
A decentralized approach to award game
achievements

Francesco Bruschi
Dipartimento di Elettronica,

Informazione e Bioingegneria
Politecnico di Milano

Milan, Italy
francesco.bruschi@polimi.it

Donatella Sciuto
Dipartimento di Elettronica,

Informazione e Bioingegneria
Politecnico di Milano

Milan, Italy
donatella.sciuto@polimi.it

Tommaso Paulon
Dipartimento di Elettronica,

Informazione e Bioingegneria
Politecnico di Milano

Milan, Italy
tommaso.paulon@polimi.it

Andrea Marchesi
Milan, Italy

Abstract—Blockchain technology allows players to own in-
game assets and to be rewarded with NFTs or tokens for their
game achievements, thus can be a game changer for all the
gaming industry. One central issue is how to check that conditions
for achievements are met (e.g., that the player completed level
10). Current approaches open cheating backdoors (e.g. if the
client checks the conditions) or introduce centralization points
(if a backend checks the condition). Ideally, we would like to
”run” games on chain, but so far that has not been possible due
to the high computational cost, especially on Ethereum; however,
the development of technologies like proofs of computation can
solve this problem. Being able to run games on the blockchain,
new decentralized rewarding systems can be built to ensure the
fair and transparent rewarding of game achievements.

Index Terms—blockchain, zero knowledge proofs, verifiable
computing, rollups, Starknet, web3, gaming, nft

I. INTRODUCTION

In the last few years the increasing adoption of blockchain
technologies has created a new trend pushing both existing and
new applications towards decentralization. This phenomenon
is often referred to as web3 and is considered the next
evolution of the internet; here the power is shifted from
big centralized entities to individual users, who have gained
awareness on themes like privacy and personal data sharing.
This particular context has the potential to evolve gaming from
a non-rewarding activity (except for competitive players) to
a rewarding one, leveraging the advantages brought by the
blockchain such as transparency, immutability and guaranteed
execution. At the time of writing many web3 games have
already been developed, however all of them are either not
fully decentralized, because only a part of the application
runs on-chain, or extremely simple and consisting of very
basic interactions. Complex and fully-decentralized games
have been an unexplored field so far, but now the technology is
mature enough to build this kind of games, thus maximing de-
centralization on one hand and rewarding players transparently
and fairly on the other. The main obstacle to their development
has mainly been the high computational cost on networks
like Ethereum, which is the most successful smart contracts
platform so far; several experiments have been tried with
minor or application-specific networks, however this choice
inevitably cuts off the game from the biggest web3 ecosystem

and has a negative impact on the monetization of the rewards.
The development of Layer 2 scaling solutions like rollups
has the potential to solve this problem: they offer greater
transaction speed and lower fees while maintaining the same
security level as the Layer 1, as well as the interoperability
with it. In this paper we first analyze the existing architectures
for game rewards and the state of the technology, then we
propose a method for distributing rewards based on verifiable
game results and finally we apply it to Snake and Flappy
Bird, two single player games respectively of discrete-time
and continuous-time.

II. STATE OF THE ART

A. Existing architectures for game rewards

In the rewarding of in-game achievements two main compo-
nents must be considered. First, the reward needs to be stored
in some place, which we will refer to as storage, and it must
allow players to retrieve the rewards they own. Second, every
game needs an environment to be executed, which we will
refer to as execution; rewards are distributed according to its
results. We will now analyze the four possible configurations
of these parameters, with a particular focus on the pros and
cons of each solution.

1) client execution, server storage: The easiest way to
distribute a reward is running the game on the client side
and then send the results to a centralized server, which stores
it. The obvious downside in this approach is that the client
can lie about its game execution, to receive a reward he isn’t
entitled for. This configuration is used not only by Google
Play Games [6] and Apple’s Apple Store [2], but also by Steam
[21], the popular videogames distribution platform. Here game
achievements are online badges that can be shown off to other
players, and they are issued upon client request when some
game conditions are met; however, the client is able to cheat
and get the rewards from Steams API without even running the
game, in fact a project called Steam Achievements Manager
[20] has been developed specifically for that.

2) server execution, server storage: To prevent clients from
cheating about their achievements a possible solution can be
asking them to submit only the input moves of the game in
order to rerun it on a trusted server. In this way the game



is executed twice (client side and server side), however the
player has to know the correct moves to receive the reward.
Heartstone [7] is a well known example of this approach; it
is a card game in which players can earn in-games assets
by winning matches against other players or the AI. In this
case achievements have an in-game value as they can be used
during matches, therefore the possibility of cheating must be
averted; because of this, the game is executed on the server
side with client’s inputs to ensure that the player has really
achieved the rewards. The main downside of this approach is
that the reward is not truly owned by players and cannot be
monetized as there is no underlying infrastructure for trading
this asset.

3) server execution, blockchain storage: An evolution of
the previous approach is a configuration in which the game
is played on the server side but the rewards are stored on the
blockchain, in the form of fungible or non-fungible tokens.
The first advantage of this model is that it increases inter-
operability: tokens are controlled by a smart contract which
is public and freely callable, therefore anybody can build
an application that uses them. Secondly, every blockchain
already offers marketplaces, exchanges and all the trading
infrastructure that was missing in the previous case, so in-game
assets are automatically monetizable on the chosen blockchain
ecosystem. Splinterlands [18] is a card game which resembles
Heartstone and uses this approach; it is executed on centralized
servers but the achievements are stored on the Hive blockchain
[8] in the form of NFTs and fungible tokens and can be
traded on third-party marketplaces like NFTHive [11]. This
configuration is becoming more and more popular; however,
it still has one downside which is the centralized execution,
meaning that theoretically the server for example could cheat
to prevent the user from getting the rewards or could create
infinite rewards thus destroying the value of existing ones.

4) blockchain execution, blockchain storage: The central-
ized server can indeed be removed from the architecture and
be replaced by a set of smart contracts, with whom the player
can communicate directly. This eliminates the costs related
to servers maintenance and ensures that the game will be
reachable as long as the blockchain itself is running, even
if the developers leave the project. The only expense incurred
by the creator is related to smart contracts’ deployment; game
computation instead is payed by players in the form of gas
fees. Moreover, in this case no centralized entity can rig the
rewarding process, because the rewards are controlled and
assigned by the code contained in the smart contracts. This
model is implemented for example by Alien Worlds [1], a
play-to-earn game which is fully on-chain; however, existing
on-chain games are closer to DeFi protocols rather than games,
as they only allow very basic interactions with the blockchain
like collecting and spending resources.

B. Ethereum

Ethereum [4] is the most popular blockchain for smart con-
tracts and one of the most secure and decentralized networks.
It offers a Turing complete language and allows transparent,

trustless and immutable execution and storage. However, the
high execution cost on this platform makes running even
the most simple game infeasible; the network has indeed an
inherent scalability issue because of its limited throughput
and therefore transactions require high fees to be executed,
especially when the network is congested. After the release
of Ethereum many solutions have been proposed to solve this
problem, which can be grouped in two main approaches: the
first trend tries to scale the blockchain itself, which is also
referred to as layer1, whereas the second one focuses on
building scaling solutions (referred to as layer2) on top of
the layer1 blockchain.

C. Other L1 networks

Many blockchains have been built to overcome the limita-
tions of Ethereum, however the scalability increment comes
along with several downsides. Solana [23], for example, is
commonly considered one of its main competitors, as it can
reach a block time of 400 milliseconds and theoretically over
60k TPS (Transactions Per Second) in opposition to the 10-15
TPS achieved by Ethereum. This performance boost however
has been obtained at the expense of decentralization; the block
size has been enlarged to reduce the competition for including
a transaction in the next block and thus lowering the gas
fees, but this approach has the downside of increasing nodes’
hardware requirements and therefore centralizing the network.
At the time of writing, Solana claims to have 1818 active
validators while Ethereum’s ones are more than 4500. Even if
decentralization was not a concern, using a layer 1 blockchain
more scalable than Ethereum would still not be practically
feasible for the computation of games; game execution is in
fact based on loops, which can have many interactions and
take a long time to finish, so a transaction containing a long
game execution would halt the network until it is completed.
In order to prevent this scenario some execution fees must be
set just like in the Ethereum protocol, thus making this kind
of operations still expensive.

D. L2 scaling solutions

Layer 2 solutions are so called because they are built on top
of the layer 1 blockchain, to increase its performances. These
solutions move smart contracts’ execution and storage off-
chain, by using a smart contract on layer 1 with the following
tasks:

• processing deposits and withdrawals
• verifying proofs demonstrating that everything happening

off-chain is following the rules

The proofs can have different shapes, however the on-chain
verification process is always much cheaper than performing
the original computation on-chain. The layer 2 scaling solu-
tions can be classified in four main groups, each one with its
pros and cons:

• State channels [10] allow a set of users to perform
unlimited private transactions off-chain



• Plasma chains [14] are separate blockchains anchored
to Ethereum, and they are sometimes called child chains
because they act as smaller copies of the mainnet

• Sidechains [17] are chains with their own consensus
protocol and network parameters; they are connected to
the mainchain via bridges, a mechanism to move assets
between the mainchain and the sidechain

• Rollups [16][zkrollups] perform transaction execution
off-chain and post the transactions and results on the
mainnet

State channels are application-specific whereas plasma chains
can only support basic transactions like token transfers or
swaps, therefore they are not suitable for general purpose
game execution. On the other hand, sidechains are basically
clones of the original blockchain so they can scale the layer 1
only linearly, meaning that, for example, adding one sidechain
would double the performance and adding two sidechains
would triple it. Linear scaling is not sufficient in this scenario,
as running a game is a computationally intensive task; rollups
instead can scale computation exponentially, thus they are able
to support game execution.

E. Rollups

Rollups can be divided in two main categories: optimistic
rollups and Zero-Knowledge (ZK) rollups. Optimistic rollups
store the Merkle root of the L2 state on a smart contract on
the L1, whereas the complete state is kept off-chain. A Merkle
root is the root of a tree in which each leaf node is labeled with
the hash of a data block, and each non-leaf node is labeled
with the hash of its child nodes’ labels; it can be used to
generate a cryptographic footprint from a set of data in order
to reveal any subsequent modification on it. The state can be
updated by publishing a batch, i.e. a collection of compressed
transaction with also the previous and the new state root, along
with some funds that will be slashed if the new state is proven
to be invalid. These rollups are called optimistic because they
assume by default that a batch is correct, and if it is the case
no further action is required. However, the collateral supplied
serves as an economic incentive to find and report incorrect
transactions, in fact the receiving of the batch opens a time
window in which anyone can publish a fraud proof on-chain,
showing that the new state was not computed correctly from
the transactions, in order to take the stake. There are various
techniques to prove the new state inconsistencies to the rollup
smart contract; in case of fraud, the contract reverts the batch
and all the batches after it and pays the reporter using the
collateral. Several successful implementations of optimistic
rollups have been proposed, like Optimism [12] or Arbitrum
[3], however they require all input data of a transaction to be
published on-chain as calldata because it is needed to calculate
the next root when the contract re-runs all the transactions of a
fraud proof. This means that using these solutions all the input
moves of a game would cost calldata fees; considering that a
game can have even thousands of input moves and that calldata
is expensive, optimistic rollups don’t seem to be suitable for
the purpose.

ZK rollups solve this problem because they don’t need to
save all the input moves on-chain, therefore they seem the
solution which best fits the requirements. The main difference
with optimistic rollups is that ZK rollups rely on cryptographic
proofs instead of external actors to verify computation; these
proofs are Zero-Knowledge proofs (ZKP), i.e. proofs that allow
one party to prove to another one that a given statement is true
without giving away any additional information about it. In this
case it’s not really important to keep the input moves secret,
however this technology removes the need to store them on-
chain thus avoiding the calldata costs of optimistic rollups.
These proofs can be quickly verified directly on-chain; each
batch contains one of them, proving that the post-state root
is the correct result of the execution of the batch. Thanks
to this mechanism ZK rollups have the additional advantage
of reaching immediate transaction finality, since the proof is
verified at the receipt of the batch; there is no need to wait as
in optimistic rollups.

Currently, there are three projects offering a ZK rollup for
general purpose computation: Starknet [19], which uses ZK-
STARKs, zkSync V2 [24], based on ZK-SNARKs and Polygon
zkEVM [13], combining both types. Considering that Polygon
zkEVM has not been released on mainnet yet and that ZK-
STARKs offer better scalability avoiding the need of a trusted
setup, at the moment the best choice for running a game on-
chain seems to be Starknet.

F. Starknet overview

Starknet is a permissionless ZK rollup operating as a L2
network over Ethereum to increase scalability, by using ZK-
STARKs. It offers an interface similar to a smart contract
blockchain, as the complexity is handled in background; the
idea is that a smart contract containing both the execution
of the game and the reward distribution can be published
on the network, and the moves of the game can be simply
sent to it. Rewards can be implemented as fungible tokens
and NFTs. However, smart contracts in Starknet need to
be written in Cairo [5], a low-level language that converts
program logic into ZK-STARK proofs. Due to the early stage
of development, Starknet at the moment is not completely
decentralized as the state root can only be changed by a cen-
tralized sequencer run by Starkware, the parent organization
of Starknet. However, this situation should only be temporary
and, according to Starkware roadmap, anybody will be able
to run his own sequencer. Regarding the fees, presently the
sequencer only takes into account L1 costs involving proof
submission; the main factors affecting the L1 footprint of a
transaction are:

• computational complexity: the heavier the transaction,
the greater its incidence in proof verification cost

• on-chain data: L1 calldata cost deriving from data
availability and L2 → L1 communication



III. PROPOSED SOLUTION

A. Suitable games

The execution of a game on a blockchain in general, and on
Starknet as well, is significantly limited by execution latency,
as a transaction can take a few minutes to reach finality. In
games with a constant back-and-forth communication, like
action multiplayer games for example, this is a serious problem
that can worsen the user experience; for this reason, the
proposed solution will only focus on single-player games
where game execution is deterministic and input moves can
be verified in a single transaction.

The idea is to make the client record all the player moves
in a log, and then, using a Cairo representation of the game’s
engine, to produce a proof of the state reached by the player.
The proof will then be checked on-chain, to convince a smart
contract of the achievement reached.

A game can be formalized as a function F which takes in
input an initial state Si and a sequence of moves m and returns
a final state Sf:

F : (Si,m)→ Sf

F can be further structured in two functions:
transitionFunction, which takes a state and a
move and returns a new state, and isFinalState, to check
whether a state is final or not.

Algorithm 1 Game execution

1: procedure RUN GAME
2: isF inal← false
3: while isF inal ̸= true do
4: Sn+1 ← transitionFunction(Sn,mn)
5: if isFinalState(Sn+1) == true then
6: Sf ← Sn+1

7: isF inal← true
8: else
9: Sn ← Sn+1

10: end if
11: end while
12: end procedure

The case in which no more moves are available but current
state is not final can be handled arbitrarily, for example
reverting the execution or returning the non-final state.

B. Strategies to hide winning sequences

Since game execution in this scenario is deterministic, and
considering that Starknet transactions are public and transpar-
ent, it follows that players could just copy other users winning
transaction to get the same reward. A first possible solution to
this problem could be implementing some privacy features to
hide players moves in the transaction; the problem with this
approach is that winning sequences could be disclosed online
by using other channels thus making it ineffective. A better
strategy could be to reward only the first player who finds
a specific solution; in this way, players copying a solution

that has already been used would get no prize. However, also
this approach has some downsides: first of all, each already
found solution should be stored somewhere so that it can
be compared against new ones. The most naive way could
be storing them directly on Starknet, but it would be very
costly as the moves increase, as seen with optimistic rollups;
a better approach could be to ”summarize” each found solution
into a single hash. However, it’s impossible to tell which
solutions have been discovered just by looking at their hash, so
discovered solutions should be stored off-chain to let players
know which solutions are not usable anymore. In addition to
the issues concerning the implementation, this approach has
also other problems. First, the number of claimable rewards is
constantly decreasing making harder and harder to get them,
and at some point there might even be none left to claim;
this is a disadvantage for players joining the game later on.
Another potential problem is related to the miner extractable
value, i.e. the ability of miners (or, in the case of Starknet, of
the sequencer) to include, exclude, and change the order of
transactions in a block in order to extract some value [9]; for
example, a malicious sequencer could discard a transaction
with a solution and send it from its address to steal the
reward. To solve these issues another approach can be adopted,
which is to make the initial state variable and dependent on
the player. In this way a player cannot copy the solution of
another user, because being the initial state different he would
obtain a different outcome; it also solves the limited reward
problem of the previous solution, as there is a reward for
every possible address. However, this strategy introduces a
new problem: nothing is preventing a player who has already
mastered the game from creating lots of addresses to claim
potentially unlimited rewards. This could be solved in the
future with solutions like Proof of Humanity [15], which is
a system to assign a human identity to an address. The last
two approaches are both valid in their own way; the third
one better fits situations in which the prizes are in the form
of non-tradable rewards (for example memberships), whereas
the second one is best used for distributing tradable rewards
like tokens.

C. Flappy Bird PoC

In this section the approach will be applied to a continuous
time game, namely Flappy Bird. Flappy Bird is a side-scroller
game where the player controls a bird, attempting to fly
between columns of green pipes without hitting them; it has
been chosen as an example because it requires 2d physics
simulation while being very simple. The state of the game is
composed by the following data structure:

• the position pos of the bird, defined by its x and y
coordinates

• the velocity yVelocity of the bird on the y axis
• the offset pipesOffset of each pipe’s gap from the ground

(these offsets are what makes the initial state player
dependent)

The state can be defined in Cairo as follows:



struct Position:
member x : felt
member y : felt

end
struct State:

member pos : Position
member yVelocity : felt
member pipesOffset: felt*

end

Having defined the state of the game, the next step is
to design a general and reusable template to handle game
execution. The main function called by the players to get
rewarded is validateGame; in its body two functions are
executed, namely getInitState to initialize the state and
getFinalState to get the final state. Once obtained the
final state, the reward can be distributed according to it.

@external
func validateGame{

syscall_ptr : felt*, pedersen_ptr :
HashBuiltin*,

range_check_ptr
}(moves_len : felt, moves : felt*,

tokenAddress : felt) -> (pos:
Position):

alloc_locals
let (local address) =

get_caller_address()
let (initState : State) =

getInitState(address)
let (local finalState: State) =

getFinalState(moves_len, moves,
initState)

# reward distribution
return(finalState.pos)

end

The getFinalState function is recursive and it is called
for each state, checking if it is final or not; a state is final either
if the sequence of moves has ended or the game is over due
to game rules (for a collision for example). If the state is not
final the recursive call goes on, otherwise the final state is
returned.

As already said, the idea here is to make the initial
state variable player dependent; this can be achieved using
getValuesFromSeed function, that takes as input a seed
(in this case, the address of the player), how many values
to generate and their max possible value. This function is
executed recursively and for each value generates a new seed
by squaring the previous one, as this is cheaper than hashing.

In this case the transition function which derives the next
state from the current only needs to update the y velocity and
the bird’s position checking if the character is jumping or not.
As already told, a reward which best fits this approach can
be a membership; in this example, this can be achieved by
writing player’s address on-chain, so that it can be used as
proof of membership. For example, the membership can be
granted to the players who have reached an x position of at
least 200.

D. Snake PoC

The second PoC is Snake,a discrete-time game where the
player maneuvers a growing line (the ”snake”) that becomes
a primary obstacle to itself; the player loses when the snake
runs into the screen border, or itself. In this case the system
will implement a different strategy, rewarding only the first
player who submits a specific solution. The state here consists
of three pieces of data:

• body pos, the list of snake’s body positions
• food pos, the list of food pieces’ positions
• food index, the index of the food piece currently avail-

able on the board
Unfortunately, Cairo doesn’t have something like
list.length() to retrieve the head of the snake from
body pos, therefore this information (called head index)
must be saved in the state too. This structure can work,
however this state forces to rewrite the body position on
each state transition. This can be avoided by keeping track
of the tail of the snake, by using a field called tail index; in
this way, after a state transition only a single felt needs to
be rewritten. Moreover, this time also move’s hash must be
stored, in order to reward the first player uploading a specific
solution.

Since the initial state is not variable. it can be simply
initialized in the storage. A more evolved way to do it though
is to generate the state from a seed in the storage; doing this,
a single value must be updated to change the initial state (for
example, when most of solutions have already been claimed).
The transition function first has to compute the next position
of the snake, then calculates the hash of the moves and finally
creates the next state.

In this case, the IsFinalState function must check three
conditions in order to determine if a state is final or not:

• if the snake has eaten all food
• if the snake has exited the borders of the game (resulting

in a loss)
• if the snake has collapsed on itself

If one of these conditions is true, the state is final. Con-
cerning rewards distribution, a registry is needed to store
the solutions which have already been discovered; a solution
here is modeled as the hash of the moves, calculated in the
transition function. When a solution is found, the address who
discovered it is written on the storage

IV. IMPLEMENTATION ASSESSMENT

A. Costs

We experimented with both games, playing matches of
various lengths. The total cost for running Flappy Bird can
be divided into two components: fixed and variable costs.
Fixed costs do not grow as the input moves grow, and include
all the operations performed in the main function; they are
fixed because this function is only run once. Variable costs
instead grow with the input moves, and includes all the
actions performed in getFinalState recursive call (the
function is called once for each input move). Moreover, the



TABLE I: Flappy Bird costs

N. of moves Game time ETH cost USD cost
1 0.6 0.00001 0.016317
48 3.2 0.000011 0.017949

175 11.6 0.000012 0.019580
317 21.1 0.000014 0.022816

TABLE II: Snake Costs

N. of moves Game time ETH cost USD cost
1 1 0.000019 0.031075
13 13 0.00002 0.032711
35 35 0.00002 0.032700
69 69 0.000021 0.034346

amount of input moves is determined by the number keyboard
samples per seconds (in this case, 15 samples per second). An
interesting feature of the proof type used in Starknet is that
proof cost grows sublinearly with input size.

To give an idea of the actual costs, in Table I and II
execution cost by number of moves is reported for matches of
various lengths (assuming a gas cost of 6 gwei, as of time of
writing).

The same graph can be plotted also for Snake:
The experiment suggests that the costs are very low, and

that they scale well as the games lengthen.

V. CONCLUSION

The present work shows that it is possible to create decen-
tralized play-to-earn games using a Zero-Knowledge STARK
rollup on Ethereum, at acceptable costs. Even if complex and
continuous-time games could at the moment be expensive
to prove, the Ethereum scaling roadmap projects significant
decreases in the cost of rollups. The architecture we considered
addresses only single player games. One interesting dimension
to explore would be that of multiplayer games, where ap-
proaches based on multiparty computation could allow to offer
guarantees where they are perceived as even more important.

Other further work could consider the problem of certifying
the time it took the player to complete the match. With the
current architecture, a player could play a slowed down version
of the game, making it easier to reach a given goal (although
it would take longer). It would be interesting to explore how
it would be possible to certify that the moves were played
within some time bounds. The certified results could be used
to distribute soulbound tokens [22], non-transferable NFTs that
can be used as achievements to certify the completion of a
gamified test.

REFERENCES

[1] Alien worlds homepage. https://alienworlds.io/.
[2] Apple Store. https://www.apple.com/app-store/.
[3] Arbitrum homepage. https://developer.offchainlabs.com/

docs/Inside Arbitrum.
[4] Ethereum homepage. https://ethereum.org/.

[5] Lior Goldberg, Shahar Papini, and Michael Riabzev.
Cairo – a Turing-complete STARK-friendly CPU archi-
tecture. Cryptology ePrint Archive, Paper 2021/1063.
https : / / eprint . iacr.org /2021/1063. 2021. URL: https :
//eprint.iacr.org/2021/1063.

[6] Google play games. https : / / play . google . com /
googleplaygames.

[7] Heartstone homepage. https://hearthstone.blizzard.com/
en-gb.

[8] Hive.io. 2020. Hive: Fast. Scalable. Powerful. The
Blockchain for Web 3.0. https://hive.io/whitepaper.pdf.

[9] Aljosha Judmayer et al. Estimating (Miner) Extractable
Value is Hard, Let’s Go Shopping! Cryptology ePrint
Archive, Paper 2021/1231. https://eprint.iacr.org/2021/
1231. 2021. URL: https://eprint.iacr.org/2021/1231.

[10] Lydia D Negka and Georgios P Spathoulas. “Blockchain
state channels: A state of the art”. In: IEEE Access
(2021).

[11] NFTHive marketplace homepage. https://nfthive.io/.
[12] Optimism homepage. https://www.optimism.io/.
[13] Polygon zkEVM homepage. https://polygon.technology/

solutions/polygon-zkevm.
[14] Joseph Poon and Vitalik Buterin. “Plasma: Scalable

autonomous smart contracts”. In: White paper (2017),
pp. 1–47.

[15] Proof of Humanity. https://www.proofofhumanity.id/.
[16] Tobias Schaffner. “Scaling Public Blockchains”. In:

A comprehensive analysis of optimistic and zero-
knowledge rollups. University of Basel (2021).

[17] Amritraj Singh et al. “Sidechain technologies in
blockchain networks: An examination and state-of-the-
art review”. In: Journal of Network and Computer
Applications 149 (2020), p. 102471.

[18] Splinterlands homepage. https://splinterlands.com/.
[19] Starknet homepage. https://starkware.co/starknet/.
[20] Steam Achievements Manager. https : / / github . com /

gibbed/SteamAchievementManager.
[21] Steam homepage. https://store.steampowered.com/.
[22] V.Buterin. Soulbound. https://vitalik.ca/general/2022/

01/26/soulbound.html.
[23] Anatoly Yakovenko. “Solana: A new architecture for a

high performance blockchain v0. 8.13”. In: Whitepaper
(2018).

[24] zkSync V2 homepage. https://v2.zksync.io/.


