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Abstract: This paper presents the design and the stability analysis of an adaptive position controller for
Unmanned Aerial Vehicles (UAVs). Considering a hierarchical control scheme, the novelty of this work
is the definition of a systematic approach to design a position controller based on Model Reference
Adaptive Control (MRAC) theory taking into account not-fast closed-loop attitude dynamics. After
having reformulated the problem considering the attitude dynamics as pseudo-actuator, the authors
exploit an existing Linear Matrix Inequality (LMI) based hedging framework designed such that the
adaptation performance is not affected by the presence of actuator dynamics. Results from simulations
and from experiments on a platform designed to replicate the longitudinal motion of quadrotors are
provided to illustrate the performance of the proposed control scheme.

1. INTRODUCTION

In recent years, the study of Unmanned Aerial Vehicles (UAVs)
has received increasing attention thanks to their wide range
of application. In particular, quadrotor UAVs have attracted
commercial and research interest thanks to their high level
of maneuverability and simple mechanical structure. Various
controllers have been proposed to track a predefined trajectory
or a path for quadrotors. Fixed-gain linear or nonlinear con-
trollers often serve to address the problem satisfactorily when
dealing with nominal operation (see, e.g., Hua et al. (2013)
for a comprehensive survey). Specifically, several control sys-
tems have been developed based on robust control (Invernizzi
et al. (2020)), backstepping (Zuo and Mallikarjunan (2017)),
sliding mode controller (Madani and Benallegue (2006)), or
hybrid control architecture (Naldi et al. (2017)). In Schoellig
and D’Andrea (2009) and Meraglia and Lovera (2021), Itera-
tive Learning Control (ILC) was used to update the reference
signal to multirotor systems subject to repetitive disturbances
to achieve high-performance tracking. However, repetitive op-
erational conditions and controlled environments are essential
for these data-based control algorithms. If more challenging
scenarios such as, e.g., actuator degradation and faults, severe
external disturbances, and parameter uncertainties have to be
considered, then approaches capable of learning whilst oper-
ating are needed. Adaptive control is an attractive candidate
to face the mentioned disturbances and uncertainties for fault-
tolerant or reconfigurable unmanned flight (see, e.g., Lavretsky
and Wise (2013)). Model Reference Adaptive Control (MRAC)
is the most widely known adaptive control technique and there
are many interesting results in the control of multirotors (see
Dydek et al. (2013) as an example of numerous references on
adaptive multirotor control).

Considering a hierarchical control scheme, the contribution of
this work is the design and stability analysis of a position
controller based on MRAC theory taking systematically into ac-
count non-fast closed-loop attitude dynamics. In fact, actuator
dynamics pose a significant obstacle to the design and imple-
mentation of standard adaptive controllers (Lavretsky and Wise

(2013)). In particular, if the actuator dynamics have sufficiently
wide bandwidth, then they can be neglected in the design of
MRAC (Gruenwald et al. (2020)). However, if the actuator dy-
namics do not have sufficiently wide bandwidth or the control
system is used for safety-critical applications, a systematic ap-
proach must be followed to determine if the actuator bandwidth
is large enough to not affect the adaptation performance main-
taining the closed-loop dynamical system stable. After having
reformulated the problem considering the closed-loop attitude
dynamics as pseudo-actuator, the effects of these dynamics on
the adaptation performance are analysed exploiting the Linear
Matrix Inequality (LMI)-based hedging framework presented
in Gruenwald et al. (2016). To the best knowledge of the au-
thors no theoretical analysis of the attitude dynamics effects on
the MRAC position controller has been performed so far for
a hierarchical control scheme of multirotor UAVs. This paper
contributes by evaluating these effects in such an application.

The remainder of this paper is organized as follows. The prob-
lem statement is reported in Section 2. In Section 3 we overview
the LMI-based hedging MRAC theory. Results from simula-
tion and from experiments on the ANT-X 1 2DoF drone are
provided to illustrate the proposed architecture performance
in Section 4 and Section 5, respectively. Finally, concluding
remarks are given in Section 6.

Notation: Throughout this paper, R(R+) denotes the set of
(positive) real numbers, Rn denotes the n-dimensional Eu-
clidean space, and Rm×n the set of m× n real matrices. Given
A ∈Rn×n, we use the compact notation A ∈Rn×n

+ to represent a
positive definite matrix. The i-th vector of the canonical basis in
Rn is denoted as ei and the identity matrix in Rn×n is denoted as
In := [e1 · · ·ei · · ·en]. The Euclidean norm of a vector x ∈ Rn is
‖x‖ :=

√
x�x. The set SO(3) := {R∈R3×3 : R�R= I3,det(R) =

1} denotes the three-dimensional Special Orthogonal group.
Given ω ∈ R3, the map S(·) : R3 → so(3) := {Ω ∈ R3×3 : Ω =
−Ω�} is such that S(ω)y=ω×y, ∀y∈R3, where × represents
the cross product in R3. The inverse of the map S is denoted
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as S(·)−1 : so(3)→ R3. This paper interchangeably uses time-
domain and frequency-domain representations of signals (e.g.,
ψ(t) and ψ(s) denote the function of time and its Laplace
transform, respectively).

2. PROBLEM STATEMENT

In this section, we first show the dynamical model of vectored-
thrust 2 UAV and present a hierarchical control law capable
of stabilizing simultaneously the UAV position and heading
direction. Then, the interactions between attitude and position
loops are analysed. Finally, the UAV model is linearised in near
hover conditions to fit the MRAC architecture.

2.1 Mathematical model

The configuration of a rigid UAV can be identified with the
motion of a body-fixed frame FB := (OB,{b1,b2,b3}) with
respect to a reference frame FI := (OI ,{i1, i2, i3}), where b j
and i j for j ∈ {1,2,3} are unit vectors forming right-handed
orthogonal triads and OB,OI are the origins of the body and
reference frame, respectively. In the following, the position
vector from OI to OB, resolved in FI , is denoted as p =

[ px py pz ]� ∈R3 while the rotation matrix describing the attitude
of the UAV is denoted as R := [b1 b2 b3 ]∈ SO(3), where bi is the
i-th body axis resolved in FI . The dynamical model of a UAV
can be described by (Mahony et al. (2012)):

Ṙ = RS(ω) Jω̇ =−S(ω)Jω + τe + τc (1)
ṗ = v mv̇ =−mgi3 +TcRi3 + fe, (2)

where J = J� ∈ R3×3
+ is the UAV inertia matrix with respect to

OB, m ∈R+ is the UAV mass, g = 9.81m/s2 is the gravitational
acceleration, ω ∈ R3 is the body angular velocity, v ∈ R3 is the
inertial translational velocity, Tc ∈R+ and τc ∈R3 are the over-
all thrust and the torque applied by the propellers, respectively,
and ( fe,τe) ∈ R6 is the disturbance wrench including, e.g.,
aerodynamic effects and the gyroscopic torque of the rotors.

2.2 Cascade control design for position-yaw stabilization

By relying on the differential flatness property of the dynamics
(1)-(2) with respect to the position vector p and to the rota-
tion about the b3 axis (Formentin and Lovera (2011)), several
control strategies have been proposed in the literature to deal
with the nonlinear and underactuated nature of the quadrotor
dynamics. In this work, the objective of the control design
is to stabilize the UAV at a constant position set-point po =

[ po
x po

y po
z ]
� ∈ R3 with a desired yaw angle ψo ∈ R. To tackle

the underactuated nature of vectored-thrust UAVs, we follow a
hierarchical control strategy in which the attitude dynamics (in-
ner loop) is used to stabilize the translational one (outer loop).
Each loop considers the translation and rotation dynamics of the
multirotor system separately, hence, reducing the complexity of
the control design problem (Roza and Maggiore (2014)).

Position Controller Since the control force in the inertial
frame (TcRi3) cannot be delivered instantaneously in a desired

2 Multirotor UAVs with coplanar propellers are known as vectored-thrust
UAVs, because their propulsive system can deliver a control force only along a
fixed direction within the airframe (Hua et al. (2013)).

direction, a widely adopted strategy is to introduce a virtual
control variable fd = [ fdx fdy fdz ]

� in equation (2)
mv̇ =−mgi3 + fe + fd − ( fd −TcRi3), (3)

where fd should be selected so that the desired set-point (p =
po, v = 0) defines an asymptotically stable equilibrium point
of the translational dynamics. In this work, we consider for the
altitude stabilization a linear cascade controller as:

fdz := PIz(s)
(
kz

p(po
z − pz)− v

)
−Dz(s)vz +mgi3 , (4)

where PIz(s) := kz/i
p +

kz/i
i
s and Dz(s) := kz/i

d
sT z

s+T z are continuous
transfer functions defining, respectively, a proportional-integral
and (filtered) output-derivative actions , while kz

p, kz/i
p , kz/i

i

and kz/i
d ∈ R+ are scalar gain and T z ∈ R+ is the filter time

constant. Instead, we consider an adaptive controller for the xy-
plane control (described in the following section) counteracting
the unmodelled aerodynamic forces (whose effect in the z-
axis is considered negligible in this work) to ensure that the
UAV tracks a user-specified command with desired transient
performance requirements.

Attitude extraction The idea behind the hierarchical approach
is to find a reference attitude Rp and a control thrust Tc such that

fd −TcRpi3 = 0. (5)
Then, by exploiting the full actuation of the rotational dynamics
(1), the control torque τc is designed so that the reference
attitude Rp is asymptotically tracked. In this way, the mismatch
term fd −TcRi3 will converge to zero. To solve equation (5), the
reference attitude Rp is selected with the third axis aligned with
the force required for position stabilization fd and the rotation
about this axis is assigned as a function of a desired yaw angle
(ψo ∈ R) through the unit vector bp1 := [ cos(ψo) sin(ψo) 0 ]�,
which represents the heading direction. Thus, a solution to
equation (5) is Tc = || fd || and

Rp :=
[

bp3×bp1
‖bp3×bp1‖

×bp3

bp3×bp1
‖bp3×bp1‖

bp3

]
, bp3 := fd

‖ fd‖
. (6)

Attitude controller In this work we consider the following
nonlinear cascade controller for attitude stabilization (similar
to the one implemented in the PX4 autopilot 3 ):

τd
c := PIR(s)

(
γR(KR

p R�
d R)−ω

)
−DR(s)ω , (7)

where PIR(s) := Ki
p +Ki

1
s and DR(s) := Kd

sT
s+T are continuous

transfer functions defining, respectively, a proportional-integral
and (filtered) output-derivative actions, while KR

p , Ki
p, Ki and

Kd ∈ R3×3
+ are diagonal gain matrices and T ∈ R+ is the

filter time constant. The term γR(KR
p R�

d R) :=− 1
2 S−1(KR

p R�
d R−

R�RdKR
p ) is a nonlinear proportional stabilizer computing the

reference angular velocity that must be tracked by the inner
loop through a PID controller.

2.3 Interactions between loops

The classical way to design control laws for multirotor UAVs
consists in assuming that the controllers will be tuned such that
the attitude dynamics would converge faster than translational
dynamics. This time-scale separation allows one to neglect the
perturbation acting on the translational (outer) loop due to the

3 PX4 community, Dronecode Project, Inc., San Francisco, CA, USA. [On-
line]. Available: https://docs.px4.io/en/.

dynamics of attitude (inner) loop. Namely, if the perturbation
term, defined as

σ = 1
m Tc(R−Rd)i3 , (8)

vanishes rapidly 4 , the complete closed-loop system will be sta-
ble in practice Hua et al. (2013). In the literature, different au-
thors quantify how much faster the attitude control loop should
be to ensure the closed-loop stability of the whole system (see,
e.g., Bertrand et al. (2011) where the stability analysis has been
addressed by singular perturbation theory). On the other hand,
a hierarchical controller robust to perturbation σ is proposed
in Naldi et al. (2017), where the closed-loop stability of the
whole system is ensured combining the Input-to-State Stability
(ISS) properties of the position error system with the global
asymptotic stability of the attitude error subsystem. Similarly,
in Invernizzi et al. (2018) the stability of the interconnection
between the attitude and position loops is studied within the
framework of differential inclusions. Another way to ensure the
stability of the whole system is to use standard tools consider-
ing the linearised system and to determine when the closed-
loop attitude bandwidth (that can be seen as an actuator of
the translational dynamics) is too narrow and instability may
occur. However, for adaptive control of uncertain dynamical
systems, these tools can no longer be used to determine how
wide the actuator (closed-loop attitude) bandwidth needs to
be to ensure stability. One way to address this issue is to re-
duce the aggressiveness of the adaptive controller (degrading
the tracking performance) by trial-and-error. In contrast, we
propose a systematic approach that exploits the hedging-based
MRAC architecture (Johnson (2000)) that allows the adaptation
performance to not be affected by the presence of actuator
dynamics and exploits a LMI-method (Gruenwald et al. (2016))
to determine if the actuator bandwidth is large enough.

2.4 Linearized system

To implement the proposed adaptive architecture, the UAV
model in (1)-(2) must be linearised. Assuming near hovering
conditions (i.e., p ≈ p̄, v ≈ 0, R ≈ I3 + S(∆α) with ∆α :=
[φ θ ψ ]� being small rotation angles, ω ≈ 0) we obtain:

∆α̇ = ∆ω, ∆ṗ = ∆v (9)
J∆ω̇ = ∆τc, m∆v̇ = mgS(∆α)i3 +∆Tci3, (10)

where ∆Tc := Tc − mg, ∆τc := τc, and ∆(·) represent devia-
tion variables. Similarly, the control law can be linearized by
recognizing that in near hovering conditions ‖ fd‖ ≈ mg and
γR(KR

p R�
d R)≈ KR

p [φd−φ θd−θ ψd−ψ ]�, so as to obtain:

∆Tc := PIz(s)
(
kz

p(po
z − pz)− v

)
−Dz(s)vz, (11)

∆τc := PIR(s)(KR
p [φd−φ θd−θ ψd−ψ ]�−ω)−DR(s)ω, (12)

where the desired roll and pitch angles are

φd :=+ 1
mg fdx = MRAC(po

y , py,vy,φ), (13)

θd :=− 1
mg fdy = MRAC(po

x , px,vx,θ), (14)

while ψd is the desired yaw angle. In the following, we consider
only the dynamics in the xy-plane and focus on the outer-loop
controller design with an assumption that a stable inner-loop
controller has been applied. The corresponding system state-
space form can be written as:

4 It is assumed that thrust dynamics is negligible with respect to the rigid body
dynamics of the UAV, the desired value T d

c is considered to be instantaneously
reached by Tc = T d

c .

ẋ =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


x+




0 0
−g 0
0 0
0 g


w (15)

where x = [ px vx py vy ]� ∈ R4 w := [θ φ ]� ∈ R2 is the ouput of
the closed-loop attitude dynamics given by

w(s) =
[

Gθ (s) 0
0 Gφ (s)

]
u(s) (16)

where u := [θd φd ]
� ∈R2 is the control input given by the adap-

tive controller, and Gθ (s) and Gφ (s) are the continuous trans-
fer functions defining the closed-loop pitch and roll dynamics
respectively. These transfer functions can be either retrieved
analytically or identified from experimental data. For the sake
of simplicity, in this work Gθ (s) and Gφ (s) are approximated
by first order dynamical systems 5 . In the following sections we
refer to closed-loop attitude dynamics as actuator dynamics.

3. MRAC WITH ACTUATOR DYNAMICS

This section provides a concise overview of Gruenwald et al.
(2016) and Gruenwald et al. (2019). In particular, we consider
the uncertain dynamical system subject to actuator dynamics

ẋ = Ax+Bw, x(0) = x0, (17)
where x ∈ Rn is the state vector available for feedback, A ∈
Rn×n is an unknown system matrix, B ∈Rn×m is a known input
matrix, and the pair (A,B) is controllable. w∈Rm is the actuator
output of the actuator dynamics GA given by

ẋc =−Mxc +u, xc(0) = xc0, (18)
w = Mxc,

where xc ∈ Rm is the actuator state vector, M ∈ Rm×m
+ is a

diagonal matrix with diagonal entries representing the actuator
bandwidth of each control channel, and u ∈ Rm is the control
input restricted to the class of admissible controls consisting
of measurable functions. Next, we consider the ideal reference
system capturing a desired closed-loop dynamical system per-
formance given by

ẋi = Arxi +Brc, xi(0) = xi0, (19)
where xi ∈ Rn is the ideal reference state vector, c ∈ Rm is
a given uniformly continuous bounded command, Ar ∈ Rn×n

is the Hurwitz reference system matrix, and Br ∈ Rn×m is the
command input matrix. We now make the following assump-
tion that is standard in the MRAC literature and is known as
the matching condition (see Lavretsky and Wise (2013) and
Ioannou and Sun (1996)).
Assumption 1. There exist an unknown matrix Wx ∈ Rm×n and
a known matrix Kr ∈ Rm×m such that Ar = A − BW�

x and
Br = BKr hold.

In the presence of actuator dynamics, the standard MRAC
formulation based on the (pre-chosen) ideal reference model
given by equation (19) does not allow the uncertain dynamical
system to track the reference model trajectories asymptotically.
A remedy to this problem is given by the hedging method
(see Johnson (2000) and Johnson and Calise (2003) for more
details). This method alters the trajectories of the reference
model to allow adaptive controllers to be developed so that

5 The proposed architecture can be easily extended to higher-order dynamics
following the approach in Gruenwald et al. (2019).
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dynamics of attitude (inner) loop. Namely, if the perturbation
term, defined as

σ = 1
m Tc(R−Rd)i3 , (8)

vanishes rapidly 4 , the complete closed-loop system will be sta-
ble in practice Hua et al. (2013). In the literature, different au-
thors quantify how much faster the attitude control loop should
be to ensure the closed-loop stability of the whole system (see,
e.g., Bertrand et al. (2011) where the stability analysis has been
addressed by singular perturbation theory). On the other hand,
a hierarchical controller robust to perturbation σ is proposed
in Naldi et al. (2017), where the closed-loop stability of the
whole system is ensured combining the Input-to-State Stability
(ISS) properties of the position error system with the global
asymptotic stability of the attitude error subsystem. Similarly,
in Invernizzi et al. (2018) the stability of the interconnection
between the attitude and position loops is studied within the
framework of differential inclusions. Another way to ensure the
stability of the whole system is to use standard tools consider-
ing the linearised system and to determine when the closed-
loop attitude bandwidth (that can be seen as an actuator of
the translational dynamics) is too narrow and instability may
occur. However, for adaptive control of uncertain dynamical
systems, these tools can no longer be used to determine how
wide the actuator (closed-loop attitude) bandwidth needs to
be to ensure stability. One way to address this issue is to re-
duce the aggressiveness of the adaptive controller (degrading
the tracking performance) by trial-and-error. In contrast, we
propose a systematic approach that exploits the hedging-based
MRAC architecture (Johnson (2000)) that allows the adaptation
performance to not be affected by the presence of actuator
dynamics and exploits a LMI-method (Gruenwald et al. (2016))
to determine if the actuator bandwidth is large enough.

2.4 Linearized system

To implement the proposed adaptive architecture, the UAV
model in (1)-(2) must be linearised. Assuming near hovering
conditions (i.e., p ≈ p̄, v ≈ 0, R ≈ I3 + S(∆α) with ∆α :=
[φ θ ψ ]� being small rotation angles, ω ≈ 0) we obtain:

∆α̇ = ∆ω, ∆ṗ = ∆v (9)
J∆ω̇ = ∆τc, m∆v̇ = mgS(∆α)i3 +∆Tci3, (10)

where ∆Tc := Tc − mg, ∆τc := τc, and ∆(·) represent devia-
tion variables. Similarly, the control law can be linearized by
recognizing that in near hovering conditions ‖ fd‖ ≈ mg and
γR(KR

p R�
d R)≈ KR

p [φd−φ θd−θ ψd−ψ ]�, so as to obtain:

∆Tc := PIz(s)
(
kz

p(po
z − pz)− v

)
−Dz(s)vz, (11)

∆τc := PIR(s)(KR
p [φd−φ θd−θ ψd−ψ ]�−ω)−DR(s)ω, (12)

where the desired roll and pitch angles are

φd :=+ 1
mg fdx = MRAC(po

y , py,vy,φ), (13)

θd :=− 1
mg fdy = MRAC(po

x , px,vx,θ), (14)

while ψd is the desired yaw angle. In the following, we consider
only the dynamics in the xy-plane and focus on the outer-loop
controller design with an assumption that a stable inner-loop
controller has been applied. The corresponding system state-
space form can be written as:

4 It is assumed that thrust dynamics is negligible with respect to the rigid body
dynamics of the UAV, the desired value T d

c is considered to be instantaneously
reached by Tc = T d

c .

ẋ =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


x+




0 0
−g 0
0 0
0 g


w (15)

where x = [ px vx py vy ]� ∈ R4 w := [θ φ ]� ∈ R2 is the ouput of
the closed-loop attitude dynamics given by

w(s) =
[

Gθ (s) 0
0 Gφ (s)

]
u(s) (16)

where u := [θd φd ]
� ∈R2 is the control input given by the adap-

tive controller, and Gθ (s) and Gφ (s) are the continuous trans-
fer functions defining the closed-loop pitch and roll dynamics
respectively. These transfer functions can be either retrieved
analytically or identified from experimental data. For the sake
of simplicity, in this work Gθ (s) and Gφ (s) are approximated
by first order dynamical systems 5 . In the following sections we
refer to closed-loop attitude dynamics as actuator dynamics.

3. MRAC WITH ACTUATOR DYNAMICS

This section provides a concise overview of Gruenwald et al.
(2016) and Gruenwald et al. (2019). In particular, we consider
the uncertain dynamical system subject to actuator dynamics

ẋ = Ax+Bw, x(0) = x0, (17)
where x ∈ Rn is the state vector available for feedback, A ∈
Rn×n is an unknown system matrix, B ∈Rn×m is a known input
matrix, and the pair (A,B) is controllable. w∈Rm is the actuator
output of the actuator dynamics GA given by

ẋc =−Mxc +u, xc(0) = xc0, (18)
w = Mxc,

where xc ∈ Rm is the actuator state vector, M ∈ Rm×m
+ is a

diagonal matrix with diagonal entries representing the actuator
bandwidth of each control channel, and u ∈ Rm is the control
input restricted to the class of admissible controls consisting
of measurable functions. Next, we consider the ideal reference
system capturing a desired closed-loop dynamical system per-
formance given by

ẋi = Arxi +Brc, xi(0) = xi0, (19)
where xi ∈ Rn is the ideal reference state vector, c ∈ Rm is
a given uniformly continuous bounded command, Ar ∈ Rn×n

is the Hurwitz reference system matrix, and Br ∈ Rn×m is the
command input matrix. We now make the following assump-
tion that is standard in the MRAC literature and is known as
the matching condition (see Lavretsky and Wise (2013) and
Ioannou and Sun (1996)).
Assumption 1. There exist an unknown matrix Wx ∈ Rm×n and
a known matrix Kr ∈ Rm×m such that Ar = A − BW�

x and
Br = BKr hold.

In the presence of actuator dynamics, the standard MRAC
formulation based on the (pre-chosen) ideal reference model
given by equation (19) does not allow the uncertain dynamical
system to track the reference model trajectories asymptotically.
A remedy to this problem is given by the hedging method
(see Johnson (2000) and Johnson and Calise (2003) for more
details). This method alters the trajectories of the reference
model to allow adaptive controllers to be developed so that

5 The proposed architecture can be easily extended to higher-order dynamics
following the approach in Gruenwald et al. (2019).
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actuator dynamics have no effect on their stability. Namely, we
consider the following modified reference model

ẋr = Arxr +Brc+B[w−u], xr(0) = xr0 , (20)
where the deficit term B[w− u] is introduced. Let the adaptive
feedback control law be given by

u =−Ŵ T
x x+Krc , (21)

where Ŵx ∈ Rn×m is the estimate of Wx, which is obtained with
the adaptation law

˙̂Wx = γ Proj
[
Ŵx,xeTPB

]
, Ŵx(0) = Ŵx0 , (22)

where Proj[·, ·] is the projection operator (Lavretsky and Wise
(2013)), γ ∈ R+ being the learning rate, e � x− xr being the
system error state vector, and P ∈ Rn×n

+ being the solution of
the Lyapunov equation

0 = AT
r P+PAr +Q (23)

with Q = Q� ∈ Rn×n
+ . In addition, the projection bounds are

defined such that
∣∣∣[Ŵx

]
i j

∣∣∣ ≤ Ŵx,max,i+( j−1)n for i = 1, . . . ,n

and j = 1, . . . ,m, where
[
Ŵx

]
i j denotes the i j-th entry of the

matrix Ŵx and Ŵx,max,i+( j−1)n ∈ R+ are symmetric 6 element-
wise projection bounds.

In Gruenwald et al. (2016), the authors proved that the solutions(
e,Ŵx,xr,w

)
of the closed-loop dynamical system are bounded

and limt→∞ e = 0 if the following condition is satisfied.
Assumption 2. Let W̄xi1,...,il

∈ Rn×m be defined as where il ∈
{1,2}, l ∈ {1, . . . ,mn}, such that W̄xi1,...,il

represents the corners
of the hypercube defining the maximum variation of Ŵx(t)
ensured by the projection operator. The matrix

Ai1,...,il =

[
Ar +BW̄ T

xi1,...,il
BM

−W̄ T
xi1,...,il

−M

]
(24)

satisfies the matrix inequality

A T
i1,...,il P +PAi1,...,il < 0, P = PT > 0, (25)

for all permutations of W̄xi1,...,il
.

Remark 3. Since Assumption 2 is satisfied for large values of
M (see Gruenwald et al. (2016)), we can cast (25) as a convex
optimisation problem whose solution M is the minimum actua-
tor bandwidth that satisfies Assumption 2 for the given level of
system uncertainty. From a practical standpoint, there should be
a basic tradeoff between the permitted system uncertainties and
the actuator dynamics, as remarked in Gruenwald et al. (2019).

4. ADAPTIVE UAV POSITION CONTROL

In this section, we compare in simulation the proposed control
architecture (with hedged reference model) with the standard
MRAC. The task is to track a stair sequence in the xy-plane
mantaining ψd = 0. In particular, we use a high-fidelity simu-
lator of quadrotor dynamics in which the altitude and attitude
controllers are the ones described in Section 2.2 (which behave
for small errors as Section 2.4). The UAV mass is m = 0.250kg
and the attitude loops are tuned such that their closed-loop
dynamics can be well approximated by first-order systems with
Mφ = 9rad/s and Mθ = 5.5rad/s as roll and pitch bandwidth,
respectively. Furthermore, we consider the body-drag force us-
ing the simplified model fe := −cD‖v‖v with cD = 0.1 being
6 Note that the results of this section can be extended to the case when
asymmetric projection bounds are considered, as in Gruenwald et al. (2020).

the body drag coefficient. The adaptive controller synthesis has
been carried out by using the linear system (15) with zero initial
conditions designing independently the x− and y−axis. For
both the standard MRAC and the hedged-one, we set Q = I2
from (23) and select a second-order reference system with zero
initial conditions, a natural frequency of ωn = 4rad/s, and a
damping ratio ζ = 0.7. Using the rectangular projection opera-
tor, the bounds on the uncertainty (considered equal for the x−
and y−axis) are set element-wise such that |

[
Ŵx

]
1,1 |< ω2

n/g ≤
1.8 and |

[
Ŵx

]
2,1 | < 2ζ ωn/g ≤ 0.65. Using these bounds and

considering the system dynamics (15), we ensure that the un-
certain parameters belong to the convex set delimited by the
projection operator centered on the origin. Then, using the
projection bounds in the LMI optimization problem highlighted
in Remark 3, the minimum allowable actuator bandwidth is
computed as Mmin

(·) = 5.5rad/s. The adaptation rate is selected
as γH = 300 for the proposed architecture and as γM = 100 for
the standard MRAC. This choice is dictated by the fact that
using a larger adaptation rate γM > 100 for the standard MRAC
architecture leads to instability. Figure 1 and Figure 2 show
the results obtained with the standard MRAC controller in the
presence of fast (roll dynamics) and not-fast (pitch dynamics).
We can notice that, especially in x-direction (with not-fast pitch
dynamics), the standard MRAC controller introduces unwanted
oscillations and deteriorates the tracking performance. On the
other hand, Figure 3 and Figure 4 show the performance of
the proposed adaptive architecture. After the learning transient,
the system response becomes almost identical to the modified
reference one. Finally, we define the following metric to
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Fig. 1. Standard MRAC performance in x-direction.

compare the performance achieved by the two controllers:

eP(t) :=
√

(px(t)− pi
x(t))2 +(py(t)− pi

y(t))2 , (26)

where pi
x(t) and pi

y(t) are the x- and y-position given by the
ideal reference system, respectively. We report in Table 1 the
peak (eP

PK = maxt eP(t)) and the root mean square (eP
RMS) of the

signal eP(t). We can state that the proposed architecture is very

Table 1. Simulation results: performance metrics.

Hedging-based Standard MRAC
Peak eP

PK [m] 0.0805 0.1110
RMS eP

RMS [m] 0.0136 0.0314

effective in improving the UAV tracking performance providing
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Fig. 2. Standard MRAC performance in y-direction.
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Fig. 3. Proposed architecture performance in x-direction.

0 10 20 30 40 50 60 70 80

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
-P

o
s
it
io

n
 [

m
]

Response

Ideal reference

Modified reference

Fig. 4. Proposed architecture performance in y-direction.

a systematic way to take into account the closed-loop attitude
dynamics.

5. EXPERIMENTAL RESULTS

The experimental tests performed on the ANT-X 2DoF drone
are presented and discussed in this section. The tests are in-
tended to show and compare the behavior of the proposed con-
trol architecture with the standard MRAC scheme in a realistic

scenario. The ANT-X 2DoF drone setup consists of a small
quadrotor UAV constrained to operate along two linear guides,
allowing only pitch rotation and longitudinal motion (see Panza
et al. (2021) for more details). It has been designed to replicate
the longitudinal motion of quadrotors, which is described by
the following equations:

θ̇ = q, Jθ q̇ = Mcx +Mex (27)
ṗx = vx, mv̇x =−Tc sinθ + fex (28)

where θ , q ∈ R are the pitch angle and rate, respectively,
px, vx ∈ R are the position and velocity along the x-axis, re-
spectively, m ∈ R+ is the quadrotor mass, Jθ ∈ R+ is the pitch
inertia moment, Tc ∈R+ is the control thrust (imposed constant
during the experiments Tc = mg), τcx ∈ R is the control torque,
while Mex , fex ∈ R are torque and force disturbances along
the x-axis. Being able to study the longitudinal dynamics is
important since it captures all the most relevant challenges as-
sociated with the underactuated nature of co-planar multirotors.
The task of the experimental campaign is to track a stair se-
quence in the x-direction. To implement the proposed adaptive
architecture the model (27)-(28) is linearised assuming small
rotation angle (sinθ ≈ θ ). Similarly to the previous section, for
both the standard MRAC and the hedged-one, we set Q = I2
from (23) and select a second-order reference system with zero
initial conditions, a natural frequency of ωn = 2.3rad/s, and a
damping ratio ζ = 0.7. Using the rectangular projection oper-
ator, the bounds on the uncertainty are set element-wise such
that |

[
Ŵx

]
1,1 |< ω2

n/g ≤ 0.55 and |
[
Ŵx

]
2,1 |< 2ζ ωn/g ≤ 0.35.

Then, using the bounds on Ŵx in the LMI optimization prob-
lem, the minimum allowable pitch closed-loop bandwidth is
computed as Mmin

θ = 2.9rad/s. The attitude loop is tuned such
that the closed-loop pitch dynamics can be well approximated
by a first-order system with Mθ = 3rad/s as bandwidth that is
close to the allowable limit Mmin

θ . Figure 5 and Figure 6 show
the position response of the standard MRAC architecture and
of the proposed one using γH = γM = 100. Similarly to the
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previous section, we define the following metric to compare the
performance achieved by the two controllers:

ex(t) := |(px(t)− pi
x(t))| . (29)

where pi
x(t) is the x-position given by the ideal reference sys-

tem. We report in Table 2 the peak (ex
PK = maxt ex(t)) and the

root mean square (ex
RMS) of the signal ex(t). A remarkable per-

formance improvement is obtained with the proposed approach.
Furthermore, the LMI-based feasible limit Mmin

θ provides a
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Fig. 4. Proposed architecture performance in y-direction.

a systematic way to take into account the closed-loop attitude
dynamics.

5. EXPERIMENTAL RESULTS

The experimental tests performed on the ANT-X 2DoF drone
are presented and discussed in this section. The tests are in-
tended to show and compare the behavior of the proposed con-
trol architecture with the standard MRAC scheme in a realistic

scenario. The ANT-X 2DoF drone setup consists of a small
quadrotor UAV constrained to operate along two linear guides,
allowing only pitch rotation and longitudinal motion (see Panza
et al. (2021) for more details). It has been designed to replicate
the longitudinal motion of quadrotors, which is described by
the following equations:

θ̇ = q, Jθ q̇ = Mcx +Mex (27)
ṗx = vx, mv̇x =−Tc sinθ + fex (28)

where θ , q ∈ R are the pitch angle and rate, respectively,
px, vx ∈ R are the position and velocity along the x-axis, re-
spectively, m ∈ R+ is the quadrotor mass, Jθ ∈ R+ is the pitch
inertia moment, Tc ∈R+ is the control thrust (imposed constant
during the experiments Tc = mg), τcx ∈ R is the control torque,
while Mex , fex ∈ R are torque and force disturbances along
the x-axis. Being able to study the longitudinal dynamics is
important since it captures all the most relevant challenges as-
sociated with the underactuated nature of co-planar multirotors.
The task of the experimental campaign is to track a stair se-
quence in the x-direction. To implement the proposed adaptive
architecture the model (27)-(28) is linearised assuming small
rotation angle (sinθ ≈ θ ). Similarly to the previous section, for
both the standard MRAC and the hedged-one, we set Q = I2
from (23) and select a second-order reference system with zero
initial conditions, a natural frequency of ωn = 2.3rad/s, and a
damping ratio ζ = 0.7. Using the rectangular projection oper-
ator, the bounds on the uncertainty are set element-wise such
that |

[
Ŵx

]
1,1 |< ω2

n/g ≤ 0.55 and |
[
Ŵx

]
2,1 |< 2ζ ωn/g ≤ 0.35.

Then, using the bounds on Ŵx in the LMI optimization prob-
lem, the minimum allowable pitch closed-loop bandwidth is
computed as Mmin

θ = 2.9rad/s. The attitude loop is tuned such
that the closed-loop pitch dynamics can be well approximated
by a first-order system with Mθ = 3rad/s as bandwidth that is
close to the allowable limit Mmin

θ . Figure 5 and Figure 6 show
the position response of the standard MRAC architecture and
of the proposed one using γH = γM = 100. Similarly to the
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previous section, we define the following metric to compare the
performance achieved by the two controllers:

ex(t) := |(px(t)− pi
x(t))| . (29)

where pi
x(t) is the x-position given by the ideal reference sys-

tem. We report in Table 2 the peak (ex
PK = maxt ex(t)) and the

root mean square (ex
RMS) of the signal ex(t). A remarkable per-

formance improvement is obtained with the proposed approach.
Furthermore, the LMI-based feasible limit Mmin

θ provides a
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Fig. 6. Drone position with the proposed architecture.

Table 2. Experiment performance metrics.

Hedging-based Standard MRAC
Peak ex

PK [m] 0.0860 0.1211
RMS ex

RMS [m] 0.0275 0.0428

(conservative) lower bound on the allowable closed-loop at-
titude bandwidth such that the overall closed-loop system re-
mains bounded, avoiding trial-and-error tuning procedure.

6. CONCLUSION

In this paper, we defined a systematic approach to design a
position controller based on MRAC theory for a quadrotor
UAV taking into account the closed-loop attitude dynamics. In
particular, after having reformulated the problem considering
attitude dynamics as an actuator for the translational dynamics,
we exploited the LMI-based hedging MRAC controller (ini-
tially proposed in Gruenwald et al. (2016)) to achieve desir-
able tracking performance specifications despite uncertainties.
Finally, results from simulation and experiments on the ANT-X
2DoF drone showed the effectiveness of the proposed strategy.
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