done to de-
termine which is best for adoption in practical applications.

When K 2 is compared against K 14 and S15, it emerges that 
recurring to a sufficient number of input variables — even if they 
are not part of the theoretical model but suggested by practice — 
improves greatly the quality of the result, especially for αT P P es-
timation. This initial finding shifts the focus on those models with 
the highest number of input variables, i.e. K 14 and S15.

The comparison between the latter two models demonstrates 
how sensitive the accuracy and adaptability of the model is to the 
scheduling of the model coefficients with respect to airspeed or 
altitude.

In particular, the scheduling option with respect to airspeed, 
adopted for both models K 2, K 14 and for many intermediate mod-
els between these two, which, for brevity, have not been discussed 
in the paper, displays high accuracy when tested on the same data 
samples used for the identification process. However, these mod-
els demonstrate unsatisfactory adaptability, when faced with flight 
conditions that differ from those employed for identification, and 
particularly when non-trimmed conditions are considered.

Interestingly, model S15, which was constructed using a dif-
ferent scheduling technique depending on the observation variable 
(no airspeed scheduling for αT P P and air density buckets for CT

estimation), turns out to be more accurate in the observation cases, 
especially in unsteady flight conditions, but less accurate on the 
identification dataset checks.

Model S15 has additionally demonstrated a high tolerance to 
substantial reductions in the number of samples used to carry out 
the model identification phase. This makes it possible to consider-
ably reduce the amount of necessary input data. The robustness of 
the S15 model may provide for a significant cost reduction if real 
flight test data were to be employed to deliver the model identifi-
cation part, drastically cutting the related costs and effort.

Considering that helicopters usually experience non-trimmed 
flight conditions in real-life scenarios, and given the substantial 
amount of data points required to synthesise the observer, it is 
reasonable to conclude that model S15 would be the most ap-
propriate choice for the synthesis of a numerical observer of the 
TPP-AOA and the main rotor thrust coefficient.

Future analyses will concentrate on three aspects that emerged 
by examining the results:

1. Including biases in the array of measured parameters. An as-
sessment of the observer accuracy will be done by considering 
the complete propagation of uncertainties in each of the mea-
surement, especially in light of a possible real-life application.

2. Improving the behaviour of the observer during unsteady ma-
noeuvres. This will be done by quantifying the rate of growth 

of the estimation error as the flight trajectory departs from the 
nominal steady descents. The possibility of adding selected un-
steady manoeuvres among the identification samples and the 
effect of pitch and roll rates on flap angles will be investigated.

3. Observing more non-measurable variables from the same ar-
ray of measurements. Other quantities of interest might be 
the fuselage aerodynamic angles, such as the fuselage angle 
of attack, and the sideslip angle. While the value of the fuse-
lage angle of attack is algebraically correlated to the value of 
TPP-AOA, the angle of sideslip needs an extension of the ob-
server model matrix, possibly requiring dedicated simulations 
to properly identify the coefficients of the model.
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