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Abstract

The microgravity exposure that astronauts undergo during space missions lasting up to 6

months induces biochemical and physiological changes potentially impacting on their

health. As a countermeasure, astronauts perform an in-flight training program consisting

in different resistive exercises. To train optimally and safely, astronauts need guidance by

on-ground specialists via a real-time audio/video system that, however, is subject to a

communication delay that increases in proportion to the distance between sender and

receiver. The aim of this work was to develop and validate a wearable IMU-based biofeed-

back system to monitor astronauts in-flight training displaying real-time feedback on exer-

cises execution. Such a system has potential spin-offs also on personalized home/remote

training for fitness and rehabilitation. 29 subjects were recruited according to their physical

shape and performance criteria to collect kinematics data under ethical committee

approval. Tests were conducted to (i) compare the signals acquired with our system to

those obtained with the current state-of-the-art inertial sensors and (ii) to assess the exer-

cises classification performance. The magnitude square coherence between the signals

collected with the two different systems shows good agreement between the data. Multiple

classification algorithms were tested and the best accuracy was obtained using a Multi-

Layer Perceptron (MLP). MLP was also able to identify mixed errors during the exercise

execution, a scenario that is quite common during training. The resulting system repre-

sents a novel low-cost training monitor tool that has space application, but also potential

use on Earth for individuals working-out at home or remotely thanks to its ease of use and

portability.
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Introduction

Prolonged exposure to microgravity during long term spaceflights has been addressed as one of

the main stress factors for the astronauts, as it is responsible for several physiological alterations

affecting mostly the cardio-vascular and musculoskeletal systems, with consequences getting

worse as the time of the mission increases. Over the last decades of space explorations, Long

Duration Mission (LDM) allowed to collect data indicating a loss of bone mineral density of 5%,

a reduction of muscle mass up to 35–40% and cardiovascular functions alteration [1]. To reduce

these health problems, several countermeasure training programs have been implemented. The

protocol considered in this paper is based on resistive exercises performed with the Advance

Resistive Exercises Device (ARED) currently used on the International Space Station (ISS),

which allows astronauts to perform typical gym exercises. Currently, ISS crew-members receive

feedback from on ground specialists by using a real-time audio/video system to ensure optimal

and safe performance [2]. However, as the distance from the Earth to the space vehicle increases,

communication delays increase and loss of communication can occur. Consequently, training

monitoring during future planned LDMs to the Moon and Mars could be problematic. It has

been assessed that non-optimal exercise performance, especially by using high loads, may reduce

training efficacy and can involve risk of injuries [3–5]. To overcome reduced opportunity for

human coaching, the introduction of motion tracking technologies could be useful.

Several studies in literature used motion capture systems to analyze motion during training

exercises [6–9] and movement in microgravity conditions [10–14]. These solutions are not

suitable for real-time monitoring on the ISS since they require bulky technology and complex

system setup and operation. Conversely, Inertial Measurement Units (IMUs) are small and

inexpensive devices that can be used to quantify human motion. IMUs have indeed been used

for daily human activities recognition [15–17] as well as gait analysis [18], elderlies fall detec-

tion [19], medical monitoring [20] and stereotypical motor movements recognition in autism

spectrum disorder [21].

Data from IMUs can also be used to classify typical gym exercises with supervised learning

methods [22, 23]. Lee et al. [24] compared conventional machine learning (CML) and deep

learning (DL) algorithms for detecting five induced deviations of squat by using five IMUs

placed on the body. They obtained accuracies equal to 75.4% for CML and 91.7% for DL. Simi-

larly, O’Reilly et al. [25] classified five induced deviations of deadlift performance starting from

data collected by five IMUs with accuracies of 60% and 81%, respectively. Other studies used

data collected from inertial sensors to classify various types of exercises performed in the same

experimental session. De Villa et al. [26] used four IMUs to classify a set of seven exercises of

upper and lower limbs frequently proposed in physical therapy routines (including squats, hip

abduction, knee flex-extension, gait, elbow flex-extension, extension of arms overhead and

squeezing), obtaining sensitivity and specificity values over 99% in the detection of wrongly

performed motions using a Support Vector Machine (SVM) with a polynomial kernel. Depari

et al. [27] collected data from a single wrist-worn wearable IMU of fourteen participants and

classified a subset of the same exercises with Linear Discriminant Analysis (LDA), obtaining

average exercise detection accuracy above 93% and errors in exercise repetitions counting less

than 6%. Finally, Preatoni et al. [28] monitored the execution of four type of functional work-

out exercises (Clean and Jerk, Burpee, American Swing, Box Jump) using five IMUs located on

the upper and lower limb, and on the trunk of fourteen participants using both k-Nearest

Neighbours (kNN) algorithms with different types of metrics and SVM with several type of

kernel functions. The authors carried out a sensitivity analysis testing the performance of the

two classifiers with different parameters combinations, and selecting data from different subset

of the five IMUs available, showing a range of accuracy from 82.5% to 97.8%.
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However, while these works represent efficient on-Earth training monitoring approaches,

they present three additional issues for space applications. The first is that acceleration data

includes gravity component, not consistent with a microgravity scenario. The second is that

the magnetometer signals (needed to perform the classification) are much different on the ISS

since its magnetic field quickly changes in time. Finally, exercises were performed without any

additional external load, which may influence movement kinematics.

The aim of this work was to design a wearable IMU system and to develop and validate an

algorithm for classifying resistance training. Key aspects were: (a) suitability of use in micro-

gravity; (b) portability, wearability and easiness to use; (c) capability to provide real-time

instructions and corrective feedback also personalized to the single individual.

This tool could also have a potential extended application for individual training or rehabil-

itation at home, as our system may help to perform home workout safely and without local

human supervision.

Materials and methods

Measuring system

The real-time biofeedback system (Fig 1) developed was composed by six IMUs, specially

designed for this work and named SpaceSens (see hardware section below), which collect data

synchronously and send them via Bluetooth to a processing device. In the latter (see Signal

Processing section below), the signals are processed in order to simulate data acquired in

microgravity, to extract a single gesture repetition and to perform error classification. A simple

Graphical User Interface (GUI) allows users to easily start the tool and delivers visual biofeed-

back during training.

Hadware. The SpaceSens IMUs include a magnetic-inertial sensor, a microcontroller, a

communication system and an integrated power supply. Each component is electrically

Fig 1. Real-time biofeedback system diagram. Schematic representing the real-time biofeedback system: the gravitational component of the filtered

signals collected from the six IMUs placed on the subject’s body is removed using the magnetometers’ data. Then, the resulting accelerometers and

gyroscopes signals are segmented and organised in a dataset by extracting the most informative set of features (such as mean, standard deviation, mean

frequency, temporal entropy, etc.) for each x-y-z temporal serie of each IMU. The dataset is used to train a ML classifier to monitor the execution of

different resistive exercises and give a real-time visual feedback to the subject undergoing training through a GUI.

https://doi.org/10.1371/journal.pone.0289777.g001
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connected through a Printed Circuit Board (PCB) and embedded in a 3D printed case. The

SparkFun MPU-9250 IMU Breakout was chosen as inertial sensor. It is made up of 3-axis

accelerometer, 3-axis gyroscope and 3-axis magnetometer. Arduino Pro Mini 328 microcon-

troller has been used to communicate with a Personal Computer (PC) through a Low Energy

Bluetooth HC-05 module, ensuring low power consumption and small size requirements

(13x26.9x2.2 mm). Power supply is provided by a rechargeable Li-Po battery with a capacity of

750 mAh that ensures a working time of 18 hours. The final device implemented measures

61x61x33.5 mm, weighs 80g and guarantees an output rate of 100 Hz.

Signal processing. The nine signals of each IMU were initial filtered with a Low Pass filter

with a cut-off frequency of 20 Hz to remove high-frequency noise. Microgravity conditions

were simulated by estimating IMU orientations through the Mahony complementary filter

[29] to project acceleration data on the Earth RF and subtract the gravitational component,

and expressing the resulting quantities back to the sensor RF. The processed dataset was com-

posed of six signals (Fig 2) and used as input to the classification algorithm.

Graphical user interface. The GUI was created with the Python Tkinter toolkit, and

included all the elements to connect the PC to the IMUs and to visualise and store the data

recorded. Moreover, it permitted to start the monitoring and/or the data collection.

Experimental protocol

Participants. The Politecnico di Milano Ethics Committee approved this study (approval

n. 34/2020) and a written informed consent was signed by participants before the experiments.

Data collection was performed during two separate sessions by recruiting a total of 29 subjects

with the following inclusion criteria: healthy, trained, with previous experience of weightlift-

ing, with no musculoskeletal injuries and aware of their strength capacity, computed with the

‘one repetition maximum’ test.

IMUs placement. During the first data collection session, 17 subjects (9 Males,

26.89 ± 5.73 years old, 64.22 ± 7.14 kg, 173,44 ± 4.25 cm; 8 Females, 25.38 ± 3.77 years old,

56 ± 6.31 kg, 163.14 ± 6.52 cm height) wore five MTw Awinda IMUs (Xsens Technologies,

Enschede, Netherlands) fixed with elastic bands to each shank (medial point between lateral

malleolus and lateral femoral condyle), each thigh (medial point between lateral femoral con-

dyle and greater trochanter), over the sacrum (centrally between the two posterior superior

iliac spines) and over the sternum (Fig 3a). External load was applied using an Olympic barbell

and weights. The second session, involving the remaining 12 subjects (8 Males, 25.5 ± 0.7 years

old, 71.5 ± 16.26 kg, 179,5 ± 6.36 cm; 4 Females, 26 ± 1.4 years old, 62 ± 11.31 kg, 167 ± 4.24

Fig 2. Signal processing workflow. Schematic describing the method used to obtain the final dataset composed by 36

signals, including accelerations cleaned from gravity component and angular velocities of the six IMUs.

https://doi.org/10.1371/journal.pone.0289777.g002
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cm height), aimed to test the real-time classification. Additionally, 4 of those 12 subjects, wore

SpaceSens superimposed to Xsens IMUs, on the same body points of the first experiment (Fig

3b), in order to validate SpaceSens by comparing signals. Each couple of sensors (SpaceSens

and Xsens) were fixed by aligning axis and by using adhesive tape.

Note that, although the subjects performed the exercises using a freely-moving barbell (as

opposed to the ARED device that mechanically constrain the jittering movement of the weight

during squats and deadlift), our previous work [6] compared kinematics data collected from

capturing the body motion of subjects preforming exercises using the on-ground ARED

mockup at Johnson Space Center (JSC) in Houston, Texas (US) NASA and using a barbell,

and confirmed via a Wlicoxon-Mann-Whitney test (p< 0.05) the signals correlation and the

equivalence of joint angles in the sagittal plane.

Exercises. After a self administered warm-up of about 10–15 minutes, each participant

was instructed to complete 5 to 20 repetitions of the parallel squat exercise. The squats were

performed with different techniques in six separated trials. In particular, the first trial required

a proper execution of the exercise [5] and the other five trials included selected mistakes that

were defined as the most common and dangerous, in accordance with the NASA Astronaut

Strength, Conditioning and Rehabilitation (ASCR) specialists at JSC. Classes of incorrectness

were: rounded back (RB), knees overcoming toes (KOT), valgus knees (VK), raised heels (RH)

and shallow squat (SH).

Classification

Pre-processing and segmentation. A low pass 6th order Butterworth filter (2 Hz cut-off

frequency) was applied to the acceleration data with the gravitational vector removed and to

angular velocities obtained from the IMUs. Then, a peak and valley detection algorithm was

applied to automatically extract each repetition, by identifying the starting points and the end-

ing points as the zero-crossings before each peak and after each valley, respectively. For each of

the six sensors, two dataset tables were created, one containing x, y and z 0g accelerations

entries and another including the corresponding components of angular velocity.

Feature extraction and dataset creation. Features in time and frequency domains were

computed from the segmented signals of each sensor. The 2250 features, 375 per sensor, were:

mean, standard deviation (SD), median absolute deviation (MAD), maximum, minimum, sig-

nal magnitude area (SMA), energy, interquartile range (IQR), entropy in both domains; auto-

regressive model coefficients and correlation coefficient for normal and jerk signals in time

Fig 3. IMUs placement during the experiments. (a) First session of data collection with Xsens IMUs; (b) second

session of acquisition with the two sensors superimposed.

https://doi.org/10.1371/journal.pone.0289777.g003
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domain; index of first occurrence of maximum (maxInds), mean frequency, skewness and kur-

tosis for frequency signals. Feature scaling was then performed by using a Robust Scaler [30]

and the dataset was reduced to increase efficiency of the classifier by applying the Recursive

Feature Elimination (RFE) method [31]. The ideal number was chosen by applying RFE multi-

ple times and considering the one that permitted to reach the best results of the classification.

The resulting dataset was then used to train and test the classifiers, considering 70% and 30%

of all the values respectively.

Classification algorithms. Five supervised machine learning methods were compared:

Decision Trees, Random Forest, K-Nearest Neighbour (KNN), Support Vector Machine (SVM)

and Multi-Layer Perceptron (MLP). Each algorithm was trained and tested with the same subset

of data and their performances were evaluated by a stratified 10-fold Cross-Validation. Accuracy

(see Eq 1 below, where TP indicates True Positive, TN True Negative, FP False Positives, FN

False Negatives, and k is the summation index over the classes) was used to evaluate and com-

pare the performances of the models as it reflects the portion of correct classified observations.

Real-time system testing. After evaluating the classifiers’ performance, we conducted a

follow-up session (namely, the second session reported in the experimental protocol descrip-

tion above) in which the best classifier was tested with real-time data collected from the par-

ticipants and transmitted via Bluetooth to the software connected the sensors. The

classification result was displayed on screen via the GUI for immediate feedback, and the

provided outcomes were also stored to compute the classifier’s performance (see Table 3 in

Results).

Statistical analysis

Sensor validation. To validate SpaceSens performance, we compared it with the state-of-

the-art inertial sensors Xsens MTw Awinda. We compared signals of acceleration, angular

velocity and acceleration cleaned of gravity by a pre-processing step followed by the computa-

tion of statistical values in time and frequency domains. Signals were first filtered with a 6th

order low-pass Butterworth filter at 2Hz to exclude high-frequency noise. Each repetition was

extracted by applying the peak detection algorithm, in order to synchronise the data. Correla-

tion in time domain [32] and Magnitude Squared Coherence (MSC) in frequency domain [33]

between acceleration, acceleration without gravity and angular velocities of SpaceSens sensors

and Xsens MTw Awinda were then computed. The significance level of test was set at p<0.05.

Classification performance. Accuracy (1), sensitivity (2), specificity (3), and precision

values (4), were used to evaluate the classification performance and select the best classifier;

the same evaluation was carried out with real-time monitoring test.

Accuracy ¼

P6

k¼1

TPk þ TNk

TPk þ TNk þ FPk þ FNk

6

ð1Þ

Specificity ¼

P6

k¼1

TNk

TNk þ FPk

6

ð2Þ

Sensitivity ¼

P6

k¼1

TPk

TPk þ FNk

6

ð3Þ
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Precision ¼

P6

k¼1

TPk

TPk þ FPk

6

ð4Þ

Results

Sensor validation

Table 1 shows the values of R and MSC of the four participants involved in the sensor valida-

tion test. SpaceSens output were compared with Xsens MTw Awinda output considering accel-

eration (Acc), acceleration without gravity (0g Acceleration) and angular velocity (Ang Vel)

signals. Each value was obtained by averaging the R and the MSC obtained from the six sensors

put on the body. Mean ± standard deviation for each signal are reported.

R values of 0.96 for acceleration, 0.81 for 0g acceleration, and 0.95 for angular velocity, rep-

resenting the average respect all sensors and all subjects, are clear indicators of a very high cor-

relation. MSC values of 0.95 for acceleration, 0.79 for simulated 0g acceleration, and 0.96 for

angular velocity, far above the threshold of 0.5, make us understand that the signals are coher-

ent and comparable, and the validation results can be considered satisfactory. Lower values of

0g Acceleration, obtained by subtracting the gravity component with the procedure explained

in Signal processing section, are mostly due to the different algorithms used to estimate the

orientation of the sensors: a proprietary Kalman Filter for Xsens MTw Awinda and the Mah-

ony sensor fusion algorithm for SpaceSens. However, all the results obtained are indicators of

a general condition of high correlation and coherence among the signals under analysis. In the

end, low standard deviation suggests that inter-subject variability is negligible.

Classification

The original feature dataset, obtained from the 21 subjects wearing Xsens MTw Awinda dur-

ing the two sessions, were composed by 1029 repetitions in row and 2250 features in column.

After RFE, it was reduced in 1014 rows and 769 columns and the observations were almost

evenly spread into 6 classes (184 observations in CO, 148 in KOT, 162 in VK, 175 in RB, 161 in

RH, 184 in SH).

As already mentioned, each classifier was trained considering a portion equal to 70% of

observations and then tested with the remained 30% of data. Table 2 shows the results obtained.

All algorithms tested achieved high accuracy. DT and RF showed lowest values of sensitivity

and precision, so they were excluded from the selection. KNN was more sensitive and precise,

Table 1. Sensor validation results.

Correlation Magnitude Squared Coherence

Subject Acc 0g Acc Ang Vel Acc 0g Acc Ang Vel

S01 0.97 0.905 0.968 0.949 0.744 0.963

S02 0.955 0.802 0.955 0.947 0.761 0.960

S03 0.954 0.871 0.953 0.959 0.744 0.963

S04 0.972 0.664 0.922 0.957 0.786 0.956

Mean ± SD 0.96 ± 0.01 0.81 ± 0.11 0.95 ± 0.02 0.95 ± 0.01 0.79 ± 0.02 0.96 ± 0.003

Linear Correlation Coefficient (R) and Magnitude Squared Coherence(MSC) between signals collected with commercial IMUs and the SpaceSens.

https://doi.org/10.1371/journal.pone.0289777.t001
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but the prediction is thought to be less stable and more subjected to outliers. Finally, SVM and

MLP are the classifiers with the best performance. The final choice was MLP since it showed

the best results. Furthermore, it is able to extract the percentage of the observations belonging

to each class by using a Softmax layer. This could be used to provide multiple corrective

advices in case of mixed errors during the exercise execution, quite common in the classes of

errors analysed (e.g.: bringing the knees over the toes together with raising the heels during

squatting).

Real-time system testing

The data collected from the 12 participants during the second session included a total of 319

repetitions spread in the 6 classes as follow: 30 for CO, 35 for KOT, 34 for VK, 30 for RB, 30

for RH and 29 for SH.

The classifier showed accuracy, specificity, sensitivity and precision values of 89.03%,

93.35%, 66,77%, 68,81% respectively.

Table 3 shows the confusion matrix of the real-time classification in which a trend to mis-

classify KOT as RH and VK as KOT is clear, that requires combined corrective feedback

instructions thanks to the Softmax Layer.

Discussion

The aim of the present study was to develop a wearable, real time, IMU-based biofeedback sys-

tem to monitor the training process that astronauts undergo during long duration space flights

to counter the effects of the microgravity on their health. The system comprises six IMUs, the

Table 2. Classification results.

Train

Classifier Accuracy Specificity Sensitivity Precision

DT 89.03% 93.45% 66.79% 67.49%

RF 93.02% 95.82% 78.22% 78.08%

KNN 97.72% 98.65% 92.76% 93.01%

SVM 98.15% 98.91% 94.04% 94.09%

MLP 98.29% 98.99% 94.85% 94.67%

Performance of the classifiers in terms of accuracy, specificity, sensitivity and precision, during training and testing phase of data collected with Xsens MTw Awinda.

https://doi.org/10.1371/journal.pone.0289777.t002

Table 3. Confusion matrix of real-time classification.

CO KOT VK RB RH SH

CO 27 9 1 3 1 5

KOT 3 39 10 0 9 1

VK 0 8 27 0 4 6

RB 5 3 0 40 3 2

RH 2 15 1 0 41 0

SH 5 4 0 3 2 40

The table shows the confusion matrix of the real-time exercise execution classification: the predicted values are

organised by rows and the actual values by columns. List of abbreviations: correct observation (CO), knees

overcoming toes (KOT), valgus knees (VK), rounded back (RB), raised heels (RH) and shallow squat (SH).

https://doi.org/10.1371/journal.pone.0289777.t003
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SpaceSens, collecting data synchronously and sending them via Bluetooth to a software appli-

cation running on a personal computer that processes signals to simulate microgravity, to

extract a single repetition and to classify exercises execution. The tool can be operated through

a user-friendly software interface that also displays the exercises quality classification in real-

time.

Multiple algorithms were compared in order to obtain the best classification outcome, and

each of them showed high accuracy. Among those, the best performance were obtained using

a MLP, with an accuracy that surpassed that of other studies available in literature [24, 25].

Moreover, thanks to Softmax layer, the MLP was able to recognise multiple mixed errors dur-

ing exercise execution by assigning the percentage probability with which an instance belongs

to the different classes.

While the results are surely satisfactory, our study present some limitations and future per-

spectives to work on. The underlying hypothesis of on-ground and in-flight exercise kinemat-

ics equivalence shall be validated by collecting data from astronauts performing exercises

during space flights and compared them with on-ground subject performances. Due to ethical

reasons, all of the subjects participating in the study were expert athletes to avoid potential

health risks related to wrong exercise execution: such constraint may have produced a bias

that could potentially affect amateurs subjects (e.g.: slightly incorrect exercises may be classi-

fied as totally wrong).

A strong limitation of the study has been the organisational difficulty in carrying out the

procedure needed for acquiring the subject data, constraining the dimension of the dataset.

Conclusion

In this work, a microgravity-compatible system for real-time training monitoring of squat was

developed using six IMUs and supervised machine learning algorithms. Signal collected with

SpaceSens sensors showed high correlation and magnitude squared coherence with signals

obtained with the gold standard MTw Xens. Thus, the system can be considered reliable to col-

lect inertial data. Among the classifiers tested, the MLP showed the best performance, being

able to classify squat techniques in real-time among six different classes (one related to correct

executions and five to mistakes) with an accuracy of 89.03%. In the end, the algorithm devel-

oped to estimate orientation and subtract gravitational accelerations was effective to simulate

microgravity conditions, thus, it is expected to perform well both on ground and during space

missions.
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