
  2023 European Conference on Computing in Construction 

40th International CIB W78 Conference 

 

Heraklion, Crete, Greece 

July 10-12, 2023 

 

 

ARTIFICIAL DATASET GENERATION TO ENHANCE THE DESIGN EXPLORATION 

OF RESIDENTIAL BUILDINGS THROUGH DATA-INFORMED ENERGY LOAD 

FORECASTING MODELS 
Andrea Giuseppe di Stefano1, Gabriele Masera1, and Matteo Ruta1 

1Politecnico di Milano, Milan, Italy 

 

 

 

Abstract 

This study aims to assist urban planners and building 

designers in taking informed decisions based on energy 

performance – simulating a real-world urban development 

scenario – using limited computational resources. In 

particular, this paper proposes a new approach that 

integrates existing studies on building loads forecasting 

by using a Generative Adversarial Network (GAN) 

generated dataset based on significant geometrical 

parameters. This overcomes the needs for large datasets – 

often difficult to access.  

The results demonstrate that the data-driven approaches 

have addressed the buildings' load predictions with a 

reasonable accuracy while significantly reducing the 

calculation time required. 

Introduction 

To avoid dangerous anthropogenic interference with the 

climate system, two mitigation measures are possible: 

reducing greenhouse gas (GHG) emissions and enhancing 

greenhouse gas sinks. However, there are strong reasons 

for favouring the former over the latter1. The risks raised 

by a large-scale deployment of negative emissions 

technologies are much more significant than the issues 

raised by replacing fossil fuels with renewables. Although 

negative emissions projects have become necessary 

because of the low remaining global carbon budget, the 

first imperative today remains to reduce global emissions 

rapidly and drastically through a global energy transition 

(Bourban, 2022). 

The building sector accounts for roughly 40% of the total 

energy consumption and 38% of the CO2 emissions in the 

European Union (Saheb et al., 2015). On a global scale, 

the energy savings potential is estimated to be 53 

Hexajoules annually by 2050 (United Nations 

Environment Programme, 2022), and building designers 

play a vital role in realising this huge energy savings 

potential.  

 

 
1 According to Geden (2016), “By establishing the idea of 

negative emissions [into carbon budgets, during the 

IPCC’s fifth assessment cycle], climate researchers have 

helped, unintentionally, to mask the lack of effective 

political mitigation action,” because including carbon 

Nowadays, architects and engineers use building 

performance simulations (BPS), abstracting real-world 

evidence, to support informed decisions to assess and 

reduce the environmental impact of buildings and meet 

strict requirements related to indoor climate and 

performance objectives. To find possible solutions, the 

design team must vary many design parameters such as 

building geometry, insulation thickness, glazing 

properties, and HVAC systems. However, the variation of 

these factors constitutes an enormous multi-dimensional 

design space, generating a multi-scale, interdisciplinary, 

complex problem to be solved. Regarding the 

Architecture, Engineering and Construction (AEC) 

sector, the IEA ANNEX-30 research shows that the 

choices about critical design parameters are determined in 

the early design stage, and more than 40% of the building 

energy-saving potential comes from the early design stage 

(Attia et al., 2013). Therefore, it is necessary to optimise 

the critical design decisions from the beginning of the 

project to improve building performance (Lin et al., 

2021). 

Data-informed building performance 

simulations 

BPS is a powerful physics-based method for predicting a 

building's dynamic behaviour, renewable energy sources 

(RES) integration, and the building's sustainability 

intrinsic criteria harmonisation (Olu-Ajayi et al., 2022). 

Hence, synergetic implementation of the BPS, energy 

efficiency and RES integration is the only way to realise 

sustainable buildings and approach carbon-neutral city 

planning without omitting user behaviour. Accurate load 

forecasting is the premise of reasonable generation, 

transmission, and energy distribution arrangement at a 

city scale. Improving load forecasting accuracy is 

conducive to proper operation mode and maintenance 

plan in a power system or microgrid to reduce operational 

costs and improve the benefits of the power system or 

microgrid (Hou et al., 2022). 

dioxide removal (CDR) in the carbon budget allows 

decision-makers to circumvent the original constraints on 

global emissions, while claiming that they are bringing 

climate change under political control (Geden, 2016). 



 

 

Anyway, in urban scenarios, running thousands of 

simulations is an obstacle to the widespread adoption of 

design space exploration, uncertainty analysis, sensitivity 

analysis, and optimisation. Worse yet, thousands of 

simulations may be necessary to thoroughly explore the 

high-dimensional design space formed by the many 

design parameters. This computational issue may be 

overcome by creating fast metamodels (Østergård et al., 

2018) using machine learning (ML) and artificial 

intelligence (AI) based tools. However, there is still a lack 

of methods, algorithms and tools to support building 

performance optimisation in the early design stage. 

Essential for the development of a solid evidence base for 

the use of ML-based BPS (metamodels) is data 

empirically derived from large populations representing 

the real-world conditions of complex building stock. Still, 

for the most part, even basic information about energy 

demand in buildings, e.g., trends and patterns, along with 

simple descriptions of population and stock 

segmentations, is limited or simply lacking (Skea, 2012; 

Summerfield and Lowe, 2012). 

Supporting the development of evidence-based data for 

the energy performance of buildings requires having 

access to different levels of information, from high-level 

aggregate ecological studies (i.e. using small area 

statistics), cross-sectional studies of individual units of 

observations (people, households, premises, meters, etc.), 

and exploratory studies. The risk is that without detailed 

data collection and storage, longitudinal analysis or 

systematic reviews of research findings is not viable to 

support project-by-project learning (Hamilton et al., 

2015). 

However, to cope with the lack of data and, at the same 

time, highlight the importance of data gathering, large-

scale analyses can be conducted using artificial datasets. 

Artificial datasets consist of a certain amount of data 

derived from simulations (conducted using traditional 

methods) or ML approaches such as Generative 

Adversarial Networks (GAN), which generate data from 

a small dataset. In both cases, these data are structured in 

such a way as to have consistency between features (input 

data) of the different models analysed.  

This paper analyses the application of ML-based BPS for 

predicting cooling loads based on an artificial dataset 

generated with a tabular GAN for data generation.  

The aim of this proof-of-concept is to demonstrate 

(Objective 1) the effectiveness of ML-based tools in terms 

of accuracy – baseline, and (Objective 2) the effectiveness 

of these tools trained on an artificial dataset generated 

with GANs. 

Cooling loads prediction 

When it comes to energy-efficient building design, the 

computation of the heating load (HL) and the cooling load 

(CL) is required to determine the specifications of the 

heating and cooling equipment needed to maintain 

comfortable indoor air conditions.  

These parameters are one of the most impactful for energy 

consumption and can be considered key performance 

indicators in a building design.  

To estimate the required cooling and heating capacities, 

designers need information about the characteristics of the 

building and the conditioned space, the climate, and the 

intended functional use. Using statistical and machine 

learning concepts has the distinct advantage that distilled 

expertise from other disciplines is brought into the BPS 

domain. Using these techniques makes it extremely fast to 

obtain answers by varying building design parameters 

once a model has been adequately trained. Moreover, 

statistical analysis can enhance our understanding by 

offering quantitative expressions of the factors that affect 

the quantity (or quantities) of interest that the building 

designer or architect may wish to focus on (Tsanas and 

Xifara, 2012). Due to their intrinsic extensive data-based 

calculation, these tools can also be applied to a multi-scale 

domain, enhancing the possibility to study interrelations 

between multiple buildings and better understand city-

scale energy consumption. 

In this study, CL has been associated with some geometric 

building variables such as relative compactness, surface 

area, wall area, roof area, overall height, orientation, 

glazing area, and glazing area distribution (Pessenlehner 

and Mahdavi, 2003; Schiavon et al., 2010; Wan et al., 

2011), combined with external factors such as climate 

(Wan et al., 2011). Starting from those data, a statistical 

analysis has been provided to gain insight into the 

underlying properties of input and output variables, using 

categorical regression and state-of-the-art nonlinear and 

non-parametric statistical machine learning tools to map 

the input variables to CL. 

Methods 

To evaluate the applicability of GAN-generated dataset 

for the cooling loads forecasting, we first selected a 

reference dataset. Next, we defined the design variables. 

We then conducted ML-based simulations to establish a 

baseline. We cropped the existing dataset – keeping the 

same variables and input/output relationships – and used 

to train a GAN in order to generate a second dataset, akin 

to the first. Finally, we conducted the same ML-based 

simulation to compare the two models and evaluate their 

performances. 

The process is showed below in Figure 01, with the 

dashed boxes indicating the next steps to be performed in 

future work. 



 

 

 

 
Figure 1: Methodology diagram 

Case study 

This section briefly summarises the data-driven statistical 

concepts and the ML techniques used to analyse the data. 

All the analyses are performed in a Jupyter Notebook 

using a Python environment. Some analytics libraries 

(such as Pandas, Numpy, Seaborn and Matplotlib) were 

used to process the data and obtain more readable results. 

The used dataset is gathered from the Center for Machine 

Learning and Intelligent Systems data repository of the 

Bren School of Information and Computer Science 

(University of California), based on research by Tsanas 

and Xifara (Tsanas and Xifara, 2012). The data are based 

on a geometrical exploration starting from an elementary 

cube (3,5m × 3,5m × 3,5m) from which 12 building forms 

composed of 18 elements (elementary cubes) are 

generated. 
 

 

 
Figure 2: Representation of building forms generated from the 

combination of 18 elementary cubes 

 

All the buildings have the same volume of 771 m3 but 

different surface areas and dimensions. The materials 

used for each of the 18 elements are the same for all 

building forms. The selection was made by the most 

common materials in the building industry at the 

publication date, for a common building in Athens, 

Greece. Specifically, the associated U-values are: walls 

(1.78 W/m2K), floors (0.86 W/m2K), roofs (0.50 W/m2K), 

windows (2.26 W/m2K). The simulation assumes that the 

buildings are residential with seven persons and sedentary 

activity (70 W).  

The internal design conditions were set as follows: 

clothing: 0.6 clo, humidity: 60%, air speed: 0.30 m/s, 

lighting level: 300 Lux. The internal gains were set to 

sensible (5 W/m2) and latent (2 W/m2), while the 

infiltration rate was set to 0,5 for air change rate with wind 

sensitivity 0.25 ach. For the thermal properties was used 

a mixed mode with 95% efficiency, with a thermostat 

range of 19–24 ◦C, 15–20 h of operation on weekdays and 

10–20 h on weekends. Three types of glazing areas were 

used, expressed as percentages of the floor area: 10%, 

25%, and 40%. Furthermore, five different distribution 

scenarios for each glazing area were simulated:  

 



 

 

• uniform: 25% glazing on each side, 

• north: 55% on the north side and 15% on each of 

the other sides, 

• east: 55% on the east side and 15% on each of 

the other sides, 

• south: 55% on the south side and 15% on each of 

the other sides,  

• west: 55% on the west side and 15% on each of 

the other sides. 

Finally, all shapes were rotated to face the four cardinal 

points. Thus, considering twelve building forms and three 

glazing area variations with five glazing area distributions 

each, for four orientations, 720 building samples. In 

addition, twelve building forms for the four orientations 

without glazing were considered. Therefore, in total, the 

dataset is based on 768 buildings samples. Each of the 768 

simulated buildings can be characterised by the eight 

building parameters presented above. 

As reported in the previous section, the data has 768 rows 

(instances) and 10 columns (dimension), of which 8 input 

values (features) and 2 output values. The input values 

are: 

• Relative Compactness 

• Surface Area - m² 

• Wall Area - m² 

• Roof Area - m² 

• Overall height - m 

• Orientation - 2:North, 3:East, 4:South, 5:West 

• Glazing Area - 0%, 10%, 25%, 40% (of floor 

area) 

• Glazing Area Distribution (Variance) - 

1:Uniform, 2:North, 3:East, 4:South, 5:West 

While the output: 

• Cooling load – kWh 

All the data can be summarised using simple diagrams, 

highlighting the differences between the 768 case-study 

buildings analysed. 

 

 

 
Figure 3: Value distribution of the input/output data 

 

From a mathematical perspective, given N samples (here 

N=768) and M input variables (here M=8), we can 

construct a matrix 𝑋 ∈ 𝑅𝑁×𝑀 which has the form of: 

 

𝑋 = [

𝑥11 ⋯ 𝑥1𝑀

⋮ ⋱ ⋮
𝑥𝑁1 ⋯ 𝑥𝑁𝑀

]       (1) 

 

This matrix is typically associated with a response 

variable vector 𝑦 ∈ 𝑅𝑁×1 and we need to find the 

functional relationship f to relate X and y (here y is CL) 

such that 𝑦 = 𝑓(𝑥). The tool that performs the functional 

mapping is commonly referred to as a learner in the 

machine learning literature. 

Following this schema, the variables X (Relative 

compactness, surface area, wall area, roof area, overall 

height, orientation, glazing area and glazing area 

distribution) and y (cooling load) have been defined. The 

train-test split is a technique for evaluating the 

performance of a machine learning algorithm. It can be 

used for classification or regression problems and 

supervised learning algorithms. The procedure involves 

taking a dataset and dividing it into two subsets. The first 

subset is used to fit the model and is referred to as the 

training dataset. The second subset is not used to train the 

model; instead, the input element of the dataset is 

provided to the model, then predictions are made and 

compared to the expected values. This second dataset is 

referred to as the test dataset. 

For the ML-based simulation, the CatBoost regressor was 

used. CatBoost is an open-source machine learning 

algorithm (Prokhorenkova et al., 2017). It can work with 

diverse data types to help solve a wide range of problems. 

It yields state-of-the-art results without extensive data 

training typically required by other machine learning 

methods. CatBoost library is based on gradient boosting 

machine learning regression algorithm and is widely 

applied to multiple business challenges like fraud 

detection, recommendation items, and forecasting. It can 

return very good results with relatively few data, unlike 

other ML models that need to learn from massive amount 

of data. It also reduces the need for extensive 

hyperparameter tuning and lowers the chances of 

overfitting, leading to more generalised models.  

 



 

 

Base data analysis 

The first step of the process is the validation of the ML 

model based on the available dataset.  

Gradient boosting is essentially a process of constructing 

an ensemble predictor by performing gradient descent in 

a functional space. It is backed by solid theoretical results 

that explain how strong predictors can be built by 

iteratively combining weaker models (base predictors) in 

a greedy manner. However, implementations of gradient 

boosting face the statistical issue of relying – after several 

steps of boosting - on the targets of all training examples. 

CatBoost is an implementation of gradient boosting, 

which uses binary decision trees as base predictors. The 

CatBoost model use ordered boosting, avoiding target 

leakage, and a modified algorithm for processing 

categorical features, achieving better results over existing 

gradient boosted decision trees. 

Using the CatBoost regression model, it has been possible 

to train the model in 4.79 seconds. Applying the cross-

validation to the test subset, it is possible to note that the 

algorithm provides extremely accurate values in no time. 

The model was trained and validated on 33% of the data 

set, and the accuracy (R-squared value) for the prediction 

test was consistently above 90%. Figure 7 shows the 

difference between actual and predicted data. 

 
 

Table 1: Accuracy of the baseline model 

Dataset R-squared 

 Train dataset (y) 0.998 

Test dataset (y) 0.991 

 

GAN generated dataset 

GAN is a deep learning generative technology. It contains 

two distinct ML models: generator and discriminator. The 

potential distribution of the raw data is explored through 

a confrontation strategy between the two models, thereby 

generating virtual samples consistent with the distribution 

of the raw base data (Mao et al., 2020). The generator is 

responsible for generating the synthetic data sample G(z) 

based on the original raw data and inputting them into the 

discriminator. The discriminator, on the other hand, is 

responsible has to distinguish the true and synthetic 

(generator-generated data) input samples (Jabbar et al., 

2020). Generator (G) outputs the synthetic generated data 

samples, while the discriminator (D) outputs the sample 

discrimination rate, which, together, are converted into 

the objective optimisation function V(D, G) and then fed 

back to the generator and discriminator; iteratively, such 

process makes the generated data more and more realistic 

(Yu et al., 2022).  

The GAN principle is depicted in Figure 4 below. 

 

 

 
Figure 4: GAN functioning schema 

 

The expression of objective optimisation process V(D, G) 

reads: 
 

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑥
[𝑙𝑜𝑔𝐷(𝑥)]

+ 𝐸𝑧~𝑝𝑧
[log (1 − 𝐷(𝐺(𝑧)))] 

 (2) 
 

In Equation 2, x is the raw data, px is the distribution of 

x, z is the noise data, and pz is the priori probability 

distribution of input noise variables.  

The generator expects V(D,G) to be minimised, while the 

discriminator expects V(D,G) to be maximised, the 

process of which can be expressed as: 
 

𝑚𝑖𝑛 𝑚𝑎𝑥
𝐺 𝐷

 𝑉(𝐷, 𝐺)

= 𝐸𝑥~𝑝𝑥
[𝑙𝑜𝑔𝐷(𝑥)]

+ 𝐸𝑧~𝑝𝑧
[log (1 − 𝐷(𝐺(𝑧)))] 

 (3) 
 

The generator and discriminator are fixed, respectively, to 

alternately and iteratively minimise and maximise 

V(D,G) until the final equilibrium is reached, thereby 

obtaining a GAN with better performance. At this time, 

the losses of the generator and discriminator are the same, 

and the artificial dataset is generated. 

Artificial data generation and analysis 

In this paper, we used the CTGAN library to generate 

the second artificial dataset. The preparation of the raw 

data consists of the original dataset, excluding 500 

random raws, to give both a proper training set and a 

reasonably low number of simulations, like in a real-

world scenario. The reduced raw dataset is then split into 

conditional and continuous columns to avoid physical 

errors, such as surfaces with an area <0. 

According to this principle, the "orientation", the 

"glazing area", and the "glazing area distribution" 

parameters are considered discrete features, recurring the 

same steps as the original dataset. Lastly, an artificial 

dataset of 768 raws has been generated to be as coherent 

as possible with the original dataset. The figure below 

shows the accuracy of the GAN-generated dataset 

compared to the original one. 

 



 

 

 
 
Figure 5: Distribution of means and standard deviation of real 

and synthetic data 

 

 
 
Figure 6: Real and synthetic data distribution for each feature 

 

Lastly, the figure below shows the new distribution of the 

values from the GAN-generated dataset. 

 

 
Figure 7: Value distribution of the input/output data, real and 

synthetic 

 

Once the new dataset has been generated, in order to prove 

the accuracy of the model trained with the generated data 

against the baseline, the same ML model (CatBoost 

regressor) has been used.  

After the neural network has been trained on the artificial 

dataset, the model is compared with the model trained on 

the original dataset. Finally, the outputs of the two models 

are compared so that the method's effectiveness can be 

assessed. 

As expected, the effectiveness of the neural network 

based on the artificial dataset is significantly lower than 

the former, with an accuracy of around 40%. However, 

analysing the comparison graph, it is possible to see that 

the peaks (both positive and negative) are consistent and 

that the average consumption is in line with reality. This 

discrepancy may be dictated by the structure of the source 

data, which being variations of 12 buildings only, show 

repeating patterns, which is not absorbed in the artificial 

dataset. Furthermore, it is crucial to emphasise that both 

models were not normalised in order to reduce outliers or 

any values that could distort the overall behaviour of the 

model. This choice was made to test the feasibility of the 

approach in its crudest state. It is believed, therefore, that 

more accurate and usable results can be obtained after 

normalising the data and exploring the generation models 

in greater depth. 

 

  



 

 

Conclusions and outlook of future work 

The test results demonstrate in practical terms how the 

ML-based tool responds (Objective 1) with a very high 

degree of accuracy (>90%) compared to the baseline 

calculated with traditional BPS methods. However, the 

results obtained with the GAN-generated dataset are not 

sufficient to guarantee the same accuracy level (Objective 

2). The main issue can be found in the regression based 

on the artificial dataset, and not in the generation of the 

artificial dataset itself. This can be proven by looking at 

the comparison of values between raw and generated data 

that are consistent among all the features. 

Future work will include further analyses (such as dataset 

normalisation, scaling, and different ML models 

comparison) on the application of ML algorithms to the 

artificial dataset, trying to overcome potential problems 

due to the double artificial modelling. 

The outcomes of this paper confirm the potential of ML-

based BPS for the exploration and optimisation of a 

significant design space in a limited timeframe. These 

results can be of great relevance in the hypothesis of early-

stage design evaluations for the design of new buildings 

in an existing urban context, guaranteeing the possibility 

to evaluate different geometries in reduced timescales and 

maximise their performance.  

These tools can be further explored and applied to the 

simultaneous analysis of multiple buildings (or variations 

of buildings) to rapidly assess and optimise the design of 

new urban or neighbourhood developments, taking into 

account the energy needs both of individual buildings and 

of the aggregate. In this scenario, ML-based BPS 

represents a fundamental step forward for net zero-carbon 

developments such as the ones defined in the European 

Commission's "100 EU Cities" for 100 climate-neutral 

and smart cities by 2030, decoupling the analysis needed 

to achieve decarbonisation targets from the large amount 

of time and computational effort required by traditional 

methods. 
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