
Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service

Robotic Scenarios via Formal Verification

Livia Lestingi1*, Andrea Manglaviti1, Davide Marinaro1, Luca
Marinello1, Mehrnoosh Askarpour2, Marcello M. Bersani1 and Matteo Rossi3

1*Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via
Ponzio 34/5, Milan, 20133, Italy.

2Department of Computing and Software, McMaster University, Hamilton, Canada.
3Dipartimento di Meccanica, Politecnico di Milano, Via Privata Giuseppe La Masa 1,

Milan, 20156, Italy.

*Corresponding author(s). E-mail(s): livia.lestingi@polimi.it;

Abstract

Developing robotic applications with human-robot interaction for the service sector raises a plethora
of challenges. In these settings, human behavior is essentially unconstrained as they can stray from the
plan in numerous ways, constituting a critical source of uncertainty for the outcome of the robotic mis-
sion. Application designers require accessible and reliable frameworks to address this issue at an early
development stage. We present a model-driven framework for developing interactive service robotic
scenarios, allowing designers to model the interactive scenario, estimate its outcome, deploy the appli-
cation, and smoothly reconfigure it. This article extends the framework compared to previous works
by introducing an analysis of the impact of human errors on the mission’s outcome. The core of the
framework is a formal model of the agents at play—the humans and the robots—and the robotic mis-
sion under analysis, which is subject to Statistical Model Checking to estimate the mission’s outcome.
The formal model incorporates a formalization of different human erroneous behaviors’ phenotypes,
whose likelihood can be tuned while configuring the scenario. Through scenarios inspired by the
healthcare setting, the evaluation highlights how different configurations of erroneous behavior impact
the verification results and guide the designer towards the mission design that best suits their needs.

Keywords: Human-Robot Interaction, Human Errors, Service Robotics, Formal Verification, Formal
Modeling, Stochastic Hybrid Automata, Statistical Model-Checking

1 Introduction

The latest technological advances are rapidly
transforming the service sector, and the profes-
sional figures that populate it face an equally
significant evolution [21]. Service robots are com-
plex machines capable of sophisticated motion,
manipulation, and interaction skills. These devices

are equipped with cutting-edge sensors and actu-
ators, allowing them to perceive several aspects of
their environment and elaborate data to perform
tasks efficiently [20]. Therefore, service robots
are increasingly widespread in healthcare, per-
sonal care, domestic assistance, retail, and enter-
tainment settings. State-of-the-art applications
involve robots relieving employees from the most

1

Springer Nature 2021 LATEX template

2 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

mundane jobs in industrial settings. However,
human actions in everyday life are not tied to a
specific workflow but are virtually unconstrained;
therefore, developing such robotic applications
comes with considerable challenges.

While remarkable progress has been made with
individual robotic skills such as manipulation and
sensing, software engineering practices bring-
ing these skills together into fully-fledged appli-
cations are still lacking [22]. The practitioner in
charge of designing the robotic application must
account for all the sources of uncertainty affecting
the specific environment at an early development
stage, which calls for accessible and reliable tools
[44]. We address this issue through a model-
driven framework for designing and developing
interactive service robotic applications extended
in this paper compared to previous publications
[37–39]. Specifically, within the broad domain of
human-robot interactions, the work focuses on
tasks that require physical coordination between
the involved actors, including the possibility of
direct contact (spoken interactions or manual
guidance tasks are, thus, out-of-scope). The frame-
work targets scenarios with mobile robots inter-
acting with one or multiple humans in a fixed
layout (i.e., points of interest and fixed obstacles,
such as walls and furniture, are known before-
hand). Hence, applications featuring industrial
manipulators or exoskeletons (although the latter
are considered personal care robots by standard
ISO 13482 [30]) are out of the scope of our work.

The framework clusters frequent Human-
Robot Interaction (HRI) contingencies from real-
world scenarios into six patterns [37, 39] (e.g.,
human follower or leader) presented in detail in
Table 5. A pattern with a destination (e.g., the
location where the robot must accompany the
human) constitutes a service that a human may
request to interact with the robot. A sequence of
services that the robot has to provide to one (or
multiple) human subjects constitutes the robotic
mission. When all services in the sequence are
complete, the framework considers the mission
finished with success.

The framework allows designers to configure
the scenario under analysis, precisely the charac-
teristics of the agents at play—the humans and
the robots—, the layout, and the robotic mission.
The designer configures the scenario through a

Domain-Specific Language (DSL) [40] from which
a formal model of the system is automatically
generated, specifically a network of Stochastic
Hybrid Automata (SHA). The SHA network is
subject to Statistical Model Checking (SMC)
to estimate the value of key indicators about
the mission, primarily the probability of success.
The formal model captures human physiologi-
cal and behavioral aspects to obtain accurate
and insightful estimations, specifically through a
model of physical fatigue and a stochastic approx-
imation of haphazard decision-making.

Given the variability of service settings, it
is fundamental for the formal analysis to take
into account unexpected human actions straying
from the planned mission, referred to as human
errors. To this end, in this paper, we extend the
development framework with a formal model of
erroneous human behaviors and the possibil-
ity of analyzing their impact on the outcome of the
mission. The human behavioral model is enriched
with a taxonomy of errors well-established in the
human-computer interaction analysis field [27].
The practitioner designs a scenario featuring one
or multiple robotic missions based on the needs of
the facility. They can then adjust the likelihood of
each error by applying different behavioral profiles
(e.g., inexperienced or inattentive) to human sub-
jects in the scenario and estimate the probability
of success with the defined configuration through
the framework. By examining results obtained
with different configurations (e.g., different com-
binations of behavioral profiles), the practitioner
determines which erroneous behaviors have the
most considerable impact on the mission and mod-
ify its design suitably to compensate for the issues
that they have identified.

In more detail, the contributions presented in
this paper with respect to [37–39] are:

1. We introduce SHA add-ons capturing erro-
neous behavior mapped to the service
robotics setting;

2. SHA modeling human-robot interaction pat-
terns presented in [37, 39] are refined with the
developed formalization of erroneous behav-
iors;

3. Formal analysis, based on SMC, is extended
through erroneous behavior profiles.

We demonstrate the features of the extended for-
mal model through case studies inspired by the
healthcare setting. The model-driven framework

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 3

supports developers from the early design stage
to deployment and reconfiguration in a flexible
and accessible manner. Specifically, the compari-
son between human behavioral profiles showcases
how erroneous behaviors enrich the analysis and
provide deeper insights into the mission the prac-
titioner is designing.

The paper is structured as follows: Section 2
provides an overview of the model-driven frame-
work and the role that erroneous behaviors play
in the analysis; Section 3 outlines the theoretical
background underlying the work; Section 4 intro-
duces the formal models of erroneous behaviors
and the extended human-robot interaction pat-
terns; Section 5 presents the evaluation results;
Section 6 surveys related works in the literature;
Section 7 concludes.

2 Model-Driven Framework

As mentioned in Section 1, this article builds
upon a model-driven framework for the design and
development of service robotic missions, where
interaction with human subjects is a core ele-
ment. The model-driven nature of the framework
allows for a smooth design and reconfiguration
process of the robotic mission without requir-
ing a solid background in robot programming or
formal modeling techniques. Target users of the
framework (also referred to as practitioners or
designers) are experts of the service domain in
charge of managing the logistic workflow of a facil-
ity (e.g., a hospital). These professional figures
likely lack solid technical expertise in formal mod-
eling techniques and, therefore, require accessible
and flexible tools [22].

The development framework consists of three
phases (labeled accordingly in Fig. 1):

PH1: the scenario configuration phase, in which
the practitioner designs the interactive sce-
nario and computes figures of merit about its
outcome;

PH2: the application deployment phase, in which
the designed mission is deployed in a fully
virtual or hybrid setting (adhering to the
digital-twin paradigm);

PH3: the reconfiguration phase, in which the
practitioner exploits the observations col-
lected during deployment and the results
of the design-time analysis to modify the
scenario, if necessary.

Phase PH1 takes place at design time, while both
PH2 and PH3 take place at run-time since
reconfiguration requires system traces as input.

To keep the framework accessible to target
users, the entry-point of the design-time phase
(PH1) is the configuration of the scenario through
a custom Domain-Specific Language (DSL) [40].
The DSL is a lightweight textual notation to
specify the main features of the scenario under
scrutiny. The set of customizable features is pre-
sented in [40] and summarized in the following.
The elements that can be defined through the
DSL are the floor layout, the available robots
and their characteristics, the involved humans
and their characteristics, and the mission. The
floor layout (i.e., the operational environment) is
modeled as a two-dimensional plane where Carte-
sian coordinates of significant points (e.g., walls
and doors) need to be specified. As for robots,
designers specify the initial charge and the robots’
commercial model, determining maximum speed
and acceleration, rotational speed, and minimum
voltage level to power the motors.

The core of the framework is a formal
model capturing both behavioral and physiolog-
ical aspects of the involved human subjects. For
each human, it is possible to specify how suscep-
tible to physical fatigue they are, referred to as
the fatigue profile. We aggregate subjects by age
(young/elderly) and state of health (healthy/sick)
to identify four main fatigue profiles, determining
the rate at which they fatigue and recover. The
formalization of human behavior also captures the
possibility that humans stray from the plan of the
mission and perform actions out of their free will,
constituting a significant source of uncertainty.
This aspect is considerably extended in this paper
and constitutes its main focus as we introduce a
broader range of erroneous behaviors, whose like-
lihood can be tuned during the formal analysis to
determine their impact on the mission’s outcome.

As the framework targets interactive applica-
tions within the service domain, we recall that the
robotic mission consists of the sequence of ser-
vices the robot is asked to provide and the mission
ends in success when all services are complete. The
mission fails if the robot gets fully discharged or
at least one of the humans reaches the maximum
fatigue value. Note that an ongoing mission which
has not been completed yet since it requires more

Springer Nature 2021 LATEX template

4 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

RECONFIGURATION
MEASURES

MISSION
PERFORMANCE

INDICATORS
SHA

NETWORK
(HRI Scenario)

PH1: Scenario Configuration

PROPERTIES

DSL FILE

STATISTICAL
MODEL-CHECKING

SMC RESULTS
(Pr. of success, Expected

Fatigue Value, [...])

PH2: Deployment

ROBOT
CONTROLLER

ROS
PUBS/SUBS

SIMULATED
ENVIRONMENT
(3D Simulator)

REAL
ENVIRONMENT

SYSTEM
TRACES

PH3: Reconfiguration
DESIGN-TIME RUN-TIME

USER INPUT

INPUT
ACTION

JOIN/FORK NODE

PH. ENTRY POINT

Fig. 1: Workflow of the model-driven development framework, divided into three macro-phases: design-
time analysis, deployment, and reconfiguration. Each box represents an operational step. Dotted yellow
diamonds represent the entry point of each phase, whereas normal diamonds represent join/fork nodes.
User symbols indicate manually performed operations or user decisions.

HUM1

HUM2

ROB1

RC

KIT1

KIT2

W
R

Fig. 2: Setup of the example scenario.

time (i.e., the two conditions for failure are not
satisfied) is not considered a failure. Human ser-
vice requests impact the system’s evolution while
interacting with the robot and the condition that
must be verified for the service to be complete.
We have identified frequent interaction situations
from real-world scenarios and grouped them into
patterns [37, 39] described in Table 5. Therefore,
scenarios within the scope described in Section
1 must meet two requirements to be eligible for
analysis through the framework:

1. as previously mentioned, the layout of the
operational workspace must be known;

2. the robotic mission must be expressible as a
sequence of the available patterns.

Example 1 Fig. 2 shows the setup of an example sce-
nario. The layout is a T-shaped corridor with four
points of interest, i.e., significant locations within the
layout: the robot’s recharge station (RC), two cup-
boards containing medical kits (KIT1 and KIT2),
and the door leading to the waiting room (WR).
There are three agents in the scenario: two humans
(HUM1 and HUM2) and one robot (ROB1). The
designer assesses two alternative mission plans: the
first mission features ROB1 leading HUM1 to the
waiting room, then delivering KIT2 to HUM2. The
second mission features ROB1 following HUM2 to
fetch KIT1, then leading HUM1 to the waiting room.

This article extends the SHA modeling the
human participating in each interaction pattern
with suitable subsets of erroneous behaviors appli-
cable to the specific pattern (i.e., not all inter-
action patterns are equally susceptible to all
erroneous behaviors).

The DSL file is processed to customize the
SHA network and the properties to be veri-
fied. Properties involve the estimation of domain-
specific metrics, specifically the probability of
occurrence of mission success, the maximum
fatigue level reached by human subjects, and the
residual battery charge of the robot. Given the
stochastic nature of the formal model, properties
are checked through SMC: both the formal model

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 5

and verification experiments are managed through
the Uppaal tool [15] and its extension to SMC [14].
When verification ends, the designer examines the
results of the SMC experiments, such as the esti-
mated probability of success. If the results are
not satisfactory, the designer modifies the scenario
through the DSL and iterates the design-time
analysis; otherwise, the analysis can switch to the
runtime phase.

As shown in Fig. 1, the approach supports
the application’s deployment in a real or simu-
lated environment (phase PH2). Simulation in a
realistic virtual environment allows practitioners
to perform hundreds of runs without any effort
by real patients or healthcare professionals. In
both cases, each element of the SHA network
is translated into executable code. The mapping
function between automata and deployment units
(described in detail in [38]) ensures that two corre-
sponding entities display corresponding behavior
in response to the same events. The agents (i.e.,
the robot and humans) and the robot controller
(referred to as the orchestrator) communicate
through a ROS-based middleware layer [47]. The
orchestrator receives data about the status of the
system from sensors over ROS topics, checks it
against a set of policies, and sends commands
to agents in the same fashion. When communi-
cating with the robot, instructions sent by the
orchestrator actuate the motors for motion con-
trol. When communicating with the humans (e.g.,
doctors and patients in healthcare settings), the
orchestrator issues suggestions on the action to
perform that can be relayed through a wearable
device. Data collected at runtime are processed
to extract the values of relevant indicators (e.g.,
the observed success rate or the average patient
fatigue level) that the designer examines. Should
these figures of merit be deemed unsatisfactory,
the scenario can be reconfigured (e.g., by chang-
ing the order in which humans are served or
swapping the robot with another one in the fleet)
to iterate the procedure.

The framework is structured to have as many
automated tasks as possible for the sake of acces-
sibility to designers. As a matter of fact, their
manual intervention is limited to the scenario con-
figuration through the DSL (including potential
iterative reconfigurations) and the examination of

the formal analysis results (the verification exper-
iment is, instead, performed automatically). For
example, they are in charge of assessing whether a
success probability of approximately 75% for the
mission is sufficient given the facility’s policies or
calls for a reconfiguration.

3 Background

This section recaps the fundamental concepts
underlying our work. Firstly, we introduce the for-
malism used to model HRI scenarios and the ver-
ification technique our framework exploits to esti-
mate the robotic mission’s outcome and further
relevant indicators of the mission’s performance.
Secondly, we recap the principles underlying our
modeling approach and the recurring features of
the SHA network introduced in previous works to
keep the article self-contained.

3.1 Stochastic Hybrid Automata
and Statistical Model Checking

The formalism underlying our work is Stochastic
Hybrid Automata (SHA). We define SHA in the
following and illustrate their features through a
running example inspired by [14, Section 4].

Example 2 The example captures a system composed
of a room, whose model is shown in Fig. 3a, and
the thermostat controlling its temperature, shown in
Fig. 3b. The thermostat can be either on, which
makes the room warmer, or off , thus, letting the
room temperature decrease naturally. As soon as the
temperature decreases below a threshold Tth1 (resp.,
exceeds a threshold Tth2), the thermostat fires event
on (resp., off). The room temperature is modeled
by variable T , which grows according to differential
equation Ṫ = θ − T

R when the thermostat is on and

decreases according to Ṫ = −TR when it is off, where R
is a constant and θ is a randomly distributed parame-
ter. When event on fires, the room may start heating
at a high rate or a low rate (e.g., if a window is open):
the choice is modeled probabilistically and governed
by probability weights pH and pL, respectively. Param-
eter θ is a realization of distribution N(µH, σ

2
H)1 when

the room is heating at a high rate and N(µL, σ
2
L) in

the opposite case. Throughout the paper, we express
that a random parameter θ is a realization of random

1Throughout the paper, notation N(µ, σ2) is used to indi-
cate Normal distributions.

Springer Nature 2021 LATEX template

6 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

<latexit sha1_base64="fszk62U6aMYfg4FaZuUqtLPCuoQ=">AAACIXicdZDJSgNBEIZ7XGPcoh69NAbBg4YZcT0IQS8eVYwKmRBq2oo26VnorhFkmKfwEXwKr3ryJt5EfBc7YxQVrVP191d1Vf1BoqQh131xBgaHhkdGS2Pl8YnJqenKzOyJiVMtsCFiFeuzAAwqGWGDJCk8SzRCGCg8Dbp7Pf30CrWRcXRM1wm2QriIZEcKIIvalRU/BLqUlPnnMWXH+Y5Pl0iw4nc0CPvOCt10sqM8z5fblapbW3e97Q2PuzW3CP5FvD6psn4ctCtv9l+RhhiRUGBM03MTamWgSQqFedlPDSYgunCBTZtGEKJpZcVZOV9MDVDME9RcKl5A/N6RQWjMdRjYymLJ31oP/qU1U+pstTIZJSlhJHqDSCosBhmhpfUL+bnUSAS9zZHLiAvQQIRachDCwtQaWLZ+fB7N/09OVmvees09XKvWd/vOlNg8W2BLzGObrM722QFrMMFu2B27Zw/OrfPoPDnPH6UDTr9njv0I5/Ud4h2lWQ==</latexit>

Ṫ = ✓ � T

R
,

<latexit sha1_base64="htHE/KuFPJVk9divj/3bcOvtbrk=">AAACG3icdVC7SgNBFJ31bXxFLW0Gg2ihYVeMj0IQbSxVjApJCHcnN3HI7IOZu4Is+wl+gl9hq5Wd2FpY+C9O1igqeqrDOfd5/FhJQ6776gwMDg2PjI6NFyYmp6ZnirNzZyZKtMCqiFSkL3wwqGSIVZKk8CLWCIGv8NzvHvT88yvURkbhKV3H2AigE8q2FEBWahaX6wHQpaS03oooPc121+ptDcKyNHdMOz3Jsmy1WSy55Yrr7Wx63C27OfiX4vWVEuvjqFl8sxNFEmBIQoExNc+NqZGCJikUZoV6YjAG0YUO1iwNIUDTSPOHMr6UGKCIx6i5VDwX8XtHCoEx14FvK/Mjf3s98S+vllB7u5HKME4IQ9FbRFJhvsgILW1SyFtSIxH0LkcuQy5AAxFqyUEIKyY2uoLN4/Np/j85Wy97lbJ7vFHa2+8nM8YW2CJbYR7bYnvskB2xKhPsht2xe/bg3DqPzpPz/FE64PR75tkPOC/vzF6iqw==</latexit>

Ṫ = �T

R
,

<latexit sha1_base64="fszk62U6aMYfg4FaZuUqtLPCuoQ=">AAACIXicdZDJSgNBEIZ7XGPcoh69NAbBg4YZcT0IQS8eVYwKmRBq2oo26VnorhFkmKfwEXwKr3ryJt5EfBc7YxQVrVP191d1Vf1BoqQh131xBgaHhkdGS2Pl8YnJqenKzOyJiVMtsCFiFeuzAAwqGWGDJCk8SzRCGCg8Dbp7Pf30CrWRcXRM1wm2QriIZEcKIIvalRU/BLqUlPnnMWXH+Y5Pl0iw4nc0CPvOCt10sqM8z5fblapbW3e97Q2PuzW3CP5FvD6psn4ctCtv9l+RhhiRUGBM03MTamWgSQqFedlPDSYgunCBTZtGEKJpZcVZOV9MDVDME9RcKl5A/N6RQWjMdRjYymLJ31oP/qU1U+pstTIZJSlhJHqDSCosBhmhpfUL+bnUSAS9zZHLiAvQQIRachDCwtQaWLZ+fB7N/09OVmvees09XKvWd/vOlNg8W2BLzGObrM722QFrMMFu2B27Zw/OrfPoPDnPH6UDTr9njv0I5/Ud4h2lWQ==</latexit>

Ṫ = ✓ � T

R
,

<latexit sha1_base64="ZxyYc0iG+WE/Kz9cgt3oUfBwmFk=">AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwVZISbXcW3bisYB/QhDKZ3tahk0mYuRFKKPgVbnXlTtz6Ky78F5NaQUXP6nDOvdxzTxBLYdC236zC0vLK6lpxvbSxubW9U97d65go0RzaPJKR7gXMgBQK2ihQQi/WwMJAQjeYXOR+9xa0EZG6xmkMfsjGSowEZ5hJnhcyvEFMIzU7G5QrdvXUbdQaDrWr9hw5cZ2661JnoVTIAq1B+d0bRjwJQSGXzJi+Y8fop0yj4BJmJS8xEDM+YWPoZ1SxEIyfzjPP6FFiGEY0Bk2FpHMRvm+kLDRmGgbZZJ7R/PZy8S+vn+Co4adCxQmC4vkhFBLmhwzXIisD6FBoQGR5cqBCUc40QwQtKOM8E5OsnVLWx9fT9H/SqVWdk6p95Vaa54tmiuSAHJJj4pA6aZJL0iJtwklM7skDebTurCfr2Xr5HC1Yi5198gPW6weXI5au</latexit>

on?
<latexit sha1_base64="ZxyYc0iG+WE/Kz9cgt3oUfBwmFk=">AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwVZISbXcW3bisYB/QhDKZ3tahk0mYuRFKKPgVbnXlTtz6Ky78F5NaQUXP6nDOvdxzTxBLYdC236zC0vLK6lpxvbSxubW9U97d65go0RzaPJKR7gXMgBQK2ihQQi/WwMJAQjeYXOR+9xa0EZG6xmkMfsjGSowEZ5hJnhcyvEFMIzU7G5QrdvXUbdQaDrWr9hw5cZ2661JnoVTIAq1B+d0bRjwJQSGXzJi+Y8fop0yj4BJmJS8xEDM+YWPoZ1SxEIyfzjPP6FFiGEY0Bk2FpHMRvm+kLDRmGgbZZJ7R/PZy8S+vn+Co4adCxQmC4vkhFBLmhwzXIisD6FBoQGR5cqBCUc40QwQtKOM8E5OsnVLWx9fT9H/SqVWdk6p95Vaa54tmiuSAHJJj4pA6aZJL0iJtwklM7skDebTurCfr2Xr5HC1Yi5198gPW6weXI5au</latexit>

on?

<latexit sha1_base64="j97uETJUk1OuwxkyKisgoLGgzlg=">AAAB/3icdVC7TsNAEDzzDOEVoKQ5ESFRWXZkSDoiaCiDRB5SYkXnyyaccn5wt0aKrBR8BS1UdIiWT6HgX7CNkQDBVKOZXe3seJEUGi3rzVhYXFpeWS2tldc3Nre2Kzu7HR3GikObhzJUPY9pkCKANgqU0IsUMN+T0PWm55nfvQWlRRhc4SwC12eTQIwFZ5hK7sBneI2YhOPx/HRYqVrmidOoNWxqmVaOjDh23XGoXShVUqA1rLwPRiGPfQiQS6Z137YidBOmUHAJ8/Ig1hAxPmUT6Kc0YD5oN8lDz+lhrBmGNAJFhaS5CN83EuZrPfO9dDILqX97mfiX149x3HATEUQxQsCzQygk5Ic0VyJtA+hIKEBkWXKgIqCcKYYISlDGeSrGaT3ltI+vp+n/pFMz7WPTunSqzbOimRLZJwfkiNikTprkgrRIm3ByQ+7JA3k07own49l4+RxdMIqdPfIDxusHU7OXFg==</latexit>

off?
<latexit sha1_base64="j97uETJUk1OuwxkyKisgoLGgzlg=">AAAB/3icdVC7TsNAEDzzDOEVoKQ5ESFRWXZkSDoiaCiDRB5SYkXnyyaccn5wt0aKrBR8BS1UdIiWT6HgX7CNkQDBVKOZXe3seJEUGi3rzVhYXFpeWS2tldc3Nre2Kzu7HR3GikObhzJUPY9pkCKANgqU0IsUMN+T0PWm55nfvQWlRRhc4SwC12eTQIwFZ5hK7sBneI2YhOPx/HRYqVrmidOoNWxqmVaOjDh23XGoXShVUqA1rLwPRiGPfQiQS6Z137YidBOmUHAJ8/Ig1hAxPmUT6Kc0YD5oN8lDz+lhrBmGNAJFhaS5CN83EuZrPfO9dDILqX97mfiX149x3HATEUQxQsCzQygk5Ic0VyJtA+hIKEBkWXKgIqCcKYYISlDGeSrGaT3ltI+vp+n/pFMz7WPTunSqzbOimRLZJwfkiNikTprkgrRIm3ByQ+7JA3k07own49l4+RxdMIqdPfIDxusHU7OXFg==</latexit>

off?

<latexit sha1_base64="irWFWDq+YvJyZb3JKQRLL64Fn3I=">AAACAHicbVC7TsNAEDyHVwivACXNiQiJKrIRCEQVQUMZEHlIiYnOl0045c5n3a2RIisNX0ELFR2i5U8o+BdskwISphrN7GpnJ4iksOi6n05hYXFpeaW4Wlpb39jcKm/vNK2ODYcG11KbdsAsSBFCAwVKaEcGmAoktILRZea3HsBYocNbHEfgKzYMxUBwhql011UM7wUmN1qr80mvXHGrbg46T7wpqZAp6r3yV7eveawgRC6ZtR3PjdBPmEHBJUxK3dhCxPiIDaGT0pApsH6Sp57Qg9gy1DQCQ4WkuQi/NxKmrB2rIJ3MUtpZLxP/8zoxDs78RIRRjBDy7BAKCfkhy41I6wDaFwYQWZYcqAgpZ4YhghGUcZ6KcdpPKe3Dm/1+njSPqt5J1b0+rtQups0UyR7ZJ4fEI6ekRq5InTQIJ4Y8kWfy4jw6r86b8/4zWnCmO7vkD5yPb7PGl0E=</latexit>

Room :

<latexit sha1_base64="LePJQu4H/E7HuHDnaGZ8a+1OLio=">AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuQhLT167opssKVoW2lMl4q4OTZJi5EUoo+BVudeVO3PorLvwXk1hBRc/qcM693HNPoKQw6Dhv1tz8wuLScmmlvLq2vrFZ2do+M3GiOfR4LGN9ETADUkTQQ4ESLpQGFgYSzoOb49w/vwVtRByd4kTBMGRXkRgLzjCTBoOQ4bUZp2rUmY4qVcf2663mYYM6tlf3aod+Trxay/epazsFqmSG7qjyPriMeRJChFwyY/quo3CYMo2CS5iWB4kBxfgNu4J+RiMWghmmReYp3U8Mw5gq0FRIWojwfSNloTGTMMgmi4y/vVz8y+snOG4OUxGpBCHi+SEUEopDhmuRlQH0UmhAZHlyoCKinGmGCFpQxnkmJlk75ayPr6fp/+TMs92a7Zz41fbRrJkS2SV75IC4pEHapEO6pEc4UeSePJBH6856sp6tl8/ROWu2s0N+wHr9AK0Ilr4=</latexit>pH
<latexit sha1_base64="rThnCHVqZi4RSezX4rqJD0Yo4t0=">AAAB/nicdVDLSsNAFJ3Ud31VXboZLIKrkMT04U5048KFgrVCW8pkelsHJ8kwcyOUUPAr3OrKnbj1V1z4Lyaxgoqe1eGce7nnnkBJYdBx3qzSzOzc/MLiUnl5ZXVtvbKxeWniRHNo8VjG+ipgBqSIoIUCJVwpDSwMJLSDm+Pcb9+CNiKOLnCsoBeyUSSGgjPMpG43ZHhthqnqn076lapj+/WD5n6DOrZX92r7fk682oHvU9d2ClTJFGf9ynt3EPMkhAi5ZMZ0XEdhL2UaBZcwKXcTA4rxGzaCTkYjFoLppUXmCd1NDMOYKtBUSFqI8H0jZaEx4zDIJouMv71c/MvrJDhs9lIRqQQh4vkhFBKKQ4ZrkZUBdCA0ILI8OVARUc40QwQtKOM8E5OsnXLWx9fT9H9y6dluzXbO/erh0bSZRbJNdsgecUmDHJITckZahBNF7skDebTurCfr2Xr5HC1Z050t8gPW6wezSJbC</latexit>pL

<latexit sha1_base64="jROegc95KDd8hM73e6nCpcxeFXk=">AAACBnicdVC7SgNBFJ31GeNr1dJmMAhWYSaoiYUQtLFUSFRIQpid3CSDsw9m7oqypPcrbLWyE1t/w8J/cTZGUNFTHc65l3vuCRKtLDL25k1Nz8zOzRcWiotLyyur/tr6uY1TI6EpYx2by0BY0CqCJirUcJkYEGGg4SK4Os79i2swVsVRA28T6IRiEKm+kgKd1PXXG4ftUODQ9rNGN8MhH426fomVGWOcc5oTXt1njhwc1Cq8RnluOZTIBKdd/73di2UaQoRSC2tbnCXYyYRBJTWMiu3UQiLklRhAy9FIhGA72Tj7iG6nVmBMEzBUaToW4ftGJkJrb8PATY5z/vZy8S+vlWK/1slUlKQIkcwPodIwPmSlUa4UoD1lAFHkyYGqiEphBCIYRYWUTkxdS0XXx9fT9H9yXinzvTI72y3VjybNFMgm2SI7hJMqqZMTckqaRJIbck8eyKN35z15z97L5+iUN9nZID/gvX4AYHaZPg==</latexit>

T = Tth1

<latexit sha1_base64="Rolxlih8OBR2ySwWwBz9bnOet5o=">AAACJHicdZDBTttAEIbXgUIIhab02MuqERKVULSOSKE3RC85VSARQIrTaLxMwiq7trU7RkJWXoNH4Cm4wokb6qEHeBZsNyBAMKeZ75/RzPxhopUjIf55lZnZD3Pz1YXa4sel5U/1zysHLk6txK6MdWyPQnCoVYRdUqTxKLEIJtR4GI5/FfrhKVqn4mifzhLsGxhFaqgkUI4GdREYoBMJOvs9WQtMOihra7LOZJ0HTo0M/Gk9g98H9YZotoX/84fPRVOUwZ+IPyUNNo3dQf0uOI5lajAiqcG5ni8S6mdgSUmNk1qQOkxAjmGEvTyNwKDrZ+VnE76aOqCYJ2i50ryE+HwiA+PcmQnzzuJE91or4FtaL6XhVj9TUZISRrJYREpjuchJq3LLkB8ri0RQXI5cRVyCBSK0ioOUOUxzD2u5H49P8/eTg1bTbzfF3kZje2fqTJV9Zd/YGvPZJttmHbbLukyyc3bJrti1d+HdeLfe3/+tFW8684W9CO/+AbA7pZw=</latexit>

N (µH,�2
H)

<latexit sha1_base64="DgX8cclBaZ3TuGv+BAaNIogKbHE=">AAACJHicdZDNSiNBEMd7/DZ+xd2jl8YgKEjoEb/2FnYvexBRMCpkYqhpy9jYPTN01whhyGv4CPsUXvXkbfHgQZ/FmTGKitap6vevoqr+YaKVIyEevKHhkdGx8YnJytT0zOxcdf7HoYtTK7EpYx3b4xAcahVhkxRpPE4sggk1HoUXfwr96BKtU3F0QL0E2wa6kTpTEihHnaoIDNC5BJ3t9pcDk3bK2ppsp7/KA6e6Bk7W3sGVTrUm6hvC/7Xpc1EXZfA34g9IjQ1ir1N9DE5jmRqMSGpwruWLhNoZWFJSY78SpA4TkBfQxVaeRmDQtbPysz5fSh1QzBO0XGleQnw/kYFxrmfCvLM40X3WCviV1krpbLudqShJCSNZLCKlsVzkpFW5ZchPlUUiKC5HriIuwQIRWsVByhymuYeV3I/Xp/n3yeFa3d+oi/31WuP3wJkJtsAW2TLz2RZrsL9sjzWZZFfsmt2wW++fd+f99+5fWoe8wcxP9iG8p2e9F6Wk</latexit>

N (µL,�2
L)

<latexit sha1_base64="0yo15lA0KUH+KC+TYO9VqRzz/EE=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnO/M3RopslLwFbRQ0SFaPoWCf8E2LiBhqtHMrnZ2gkgKi6776ZSWlldW18rrlY3Nre2d6u5e2+rYcGhxLbXpBsyCFApaKFBCNzLAwkBCJ5hcZX7nAYwVWt3iNAI/ZGMlRoIzTCW/HzK8E5hwreVsUK25dTcHXSReQWqkQHNQ/eoPNY9DUMgls7bnuRH6CTMouIRZpR9biBifsDH0UqpYCNZP8tAzehRbhppGYKiQNBfh90bCQmunYZBOZiHtvJeJ/3m9GEcXfiJUFCMonh1CISE/ZLkRaRtAh8IAIsuSAxWKcmYYIhhBGeepGKf1VNI+vPnvF0n7pO6d1d2b01rjsmimTA7IITkmHjknDXJNmqRFOLknT+SZvDiPzqvz5rz/jJacYmef/IHz8Q1IV5cN</latexit>

cool
<latexit sha1_base64="dt/IMsMXnfGuNlC5FYXBYsr6y7I=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pASKzpfNskq5wd3a6TISsFX0EJFh2j5FAr+Bdu4gISpRjO72tnxIoWGbPvTWlpeWV1bL22UN7e2d3Yre/stE8ZaQlOGKtQdTxhQGECTkBR0Ig3C9xS0vcl15rcfQBsMgzuaRuD6YhTgEKWgVHJ7vqAxUjLG0XjWr1Ttmp2DLxKnIFVWoNGvfPUGoYx9CEgqYUzXsSNyE6EJpYJZuRcbiISciBF0UxoIH4yb5KFn/Dg2gkIegeaoeC7C741E+MZMfS+dzEKaeS8T//O6MQ0v3QSDKCYIZHaIUEF+yEiNaRvAB6iBSGTJgWPApdCCCDRyIWUqxmk95bQPZ/77RdI6rTnnNfv2rFq/KpopsUN2xE6Ywy5Ynd2wBmsyye7ZE3tmL9aj9Wq9We8/o0tWsXPA/sD6+AY0ApcA</latexit>

high
<latexit sha1_base64="DVzxBFGLxf+uEhQ0hf/h/mphNMM=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnM+nuzUosiLxFbRQ0SFafoWCf8E2LiBhqtHMrnZ2Ai2FRdf9dEpLyyura+X1ysbm1vZOdXevbaPYcGjxSEamGzALUihooUAJXW2AhYGETjC5yvzOPRgrInWLUw1+yMZKjARnmEr9fsjwTmAio4fZoFpz624Ouki8gtRIgeag+tUfRjwOQSGXzNqe52r0E2ZQcAmzSj+2oBmfsDH0UqpYCNZP8swzehRbhhHVYKiQNBfh90bCQmunYZBOZhntvJeJ/3m9GEcXfiKUjhEUzw6hkJAfstyItAygQ2EAkWXJgQpFOTMMEYygjPNUjNN2Kmkf3vz3i6R9UvfO6u7Naa1xWTRTJgfkkBwTj5yTBrkmTdIinGjyRJ7Ji/PovDpvzvvPaMkpdvbJHzgf35CGlqg=</latexit>

low

(a) Room SHA model. The SHA receives events from the ther-
mostat to start heating at different rates (locations high and low)
or cooling naturally (location cool).

<latexit sha1_base64="99t5bGjcLgRpNfkuAS7SxZJH8A4=">AAACCHicbVC7TsNAEDyHVwiv8OhoTkRIVJGNQCCqCBrKIOUlJVG0vmySU84P3a2RgpUf4CtooaJDtPwFBf+CbVJAwlSjmV3t7LihkoZs+9PKLS2vrK7l1wsbm1vbO8XdvYYJIi2wLgIV6JYLBpX0sU6SFLZCjeC5Cpvu+Cb1m/eojQz8Gk1C7How9OVACqBE6hUPOh7QSFJcG6H2AkNAV9NesWSX7Qx8kTgzUmIzVHvFr04/EJGHPgkFxrQdO6RuDJqkUDgtdCKDIYgxDLGdUB88NN04Sz/lx5EBCniImkvFMxF/b8TgGTPx3GQyzWrmvVT8z2tHNLjsxtIPI0JfpIdIKswOGaFlUgvyvtRIBGly5NLnAjQQoZYchEjEKOmpkPThzH+/SBqnZee8bN+dlSrXs2by7JAdsRPmsAtWYbesyupMsAf2xJ7Zi/VovVpv1vvPaM6a7eyzP7A+vgEwmpo8</latexit>

Thermostat :

<latexit sha1_base64="B3MUqkXgIVvg6tBLNZcYURfatEY=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pBiKzpfNuGU8/l0t0aKrEh8BS1UdIiWX6HgX7CNC0iYajSzq52dUEth0XU/naXlldW19cpGdXNre2e3trffsXFiOLR5LGPTC5kFKRS0UaCEnjbAolBCN5xc5373AYwVsbrDqYYgYmMlRoIzzCTfjxjeC0zj0Wg2qNXdhluALhKvJHVSojWoffnDmCcRKOSSWdv3XI1BygwKLmFW9RMLmvEJG0M/o4pFYIO0yDyjx4llGFMNhgpJCxF+b6QssnYahdlkntHOe7n4n9dPcHQZpELpBEHx/BAKCcUhy43IygA6FAYQWZ4cqFCUM8MQwQjKOM/EJGunmvXhzX+/SDqnDe+84d6e1ZtXZTMVckiOyAnxyAVpkhvSIm3CiSZP5Jm8OI/Oq/PmvP+MLjnlzgH5A+fjG2yTlpE=</latexit>

o↵ <latexit sha1_base64="JjLX8X6gq9W0FRe1r5xmDbPcqKA=">AAAB/XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pAcKzpfNuGU8511t0aKrIivoIWKDtHyLRT8C7ZxAQlTjWZ2tbMTxlJYdN1PZ2l5ZXVtvbJR3dza3tmt7e13rE4MhzbXUpteyCxIoaCNAiX0YgMsCiV0w8l17ncfwFih1R1OYwgiNlZiJDjDTPL7EcN7galWs0Gt7jbcAnSReCWpkxKtQe2rP9Q8iUAhl8xa33NjDFJmUHAJs2o/sRAzPmFj8DOqWAQ2SIvIM3qcWIaaxmCokLQQ4fdGyiJrp1GYTeYR7byXi/95foKjyyAVKk4QFM8PoZBQHLLciKwLoENhAJHlyYEKRTkzDBGMoIzzTEyycqpZH97894ukc9rwzhvu7Vm9eVU2UyGH5IicEI9ckCa5IS3SJpxo8kSeyYvz6Lw6b877z+iSU+4ckD9wPr4BsG6WKQ==</latexit>on

<latexit sha1_base64="aJx8jeAig9IcH63oCq2hTdqUMJA=">AAAB/nicdVDLSsNAFJ3UV62vqks3o0VwVZISbZdFNy4r2Ac0oUymt3XoZBJmboQSCn6FW125E7f+igv/xaRWUNGzOpxzL/fcE8RSGLTtN6uwtLyyulZcL21sbm3vlHf3OiZKNIc2j2SkewEzIIWCNgqU0Is1sDCQ0A0mF7nfvQVtRKSucRqDH7KxEiPBGWaS54UMbxDTSM0OB+WKXT1zG7WGQ+2qPUdOXKfuutRZKBWyQGtQfveGEU9CUMglM6bv2DH6KdMouIRZyUsMxIxP2Bj6GVUsBOOn88wzepwYhhGNQVMh6VyE7xspC42ZhkE2mWc0v71c/MvrJzhq+KlQcYKgeH4IhYT5IcO1yMoAOhQaEFmeHKhQlDPNEEELyjjPxCRrp5T18fU0/Z90alXntGpfuZXm+aKZIjkgR+SEOKROmuSStEibcBKTe/JAHq0768l6tl4+RwvWYmef/ID1+gFoYZaQ</latexit>

on!

<latexit sha1_base64="wz8MdEUYa7U3Vgd8UGSuAmbkCAM=">AAAB/3icdVC7TsNAEDzzDOEVoKQ5iJCoIjsyJGUEDWWQyENKrOh8WYdTzg/u1kiRlYKvoIWKDtHyKRT8C7YxEiCYajSzq50dN5JCo2m+GQuLS8srq6W18vrG5tZ2ZWe3q8NYcejwUIaq7zINUgTQQYES+pEC5rsSeu70PPN7t6C0CIMrnEXg+GwSCE9whqnkDH2G14hJ6Hnzg1GlatZO7Wa9aVGzZubIiG01bJtahVIlBdqjyvtwHPLYhwC5ZFoPLDNCJ2EKBZcwLw9jDRHjUzaBQUoD5oN2kjz0nB7FmmFII1BUSJqL8H0jYb7WM99NJ7OQ+reXiX95gxi9ppOIIIoRAp4dQiEhP6S5EmkbQMdCASLLkgMVAeVMMURQgjLOUzFO6ymnfXw9Tf8n3XrNOqmZl3a1dVY0UyL75JAcE4s0SItckDbpEE5uyD15II/GnfFkPBsvn6MLRrGzR37AeP0AJPGW+A==</latexit>

off!

<latexit sha1_base64="CaVO8fd4kTwu7rK3x7VUeKo/9Cg=">AAACFHicdVC5TgMxEPVyE64AJY1FhEQVeYFcHYKGEqRcUhKtvGYCFt4DexYJrbblE/gKWqjoEC09Bf+CNwkSIHjVm/dmNDPPj5U0yNi7MzU9Mzs3v7BYWFpeWV0rrm+0TZRoAS0RqUh3fW5AyRBaKFFBN9bAA19Bx786zv3ODWgjo7CJtzEMAn4RyqEUHK3kFWk/4HgpMW1mfQXX49IM06aX4qXnZplXLLEyq1Ya+4yycoW5tUbDEsaq9f096lqSo0QmOPWKH/3zSCQBhCgUN6bnshgHKdcohYKs0E8MxFxc8QvoWRryAMwgHX2S0Z3EcIxoDJpKRUcifJ9IeWDMbeDbztGhv71c/MvrJTisD1IZxglCKPJFKBWMFhmhpY0I6LnUgMjzy4HKkAquOSJoSbkQVkxsZgWbx9fT9H/S3iu7lTI7OygdHk2SWSBbZJvsEpfUyCE5IaekRQS5Iw/kkTw5986z8+K8jlunnMnMJvkB5+0TA4GfmA==</latexit>

T Tth1

<latexit sha1_base64="RhG4yRS8ukUQXhG7uIJ9yQnOM6U=">AAACC3icdVC7SgNBFJ2N7/iKWljYDAbBKswmRk0n2lgqJBpIwjI73sTB2YczdwVZ9hP8Clut7MTWj7DwX5xdI6joqQ7n3Ms99/ixkgYZe3NKE5NT0zOzc+X5hcWl5crK6pmJEi2gIyIV6a7PDSgZQgclKujGGnjgKzj3r45y//wGtJFR2MbbGAYBH4VyKAVHK3mV9XZ/BNe0H3C8NMO07aV46dWzzKtUWY3tNlsNRlmtydy9VssSxnb3G3XqWpKjSsY48Srv/YtIJAGEKBQ3pueyGAcp1yiFgqzcTwzEXFzxEfQsDXkAZpAWD2R0KzEcIxqDplLRQoTvGykPjLkNfDtZBP3t5eJfXi/B4f4glWGcIIQiP4RSQXHICC1tM0AvpAZEnicHKkMquOaIoCXlQlgxsVWVbR9fT9P/yVm95jZr7HSnenA4bmaWbJBNsk1cskcOyDE5IR0iSEbuyQN5dO6cJ+fZefkcLTnjnTXyA87rB0Odm18=</latexit>

T � Tth2

<latexit sha1_base64="y4fg3E8w9sMlo2FZv942UPeJCZM=">AAACC3icdZC5TsNAEIbX4QrhClBQ0KyIkKgiGxGOLoKGMki5pDiy1ptJssr6YHeMFFl+BJ6CFio6RMtDUPAuOMYgQPBXo++f0cz8biiFRtN8NQpz8wuLS8Xl0srq2vpGeXOrrYNIcWjxQAaq6zINUvjQQoESuqEC5rkSOu7kYuZ3bkBpEfhNnIbQ99jIF0PBGabIKe807RFcU9tjONbDuOnEOHasJHHKFbNaM62zY4uaVTMT/SJWTiokV8Mpv9mDgEce+Mgl07pnmSH2Y6ZQcAlJyY40hIxP2Ah6aekzD3Q/zh5I6H6kGQY0BEWFpBmE7xMx87Seem7amR3625vBv7xehMPTfiz8MELw+WwRCgnZIs2VSJMBOhAKENnscqDCp5wphghKUMZ5CqM0qlKax+fT9P+ifVi1alXz6qhSP8+TKZJdskcOiEVOSJ1ckgZpEU4SckfuyYNxazwaT8bzR2vByGe2yQ8ZL+8WzZtB</latexit>

T � Tth1

<latexit sha1_base64="UJVle268cv6ezMiYd9rrNPuAVZc=">AAACC3icdZC5TsNAEIbXnCFcAQoKmhURElVkR4Sji6ChDFIuKY6s9WaSrLI+2B0jRZYfgaeghYoO0fIQFLwLtgkIEPzV6PtnNDO/G0qh0TRfjbn5hcWl5cJKcXVtfWOztLXd1kGkOLR4IAPVdZkGKXxooUAJ3VAB81wJHXdykfmdG1BaBH4TpyH0PTbyxVBwhilySrtNW8I1tT2GYz2Mm06MY6eaJE6pbFZqpnV2bFGzYuaiX8SakTKZqeGU3uxBwCMPfOSSad2zzBD7MVMouISkaEcaQsYnbAS9tPSZB7of5w8k9CDSDAMagqJC0hzC94mYeVpPPTftzA/97WXwL68X4fC0Hws/jBB8ni1CISFfpLkSaTJAB0IBIssuByp8ypliiKAEZZynMEqjKqZ5fD5N/y/a1YpVq5hXR+X6+SyZAtkj++SQWOSE1MklaZAW4SQhd+SePBi3xqPxZDx/tM4Zs5kd8kPGyzsgjZtH</latexit>

T Tth2

(b) Thermostat SHA model. The SHA
is in charge of triggering the events
that cause the room to start (event
on) or stop heating (off).

Fig. 3: Example of SHA network. Dashed arrows model probabilistic transitions with weights (in orange)
pH and pL and solid arrows represent transitions with weight 1. Flow conditions, probability distributions,
and exponential rates are in purple, channels in red, and guard conditions in green.

variable Θ governed by distribution N (µ, σ) through
notation θ ∼ N (µ, σ).

SHA are defined in the following [2, 5, 15]. Let
W be a set of symbols; we indicate with Γ(W)
the set of conjunctions of linear constraints on ele-
ments of W . We indicate with Ξ(W) the set of
updates on elements of W . An update in Ξ(W)
(for example, w′ = w + 2) is an arithmetical con-
straint where free variables are elements of W
(e.g., w ∈W) and of its primed version W ′ (e.g.,
w′ ∈W ′).

Definition 1 A Stochastic Hybrid Automaton is a
tuple 〈L,W ,F ,D, I,C , E , µ,P, lini〉, where:

1. L is the set of locations and lini ∈ L is the initial
location;

2. W is the set of real-valued variables of
which clocks X ⊆W , dense-counter variables
Vdc ⊆W , and constants K ⊆W are subsets;

3. F : L→ {(R+ ∪ (R+ × R))→ RW } is the func-
tion assigning a set of flow conditions to each
location;

4. D : L ⇀ {R → [0, 1]} is the partial func-
tion assigning a probability distribution from
{R→ [0, 1]} to locations which feature flow con-
ditions with two parameters;

5. I : L→ Γ(W) is the function assigning a (possi-
bly empty) set of invariants to each location;

6. C is the set of channels, including the internal
action ε;

7. E ⊂ L × C!? × Γ(W) × ℘(Ξ(W)) × L is the set
of edges, where C!? = {c! | c ∈ C} ∪ {c? | c ∈

C} is the set of events involving channels in C .
Given an edge (l, c, γ, ξ, l′) ∈ E , l (resp. l′) is the
outgoing (resp. ingoing) location, c is the edge
event, γ is the edge condition and ξ is the edge
update. For each l ∈ L, E(l) ⊆ C!? × Γ(W) ×
℘(Ξ(W))× L is the set of edges outgoing from l
(for each (c, γ, ξ, l′) ∈ E(l), then, (l, c, γ, ξ, l′) ∈ E
holds and vice-versa);

8. µ : (L× RW)→ {R+ → [0, 1]} is the func-
tion assigning a probability distribution from
{R+ → [0, 1]} to each configuration of the SHA;
a configuration is a pair (l, vvar) constituted by
a location l ∈ L and a valuation vvar ∈ RW ;

9. P : L ⇀ {(C!? × Γ(W) × ℘(Ξ(W)) × L) ⇀
[0, 1]} is the partial function assigning a discrete
probability distribution from {(C!? × Γ(W) ×
℘(Ξ(W))×L) ⇀ [0, 1]} to locations such that, for
each l ∈ L, P(l) is defined if, and only if, E(l) is
non-empty; also, the domain of the distribution
is E(l) (

∑
α=(c!,γ,ξ,l′)∈E(l)

c∈C
P(l)(α) = 1 holds).

In SHA, real-valued variables (i.e., a gener-
alization of clocks) evolve in time according to
expressions referred to as flow conditions [2]. The
flow conditions constraining the evolution over
time of variables in W are defined through sets
of Ordinary Differential Equations (ODEs). This
feature makes SHA a fitting formalism to model
systems with complex dynamics, as it is possible
to model through flow conditions, for example,
laws of physics or biochemical processes. ODEs
constraining clocks (for which ẋ = 1 holds for
all x ∈ X), dense-counter variables, and constants

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 7

(where v̇ = 0 holds for all v ∈ Vdc ∪K) are special
cases of flow conditions.

If a randomly distributed parameter θ is an
independent term for a flow condition f ∈ F(l)
on location l ∈ L—i.e., f = f(·, θ) holds—then f
is interpreted as a stochastic process [24]. We
limit the analysis to flow conditions depending on
at most one random parameter, as per Definition
1, which is the case for human-robot interaction
models within the scope of our work. For example,
in the SHA shown in Fig. 3a, the room temper-
ature is modeled by real-valued variable T ∈W .
When the temperature is decreasing, it is con-
strained by flow condition Ṫ (t) = −T (t)/R, where
function Ṫ (t) ∈ F(cool) depends on time only
and has solutions in R. When the temperature is
increasing, it evolves according to flow condition
Ṫ (t, θ) = θ − T (t, θ)/R, depending both on time
and random parameter θ. The domain of Ṫ (t, θ)
is, thus, R+ × R and its solutions belong to R.

The formal model is developed through the
Uppaal tool [36]. Update instructions in Ξ(W)
are either deterministic or stochastic assignments
(the latter if stochastic parameters are involved).
In the latter case, upon entering a location l ∈ L
such that D(l) 6= ⊥ holds, with Uppaal, it is pos-
sible to code update instructions on the incoming
edge that generate a realization of distribution
D(l) (e.g., N(µH, σ

2
H) in Fig. 3a) and assign it to

the stochastic parameter (e.g., θ in Fig. 3a) [14].
In SHA, probability measures are associated

with time delays or transition outputs [15]. In
Uppaal, probability distributions over delays are
either uniform or exponential [14]. If an edge
can fire with a bounded delay (i.e., within a
finite range of values), function µ assigns a
uniformly distributed probability to all delays
within such range. If an edge can fire with
an unbounded delay, the probability is assigned
according to an exponential distribution. Prob-
abilities over transition outputs are assigned as
weights P(l , c, γ, l ′) ∈ [0, 1] on edges, which deter-
mine how likely the system is to evolve in a certain
direction. For example, pL and pH in Fig. 3 deter-
mine the probability of taking each of the two
edges from idle.

Complex systems with multiple entities are
modeled as a combination of SHA, forming a net-
work. Synchronization among different automata
inside a network occurs through the channels of

set C [36]. Given a channel c ∈ C and two comple-
mentary edges labeled by c! (the sender) and c?
(the receiver), triggering an event through chan-
nel c causes both edges to fire simultaneously. In
Fig. 3b, the thermostat triggers an event through
channels on! and off! to start or stop heating the
room. The room automaton receives the triggered
event through labels on? and off?, which make
the corresponding edges fire.

SHA are eligible for Statistical Model Checking
(SMC) [1]. SMC requires a model M with stochas-
tic features (the SHA network) and a property ψ
expressed, in our case, in Metric Interval Temporal
Logic (MITL) [3]. SMC exploits a finite set of runs
obtained through simulations of the formal model
to calculate the probability of ψ holding within
a specific time-bound. Specifically, the model-
checker processes each run to verify whether ψ
holds for that specific run, thus collecting a set
of Bernoulli trial outcomes. The probability of ψ
holding for M corresponds to the value of expres-
sion PM (ψ) [14], calculated by applying statistical
techniques to the collected Bernoulli trials. There-
fore, unlike traditional model-checking and prob-
abilistic model-checking (that analytically com-
putes the probability of a property holding [34]),
SMC does not entail an exhaustive exploration
of the state space. In our framework, property
ψ is of the form �≤τap, where � is the “eventu-
ally” operator, ap ∈ AP is an atomic proposition,
and τ is an integer time bound. Since we do not
compare the value of PM (ψ) against a threshold
ϑ ∈ [0, 1], the SMC experiment returns confidence
interval [pmin,pmax] for the probability of property
ψ holding for M .

SHA network M is subject to SMC to estimate
the probability of success of the interactive sce-
nario under analysis (corresponding to expression
PM(�≤τ scs), where Boolean variable scs becomes
true when the mission ends in success). To deter-
mine when the generated set of runs is suffi-
cient to conclude the experiment, Uppaal checks
the length of the interval [p− ε, p+ ε] to which
the real success probability belongs (where p =
pmin + (pmax − pmin)/2 holds), which is calculated
according to the Clopper-Pearson method [13].
Uppaal stops generating new traces when ε ≤ εth
holds, where εth is a user-specified parameter indi-
cating the maximum desired estimation error. The
smaller the εth, the more accurate the estimation
must be; thus, more traces are required.

Springer Nature 2021 LATEX template

8 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

3.2 HRI Scenarios Modeling
Principles

We illustrate the fundamental modeling principles
underlying the whole SHA network, which fea-
tures automata modeling the humans, the robot
and its battery, and the orchestrator. Specifically,
we recap the features of SHA modeling human
behavior, which is the primary focus of this article.
Interested readers can refer to [38] for a detailed
description of the SHA modeling the robot and its
battery, respectively, whereas the orchestrator is
thoroughly described in [37, 39].

The SHA network models the agents’ behav-
ior based on their current operational state (e.g.,
the human resting or walking). Every operational
state of the agent corresponds to a location in
L. At the current stage of development, opera-
tional states are fixed for each agent and, in case
of human subjects, for each interaction pattern.
In all interaction patterns, SHA modeling humans
differentiate between operational states based on
how fatigue evolves (i.e., whether individuals are
recovering or not) and how humans are interacting
with the robot (e.g., they are leading the action or
waiting for a robot’s action). Operational states
specific to each interaction pattern are recapped
in Section 4.2.

SHA capture the evolution of relevant quan-
titative attributes of the real system, such as
human fatigue and battery level of charge. Each
physical attribute corresponds to a real-valued
variable in set W \ {X ∪ Vdc ∪K} of their model-
ing automata and flow conditions F(l), associated
with a location l, reproduce the set of ODEs con-
straining the evolution of real-valued variables in
that specific operating state.

The orchestrator controls the robots and
instructs humans based on sensor readings. Dense
counters (set Vdc) are the discrete equivalents of
real-valued variables. Dense counters are period-
ically updated every Tpoll ∈ K time units (where
Tpoll corresponds to the refresh period of the spe-
cific sensor) through update instructions in Ξ(W)
that are compatible with the ODEs modeling the
dynamics of the physical attributes in every loca-
tion. Every SHA in the network uses a clock
tupd ∈ X to measure the time elapsed between
two consecutive measurements and trigger an
update. Sensors share data with the orchestrator
through ROS publisher nodes. Therefore, when

tupd = Tpoll holds for an automatonA, hence when
time Tpoll has elapsed since the last measurement,
A switches to a committed location. A commit-
ted location is equivalent to an ordinary location
with invariant t ≤ 0 and all incoming edges with
update instruction t = 0 for some t ∈ X: there-
fore, time cannot elapse while in these locations
[36]. In that location, the dense counters modeling
the latest sensor readings are immediately notified
to the orchestrator by firing an event over a dedi-
cated channel that triggers the publishing routine
(the corresponding modeling pattern is described
in detail in [38, Section IV.2]).

SHA modeling human behavior feature a
model of fatigue. Incorporating the fatigue model
into the automata leads to formal analysis results
that also account for at least one indicator of the
humans’ physical status. As a matter of fact, espe-
cially in healthcare settings, subjects may be in
critical physical conditions that may significantly
impact the duration of the mission and, thus, its
probability of success. Human fatigue is a complex
phenomenon driven by several factors: our work
focuses on muscular fatigue due to physical strain.
We exploit the fatigue and recovery model pro-
posed by Konz [23, 33], described by Eq.1. Human
action undergoes alternate fatigue and recovery
cycles, and each cycle is associated with an index
i uniquely identified, given time t, by function
j : R+ → N (thus, i = j(t) holds). We indicate as
ti the timestamp at which cycle i ends. During
both fatigue and recovery, fatigue F (t) depends on
the residual value from the previous cycle ended
at time ti−1. Parameters λi and ρi are the fatigue
and recovery rates for cycle i.

F (t) =

{
1− (1− F (ti−1)) · e−λi(t−ti−1) (fatigue)

F (ti−1) · e−ρi(t−ti−1) (recovery)

(1)
Full recovery occurs when F (t) = 0 holds, whereas
condition F (t) = 1 models the case in which
the muscle has reached the maximum level of
endurance. Experiments run on a pool of sub-
jects have shown how a Normal distribution
is a good fit to capture the variability of rates
in the fatigue model [42]. Therefore, we assume
that each λi (resp., ρi) is a sample of distri-
bution N(µλ, σ

2
λ) (resp., N(µρ, σ

2
ρ)) whose mean

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 9

<latexit sha1_base64="zjBSaYHNYTm6CUPLcz0NIzEV88Y=">AAACHXicbZC7TsNAEEXXvAmvACXNiggJmshGICgRNJQgkYcUR9Z4Mwkr1uvV7hgpsvINfAJfQQsVHaJFFPwLjknBa6qrc2c0Mzc2Sjry/Xdvanpmdm5+YbGytLyyulZd32i6NLMCGyJVqW3H4FBJjQ2SpLBtLEISK2zFN2djv3WL1slUX9HQYDeBgZZ9KYAKFFX3QgV6oDBMgK5dP0/NKLRfJCqZTXKTxaPoOqrW/LpfFv8rgomosUldRNWPsJeKLEFNQoFzncA31M3BkhQKR5Uwc2hA3MAAO4XUkKDr5uVLI76TOaCUG7RcKl5C/D6RQ+LcMImLzvLy394Y/ud1Muofd3OpTUaoxXgRSYXlIiesLLJC3pMWiWB8OXKpuQALRGglByEKmBXhVYo8gt/f/xXN/XpwWPcvD2onp5NkFtgW22a7LGBH7ISdswvWYILdsQf2yJ68e+/Ze/Fev1qnvMnMJvtR3tsn5pCjzg==</latexit>hopi pubh

<latexit sha1_base64="wtUZjNut2gHPHOGt+3avtcs/Iw8=">AAACEXicbVDLSsNAFJ3Ud31FXYowWARXJRFFl6IblxVsKzSl3Iy3dXAyCTM3Qgld+Ql+hVtduRO3foEL/8UkZuHrrA7n3OcJEyUted67U5uanpmdm1+oLy4tr6y6a+sdG6dGYFvEKjaXIVhUUmObJCm8TAxCFCrshjenhd+9RWNlrC9onGA/gpGWQymAcmngbl0PskCBHikMIqBrO8ziZBKYUpkM3IbX9Erwv8SvSINVaA3cj+AqFmmEmoQCa3u+l1A/A0NS5PPqQWoxAXEDI+zlVEOEtp+Vb0z4TmqBYp6g4VLxUsTvHRlE1o6jMK8sT/3tFeJ/Xi+l4VE/kzpJCbUoFpFUWC6ywsg8H+RX0iARFJcjl5oLMECERnIQIhfTPLB6nof/+/u/pLPX9A+a3vl+4/ikSmaebbJttst8dsiO2RlrsTYT7I49sEf25Nw7z86L8/pVWnOqng32A87bJ9gZnm8=</latexit>

hhopi

<latexit sha1_base64="YMJeTQMijgmAFg1kqy8NbuwV2Yg=">AAACBnicbVC7TsNAEDyHVwgvE0qaExESVWQjEJQRNJRBIg8psazzZZOccn7obo2ILPd8BS1UdIiW36DgX7CNC0iYajSzq50dL5JCo2V9GpWV1bX1jepmbWt7Z3fP3K93dRgrDh0eylD1PaZBigA6KFBCP1LAfE9Cz5td537vHpQWYXCH8wgcn00CMRacYSa5Zn3qJkOf4VT5SRR7rp2mrtmwmlYBukzskjRIibZrfg1HIY99CJBLpvXAtiJ0EqZQcAlpbRhriBifsQkMMhowH7STFNlTehxrhiGNQFEhaSHC742E+VrPfS+bzGPqRS8X//MGMY4vnUQEUYwQ8PwQCgnFIc2VyEoBOhIKEFmeHKgIKGeKIYISlHGeiXHWUi3rw178fpl0T5v2edO6PWu0rspmquSQHJETYpML0iI3pE06hJMH8kSeyYvxaLwab8b7z2jFKHcOyB8YH9+Xoplb</latexit>

hpub1

<latexit sha1_base64="n1z6H8BORiu8ONGXnH+/tzmDmKM=">AAACJXicdZDBSiNBEIZ71N3VuK5Rj14agxAvYUbUXW+iF70pGA1kQqjpVJImPT1Dd82CDHkOH8Gn8KonbyJ4EF/FnjGKLmud/v6qqqvqj1IlLfn+ozc1PfPt+4/Zucr8z4Vfi9Wl5TObZEZgUyQqMa0ILCqpsUmSFLZSgxBHCs+j0UGRP/+LxspEn9JFip0YBlr2pQByqFsNwhhoKEDlR+P6sFu+bD8PFeiBQp6kPDSlHG+EvKC9brXmN7b9YHcn4H7DL4O/k2BCamwSx93qU9hLRBajJqHA2nbgp9TJwZAU7t9KmFlMQYxggG0nNcRoO3l52pivZxYo4SkaLhUvIX7syCG29iKOXGW5+r+5Av4v186o/6eTS51mhFoUg0i6g4tBVhjpPEPekwaJoNgcudRcgAEiNJKDEA5mzsSK8+PtaP61ONtsBNsN/2Srtrc/cWaWrbI1VmcB+8322CE7Zk0m2CW7Zjfs1rvy7rx77+G1dMqb9KywT+E9vwBTUKXq</latexit>I(hhopi) ^
<latexit sha1_base64="eRg6bUKBTJfF/Xpc5uQ0KAeqW5s=">AAACJXicdZDBSiNBEIZ71N3VuK5Rj14agxAvYUbUXW+iIB4VjAYyIdR0KkmTnp6hu2ZBhjyHj+BTeNWTNxE8iK9izxhFl7VOf39V1VX1R6mSlnz/0Zuanvn2/cfsXGX+58KvxerS8plNMiOwKRKVmFYEFpXU2CRJClupQYgjhefR6KDIn/9FY2WiT+kixU4MAy37UgA51K0GYQw0FKDyw3F92C1ftp+HCvRAIU9SHppSjjdCXtBet1rzG9t+sLsTcL/hl8HfSTAhNTaJ4271KewlIotRk1BgbTvwU+rkYEgK928lzCymIEYwwLaTGmK0nbw8bczXMwuU8BQNl4qXED925BBbexFHrrJc/d9cAf+Xa2fU/9PJpU4zQi2KQSTdwcUgK4x0niHvSYNEUGyOXGouwAARGslBCAczZ2LF+fF2NP9anG02gu2Gf7JV29ufODPLVtkaq7OA/WZ77IgdsyYT7JJdsxt26115d9699/BaOuVNelbYp/CeXwBOLqXn</latexit>F(hhopi) ^

<latexit sha1_base64="CN0CeD5LFPsWGQ3AgBFJasN6Ryk=">AAACHnicdVDBTttAEF2HAiEtYODYy6pRJcohshGBcovaHnpMpSYgxVE0XibJKuu1tTuuFFn5Bz6Br+BKT72hXtsD/9K1m1aAYE5v35vZmffiTElLQfDbq628WF1br280Xr7a3Nr2d3b7Ns2NwJ5IVWrOY7CopMYeSVJ4nhmEJFZ4Fs8+lvrZNzRWpvorzTMcJjDRciwFkKNG/kGUAE0FqOLTYn86ql52XEQK9EQhTzMemQou3o38ZtBqB+HpcciDVlAV/8+ES6bJltUd+XfRRSryBDUJBdYOwiCjYQGGpHAfNqLcYgZiBhMcOKghQTssKk8L/ja3QCnP0HCpeEXi/YkCEmvnSew6q5sfayX5lDbIafx+WEid5YRalItIOqflIiuMdGEhv5AGiaC8HLnUXIABIjSSgxCOzF16DZfHP9P8edA/bIXtVvDlqNn5sEymzl6zN2yfheyEddhn1mU9Jtglu2Y37Lt35f3wbr2ff1tr3nJmjz0o79cf9X2jKA==</latexit>D(hhopi)

<latexit sha1_base64="l21uukgf1ZqgesXNG0RVdg6mWKU=">AAACF3icdVC7TgMxEPTxDOEVoKSxiJCoIh8QIF0EDSVIBJCSKPI5m2DhuzP2HhI63QfwCXwFLVR0iJaSgn/BdwQJEGw1OzOr3Z1AK2mRsTdvbHxicmq6NFOenZtfWKwsLZ/aODECWiJWsTkPuAUlI2ihRAXn2gAPAwVnweVBrp9dg7Eyjk7wRkM35MNIDqTg6KhepYq9TsjxwoRpovtZZwhXRW8H6Ukv1bFSWeZcrMZ26o0tRlmtzvzdRsMBxnb2tjap70BeVTKqo17lvdOPRRJChEJxa9s+09hNuUEpFGTlTmJBc3HJh9B2MOIh2G5aPJPR9cRyjKkGQ6WiBQnfJ1IeWnsTBs5ZHPpby8m/tHaCg71uKiOdIEQiX4RSQbHICiNdSkD70gAizy8HKiMquOGIYCTlQjgycbGVXR5fT9P/welmza/X2PF2tbk/SqZEVska2SA+2SVNckiOSIsIckvuyQN59O68J+/Ze/m0jnmjmRXyo7zXD6oJoaY=</latexit>

tupd � Tpoll
<latexit sha1_base64="b1jCySTT1U7RkTE6jBTULMSc6ac=">AAACJ3icdVBNbxMxEPWWAmn4SuHYi9UIiQOK7Ja2ya2CC8dWatJK2SiadSbBqtdr2bOo1So/pD+hv4IrnLghOHDoP6k3SSWKYE5P773RzHuZMzqQEL+StQfrDx89bmw0nzx99vxFa/PlIBSlV9hXhSn8WQYBjbbYJ00Gz5xHyDODp9n5h1o//Yw+6MKe0KXDUQ4zq6daAUVq3NpNL/Q4zYE+hWmVGrAzg7xwPPULOH/L04qWBp9XpZvM0/m41RYdIYSUktdAHuyLCHq97o7scllLcdpsNUfj1u90UqgyR0vKQAhDKRyNKvCkVbzRTMuADtQ5zHAYoYUcw6hahJvz12UAKrhDz7XhCxL/3KggD+Eyz6JzEeNvrSb/pQ1LmnZHlbauJLSqPkQ6hq8PBeV1bA35RHskgvpz5NpyBR6I0GsOSkWyjDU2Yx93ofn/wWCnI/c64vhd+/D9qpkG22Lb7A2T7IAdso/siPWZYlfsC/vKviXXyffkR/JzaV1LVjuv2L1Jbm4BPY2nkw==</latexit>

⇠hopi, {tupd}
<latexit sha1_base64="rrulhC4zF+sig5vft2Td71UmcdU=">AAACI3icdVBNTxsxEPUC5SNtIdAjF4uoEgeU2oiWcEP00iNIBJCyUTTrTFILr3dlzyLQKj+Dn8Cv4Aqn3qpeOPBf8C5Boqid0/N7M555L8mN9iTEQzQzO/dufmFxqfH+w8fllebq2onPCqewqzKTubMEPBptsUuaDJ7lDiFNDJ4m598r/fQCndeZPaarHPspjK0eaQUUqEHzS3ypB2WcAv10aenADidb9cuPytiAHRvkWc5jV8PJZNBsibYQQkrJKyB3v4kA9vY627LDZSWFarFpHQ6aj/EwU0WKlpQB73tS5NQvwZFW4cNGXHjMQZ3DGHsBWkjR98va2IR/LjxQxnN0XBtek/h6ooTU+6s0CZ31zW+1ivyX1ito1OmX2uYFoVXVItLBabXIK6dDYsiH2iERVJcj15YrcECETnNQKpBFiLAR8ngxzf8PTrbb8mtbHO209g+mySyydbbBNplku2yf/WCHrMsUu2a37I7dRzfRr+h39Oe5dSaaznxif1X0+ARhV6Yc</latexit>

⇠rand,hopi

<latexit sha1_base64="B1EfrHg8BzOHmF3DZnpEfqaVezE=">AAACDHicdVDLSsNAFJ3UV62vqhvBzWgRXJWkRNtl0Y3LCvYBbQiT6W0dOnkwcyOUUD/Br3CrK3fi1n9w4b+YxAoqelaHc+7lnnu8SAqNpvlmFBYWl5ZXiqultfWNza3y9k5Hh7Hi0OahDFXPYxqkCKCNAiX0IgXM9yR0vcl55ndvQGkRBlc4jcDx2TgQI8EZppJb3hv4DK8Rk2jm5lT5yQjHswO3XDGrp3aj1rCoWTVzZMS26rZNrblSIXO03PL7YBjy2IcAuWRa9y0zQidhCgWXMCsNYg0R4xM2hn5KA+aDdpL8gxk9ijXDkEagqJA0F+H7RsJ8rae+l05mIfVvLxP/8voxjhpOIoIoRgh4dgiFhPyQ5kqk1QAdCgWILEsOVASUM8UQQQnKOE/FOO2qlPbx9TT9n3RqVeukal7alebZvJki2SeH5JhYpE6a5IK0SJtwckvuyQN5NO6MJ+PZePkcLRjznV3yA8brB9y2nEk=</latexit>

pftg!
<latexit sha1_base64="ueeGbzrgyZZkpWwawj03awylkwQ=">AAACDHicdVDLSsNAFJ3UV62vqhvBzWgRXJWkRNtl0Y3LCvYBbSmT6W0dOkmGmRuhhPoJfoVbXbkTt/6DC//FJFZQ0bM6nHMv99zjKSkM2vablVtYXFpeya8W1tY3NreK2zstE0aaQ5OHMtQdjxmQIoAmCpTQURqY70loe5Pz1G/fgDYiDK5wqqDvs3EgRoIzTKRBca/nM7xGjNVskFHtxyo0s4NBsWSXT91apeZQu2xnSInrVF2XOnOlROZoDIrvvWHIIx8C5JIZ03Vshf2YaRRcwqzQiwwoxidsDN2EBswH04+zD2b0KDIMQ6pAUyFpJsL3jZj5xkx9L5lMQ5rfXir+5XUjHNX6sQhUhBDw9BAKCdkhw7VIqgE6FBoQWZocqAgoZ5ohghaUcZ6IUdJVIenj62n6P2lVys5J2b50S/WzeTN5sk8OyTFxSJXUyQVpkCbh5JbckwfyaN1ZT9az9fI5mrPmO7vkB6zXD/dmnFo=</latexit>

ppos!

<latexit sha1_base64="El9/CV/FEqhPcJZSvVaysiEdHjs=">AAACBHicbVC7TsNAEDyHVwgvAyXNiQiJKrIjEJQRNJRBIg8piazzZZOccrZPd+tIkZWWr6CFig7R8h8U/Au2cQEJU41mdrWz4yspDDrOp1VaW9/Y3CpvV3Z29/YP7MOjtolizaHFIxnprs8MSBFCCwVK6CoNLPAldPzpbeZ3ZqCNiMIHnCsYBGwcipHgDFPJs+2J1w8YTnSQqNj36gvPrjo1JwddJW5BqqRA07O/+sOIxwGEyCUzpuc6CgcJ0yi4hEWlHxtQjE/ZGHopDVkAZpDkyRf0LDYMI6pAUyFpLsLvjYQFxswDP53MUpplLxP/83oxjq4HiQhVjBDy7BAKCfkhw7VIKwE6FBoQWZYcqAgpZ5ohghaUcZ6KcdpRJe3DXf5+lbTrNfey5txfVBs3RTNlckJOyTlxyRVpkDvSJC3CyYw8kWfyYj1ar9ab9f4zWrKKnWPyB9bHN727mFA=</latexit>

hpub2

Fig. 4: 〈op〉 pubh modeling pattern [38]. Color-
coding is the same as Fig. 3. Entry and exit ports
are marked by I, �, and × symbols.

Table 1: Significant variables from the 〈op〉 pubh
modeling pattern.

Name Description
〈op〉 Operational state label.
Tpoll Sensor data sharing period.
tupd Clock measuring the time elapsed between

two consecutive sensor data readings.
F Real-valued variable modeling human fatigue.
λi Fatigue rate for cycle i.
ρi Recovery rate for cycle i.

and variance depend on the specific subject’s
characteristics.

All SHA modeling humans feature real-valued
variable F ∈W , capturing physical fatigue, and
a dense counter f ∈ Vdc capturing the digi-
tal counterpart of F . Besides physical fatigue,
for each human, suitable sensors also periodically
(with frequency 1

Tpoll
) refresh their position within

the building. Dense counters model the position
hposx and hposy capturing a pair of Cartesian
coordinates. Fatigue and position are periodically
updated for the entire duration of the interaction
between the human and the robot.

The portion of SHA—referred to as 〈op〉 pubh
and shown in Fig. 4—modeling the update of
periodic sensors readings is present in all human
states. Exit and entry points are represented with
“ports”. Specifically, the edges marking the start,
stop, and failure of an 〈op〉 pubh instance are
marked by symbols I, �, ×, respectively. We
remark that ports are not part of the formal-
ism but merely a visualization expedient for the
edges entering and leaving the sub-automaton. All

instances of 〈op〉 pubh feature ordinary location
h〈op〉 and committed locations hpub1

, hpub2
. Sig-

nificant variables from this modeling pattern are
summed up in Table 1.

Location h〈op〉 represents the specific human
operational state (e.g., walking or standing).
Therefore, it is endowed with suitable flow condi-
tions F(h〈op〉) constraining the evolution of real-
valued variable F , corresponding to the derivative
of Eq.1(recovery) (shown in Eq.2) if h〈op〉 is a
recovery state or Eq.1(fatigue) (shown in Eq.3),
otherwise.

Ḟ =f(ρ, t) = −F (ti−1)ρe−ρ(t−ti−1) (2)

Ḟ =g(λ, t) = F (ti−1)λe−λ(t−ti−1) (3)

Location h〈op〉 features probability distribution
D(h〈op〉) describing the random parameter (either
ρi or λi) in the corresponding agent’s state. Upon
entering an 〈op〉 pubh instance, update ξrand,〈op〉
draws a new sample from D(h〈op〉) and assigns it
to λi if h〈op〉 is a fatigue state, otherwise to ρi.

In all instances of 〈op〉 pubh, invariant I(h〈op〉)
includes condition tupd ≤ Tpoll, which, in conjunc-
tion with guard condition tupd ≥ Tpoll on the edge
to hpub1

, ensures that the SHA switches to hpub1

every Tpoll time instants (i.e., when a new sen-
sor measurement is available). When time Tpoll

has elapsed between two sensor readings, tupd is
reset, and dense counters representing fatigue and
position are updated by ξ〈op〉 (consistently with
the corresponding flow condition) and shared with
the orchestrator through channels pftg and ppos,
respectively.

4 Formal Modeling of Human
Behavior in HRI Scenarios

This section illustrates how we model human
behavior extended with errors through SHA.
First, we present the set of phenotypes of erro-
neous human behavior, how we have mapped the
phenotypes to the service setting, and how we have
modeled the mapped phenotypes as SHA add-
ons. Second, we introduce the extensions of the
SHA modeling human-robot interaction patterns
presented in [37, 39] with the erroneous behavior
models.

Springer Nature 2021 LATEX template

10 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

4.1 Phenotypes of Erroneous
Human Behavior

The issue of defining and categorizing man-
ifestations of human erroneous behavior has
been largely investigated in the field of human-
computer interaction. Hollnagel’s human error
taxonomy [27] is among the best-established works
in the field addressing how unexpected human
behavior can cause the interaction with a machine
to fail. Specifically, [27] focuses on the cases in
which, although the interaction plan is adequate,
the performed actions stray from the plan: such
actions are referred to as human errors. Although
the form and frequency of human errors cannot
be fully predicted, they are bound to take place
in a complex interactive system and tend to occur
in patterns. More specifically, error patterns con-
sist of a phenotype, i.e., the manifestation of the
erroneous action (e.g., a user failing to press a
button in time), and a genotype, i.e., the cog-
nitive process that causes the erroneous action
(e.g., forgetting the intention of pressing the but-
ton). As our work does not capture the cognitive
sources of human actions but their observations,
throughout the paper, we focus on phenotypes,
while genotypes are investigated in [26].

The taxonomy proposed by Hollnagel features
four macro-categories of human errors, referred to
as error modes in Table 2: actions in the wrong
place (i.e., the position of the action within the
sequence is not correct), at the wrong time (i.e.,
the timing of the action is not as planned), of
the wrong type (i.e., the action is not planned
but does not disrupt the plan), not included in
the current plan (i.e., the action is not in the
planned sequence). An error mode groups one
or multiple phenotypes, each capturing a devi-
ation (i.e., the error) with respect to a plan,
where a plan is intended as a representation of
both a goal [...] and the possible actions required
to achieve it [48]. For each phenotype, Table
2 reports action sequences displaying the corre-
sponding erroneous behavior with respect to a
planned sequence of generic actions indicated with
symbols [A,B,C,D,E]. When timing is necessary
to characterize the phenotype, timestamps of the
form ti indicating the expected time of occurrence
of an action are also reported. Notation (ti,⊥)
indicates that no action takes place at time ti

contrary to what the plan envisages, while sym-
bol ↓ indicates an unexpected termination of the
sequence of actions.

The formal model in our framework captures
human behavior while interacting with a robot,
and the possible interactions are referred to as
patterns. Since each pattern represents the service
requested by the human to the robot, the goal of a
pattern is to provide the service and conclude the
interaction successfully. The condition determin-
ing whether a service is completed successfully is
specific to the pattern and indicated in the follow-
ing as γi,scs ∈ Γ(W), where i ∈ [1,Nh] identifies
a specific human (equivalently, a specific pattern,
as each SHA modeling a human is an instance of
a single pattern) and Nh ∈ K is the total num-
ber of humans involved in the scenario. The goal
of a pattern i is then expressed through formula
�≤τ (γi,scs), where τ is the time-bound of the SMC
experiment, as explained in Section 3.

As described in Section 3.2, SHA modeling
human behavior feature multiple instances of
the 〈op〉 pubh subautomaton, each capturing an
operational state, such as walking or standing.
Similarly, the SHA modeling the robot features
multiple instances of the 〈op〉 pub〈id〉 subautoma-
ton presented in [38, Section IV] modeling the
operational state of the robot. To complete a ser-
vice, the human and the robot perform a sequence
of actions, i.e., the plan in our framework. The
occurrence of an action in our modeling approach
is captured through a change in the operational
state (i.e., 〈op〉 pubh instance) of the SHA model-
ing the human or a change of location in the SHA
modeling the robot. Given a SHA involved in a
plan and indicating its location at a given time
t as l, an atomic element (ti, l

′) of the plan such
that ti > t holds indicates that the SHA should
switch from l to l′ at time ti. On the other hand,
element (ti,⊥) indicates that the change of opera-
tional state planned at time ti does not take place
due to a human error, thus, the SHA modeling
the human remains in its current state. For exam-
ple, let us consider the HumanFollower pattern.
The goal (expressed in informal terms) is that the
human follows the robot to a certain location (not
known beforehand by the human). To this end, the
plan in informal terms is the following: robot starts
moving, human starts walking, robot stops mov-
ing, human stops walking. The corresponding plan
reporting the operational state change is shown in

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 11

Table 2: Phenotypes of human erroneous behavior identified by Hollnagel’s taxonomy [27]. For each
phenotype, the table reports the corresponding error mode, an informative description, and an example
of an action sequence displaying the erroneous behavior (highlighted in red).

Error Mode

(Action:)
Phenotype Description Action Sequence

in the

wrong place

Repetition An action is a repetition of the previous contiguous one. A,B,C,C ,D,E

Reversal The next two actions in the expected sequence are reversed. A,B,D ,C ,E
in the wrong

place/at the

wrong time

Omission An action has been omitted from the sequence.
(t1,A), (t2,B),(t3 ,⊥),

(t4,D), (t5,E)

at the

wrong time

Delay An action is performed, but not when required.
(t1,A), (t2,B),(t3 ,⊥),
(t ′3 ,C), (t4,D), (t5,E)

Premature
Action

An action is performed, but not when expected.
(t1,A), (t2,B),(t ′3 ,C),
(t3 ,⊥), (t4,D), (t5,E)

of the

wrong type
Replacement

An action is performed as a substitute of another,

but the two are functionally equivalent (i.e., C is equivalent to C′).
A,B,C ′,D,E

not included

in current plan

Insertion
An action is performed that is not in the original plan,

but does not disrupt it.
A,B,Y ,C,D,E

Intrusion
An action is performed that is not in the original plan

and causes disruption (the goal cannot be achieved).
A,B,Y ↓

sequence (4) (the human’s initial operational state
is 〈stand〉 pubh, while the robot starts in ridle).
Note that, to ease the distinction between changes
related to the robot and to the human when pre-
senting sequences, we report the full 〈op〉 pubh
label for humans and only the label of the ordinary
location within the 〈op〉 pub〈id〉 subautomaton for
the robot (i.e., rstart and rstop).

[(t1, rstart), (t2, 〈walk〉 pubh),

(t3, rstop), (t4, 〈stand〉 pubh)].
(4)

In reality, human behavior in a service setting
is barely constrained, and the decision-making
process is highly susceptible to free will; therefore,
numerous deviations from the plan are possible.
In our framework, SHA modeling human behavior
capture this aspect by embedding a formaliza-
tion of human errors. In the following, we present
the developed SHA add-ons modeling the phe-
notypes as summarized by Table 3, providing
examples of the corresponding erroneous behav-
iors within the domain of our framework. Table
4 summarizes the significant variables from each
add-on, whose role is explained in detail through-
out the section. Specifically, for each add-on, we
present its features and show the corresponding

SHA portion modeling the standard (i.e., non-
erroneous) behavior. We remark that we indicate
as add-ons portions of SHA (thus, sub-tuples of
the one defined in Definition 1) that can be flexibly
incorporated into other SHA. In more detail, all
add-ons consist of patterns of connections between
multiple instances of the 〈op〉 pubh component
(see Fig. 4). Therefore, pre-existing SHA mod-
eling human behavior and featuring a fixed set
of 〈op〉 pubh components (i.e., the operational
states capturing the human’s fatigue state) can
be extended by incorporating add-ons (a specific
example is presented in detail in Section 4.2.1).
This feature increases the extensibility of the mod-
eling approach for two reasons: if new add-ons
are developed in the future, these can be eas-
ily plugged into existing human-robot interaction
patterns; if new human-robot interaction patterns
are developed in the future, these can be easily
extended with the developed add-ons.

Given the stochastic nature of the employed
formalism, it is not possible for the developed add-
ons to be purely non-deterministic like the original
phenotypes. However, a probabilistic formaliza-
tion is necessary and described in more detail
when introducing the various add-ons in the next
sections. Indeed, quantifying the probability of
human errors’ manifestations is a long-standing

Springer Nature 2021 LATEX template

12 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

Table 3: Mapping between the developed add-ons
and the phenotypes identified by Hollnagel [27].

Add-On Phenotype(s)

Heed/Ignore Delay, →Intrusion
Free Will Premature Action, Reversal, Insertion

Timer Expired Omission
Safety Violation Insertion, Intrusion, Premature Action
Critical Status Intrusion

approach in probabilistic Human Reliability Anal-
ysis techniques such as CREAM [28], HEART [56],
THERP [53], and THEA [46].

As per Table 3, developed add-ons cover 6 out
of 8 phenotypes from Hollnagel’s taxonomy. The
reason why Repetition and Replacement are not
supported is due to the range of human actions
currently covered by the modeling approach. In
the first case, supported actions cannot physically
or logically be repeated: for instance, the human
cannot start walking twice in a row since they
either stop and restart (counting as two sepa-
rate actions) or simply keep walking. Concerning
Replacement, the approach does not include sets
of functionally equivalent actions (e.g., standing
and sitting, or walking and running). Therefore,
performing a substitute of the correct action is
not supported. Introducing functionally equiva-
lent action sets will be investigated in future work,
as well as an extension of the available set of
add-ons to model the Replacement error.

4.1.1 Heed/Ignore Add-On

The Heed/Ignore SHA add-on formally models
the situation in which the orchestrator issues
an instruction for the human, and the human
ignores it and protracts the action they were pre-
viously performing. We do not further investigate
or formally model whether ignoring the instruc-
tion is intentional since, as previously discussed,
the formal model captures the manifestation of
the erroneous behavior and not its cognitive
source.

The standard behavior is captured by the SHA
in Fig. 5a. Subautomaton 〈op〉 pubh represents
the current state of the human (e.g., standing
or walking), while 〈op〉′ pubh represents the fol-
lowing state in the sequence. The switch from
〈op〉 pubh to 〈op〉′ pubh occurs through an edge,
which fires when an instruction is sent through

, ,

(a) SHA modeling the non-erroneous behavior, with
the solid line representing a deterministic edge.

heed
, ,

, ,

(b) Heed/Ignore SHA add-on: as in Fig. 3, dashed lines
represent probabilistic edges, with weights highlighted
in orange.

Fig. 5: SHA showing the standard behavior, and
the Heed/Ignore add-on. Color-coding is the same
as Fig. 3.

channel c ∈ C (thus, the edge is labeled with
c?). Optionally, the edge may also be labeled with
guard condition γ and update ξ.

Consider, for instance, the running example
of the action sequence envisaged by the Human-
Follower pattern, where the orchestrator fires an
instruction through channel cmd hstart to instruct
the human to start walking and follow the robot.
In this case, the human acts erroneously as they
do not abide by the instruction, which is captured
by the SHA add-on in Fig. 5b. The determin-
istic edge from 〈op〉 pubh to 〈op〉′ pubh in Fig.
5a is changed into two probabilistic edges with
weights heed, ignore ∈ K, and the same labels
γ, c?, and ξ as the original edge. The edge with
weight heed reaches 〈op〉′ pubh, thus capturing
the human following the instruction and changing
their state when c? fires. The edge with weight
ignore is a self-loop on 〈op〉 pubh, capturing the
human ignoring the instruction and staying in the
state modeled by 〈op〉 pubh when c? fires. The
observed behavior when introducing this add-on
is that the human performs the required action
when instructed by the orchestrator with probabil-
ity p = heed/(heed + ignore) and does not perform
the required action with probability 1− p.

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 13

Table 4: Summary of the variables from the developed add-ons.

Name Add-On Description
heed/ignore Heed/Ignore Probability weights for the human heeding/ignoring the robot’s

instructions.
fw Free Will Variable governing the human’s haphazard decisions.
FWth Free Will Threshold to trigger the human’s haphazard decisions.
FWmax Free Will Maximum fw value.
ϕ Timer Expired Real-valued variable modeling the progress of the human task.
TE Timer Expired Threshold to consider the time to complete the task expired.
texp Timer Expired Clock measuring time elapsed since the start of the task.
hpos Timer Expired Human’s coordinates within the layout.
target Timer Expired Destination of the pattern.
δ Timer Expired Allowance factor for the maximum duration of the task.
rpos Safety Violation Robot’s coordinates within the layout.
dcrit Safety Violation Maximum distance allowed between human and robot.
λsafe Safety Violation Exponential rate for the probability of the human leaving the

safe state.
pd Critical Status Time-dependent factor of the probability of unexpected acci-

dents.
FS Critical Status Constant factor of the probability of unexpected accidents.

We remark that even if the SHA modeling
the human takes the ignore edge, an event is still
received through channel c due to label c?. Nev-
ertheless, the behavior of the SHA network that
is effectively observed is that the SHA modeling
the human does not initiate the action semanti-
cally associated with channel c. When reporting
examples of erroneous action sequences (also for
upcoming add-ons), we recall that the orchestra-
tor checks the state of the system and issues one or
multiple instructions, if necessary, every Tint ∈ K
time units. Therefore, referring to the HumanFol-
lower running example, if the human erroneously
behaves according to the Heed/Ignore add-on and
no other error occurs throughout the pattern, the
observed action sequence is shown in sequence (5),
where k ∈ N is the number of times the self-
loop on 〈op〉 pubh is taken in favor of the edge to
〈op〉′ pubh.

[(t1, rstart), (t2,⊥), (t2 + Tint,⊥), . . . ,

(t2 + kTint,⊥), (t2 + (k + 1)Tint, 〈walk〉 pubh),

(t3, rstop), (t4, 〈stand〉 pubh)]

(5)

With k = 1, we obtain a Delay phenotype (see
Table 2). All sequences observed with k > 1 are an

iteration of said phenotype, resulting in a longer
delay. The probability of choosing the ignore edge
k times is (1− p)k. It is possible—in theory—that
the heed edge is never chosen in favor of the ignore
self-loop: the probability of this happening (i.e.,
(1− p)k with k→∞) tends to 0 if p < 1 holds—
i.e., if ignore is greater than 0. The action sequence
observed in this corner case (marked by symbol→
in Table 3) is given in sequence (6).

[(t1, rstart), (t2,⊥), . . .] (6)

Since the goal is never reached, this constitutes a
special case of Intrusion with Y = ⊥ (see Table 2).

4.1.2 Free Will Add-On

The Free Will SHA add-on, shown in Fig. 6, cap-
tures the situation in which the human performs
an action independently of the orchestrator’s
instructions (if the robot initiates the action) or
when the system does not meet the pre-conditions
for the actions (if the human initiates the action).
In both cases, the manifestation of this erro-
neous behavior depends on dense counter fw that
approximates the free will phenomenon through
a random distribution [11] and whose underlying
mechanism is explained below.

Springer Nature 2021 LATEX template

14 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

, ,

(a) Free Will SHA add-on corresponding to the stan-
dard behavior in Fig. 5a, when the action is initiated
by the robot.

,

(b) SHA modeling the non-erroneous behavior when
the human initiates the action.

(c) Free Will SHA add-on when the action is initiated
by the human.

Fig. 6: Free Will SHA add-on, color-coded as in
Fig. 3.

If the robot initiates the action, the planned
behavior is shown in Fig. 5a and described
in Section 4.1.1: the orchestrator instructs the
human to perform the next required action
through channel c, triggering them to switch to
〈op〉′ pubh. The SHA add-on modeling the erro-
neous behavior (shown in Fig. 6a) features an
additional edge between 〈op〉 pubh and 〈op〉′ pubh
with update ξ, no channel label, and whose guard
is a conjunction between the original guard γ and
condition fw ≥ FWth (explained in detail below).
The purpose of the self-loop 〈op〉 pubh, for both
cases, is also explained below contextually to the
update of variable fw. The firing of this edge rep-
resents the human erroneously starting the action
represented by channel c when the orchestrator
has issued no instruction.

In the second case (i.e., the action initiated by
the human), the standard behavior is shown in
Fig. 6b. Subautomata 〈op〉 pubh and 〈op〉′ pubh
represent the current and the next operational

states. The switch between the two subautomata
does not depend on a robot instruction (there is
no channel label on the edge) but is entirely up
to the human to perform the action when a cer-
tain condition γ holds. The modeling approach
assumes that no SHA other than the orchestra-
tor fire an event through a channel (thus, with
label c!) representing the start of an action. The
reason is that, in the real system, the human can-
not actively signal the start of each action for
practicality. When the human initiates an action,
the orchestrator infers from sensor measurements
that such an event occurred (e.g., that the human
started moving because their position changed).
The erroneous behavior, shown in Fig. 6c, cap-
tures the human potentially performing the action
even if the required pre-conditions (represented by
γ) do not hold, due to guard fw ≥ FWth ∨ γ.

The mechanism determining free will, i.e.,
how new values are assigned to dense counter
fw, is stochastic. Let x ∈ X be a clock of
the SHA the add-on is applied to, subautoma-
ton 〈op〉 pubh is then endowed with invariant
x ≤ T, where T ∈ K is a constant. Both in
the Heed/Ignore and Free Will add-ons, subau-
tomata 〈op〉 pubh and 〈op〉′ pubh may be endowed
with further flow conditions, probability distri-
butions, and invariants—i.e., F(h〈op〉), D(h〈op〉),
I(h〈op〉), F(h〈op〉′), D(h〈op〉′), and I(h〈op〉′) can
be non-empty. Nevertheless, since they do not
directly impact the erroneous behavior like invari-
ant x ≤ T, these labels are not shown in Fig. 5
nor Fig. 6 to ease the visualization of the add-ons’
essential elements.

Subautomaton 〈op〉 pubh features a self-loop
with guard x ≤ T and update ξfw. The joint
presence of the invariant and the guard condi-
tion enforces update ξfw to be executed every
T time units. Simultaneously, clock x is reset
(indicated as {x}) to ensure that the invariant
holds after the self-loop fires. Update ξfw assigns
a new value to dense counter fw ∈ Vdc. Specif-
ically, the update yields a new sample of Uni-
form distribution U[0,FWmax), where FWmax ∈ K is
a numerical constant. Guard fw ≥ FWth on the
Free Will edge (in conjunction or disjunction with
γ in Fig. 6a and Fig. 6c, respectively) ensures
that the erroneous behavior occurs only if the
last value drawn for variable fw belongs to range
[FWth,FWmax) where FWth ∈ K is a constant such
that FWth ≤ FWmax holds.

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 15

The HumanFollower pattern is eligible for the
add-on in Fig. 6a since actions are initiated by
the robot. While the intended plan is reported in
sequence (4), if the Free Will edge fires (thus, the
erroneous behavior occurs) at time t′2 < t2, the
observed actions are those shown in sequence (7).

[(t1, rstart), (t
′
2, 〈walk〉 pubh),

(t2,⊥), (t3, rstop), (t4, 〈stand〉 pubh)]
(7)

In this case, sequence (7) reports the switch to
〈walk〉 pubh (i.e., the human starting to walk)
at time t′2 out of free will even if no event is
fired through channel cmd hstart. Therefore, in our
framework, the Free Will add-on realizes the Pre-
mature Action phenotype if it involves the correct
action according to the sequence (like starting to
walk, in this example), but is not performed at
the expected time. For example, the human may
start walking during the Tint time range in which
the orchestrator is processing data.

A possible corner case of this erroneous behav-
ior is obtained by decreasing t′2 to the point that
t′2 < t1 holds. In this case, the observed actions are
given in sequence (8), whose timestamps are not
shown as they are not necessary to identify the
error.

[〈walk〉 pubh, rstart, rstop, 〈stand〉 pubh] (8)

Therefore, the realized phenotype, in this case, is
a Reversal. We remark that sequence (8) is feasi-
ble in our framework since the orchestrator still
issues instruction cmd hstart after cmd rstart, but
since the human is already walking, no response to
such instruction is observed on the human’s side.

The third and final manifestation of the Free
Will add-on is the human erroneously performing
an action that is not envisaged by sequence (4),
irrespectively of the time at which it is performed.
For example, the human may abruptly stop walk-
ing while following the robot, resulting in sequence
(9) (timestamps are not reported).

[rstart, 〈walk〉 pubh, 〈stand〉 pubh,

〈walk〉 pubh, rstop, 〈stand〉 pubh]
(9)

,

(a) SHA representing the standard behavior.

,
,

(b) SHA representing the Timer Expired add-on, color-
coded as in Fig. 3.

Fig. 7: SHA representing a standard behavior and
its version with the Timer Expired add-on repre-
senting the erroneous behavior, both color-coded
as in Fig. 3.

This case realizes an Insertion phenotype since the
human stopping is not expected but still allows
the agents to reach the goal. In this situation, the
orchestrator has to instruct the human to start
walking again after the error occurs. Therefore,
the additional cmd hstart action is not expected,
but it constitutes a response of the system to the
error (thus, it is highlighted in blue and not in
red).

The add-on in Fig. 6c, which captures actions
initiated by the human, realizes the same phe-
notypes, with the difference that the point of
reference is not the firing of channel c but con-
dition γ being verified based on the system’s
state.

4.1.3 Timer Expired Add-On

The Timer Expired SHA add-on captures the
human extremely delaying the completion of a
task whose progress they are in charge of, to
the point of being considered non-responsive. An
example is the HumanLeader pattern, which is the
dual case of the HumanFollower, in that the human
is in charge of leading the robot to a certain des-
tination. Similarly, the HumanApplicant pattern
(described in detail in Section 4.2.1) features the
human performing an action with the support of
the robot, such as administering a treatment. In

Springer Nature 2021 LATEX template

16 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

such cases, if the human performs impeccably, the
action (i.e., walking or treating the patient) ends
within a reasonable amount of time. However,
unexpected time losses or the incumbency of an
emergency may prevent the human from complet-
ing the task, leading the robot to consider them
non-responsive and the service failed.

The standard behavior is shown in Fig. 7a. The
SHA features two subautomata 〈op〉 pubh and
〈op〉′ pubh representing (as in Section 4.1.1 and
Section 4.1.2) the current and the next operational
state envisaged by the plan. Real-valued variable
ϕ ∈ W models the progress of the human task
while in 〈op〉 pubh. The evolution of ϕ with time
(e.g., the distance to the destination decreasing) is
constrained by flow condition fnorm(t). The switch
from 〈op〉 pubh to 〈op〉′ pubh is realized through a
solid edge with guard γ(ϕ), update ξ, and channel
c: if the human initiates the switch, the channel
is replaced by the internal action. Guard γ(ϕ) is
a condition on the value of ϕ evaluating to true
when the task is complete.

The erroneous behavior modeled by the Timer
Expired add-on, shown in Fig. 7b, captures the sit-
uation in which the progress of the task performed
by the human is excessively delayed. The evolu-
tion of variable ϕ is, therefore, constrained by a
different flow condition (ferr(t) in Fig. 7b). While
function fnorm(t) models the human behaving nor-
mally, function ferr(t) is such that condition γ(ϕ)
(capturing the completion of the task) may not
be verified within a maximum time bound, corre-
sponding to constant TE ∈ K. A concrete example
of how ferr(t) is implemented is given in Section
4.2.1 when describing in detail the HumanAp-
plicant pattern. Subautomaton 〈op〉 pubh is fur-
ther endowed with invariant texp ≤ TE, where
texp ∈ X is a clock that is reset upon entering
〈op〉 pubh. If time bound TE is exceeded, the
SHA switches to subautomaton 〈fail〉 pubh. The
edge from 〈op〉 pubh to 〈fail〉 pubh is labeled with
guard condition texp ≥ TE, which, in conjunction
with the invariant on 〈op〉 pubh, ensures that the
transition occurs if and only if texp = TE holds.

For each pattern eligible for this add-on, time-
bound TE is estimated based on the characteristics
of the human and the requested service. Eq.10
shows an example of how the value of TE is cal-
culated in patterns requiring the human to move
to a certain destination when initiating the move-
ment is up to the human. In this case, variable ϕ

corresponds to the distance between the human
and the destination, and the task completion (i.e.,
condition γ(ϕ)) captures the distance being equal
to 0. Function dist computes the distance between
two points accounting for fixed obstacles (e.g.,
walls), hpos ∈W is the Cartesian coordinate pair
representing the human’s position within the lay-
out, target ∈ K is the Cartesian coordinates pair
representing the destination of the service, v ∈ K
is the human’s walking speed, and δ ∈ K is the
allowance factor.

TE =
dist(hpos(0), target)

v
· (1 + δ) (10)

The ratio between the distance to be covered
(thus, the distance between the human’s start-
ing position hpos(0) and the destination) and the
walking speed represents the expected duration
of the service in ordinary conditions, whereas δ
determines how much the expected duration can
be exceeded for the human to be considered non-
responsive. Therefore, the higher the value of δ,
the lower the likelihood of this erroneous behavior.

Let us refer to a [HumanLeader, HumanFol-
lower] service sequence to illustrate the manifes-
tation of this erroneous behavior. The expected
plan for the two services is shown in sequence
(11), where the first 4 elements constitute the
HumanLeader plan, while the last 4 constitute the
HumanFollower plan.

[(t1, 〈walk〉 pubh), (t2, rstart), (t3, 〈stand〉 pubh),

(t4, rstop), (t5, rstart), (t6, 〈walk〉 pubh),

(t7, rstop), (t8, 〈stand〉 pubh)]

(11)

The erroneous behavior modeled by the Timer
Expired add-on may occur while the human is
leading the robot to the destination (captured by
parameter target, as in Section 4.1.3 and they fail
to reach it within time TE. In this case, the system
behaves as in sequence (12).

[(t1, 〈walk〉 pubh), (t2, rstart), (t3,⊥), . . . ,

(t3 + TE,⊥), (t′4, rstop), (t5, rstart), . . .]
(12)

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 17

We remark that, in sequence (12), t3 is the
expected duration of the task, and t′4 ≥ t3 + TE
holds since the robot stops serving the Human-
Leader and starts serving the HumanFollower after
the extra time allowed to complete the task has
elapsed. Therefore, as per Table 2, this add-on
realizes an Omission error phenotype. Note that,
since the robot waits for the human to perform
their task until time TE elapses, the switch to rstop

occurs at time t′4 > t4. However, this is not an
error by itself but the system’s response to the
error made by the human (thus, it is highlighted
in blue and not in red).

4.1.4 Safety Violation Add-On

The Safety Violation add-on captures the human
entering a critical situation (e.g., moving too close
to the robot), possibly causing a safety hazard
[55]. Unlike operators in industrial settings, people
in service settings do not wear protective devices
nor receive systematic and thorough training in
working alongside robots. Enforcing safety mea-
sures may be necessary throughout the interaction
to prevent undesirable events, such as collisions.
This add-on introduces a formalization of the
human and the robot operating under a safety
measure and the human violating such measure
out of error.

The standard behavior, shown in Fig. 8a, mod-
els the situation in which the human is required
to switch to a safe mode under specific circum-
stances while performing an action. As in previous
cases, the current state is modeled by subau-
tomaton 〈op〉 pubh, whereas the subsequent state
in the plan is subautomaton 〈op〉′ pubh. The
switch to 〈op〉′ pubh is enforced by the orchestra-
tor by firing an event through channel c′? when
condition γ′ holds and, upon firing such event,
update ξ′ is executed. The condition determining
whether the human should switch to the safety
mode depends on the specific interaction pattern.
For example, referring to the HumanFollower pat-
tern, the condition raising safety concerns is the
human getting too close to the robot, expressed
as dist(hpos, rpos) ≤ dcrit, where function dist and
variable hpos are as described in Section 4.1.3,
rpos ∈W is the Cartesian coordinate pair rep-
resenting the robot’s position, and dcrit ∈ K is
a system-wide constant representing the maxi-
mum distance allowed before a safety measure

, ,

, ,

(a) SHA add-on capturing the non-erroneous behavior.

, ,
, ,

,

(b) SHA add-on capturing the erroneous behavior:
exponential rate λsafe is color-coded like an invariant.

Fig. 8: SHA depicting the standard behavior and
the erroneous behavior captured by the Safety
Violation add-on, color-coded as in Fig. 3.

is enforced. Therefore, the human should stay in
〈op〉 pubh only while the distance from the robot
is greater than dcrit.

As soon as the safety-critical condition holds,
the human receives an orchestrator instruction
over channel csafe to switch to the safe mode, i.e.,
subautomaton 〈op safe〉 pubh, which captures the
same operational state as 〈op〉 pubh but with the
safety measure enforced. Realistic examples of this
contingency would be the human being instructed
to take a few steps to avoid the moving robot or
walking at a slower pace to avoid colliding with
the robot. Upon switching to 〈op safe〉 pubh, SHA
variables are updated through ξcrit to reflect the
safety measure being enforced (e.g., setting a lower
value of the human’s walking speed). If the safety
critical condition eventually holds, the human is
instructed to switch back to 〈op〉 pubh through
channel c. Note that the operational state modeled

Springer Nature 2021 LATEX template

18 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

by 〈op safe〉 pubh represents the same state as
〈op〉 pubh with different parameters (e.g., walking
at a lower pace) and not a different functionally
equivalent action (thus, it is not eligible for a
Replacement phenotype).

The corresponding add-on modeling the erro-
neous behavior is shown in Fig. 8b. In this case,
the modeled human error consists of arbitrarily
leaving 〈op crit〉 pubh even if the safety-critical
condition is still in place (e.g., the human resum-
ing walking at a full pace even if they are still too
close to the robot). The human arbitrarily leaving
〈op safe〉 pubh is captured by an additional edge
back to 〈op〉 pubh without any channel, whose
firing depends on exponential rate λsafe added
to subautomaton 〈op safe〉 pubh. The mechanism
determining whether the SHA takes the new erro-
neous edge is stochastic rather than determinis-
tic as in Fig. 8a. Specifically, the probability of
leaving 〈op safe〉 pubh t time units after enter-
ing it is 1− e−λsafet. Therefore, the probability
of switching back to 〈op safe〉 pubh irrespective
of the orchestrator’s instructions increases with
time. Note that the longer the human stays in
〈op crit〉 pubh, which models the safe mode, the
safer it is for the system. However, the higher
λsafe is, the more likely the human is to leave
〈op safe〉 pubh shortly after entering it when the
safety-critical condition still holds.

The human erroneously not entering
〈op safe〉 pubh upon receiving a message through
csafe would be covered by applying the Heed/Ig-
nore add-on to the edge from 〈op〉 pubh to
〈op crit〉 pubh.

This add-on gives rise to several phenotypes
of erroneous behavior, thus different erroneous
action sequences are illustrated in the following.
Examples are provided taking as reference the
HumanFollower pattern, specifically the sequence
that envisages the orchestrator enforcing the
safety measure, shown in sequence (13). Although
the switch to 〈walk safe〉 pubh is not envisaged
by default by the HumanFollower pattern (see
sequence (4)), it is not considered an error but
a desired effect of the orchestrator’s policies and
the realization of the standard behavior in Fig. 8a.
Therefore, the corresponding elements in sequence
(13) are highlighted in blue and not in red.

[rstart,
(
〈walk〉 pubh, 〈walk safe〉 pubh

)m
,

(〈walk〉 pubh)n, rstop, 〈stand〉 pubh]
(13)

Sequence (13) captures all the possible realizations
of the standard behavior in Fig. 8a with m ≥ 1 and
n ∈ {0, 1}. In more detail, the human is instructed
to enter the safe mode (i.e., walking at a slower
pace) at least once. Afterwards, the human may
be instructed to switch between 〈walk〉 pubh and
〈walk safe〉 pubh m− 1 times. Finally, in any case,
the task can either terminate with the human in
〈walk safe〉 pubh (if n = 0 holds) or in 〈walk〉 pubh
(if n = 1 holds).

When applied to sequence (13), the Safety Vio-
lation add-on realizes different phenotypes based
on the value of n. If n = 0 holds (thus, the human
should conclude the task in 〈walk safe〉 pubh) and
the erroneous behavior in Fig. 8b occurs, sequence
(14) is observed, which captures the human unex-
pectedly resuming walking at full speed.

[rstart, 〈walk〉 pubh, 〈walk safe〉 pubh,

〈walk〉 pubh, rstop, 〈stand〉 pubh]
(14)

Sequence (14) realizes two phenotypes from the
same error mode (i.e., action not included in cur-
rent plan): if the safety measure (even if active
for a reduced amount of time) was successful in
avoiding a hazard, the service can be completed
successfully, resulting in an Insertion phenotype;
otherwise (i.e., lifting the safety measure too
early causes a hazard), the mission fails, effec-
tively realizing an Intrusion phenotype. The same
phenotypes are realized whether m = 1 or m > 1
hold.

If n = 1 holds, it is sufficient to enforce the
safety measure for a limited amount of time before
all actions can resume in their normal mode (the
human concludes the action in 〈walk〉 pubh). In
this case, the possible erroneous behavior is the
human resuming the normal mode too early, as
shown in sequence (15), which realizes a Premature
Action phenotype with m = 1.

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 19

, ,

Fig. 9: SHA representing the Critical Status add-
on, color-coded as in Fig. 3.

[(t1, cmd rstart), (t2, cmd hstart), (t3, cmd hsafe start),

(t′4, cmd hstart), (t4,⊥), (t5, cmd rstop), . . .]

(15)

If m > 1 holds, the Premature Action phe-
notype can either refer to the last switch to
〈walk〉 pubh (like in sequence (15)) or any inter-
mediate one.

4.1.5 Critical Status Add-On

Although our modeling framework applies to
generic service settings, some of its features specif-
ically target healthcare environments. In such
cases, where people are often in pain or discomfort,
robotic applications must safeguard humans’ well-
being and take into account unexpected (rather
than purely erroneous) health-related accidents.
This contingency is captured by the Critical Status
add-on, capturing human subjects facing a sud-
den unexpected health issue (e.g., fainting) that
requires immediate medical attention.

The standard behavior, in this case, may be
captured by both Fig. 5a and Fig. 6b: in the
following, we present the add-on as a variation
of Fig. 5a. However, the same conclusions can
be drawn on the SHA in Fig. 6b by replacing c
with the internal action. The standard behavior
envisages the human whose current state is mod-
eled by subautomaton 〈op〉 pubh and upcoming
state by 〈op〉′ pubh. The switch from 〈op〉 pubh
to 〈op〉′ pubh either depends on the orchestrator’s
instructions sent through channel c or the human’s
initiative. The edge is enabled when guard γ holds
and, upon firing, causes update ξ to execute.

As per Section 3.2, our modeling approach fea-
tures a model of physical fatigue that increases
when the human is actively performing an action

and decreases when they are resting. Human
fatigue can only increase up to a maximum thresh-
old (1 in our case, representing that 100% of mus-
cle reservoir units have been activated) before the
human is no longer able to move autonomously.
The Critical Status add-on captures the possibil-
ity that the human faints or a similarly impairing
accident occurs even if their current fatigue level is
still below the maximum threshold. The SHA add-
on representing this contingency is shown in Fig.
9: the additional location 〈fail〉 pubh represents
the deadlock reached by the SHA if the accident
occurs, causing the failure of the mission.

As shown in Fig. 9, location 〈op〉 pubh fea-
tures invariant x ≤ T as in Fig. 6, where x ∈ X
is a clock and T ∈ K is a constant. Compared to
the standard behavior, the add-on has two addi-
tional edges leaving 〈op〉 pubh, a self-loop and
the edge to 〈fail〉 pubh, both labeled with guard
x ≥ T. Every T time units, there is a certain prob-
ability that the accident occurs, and the mission
fails (the SHA switches to 〈fail〉 pubh), or that the
human remains in the same state (the self-loop on
〈op〉 pubh fires). Unlike in the Heed/Ignore add-
on, probability weights are not constant, but their
value changes with time (thus, they are real-valued
variables). We indicate as pd ∈W the real-valued
variable in question, whose derivative is con-
strained through a flow condition on 〈op〉 pubh.
In our specific case, the add-on envisages that
the higher the level of fatigue, the higher the
probability of an accident occurring. Therefore,
the flow condition constraining pd is indicated as
fcrit(t) in Fig. 9 for the sake of generality, but in
our specific case, it is a customizable function of
fatigue, modeled by real-valued variable F ∈W .
An example, featured by the SHA presented later
in this section, is fcrit(t) = hs · Ḟ (t), where hs ∈ K
is a customizable parameter determining how
rapidly the probability of an accident increases
with fatigue. In general, the probability weight for
the self-loop on 〈op〉 pubh should evolve in time
inversely with respect to fatigue (the higher the
fatigue level, the lower the probability that the
human does not have an accident and stay in the
same state). A trivial example of expression deter-
mining the probability weight on the self-loop, also
depicted in Fig. 9, is FS − pd, where FS ∈ K is a
constant such that FS ≥ sup(pd) holds.

Springer Nature 2021 LATEX template

20 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

Table 5: Summary of human-robot interaction patterns with a description of the captured service.

Pattern Description

HumanFollower The human follows the robot to a specific destination. The robot signals
that the service has been completed when both the robot and the human are
close to the destination.

HumanLeader The human leads the robot to a specific destination of which they know the
precise location. The human claims the service is complete when both the
human and the robot have reached their destination.

HumanRecipient The human has the robot fetch an item from a specific location and deliver
it to the human. The robot determines the service has been provided when
the item has been successfully picked up.

HumanCompetitor The human and the robot compete to fetch a critical resource (for example,
a medical kit during an emergency). Both agents move to the location of the
resource to reach it as quickly as possible. The competition ends when either
of the agents reaches the target location.

HumanRescuer The robot requires human intervention to complete a task, such as pressing
a button to call the elevator or opening a closed door. In this case, the robot
will emit audible or visible signals to notify its need for human support. The
human moves to the robot’s current location, performs the required action,
and concludes the interaction.

HumanApplicant The human requires the robot’s support in performing a task that implies
timely or close-contact interaction, such as feeding a patient or administering
medication. The robot approaches the human’s location, then the action
requiring synchronization starts.

The action sequence observed if the behavior
captured by this add-on occurs features, irrespec-
tive of the specific pattern, an unexpected action
corresponding to the accident, this is not part of
the original plan and prevents the human-robot
pair from achieving the goal, effectively realizing
an Intrusion phenotype.

4.2 Human-Robot Interaction
Patterns

As described in Section 2, in our framework,
human behavior is modeled through different SHA
based on the service they are requesting, and ser-
vices correspond to interaction patterns. Each
SHA modeling an interaction pattern captures
how the human behaves—either autonomously or
in response to a robot’s action—to achieve the
goal of the specific service. The standard behavior
envisaged by each interaction pattern is described
in detail in [37, 39] and briefly summarized in
Table 5 to keep the paper self-contained. This
article extends the six SHA modeling human

agents through the previously presented erroneous
behavior add-ons. Not all add-ons apply to all pat-
terns since we rule out behaviors that are unfeasi-
ble or unrealistic. In the following, we present the
extended SHA modeling the HumanApplicant pat-
tern in detail as an example of how add-ons are
applied to HRI patterns. We then outline how the
other five patterns have been enriched through a
similar procedure.

4.2.1 HumanApplicant Pattern

As per Table 5, the HumanApplicant interac-
tion pattern captures contingencies in which the
human requests the robot’s support to complete a
task that requires working in a very close distance
or sharp timely synchronization [39]. Example
applications are robotic companions supporting
a patient while feeding or healthcare profession-
als receiving the support of a service robot while
administering medication. In the following, firstly,
we recap the standard behavior of this pattern,
shown in Fig. 10a; secondly, we describe the SHA

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 21

(a) SHA representing the standard behavior of the HumanApplicant pattern.

(b) SHA representing the HumanApplicant enriched with erroneous behavior add-ons. Color-coding is as in Fig. 3
except for edges capturing human errors, highlighted in red for visualization purposes.

Fig. 10: SHA modeling the HumanApplicant pattern.

(shown in Fig. 10b) extended with add-ons to
incorporate erroneous behaviors.

The SHA modeling the HumanApplicant pat-
tern features four instances of 〈op〉 pubh corre-
sponding to the three phases of the service plus

Springer Nature 2021 LATEX template

22 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

the operational state under critical conditions
(〈op safe〉 pubh in Fig. 8b). When the service
starts, the human is idle and resting, captured by
subautomaton 〈idle〉 pubh. The robot starts mov-
ing to approach the human when the orchestrator
fires an event through channel cmd rstart, caus-
ing the human to switch to 〈wait〉 pubh, also a
recovery state. The flow condition constraining F
is, therefore, f(t, ρ) (see Eq.2) both in 〈idle〉 pubh
and 〈wait〉 pubh. Normal distributions N (µ1, σ

2
1)

and N (µ2, σ
2
2) determine the values of rate ρ in

〈idle〉 pubh and 〈wait〉 pubh, respectively.
When the robot has reached the human’s posi-

tion, the orchestrator instructs the human to start
performing the required task by firing an event
through cmd hstart, causing the human to switch to
subautomaton 〈exe〉 pubh. The standard duration
of the task is modeled by a parameter Ttask ∈ K,
while dext ∈ K represents the human’s dexterity,
i.e., the rate at which they perform the spe-
cific task. The real-valued variable capturing the
progress of the task is ttask ∈W (ϕ in Fig. 7a),
which evolves in time according to flow condi-
tion fnorm(t) = dext · t. In the ordinary case, the
orchestrator instructs the human to stop by means
of cmd hstop and switch back to 〈idle〉 pubh when
the human has spent Ttask

dext time units working on
the task [39]. The latter switch marks the comple-
tion of the service (thus contributing to the success
of the mission).

If, while performing the task, the orchestra-
tor determines that the human and the robot
are in a critical situation (i.e., their distance is
below a certain threshold or human fatigue is
above a critical level), it instructs the human
to proceed cautiously. The human receives this
instruction through channel cmd hsafe start and
switches to subautomaton 〈exe safe〉 pubh. Both
〈exe〉 pubh and 〈exe safe〉 pubh subautomata are
fatigue states, thus endowed with flow condition
g(t, λ) (see Eq.3). Distributions N (µ3, σ

2
3) and

N (µ4, σ
2
4) determine the values of fatigue rate λ.

Since 〈exe safe〉 pubh captures the human working
at a slower pace to avoid exhaustion or bump-
ing against the robot (enforced through update
ξcrit, which reduces the value of parameter dext),
µ4 < µ3 holds. If the safety measure is success-
ful, the orchestrator instructs the human to switch
back to 〈exe〉 pubh through channel cmd hstart,
and update ξnon crit restores the normal value of
dext. Otherwise, if the task is completed while

the human is in 〈exe safe〉 pubh, the orchestrator
instructs it to switch back to 〈idle〉 pubh through
channel cmd hstop.

Finally, deadlock location hfail is reachable by
the two fatigue states upon reaching the maximum
endurable level of fatigue (guard F ≥ 1 holds).

The edges modeling erroneous behaviors are
highlighted in red in Fig. 10b, and the applied add-
ons are individually described in the following.

Heed/Ignore Add-On

Initially, the human may delay the start of the
action and not respond to the cmd hstart com-
mand. Therefore, the edge from 〈wait〉 pubh to
〈exe〉 pubh is expanded into a Heed/Ignore add-
on. Similarly, both edges from 〈exe〉 pubh and
〈exe safe〉 pubh to 〈idle〉 pubh, marking the end of
the action through channel cmd hstop, might be
erroneously ignored by the human, and are thus
expanded into a Heed/Ignore add-on.

Free Will Add-On

While in 〈exe〉 pubh, the human may erroneously
pause the task before it is complete (thus,
before cmd hstop fires). Subautomata 〈exe〉 pubh
and 〈idle〉 pubh are connected by an additional
edge implementing the Free Will add-on, which
fires when fw ≥ FWth holds. Dense counter fw is
updated every Tpoll time instants by ξ〈exe〉 (an
instance of ξ〈op〉 in Fig. 4, embedded into the
〈exe〉 pubh subautomaton) as described in Section
4.1.2.

Timer Expired Add-On

While performing the task, the human might erro-
neously waste time and delay the completion of
the action to the point that the robot considers
them no longer responsive, as envisaged by the
Timer Expired add-on. Therefore, variable ttask,
capturing the progress of the task, is constrained
by a different flow condition, i.e., ferr(t) shown in
Eq.16.

ferr(t) = (dext · (rand(0,Tmax) ≥ Tth)) · t (16)

A stochastic mechanism governs the progress of
the task as, for each time instant, function rand
draws a new sample from Uniform distribution

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 23

U[0,Tmax) and increases the value of ttask if the sam-
ple is greater than a customizable threshold Tth

[39]. Therefore, the randomized evolution of vari-
able ttask may lead to an unacceptable delay in
completing the task.

Since, in this case, the human is not walking
towards a target but performing a task for a cer-
tain amount of time, time-bound TE to deem the
human non-responsive depends on the expected
duration of the task (parameter Ttask) and the
rate at which the human performs it (dext) as
per Eq.17, where δ is the allowance factor as
illustrated in Section 4.1.3.

TE =
Ttask

dext
· (1 + δ) (17)

Subautomaton 〈exe〉 pubh is endowed with invari-
ant texp ≤ TE, where texp ∈ X is a clock (as in
Fig. 7b). As in Fig. 7b, the edge connecting sub-
automaton 〈exe〉 pubh to deadlock location hfail

with guard condition texp ≥ TE fires as soon as
time TE elapses.

On the other hand, although the evolution
of ttask is constrained by Eq.16 also while in
〈exe safe〉 pubh, this operational state is not
extended through the Timer Expired add-on since
working at a slower pace is implied by the safety
measure. Therefore, the time the human spends
in 〈exe safe〉 pubh does not count towards upper
bound TE (〈exe safe〉 pubh is endowed with flow
condition ṫexp = 0).

Safety Violation Add-On

If the orchestrator finds that the human and the
robot are in a safety-critical situation, it will
instruct the human to switch to 〈exe safe〉 pubh,
corresponding to 〈op safe〉 pubh in Fig. 8a. As
envisaged by the Safety Violation add-on, the
human may erroneously resume working at a
normal pace, potentially causing a safety haz-
ard. Therefore, while the orchestrator instructs
the human to resume normal operations through
channel cmd hstart, an additional edge with-
out labels except update ξnon crit restoring the
standard value of dext connects 〈exe safe〉 pubh
to 〈exe〉 pubh. Subautomaton 〈exe safe〉 pubh is
endowed with parameter λsafe representing the
rate at which the probability of erroneously
switching back to 〈exe〉 pubh increases with time.

Critical Status Add-On

Since this pattern applies to patients and health-
care professionals who may find themselves
in stressful situations or undiagnosed condi-
tions, the modeled human subject is suscepti-
ble to accidents. Therefore, both 〈exe〉 pubh and
〈exe safe〉 pubh are extended through the Critical
Status add-on. Specifically, at time t, where t is
a multiple of Tpoll (T in Fig. 9), the probabil-
ity of an accident occurring is pd, where pd ∈W
is a real-valued variable. If this occurs, the SHA
switches to hfail. Otherwise, the probability of
the SHA remaining in the same operational state
depends on weight FS− pd, where FS ∈ K is a
constant such that FS ≥ sup(pd) holds. The prob-
ability of an accident occurring increases with
the level of fatigue, as implied by flow condi-
tion ṗd = hs · ˙F (t), where hs ∈ K is a numerical
constant.

4.2.2 HumanFollower Pattern

The HumanFollower pattern envisages the human
following the robot to a particular destination.
Operational states (corresponding to as many
〈op〉 pubh instances) capture the human stand-
ing (thus, recovering) and walking. Upon receiving
the instruction from the robot to start or stop
walking (thus, either in the standing and walk-
ing states), the Heed/Ignore add-on introduces the
possibility that the human ignores it. Similarly,
the human may start or stop walking irrespective
of the robot’s instructions through the Free Will
add-on. Since the Follower pattern does not envis-
age any motion initiated by the human, the Timer
Expired add-on does not apply. On the other hand,
it is feasible for the human to walk too close to the
robot, leading to the enforcement of a safety mea-
sure (i.e., the human walking slower). Moving in
critical conditions is captured by a third 〈op〉 pubh
instance, which is subject to the Safety Violation
add-on. Finally, to capture the possibility of unex-
pected accidents, all three operational states are
extended through the Critical Status add-on: while
walking (either normally or at a slower pace),
probability pd increases, while it decreases when
the human is resting.

Springer Nature 2021 LATEX template

24 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

4.2.3 HumanLeader Pattern

The HumanLeader pattern captures the mirrored
situation compared to the Follower, featuring the
human leading the robot to a certain destination.
This SHA features the same 〈op〉 pubh instances
as the Follower (walking and standing), although
the human, rather than the robot, initiates the
actions of starting to walk and stopping. There-
fore, all edges between the two subautomata
are extended through the Free Will add-on. The
robot only sends an instruction when the human’s
fatigue level rises to a critical threshold, advising
them to stop and recover. This edge is extended
through the Heed/Ignore add-on, as the human
may erroneously ignore or miss the robot’s sugges-
tion. Since this pattern captures a human freely
operating on the floor, they can get caught up in
alternative tasks causing them to excessively delay
the walking phase, which is captured by the Timer
Expired add-on. As with the Follower pattern, the
Safety Violation add-on captures the situation in
which the human erroneously starts walking at
full pace while in a critical situation. Finally, the
Critical Status add-on captures the possibility of
unexpected accidents.

4.2.4 HumanRecipient Pattern

The HumanRecipient pattern captures fetch-and-
delivery tasks where the robot retrieves a required
object and delivers it back to the human. The
standard behavior, in this case, features two oper-
ational states, i.e., the human waiting for the
robot to retrieve the object and interacting with
the robot to collect the item. The latter action
is performed upon the robot’s instruction and is
thus extended through the Heed/Ignore add-on.
To capture the possibility that the human might
move while waiting for the robot, the SHA fea-
tures an additional operational state capturing the
human walking. The switch from the idle opera-
tional state, which is entirely up to the human,
occurs through the Free Will add-on. Since the
pick-up action is supposedly almost instantaneous,
the HumanRecipient pattern is not eligible for the
Timer Expired add-on. Finally, the Critical Status
captures the possibility of unexpected accidents,
while the Safety Violation add-on the possibility
that the human might ignore a safety measure.
However, the limited duration of the interactive

phase leads to a reduced impact of this error on
the HumanRecipient pattern.

4.2.5 HumanCompetitor Pattern

The HumanCompetitor pattern captures the
human and the robot racing toward a specific
location and is, thus, the only non-cooperative
pattern. The standard operational states are the
human moving to the requested location, then
either waiting for the robot to return to its origi-
nal position (if the robot wins the competition) or
return to their initial position themselves (if the
human wins the competition). Starting to walk
and stopping are actions initiated by the human,
both extended through the Free Will add-on, cap-
turing the possibility that the human may get
distracted or waste time while trying to reach the
item’s location. Erroneous add-ons applied to the
HumanCompetitor pattern do not directly impact
the outcome of the mission, but they result in
a higher chance of the robot winning the com-
petition. Therefore, errors that occur amidst a
HumanCompetitor service increase the impact on
the overall mission outcome of errors that may
arise amidst services provided by the robot if it
wins the competition.

4.2.6 HumanRescuer Pattern

The HumanRescuer pattern captures the mirrored
situation compared to the HumanApplicant, i.e.,
the robot requiring the human’s support in per-
forming a task (such as opening a door or placing
an item on the robot’s tray). The standard behav-
ior features three phases, modeled by as many
〈op〉 pubh instances: the human in idle state, the
human walking towards the robot after noticing
the signal requesting support, and the human
performing the task requested by the robot.
Given the similar structure, this SHA is extended
through the same add-ons as the HumanAppli-
cant pattern described in Section 4.2.1. Deciding
to help the robot and move to its location is an
action initiated by the human, extended through
the Free Will add-on. It is the robot, instead,
that instructs the human to begin the task when
they are sufficiently close: the walking operational
state is, thus, eligible for the Heed/Ignore add-
on. The human may be distracted by concurrent
tasks before assisting the robot; thus, the Timer
Expired add-on imposes an upper bound on the

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 25

time they take to reach the robot from their ini-
tial location. As in the Applicant pattern, a critical
situation may occur that requires safety measures
to be enforced while the human is performing the
required task, which is captured by an additional
〈op〉 pubh instance, subject to the Safety Viola-
tion add-on. Finally, as in previous patterns, the
Critical Status add-oncaptures the possibility of
unexpected accidents while the human supports
the robot.

5 Evaluation of Human
Errors’ Impact

This section reports on a set of formal verifica-
tion experiments that were carried out to assess
the added value of the erroneous behavior add-
ons to the model-driven development framework.
Three scenarios, inspired by the healthcare set-
ting and featuring three different robotic missions
(i.e., sequences of services), have been developed
through the model-driven framework presented
in Section 2. We perform design-time analysis
with the formal model devoid of erroneous behav-
ior add-ons and, subsequently, with the extended
SHA modeling human behavior presented in
Section 4.2. The comparative analysis allows us
to observe how different human errors impact dif-
ferent robotic missions and how introducing this
aspect into the mission’s design process can guide
the practitioner toward forward-looking manage-
ment choices.

5.1 Evaluation Scenarios

The developed scenarios capture a service robot
assisting Doctor/Patient pairs (one or multiple)
and are hereinafter referred to as treat1patient,
treat2patients, and wardEmergency. Scenarios are
designed to capture realistic robotic missions fea-
turing the complete set of services, highlight the
flexibility of the overall framework, and test the
impact of erroneous behavior models in a wide
range of situations.

Scenarios treat1patient and treat2patients are
set in the floor layout in Fig. 11. Fig. 11 shows
the planimetry of the third floor of Building 22
of Politecnico di Milano, whose areas are fea-
tured in the two scenarios as three doctors’ offices,
a waiting room, and a treatment room. Fig. 12

depicts the layout for wardEmergency, as pre-
sented in [39], featuring a T-shaped corridor with
a waiting room, a doctor’s office, and two rooms
with cupboards containing medical kits. Table 6
summarizes the missions captured by each sce-
nario. Although our framework supports multi-
robot teams [39], the three scenarios feature only
one robot, indicated as Tbot, since this paper
focuses on human behavior modeling. In all three
scenarios, the employed service robot is a Turtle-
Bot 3 WafflePi,2 with an initial charge of 90%
to ensure that it is sufficiently charged to com-
plete each mission. Patients are identified as P1,
P3 in treat1patient and treat2patients, and P5 in
wardEmergency, and exhibit critical fatigue pro-
files, specifically Young/Sick for P1 and P5 and
Elderly/Sick for P3. Doctors are identified as D2,
D4 in treat1patient and treat2patients, and D6,
D7 in wardEmergency, and all exhibit less criti-
cal fatigue profiles than the patients, specifically
Elderly/Healthy for D2, and Young/Healthy for D4,
D6, and D7. We recall that fatigue profiles impact
the rate at which humans fatigue and recover, i.e.,
the values of parameters λ and ρ in Eq.3 and Eq.2,
respectively.

As per Fig. 1, scenarios are configured through
the DSL3, which is then automatically translated
into the SHA network through the tool available
at [41]. The generated formal model and set of
queries are subject to SMC4, performed through
Uppaal v.4.1.26 on a machine with 4 cores and
16GB of memory. Performance data are reported
and discussed at the end of this section.

5.2 Evaluation Results

The evaluation aims to illustrate—through the
three example scenarios in Table 6—how the
framework’s design-time analysis is enriched by
the introduction of erroneous behaviors. Each
add-on features one or multiple parameters that
can be tuned to calibrate the likelihood of the
corresponding erroneous behavior. Such parame-
ters are recapped in the following: (a) probabil-
ity weights heed and ignore for the Heed/Ignore
add-on; (b) thresholds FWth and FWmax for the

2Technical specification available at https://emanual.
robotis.com/docs/en/platform/turtlebot3/overview/.

3Source DSL files available at https://github.com/LesLivia/
hri dsl/tree/main/hridsl sources/SoSym cs.

4Models available at 10.5281/zenodo.7754156.

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://github.com/LesLivia/hri_dsl/tree/main/hridsl_sources/SoSym_cs
https://github.com/LesLivia/hri_dsl/tree/main/hridsl_sources/SoSym_cs
http://doi.org/10.5281/zenodo.7754156

Springer Nature 2021 LATEX template

26 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

ENTR

CUP1 CUP2

WRa

WRb TR
OFF1

OFF3

OFF2

RECH

[15.5m] [15.5m]

[18m]

[7.4m]

[6.75m]

[5.85m]
P1

Tbot

P3

D3

D2 D4

Fig. 11: Floor layout used for scenarios treat1patient and treat2patients. Agents (P1, P3, D2, D4, and
Tbot are represented in their starting positions). Location symbols mark the position of Points of Interest
(POIs): entrance and robot’s recharge station are in orange, waiting room and treatment room doors are
in red, cupboards in green, and doctors’ offices are in blue. Wall lengths (in meters) are also reported.

Table 6: Scenarios used for the validation phase (abbreviation, detailed description, and sequence of
services constituting the mission).

SCENARIO DESCRIPTION MISSION

treat1patient

The robot (Tbot) serves a patient-doctor pair (P1/D2, respec-
tively). The robot meets the patient by the entrance (ENTR) and
leads them to the waiting room (WRb) to wait for the doctor to
visit them. The robot follows the doctor to CUP1 where they fetch
required tools, and follows them back (carrying the tools) to the
treatment room (TR) where the patient will receive the treatment.
Finally, the robot returns to WRb and escorts the patient to TR,
where the doctor is waiting.

P1 Follower,
D2 Leader,
D2 Leader,
P1 Follower

treat2patients

The robot (Tbot) serves two patient-doctor pairs (P1/D2 and
P3/D4). The robot meets P1 by the entrance (ENTR) and leads
them to the waiting room (WRa), then it performs the same task
for P3 leading them from the entrance to WRb. The robot fetches
the first required medical kit from CUP1 and delivers it to D2 at
OFF1. The robot then serves D4 by following them to CUP2 and
back to their office (OFF3) while carrying the kit. Finally, the robot
leads P1 to OFF1 and P3 to OFF3 as both doctors are ready to
visit them.

P1 Follower,
P3 Follower,
D2 Recipient,
D4 Leader,
D4 Leader,
P1 Follower,
P3 Follower

wardEmergency

The robot (Tbot) serves a doctor patient pair (P5/D6) while a
second doctor (D7) is active on the same floor. The robot escorts
P5 to the waiting room. Then it competes with D6 for a resource
in CUP1. If the robot wins the competition (referred to as PLAN
a), it requires D6’s help in opening the office door and then delivers
them the fetched item in OFFICE. If D7 wins (referred to as PLAN
b), D6 leads the robot to CUP2 to fetch the required item and has
the robot carry it back to the office. Irrespective of the competition
outcome, when D6 is ready to treat the patient, the robot escorts
P5 from the waiting room to the office and then assists D6 in
administering the medication.

P5 Follower,
D7 Competitor,

PLAN a:
D6 Rescuer
D6 Recipient
PLAN b:
D6 Leader
D6 Leader

P5 Follower
D6 Applicant

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 27

P5

D6

D7Tbot

[42m] [5m]

[27m]
ENTR

RECH

WAITING

OFFICE
CUP1

CUP2

Fig. 12: Floor layout for scenario wardEmergency,
color-coded as Fig. 11. Since D7’s starting posi-
tion is randomized, the displayed location is purely
representative.

Table 7: Developed erroneous behavior profiles.
Each profile has an identifier and the associated
likelihood of occurring for each add-on.

Dis./
Ob.

Fr.W. T.Exp. S.Viol. Cr.St.

Normal O O O O O
Inattentive CR O O O O
Focused NS O O O O
Busy O CR CR O O
Available O NS NS O O
Inexperienced O O O CR O
Experienced O O O NS O
Critical O O O O CR
Stable O O O O NS

*O = Ordinary, *NS = Not Significant, *CR = Critical

Free Will add-on (T equals constant Tpoll in our
modeling approach); (c) allowance factor δ for the
Timer Expired add-on, which determines the value
of upper bound TE; (d) exponential rate λsafe

for the Safety Violation add-on; (e) rate hs and
constant FS for the Critical Status add-on.

To exhaustively investigate the impact of each
error on a specific scenario, it would be neces-
sary to compute the probability of success for all
possible values of such parameters within their
respective domain. However, to keep the dura-
tion of a design-time analysis round within an
acceptable range, we group possible values for each
add-on into three macro-categories, similarly to
control modes classification in the CREAM tech-
nique [32]. The identified levels are: ordinary (O),
critical (CR), and not significant (NS) error likeli-
hood. As with fatigue profiles, we have identified
9 profiles of erroneous behavior, each elevating
(or dampening) the likelihood of one or multi-
ple specific errors. Erroneous behavior profiles are

Cr
iti

ca
l

Bu
sy

St
ab

le

Av
ai

la
bl

e

In
at

te
nt

iv
e

In
ex

pe
rie

nc
ed

Fo
cu

se
d

Ex
pe

rie
nc

ed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 treat1patient Probability of Success

P1 D2

(a) Success probabilities for treat1patient.

Cr
iti

ca
l

Bu
sy

Cr
iti

ca
l

Bu
sy

St
ab

le

Av
ai

la
bl

e

St
ab

le

Av
ai

la
bl

e

In
at

te
nt

iv
e

In
ex

pe
rie

nc
ed

In
at

te
nt

iv
e

In
ex

pe
rie

nc
ed

Fo
cu

se
d

Ex
pe

rie
nc

ed

Fo
cu

se
d

Ex
pe

rie
nc

ed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 treat2patients Probability of Success

P1 D2 P3 D4

(b) Success probabilities for treat2patients.

Cr
iti

ca
l

Bu
sy

Bu
sy

St
ab

le

Av
ai

la
bl

e

Av
ai

la
bl

e

In
at

te
nt

iv
e

In
ex

pe
rie

nc
ed

In
ex

pe
rie

nc
ed

Fo
cu

se
d

Ex
pe

rie
nc

ed

Ex
pe

rie
nc

ed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 wardEmergency Probability of Success

P5 D6 D7

(c) Success probabilities for wardEmergency.

Fig. 13: Bar plots reporting the estimated prob-
ability of success ([0− 1]) for the three scenarios.
Each bar represents the estimation with a different
erroneous behavior profile grouped by the human
subject. Dashed lines represent the success proba-
bility estimated with all human subjects’ profiles
set to Normal (see Table 7).

Springer Nature 2021 LATEX template

28 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

summarized in Table 7. Given the acknowledged
lack of empirical data for techniques analyzing
human behavior such as Human Reliability Anal-
ysis (HRA) [18], the specific parameter values are
not extracted from real datasets but arbitrarily
chosen for this analysis. However, the purpose
of this validation is not to assess the accuracy
of SMC results against real empirical data but
to illustrate how the introduction of erroneous
behaviors impacts design-time results and sup-
ports the mission design process. Therefore, the
lack of real data has limited consequences on the
significance of the obtained results.

For the impact analysis of the three scenar-
ios, we calculate the mission’s success probability
range (the y-axis in Fig. 13) by applying in turn a
different erroneous behavior profile to each human
subject (the x-axis in Fig. 13). For instance, the
left-most bar of Fig. 13a reports the success proba-
bility range of treat1patient with the Critical profile
applied to P1 while D2 is set to Normal. For each
scenario, as explained in Section 3.1, we calculate
the probability of success within a time bound
τ through expression P(�≤τ scs). Verification is
iterated by changing the erroneous behavior pro-
file for one human subject at a time while the
value of τ remains unchanged. For the first iter-
ation, all humans are assigned the Normal profile
(see Table 7), representing the standard proba-
bility of success (the dashed horizontal lines in
Fig. 13), also referred to as the baseline. We
recall that, as explained in Section 3.1, SMC
results are of the form [p− ε,p + ε], representing
the confidence interval to which the real suc-
cess probability belongs. All SMC experiments
have been performed with Uppaal’s default sta-
tistical parameters, specifically the width of the
estimated confidence interval (see Section 3.1) is
set to ε = 0.05. In Fig. 13, the height of each
bar equals the value of p obtained for the corre-
sponding experiment, while black lines represent
the 2ε-wide confidence interval. Note that none
of the baseline success probability estimations is
exactly 100%. The first reason behind this result
is that the Normal behavioral profile features an
average likelihood for all errors (while these are
made more or less prominent by the other pro-
files); therefore, errors have a non-null impact on
the success probability also when calculating the
baseline. Secondly, time bounds (parameter τ in

each scenario) are chosen so that, should the suc-
cess probability be calculated with an error-free
model (i.e., without any add-on), it would equal
the maximum value allowed by Uppaal with this
set of parameters, which is [0.95, 1]. Even in this
case, the SMC experiment does not yield exactly
100% for the probability of success because the
result must be a confidence interval in any case
(thus, it yields the feasible half of the confidence
interval with p = 1).

Since human subjects have different roles (i.e.,
either professionals or patients), not all profiles
realistically apply to every subject. Specifically,
verification is performed with patients (subjects
P1, P3, and P5) cycling between Critical, Stable,
Inattentive and Focused profiles. This set of pro-
files represents the fact that patients are more
susceptible than professionals to accidents (cap-
tured by the Critical Status add-on) and prone to
ignore the robot’s instructions either due to lack
of familiarity with the technology or to inattention
due to their condition and surrounding environ-
ment (captured by the Heed/Ignore add-on). On
the other hand, professionals (subjects D2, D4,
D6, and D7) rotate between Busy, Available, Inex-
perienced, and Experienced profiles. In this case,
healthcare professionals are more likely to act in
a hectic environment, effectively pushing them to
either rush through a task (i.e., one of the pheno-
types captured by the Free Will add-on) or start
working on different tasks than the one involv-
ing interaction with the robot, thus exceeding
the maximum allowed time-bound (captured by
the Timer Expired add-on). Moreover, profession-
als with little experience working alongside a robot
are more likely to erroneously step out of a safe
operational state when a critical situation is still
in place (captured by the Safety Violation add-on).
Note that the described pairings between subjects
and behavioral profiles are only conceived for the
purposes of this analysis and do not reflect actual
limitations of the approach (all profiles, includ-
ing combinations of them, are applicable to any
human agent, irrespective of their role).

Fig. 13a displays the results for scenario
treat1patient. With τ = 700s, in 5 cases out of 8
the probability of success is essentially unchanged
(if not higher) compared to the one calculated in
standard conditions, which is approximately 80%.
Concerning human P1, these results are due to
the nature of the profiles themselves: both Stable

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 29

and Focused are positive profiles, as they feature
lower likelihood of erroneous behaviors than the
Normal profile. The same conclusion can be drawn
about the Available and Experienced profiles for
D2. On the other hand, the probability of success
is also unaffected by the Inexperienced profile. As a
matter of fact, D2 leads the robot in treat1patient
and, since their walking speed is higher than the
robot’s (a healthy human walks at about 1.4m/s,
whereas the robot moves at a maximum speed of
0.26m/s) it is unlikely for the human to walk too
closely to the robot and trigger the enforcement
(and subsequent erroneous violation) of the safety
measure.

As shown in Fig. 13a, scenario treat1patient
is most affected by the Critical and Inattentive
profiles for P1, and Busy for D2. As explained
in Section 4.2.2, the HumanFollower interaction
pattern, which P1 adheres to, is susceptible to
both the Critical Status and Heed/Ignore add-ons
(influenced by the Critical and Inattentive profiles),
which cause the probability of success to drop
to approximately 25% and 55%, respectively. To
address this issue, the practitioner designing the
mission may decide to adopt additional monitor-
ing measures regarding the patient’s health status
or have them walk a shorter distance to reduce the
impact of unexpected accidents. The result might
also lead the designer towards solutions improv-
ing the robot’s communication capabilities that
increase the patient’s attention level. Concerning
D2, the Busy profiles causes a 50% drop in the suc-
cess probability: to address this issue, a possible
design choice is to assign the mission to a different
employee with a clearer schedule.

Similar conclusions can be drawn about P1 and
D4 in scenario treat2patients, whose results are
reported in Fig. 13b. The estimated success prob-
ability with τ = 1500s in standard conditions is
approximately 80%. In this case, the Critical Status
add-on is more impactful for patient P3 compared
to P1 due to the more critical fatigue profile, caus-
ing a steeper growth of probability weight pd. The
resulting success probability is slightly above 10%
(compared to 25% for P1). These results can guide
the practitioner in modifying the plan of the mis-
sion to reduce the physical burden on the two
patients, especially P3: for example, by having the
robot lead them, whenever possible, straight to
the treatment room rather than to the waiting

room first. On the other hand, since the Heed/Ig-
nore add-on has no correlation with the evolution
of fatigue, the Inattentive profile has a compara-
ble impact on the mission’s outcome when applied
to P1 and P3. In this case, the same reconfigura-
tion measures discussed for subject P1 in scenario
treat1patient may be applied.

In scenario treat2patients, although the same
set of behavioral profiles are applied to D2 and
D4, the different interaction patterns they partic-
ipate in (i.e., HumanRecipient and HumanLeader)
are differently influenced by error phenotypes.
More specifically, the Busy profile has a signifi-
cantly larger impact when applied to D4 rather
than D2. As described in Section 4.2.4, the Human-
Recipient does not feature any instance of the
Timer Expired add-on, whereas the Free Will add-
on, which, like the Timer Expired add-on is made
more prominent by the Busy profile, allows the
subject to move while the robot is fetching the
required object. Therefore, the human erroneously
moving causes the robot to adjust the target of
the delivery task to the new human’s position,
which does not necessarily result in a delay of the
completion of the service nor lowers the success
probability within time bound τ . Indeed, given
the starting position of D2 (also shown in Fig.
11), it is more likely for them to move closer to
CUP1 (the required object’s location) than far-
ther, leading to only a slight decline of the success
probability (approximately 75% compared to 80%
in standard conditions). For subject D4, instead,
since they also participate in a HumanLeader pat-
tern like subject D2 in scenario treat1patient, the
Busy profile has a very significant impact leading
to a 70% drop in the success probability compared
to ordinary conditions. The Inexperienced profile
(which increases the likelihood of the Safety Vio-
lation add-on) has a comparably limited impact
when applied both on D2 and D4. Concerning D4,
the same conclusions drawn about the Human-
Leader pattern for scenario treat1patient also apply
in this case. As for the HumanRecipient pattern, D2
can enter the critical interacting operating state
at most for the amount of time required to pick up
the item from the robot. Consequently, the like-
lihood of erroneously ignoring the safety measure
leading to a collision during the interaction is also
limited. In conclusion, the practitioner does not

Springer Nature 2021 LATEX template

30 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

need to consider specific design choices concern-
ing D2, while D4 is affected by the same guidelines
discussed for scenario treat1patient.

Estimated success probabilities for scenario
wardEmergency are shown in Fig. 13c, all calcu-
lated with τ = 600s. In standard conditions, the
mission ends successfully with a 90% probabil-
ity. Patient P5 exhibits a similar trend to that
observed for P1 and P3 in scenarios treat1patient
and treat2patients, as the Critical and Inattentive
profiles cause a drop of the success probability of
approximately 65% and 55%, respectively.

On the other hand, given the same set of
behavioral profiles, the trend is different for D6
and D7 compared to subjects covering the role
of professionals in previous scenarios. We recall
that, given the presence of a HumanCompetitor
pattern, in this case, the robotic mission features
two alternative plans depending on whether the
human or the robot wins the competition [39],
both summarized in Table 6. If the robot loses,
D6 is involved in two HumanLeader interaction
patterns, whose dependency on different behav-
ioral profiles has already been discussed for sub-
jects D2 in treat1patient and D4 in treat2patients.
Otherwise, D6 participates in a HumanRecipient,
HumanRescuer sequence. The initial position of
D7 is randomized to make the outcome of the
competition unpredictable. As observed in sce-
nario treat2patients, the HumanRecipient pattern
(involving subject D2) is only slightly affected
by both negative profiles, while the outcome of
the HumanRescuer pattern (see Section 4.2.6) is
impacted by the Free Will, Timer Expired, and
Safety Violation add-ons. The impact of the Busy
profile, which makes the first two add-ons more
prominent, on D6, is an average between the
drop it causes on PLAN a (the impact of
profile Busy is low for the HumanRecipient and
high for the HumanRescuer patterns) and PLAN
b (the impact of profile Busy is low for both
instances of the HumanLeader pattern), resulting
in an overall approximate 45% drop compared to
the baseline. Concerning the Inexperienced profile,
both the HumanRescuer (featured by PLAN a)
and HumanApplicant patterns (featured by both
plans) are highly susceptible to the Safety Vio-
lation add-on, which can occur throughout the
entire duration of the task they perform jointly
and in close distance with the robot. Therefore,
unlike in scenarios treat1patient and treat2patients,

the Inexperienced profile leads to a larger success
probability drop (more than 70%) than the Busy
profile. After examining these results, the prac-
titioner designing the robotic mission may either
assign the mission to a more experienced employee
or invest in thorough training of the personnel in
charge of performing tasks alongside the robot.

Finally, confirming the modeling choices dis-
cussed in Section 4.2.5, the HumanCompetitor
pattern, in which subject D7 participates, is the
least influenced by erroneous behaviors. This trait
of the pattern is reflected by the results in Fig.
13c, showing that the success probability does
not significantly change with respect to the base-
line, irrespective of the erroneous behavior profile
assigned to D7. As a matter of fact, should D7 per-
form any erroneous action, this does not result in a
failure of the service nor a delay of the overall mis-
sion, but rather it favors the victory of the robot in
the competition. Therefore, the erroneous actions
of D7 indirectly influence the outcome of the mis-
sion as they result in PLAN a being enacted more
often than PLAN b, so erroneous behaviors with
a larger impact on PLAN a also have a larger
impact on the mission in its entirety.

As previously mentioned, we have selected
a subset of behavioral profiles for each human
subject to perform this impact analysis for the
three scenarios, representing the most realistic
contingencies. Consequently, we have performed
four verification experiments (resulting in dif-
ferent success probability estimations) for each
human subject plus the baseline, so 9 exper-
iments for treat1patient, 17 for treat2patients,
and 13 for wardEmergency. With the described
parameter set, verification ends in 66.72min for
treat1patient, 133.95min for treat2patients, and
104.64min wardEmergency (these durations refer
to the cumulative time required to complete all
experiments—thus the complete analysis of errors’
impact—for each scenario). Given the flexibility
of the scenario configuration phase, the practi-
tioner can modulate the number of experiments
to be performed (thus, the duration of the design-
time analysis round). Modulation is performed by
selecting the combinations of behavioral profiles
found to be more critical or more likely to be
observed in their specific application.

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 31

5.3 Limitations of the Analysis

The formal verification experiments highlight the
versatility of the approach and its potential
impact on the design process of robotic appli-
cations. Still, the analysis has some limitations.
Mainly, the lack of data recording human actions
(which in part originates from the technology not
being widely deployed in practice) does not enable
an assessment of the accuracy of the formal anal-
ysis with respect to the behavior of real subjects.
Therefore, the latter remains an open research
question which is left for future developments.

The analysis has been performed under the
assumption that detected deviations from the
expected behavior are due to actual human errors
and not to imprecise sensor readings. However,
should real data be incorporated into the analysis,
potential sensor errors should also be taken into
account.

Finally, there is scientific evidence of a corre-
lation between human reliability and fatigue [25],
of which the Critical Status add-on represents an
initial investigation. The work should be further
extended in this direction to modulate the proba-
bility of humans acting erroneously depending on
the level of fatigue they experience. The issue is
particularly relevant for safety-critical service sec-
tors such as healthcare, in which long and stressful
shifts are common.

6 Related Works

Modeling human behavior is a long-standing issue
in human-automation interaction analysis. With
the advent of collaborative robotics, the issue
has recently started to attract attention in its
declination to human-robot interaction. Unfore-
seen human actions, especially those originating
from errors, hugely impact the design of gen-
eral human-machine interaction, especially with
robots [7, 17]. In the field of human-robot inter-
action, most works investigate human errors as
sources of safety hazard (e.g., leading to a col-
lision with the robot), which is the core issue
tackled by Human Reliability Analysis [19, 29] and
probabilistic risk assessment techniques [28, 56].
Given the complexity of the human mind and the
human decision-making process, a perfectly accu-
rate, all-encompassing model of human behavior
is not feasible. However, existing works in the

literature, mainly originating from research on
human cognition, propose mathematical models
of human behavior within specific boundaries, for
example, limited to decision-making in the work-
place. These models fall into three main categories
[6]: 1) cognitive models investigate the mental
process leading to a certain decision; 2) task-an-
alytic models capture human behavior as a hier-
archy of actions; 3) probabilistic models refine
the non-determinism of human behavior through
probability distributions over actions.

Well-established cognitive models are Soar [35]
and Adaptive Character of Thought (ACT-R)
[4]. However, as discussed in Section 4, cogni-
tive sources behind human behavior are out of
the scope of our model-driven framework; there-
fore, cognitive models are not further investigated.
Task-analytic models such as ConcurTaskTrees
(CTT) [45], although recently expanded with a
taxonomy of human errors [10], suffer from the
drawback of being intrinsically case study-specific,
thus hardly reusable. Probabilistic models are
considered highly beneficial in designing cyber-
physical systems where human factors are critical
[16]. Some examples of probabilistic models are
Boltzmann rationality [8], the LESS model [9],
and Markovian models such as Partially Observ-
able Markov Decision Processes (POMDPs) [50],
and Bayesian Networks [54]. The main issue of
probabilistic models is the lack of extensive and
reusable datasets to train reliable probability dis-
tributions [18]. However, although our work does
employ a probabilistic model of human behav-
ior (i.e., SHA), it partially works around this
issue by performing design-time analysis as a func-
tion of probabilistic parameters, as discussed in
Section 5. Nevertheless, collecting real observa-
tions of human behavior while participating in the
analyzed scenarios would still be necessary to pro-
vide compelling evidence of the formal model’s
accuracy.

Previous works propose a formalization of
erroneous human behavior models for formal ver-
ification. Cerone et al. [12] propose a taxonomy
of operator errors in human-computer interac-
tion formalized through the CSP process algebra
and temporal logic. Shin et al. [51] present a
formal model of human material handlers in man-
ufacturing systems, depending on human tasks
and errors modeled through part-state graphs.

Springer Nature 2021 LATEX template

32 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

Rukšėnas et al. [49] present a verification frame-
work for interactive systems with cognitive models
of human errors under timing constraints based
on the Goals, Operators, Methods, and Selec-
tion (GOMS) methodology [31]. Askarpour et al.
[7] present an automated risk assessment tech-
nique for collaborative robotic applications, in
which the eight phenotypes identified by Hollnagel
are expressed through logic formulae and verified
through the Zot formal verification tool.

As discussed in Section 1, the service sector
has different demands than the industrial settings,
especially in healthcare, since it is characterized
by a higher degree of human task diversity and
more significant sources of uncertainty [43, 52].
Therefore, given the different target domains and
underlying formalisms, the results obtained in [7]
cannot be directly embedded into our framework.
However, the observations in [7] about the efficacy
of Hollnagel’s phenotypes constitute the founda-
tion for the work presented in this article, which
adapts phenotypes to behaviors observed in ser-
vice settings and integrates them with a stochastic
characterization.

7 Conclusion

This article extends a model-driven framework
for developing interactive service robotic applica-
tions, presented in [37, 39], with a formalization of
erroneous human actions. The extension is partic-
ularly valuable to address sources of uncertainty
due to the significant presence of humans, espe-
cially in safety-critical domains. Designers can
modulate the analysis to their needs and estimate
the probability of success with different behavioral
profiles for their subjects. Statistical techniques
lead to a faster exploration of the resulting config-
uration space. Designers can thus perform a more
exhaustive analysis of the impact of different con-
figurations and reach more informed decisions on
how to train and manage the personnel based on
individual characteristics and level of expertise.

As discussed in Section 5.3, the main limitation
of the work is the lack of empirical observations of
real human behavior. The availability of such data
would allow for an accurate estimation of the like-
lihood of each erroneous action. This work tackles
the issue by performing the evaluation as a func-
tion of such parameters, specifically by sampling
three levels of severity from their domain. Given

the flexibility of the add-ons, discussed in Section
4.1, should accurate estimations become available,
these can be easily incorporated into the formal
model.

In the future, we plan on further investigating
the issue of formal modeling human-robot interac-
tion and human behavior in service settings, which
can follow different directions. Firstly, it is possible
to incorporate complex phenotypes of erroneous
human behavior identified by Hollnagels’ taxon-
omy since add-ons are currently limited to simple
phenotypes. Moreover, as discussed in Section
4, the modeling approach will be expanded to
cover alternative functionally equivalent actions
(e.g., “walking” and “running”) to support, as a
consequence, the Repetition and Replacement phe-
notypes. Finally, a comparative analysis could be
carried out between a model based on phenotypes
(i.e., the one presented in this paper) and one
based on genotypes, exploiting cognitive models of
human decision-making existing in the literature,
comparing the expressiveness and, should empir-
ical data become available, how accurately they
capture human actions.

Declarations

Funding. No funding was received to assist with
the preparation of this manuscript.

Competing interests. The authors have no
financial or proprietary interests in any material
discussed in this article.

Ethics approval. Not applicable (this article
does not contain any studies with human par-
ticipants or animals performed by any of the
authors).

Consent to participate. Not applicable (this
article does not contain any studies with human
participants or animals performed by any of the
authors).

Consent for publication. All authors have
approved the manuscript and agree with its
publication on Software and Systems Modeling
(SoSyM).

Availability of data and materials. The
datasets generated and/or analysed during the
current study are available from the corresponding
author on reasonable request.

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 33

Code availability. The code developed during
the current study is available from the correspond-
ing author on reasonable request.

Authors’ contributions. – Livia Lestingi:
Conceptualization, Investigation, Methodol-
ogy, Supervision, Software, Writing - original
draft; – Andrea Manglaviti: Investigation,
Methodology, Software; – Davide Marinaro:
Investigation, Methodology, Software; – Luca
Marinello: Investigation, Methodology, Software;
– Mehrnoosh Askarpour: Conceptualiza-
tion, Supervision, Writing – review & editing;
– Marcello M. Bersani: Conceptualization,
Supervision, Writing – review & editing; – Mat-
teo Rossi: Conceptualization, Supervision,
Writing – review & editing.

References

[1] Agha, G. and K. Palmskog. 2018. A survey
of statistical model checking. TOMACS 28 (1):
1–39 .

[2] Alur, R., C. Courcoubetis, N. Halbwachs, T.A.
Henzinger, P.H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. 1995. The algorithmic
analysis of hybrid systems. TCS 138 (1): 3–34 .

[3] Alur, R., T. Feder, and T.A. Henzinger. 1996.
The benefits of relaxing punctuality. Journal of
the ACM (JACM) 43 (1): 116–146 .

[4] Anderson, J.R. 1996. ACT: A simple the-
ory of complex cognition. American psycholo-
gist 51 (4): 355 .

[5] Arenis, S.F., M. Vujinovic, and B. Westphal
2020. On implementable timed automata.
In Formal Techniques for Distributed Objects,
Components, and Systems, Volume 12136 of
Lecture Notes in Computer Science, Valletta,
Malta, pp. 78–95. Springer.

[6] Askarpour, M. 2020. How to formally model
human in collaborative robotics. In Second
Workshop on Formal Methods for Autonomous
Systems.

[7] Askarpour, M., D. Mandrioli, M. Rossi, and
F. Vicentini. 2019. Formal model of human

erroneous behavior for safety analysis in col-
laborative robotics. Robotics and Computer-
Integrated Manufacturing 57: 465–476 .

[8] Baker, C.L., J. Tenenbaum, and R.R. Saxe
2007. Goal inference as inverse planning. In
Proceedings of the Annual Meeting of the Cog-
nitive Science Society, 29 (29).

[9] Bobu, A., D.R. Scobee, J.F. Fisac, S.S. Sastry,
and A.D. Dragan 2020. Less is more: Rethink-
ing probabilistic models of human behavior. In
Intl. Conf. on Human-Robot Interaction, pp.
429–437.

[10] Bolton, M.L., K.A. Molinaro, and A.M.
Houser. 2019. A formal method for assessing the
impact of task-based erroneous human behav-
ior on system safety. Reliability Engineering &
System Safety 188: 168–180 .

[11] Calude, C., F. Kroon, and N. Poznanovic.
2016. Free will is compatible with randomness.
Philosophical Inquiries 4 (2): 37–52 .

[12] Cerone, A., P.A. Lindsay, and S. Connelly
2005. Formal analysis of human-computer inter-
action using model-checking. In Intl. Conf. on
Software Engineering and Formal Methods, pp.
352–361. IEEE.

[13] Clopper, C.J. and E.S. Pearson. 1934. The
use of confidence or fiducial limits illustrated
in the case of the binomial. Biometrika 26 (4):
404–413 .

[14] David, A., K.G. Larsen, A. Legay,
M. Mikučionis, and D.B. Poulsen. 2015. Uppaal
SMC tutorial. STTT 17 (4): 397–415 .

[15] David, A., K.G. Larsen, A. Legay, M. Miku-
cionis, D.B. Poulsen, J. van Vliet, and Z. Wang
2011. Statistical model checking for networks
of priced timed automata. In Formal Modeling
and Analysis of Timed Systems, Volume 6919
of Lecture Notes in Computer Science, Aalborg,
Denmark, pp. 80–96. Springer.

[16] De Felice, F., F. Zomparelli, and A. Petrillo
2017. Functional Human Reliability Analysis:
A Systems Engineering Perspective. In CIISE,
pp. 23–29.

Springer Nature 2021 LATEX template

34 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

[17] Degani, A. and M. Heymann. 2002. Formal
verification of human-automation interaction.
Human factors 44 (1): 28–43 .

[18] Di Pasquale, V., R. Iannone, S. Miranda,
and S. Riemma. 2013. An overview of human
reliability analysis techniques in manufacturing
operations. Operations management 9: 978–953
.

[19] Dougherty, E.M. and J.R. Fragola. 1988.
Human Reliability Analysis. New York, NY;
John Wiley and Sons Inc.

[20] EU Robotics. 2020. Robotics Multi-
Annual Roadmap. https://eu-robotics.net/
divi overlay/roadmap/.

[21] Frey, C.B. and M.A. Osborne. 2017. The
future of employment: How susceptible are jobs
to computerisation? Technological forecasting
and social change 114: 254–280 .

[22] Garćıa, S., D. Strüber, D. Brugali, T. Berger,
and P. Pelliccione 2020. Robotics software engi-
neering: A perspective from the service robotics
domain. In ESEC/FSE, USA, pp. 593–604.
ACM.

[23] Givi, Z., M.Y. Jaber, and W.P. Neumann.
2015. Modelling worker reliability with learn-
ing and fatigue. Applied Mathematical Mod-
elling 39 (17): 5186–5199 .

[24] Grenander, U. 1950. Stochastic processes and
statistical inference. Arkiv för matematik 1 (3):
195–277 .

[25] Griffith, C.D. and S. Mahadevan. 2011. Inclu-
sion of fatigue effects in human reliability
analysis. Reliability Engineering & System
Safety 96 (11): 1437–1447 .

[26] Hollnagel, E. 1991. The phenotype of erro-
neous actions: Implications for HCI design.
Human-computer interaction and complex sys-
tems: 73–121 .

[27] Hollnagel, E. 1993. The phenotype of erro-
neous actions. International Journal of Man-
Machine Studies 39 (1): 1–32 .

[28] Hollnagel, E. 1998. Cognitive reliability and
error analysis method (CREAM). Elsevier.

[29] Hou, L.X., R. Liu, H.C. Liu, and S. Jiang.
2021. Two decades on human reliability
analysis: a bibliometric analysis and literature
review. Annals of Nuclear Energy 151: 107969 .

[30] ISO 13482. 2014. Robots and robotic devices
- Safety requirements for personal care robots.
ISO.

[31] John, B.E. and D.E. Kieras. 1996. The
GOMS family of user interface analysis tech-
niques: Comparison and contrast. ACM Trans-
actions on Computer-Human Interaction 3 (4):
320–351 .

[32] Kim, M.C., P.H. Seong, and E. Hollnagel.
2006. A probabilistic approach for determin-
ing the control mode in CREAM. Reliability
Engineering & System Safety 91 (2): 191–199 .

[33] Konz, S. 2000. Work/rest: Part ii-the sci-
entific basis (knowledge base) for the guide 1.
EGPS 1 (401): 38 .

[34] Kwiatkowska, M.Z., G. Norman, and
D. Parker 2011. PRISM 4.0: Verification of
probabilistic real-time systems. In Computer
Aided Verification, Volume 6806 of Lecture
Notes in Computer Science, Snowbird, UT,
USA, pp. 585–591. Springer.

[35] Laird, J.E. 2019. The Soar cognitive architec-
ture. MIT press.

[36] Larsen, K.G., P. Pettersson, and W. Yi.
1997. UPPAAL in a nutshell. Intl. Journal on
Software Tools for Technology Transfer 1 (1-2):
134–152 .

[37] Lestingi, L., M. Askarpour, M.M. Bersani,
and M. Rossi 2020. Formal verification of
human-robot interaction in healthcare scenar-
ios. In Intl. Conf. on Software Engineering and
Formal Methods, pp. 303–324. Springer.

[38] Lestingi, L., M. Askarpour, M.M. Bersani,
and M. Rossi. 2021. A deployment framework
for formally verified human-robot interactions.
IEEE Access 9: 136616–136635 .

https://eu-robotics.net/divi_overlay/roadmap/
https://eu-robotics.net/divi_overlay/roadmap/

Springer Nature 2021 LATEX template

Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification 35

[39] Lestingi, L., G. Romeo, C. Sbrolli, P. Scar-
mozzino, M.M. Bersani, and M. Rossi 2022.
Formal modeling and verification of multi-robot
interactive scenarios in service settings. In Intl.
Conf. on Formal Methods in Software Engineer-
ing.

[40] Lestingi, L., D. Zerla, M.M. Bersani, and
M. Rossi. 2023. Specification, stochastic mod-
eling and analysis of interactive service robotic
applications. Robotics and Autonomous Sys-
tems: 104387 .

[41] Lestingi, Livia. 2020. HRI Design-Time
Analysis. https://github.com/LesLivia/hri
designtime.

[42] Liu, B., L. Ma, C. Chen, and Z. Zhang.
2018. Experimental validation of a subject-
specific maximum endurance time model.
Ergonomics 61 (6): 806–817 .

[43] Lyons, M., S. Adams, M. Woloshynowych,
and C. Vincent. 2004. Human reliability anal-
ysis in healthcare: a review of techniques. Intl.
Jnl. of Risk & Safety in Medicine 16 (4): 223–
237 .

[44] Miyazawa, A., P. Ribeiro, W. Li, A. Cav-
alcanti, J. Timmis, and J. Woodcock. 2019.
RoboChart: modelling and verification of the
functional behaviour of robotic applications.
Software & Systems Modeling 18 (5): 3097–3149
.

[45] Paternò, F., C. Mancini, and S. Meniconi
1997. ConcurTaskTrees: A diagrammatic nota-
tion for specifying task models. In Human-
computer interaction, pp. 362–369. Springer.

[46] Pocock, S., M. Harrison, P. Wright, and
P. Johnson 2001. THEA: A technique for
human error assessment early in design. In
Intl. Conf. on Human Computer Interaction.
Newcastle University.

[47] Quigley, M., K. Conley, B. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A.Y. Ng
2009. ROS: an open-source robot operating
system. In ICRA Workshop on Open Source
Software, Volume 3, Kobe, Japan, pp. 5. IEEE.

[48] Reason, J. 1979. Actions not as planned: The
price of automatisation. Aspects of conscious-
ness 1: 67–89 .

[49] Rukšėnas, R., P. Curzon, A. Blandford, and
J. Back. 2014. Combining human error veri-
fication and timing analysis: a case study on
an infusion pump. Formal Aspects of Comput-
ing 26 (5): 1033–1076 .

[50] Schmidt-Rohr, S.R., M. Losch, and R. Dill-
mann 2008. Human and robot behavior model-
ing for probabilistic cognition of an autonomous
service robot. In Intl. Symp. on Robot and
Human Interactive Communication, pp. 635–
640. IEEE.

[51] Shin, D., R.A. Wysk, and L. Rothrock.
2006. Formal model of human material-
handling tasks for control of manufacturing
systems. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and
Humans 36 (4): 685–696 .

[52] Sujan, M.A., D. Embrey, and H. Huang. 2020.
On the application of human reliability analy-
sis in healthcare: opportunities and challenges.
Reliability Engineering & System Safety 194:
106189 .

[53] Swain, A.D. and H.E. Guttmann 1983. Hand-
book of human-reliability analysis with empha-
sis on nuclear power plant applications. Final
report. Technical report, Sandia National Labs.,
Albuquerque, NM (USA).

[54] Tenorth, M., F. De la Torre, and M. Beetz
2013. Learning probability distributions over
partially-ordered human everyday activities. In
Intl. Conf. on Robotics and Automation, pp.
4539–4544. IEEE.

[55] Vicentini, F., M. Askarpour, M.G. Rossi, and
D. Mandrioli. 2019. Safety assessment of collab-
orative robotics through automated formal veri-
fication. IEEE Transactions on Robotics 36 (1):
42–61 .

[56] Williams, J. 1988. A data-based method for
assessing and reducing human error to improve
operational performance. In Conference Record
for 1988 IEEE Fourth Conference on Human

https://github.com/LesLivia/hri_designtime
https://github.com/LesLivia/hri_designtime

Springer Nature 2021 LATEX template

36 Analyzing the Impact of Human Errors on Interactive Service Robotic Scenarios via Formal Verification

Factors and Power Plants,, pp. 436–450. IEEE.

	Introduction
	Model-Driven Framework
	Background
	Stochastic Hybrid Automata and Statistical Model Checking
	HRI Scenarios Modeling Principles

	Formal Modeling of Human Behavior in HRI Scenarios
	Phenotypes of Erroneous Human Behavior
	Heed/Ignore Add-On
	Free Will Add-On
	Timer Expired Add-On
	Safety Violation Add-On
	Critical Status Add-On

	Human-Robot Interaction Patterns
	HumanApplicant Pattern
	Heed/Ignore Add-On
	Free Will Add-On
	Timer Expired Add-On
	Safety Violation Add-On
	Critical Status Add-On

	HumanFollower Pattern
	HumanLeader Pattern
	HumanRecipient Pattern
	HumanCompetitor Pattern
	HumanRescuer Pattern

	Evaluation of Human Errors' Impact
	Evaluation Scenarios
	Evaluation Results
	Limitations of the Analysis

	Related Works
	Conclusion
	Funding
	Competing interests
	Ethics approval
	Consent to participate
	Consent for publication
	Availability of data and materials
	Code availability
	Authors' contributions

