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Improving the Efficiency ofQuantum Circuits
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Code-based cryptosystems are a promising option for Post-Quantum Cryptography (PQC), as neither classical

nor quantum algorithms provide polynomial time solvers for their underlying hard problem. Indeed, to provide

sound alternatives to lattice-based cryptosystems, NIST advanced all round 3 code-based cryptosystems to

round 4 of its Post-Quantum standardization initiative. We present a complete implementation of a quan-

tum circuit based on the Information Set Decoding (ISD) strategy, the best known one against code-based

cryptosystems, providing quantitative measures for the security margin achieved with respect to the quantum-

accelerated key recovery on AES, targeting both the current state-of-the-art approach and the NIST estimates.

Our work improves the state-of-the-art, reducing the circuit depth by 2
19

to 2
30

for all the parameters of the

NIST selected cryptosystems, mainly due to an improved quantum Gauss-Jordan elimination circuit with

respect to previous proposals. We show how our Prange’s based quantum ISD circuit reduces the security

margin with respect to its classical counterpart. Finally, we address the concern brought forward in the latest

NIST report on the parameters choice for the McEliece cryptosystem, showing that its parameter choice yields

a computational effort slightly below the required target level.

CCS Concepts: • Security and privacy→ Public key (asymmetric) techniques; Cryptography; Crypt-
analysis and other attacks; • Theory of computation→ Quantum computation theory; Computational
complexity and cryptography; • Computer systems organization→ Quantum computing.

Additional Key Words and Phrases: Post-quantum cryptography, public-key encryption, code-based cryptog-

raphy, Grover, Prange, Lee-Brickell, ISD, Information Set Decoding

ACM Reference Format:
Simone Perriello, Alessandro Barenghi, and Gerardo Pelosi. 0000. Improving the Efficiency of Quantum

Circuits for Information Set Decoding . ACM Trans. Quantum Comput. 1, 1, Article 1 (January 0000), 41 pages.

https://doi.org/10.XXXX/YYYYYYYY.ZZZZZZZ

1 INTRODUCTION
The work [62] of Shor, detailing a quantum algorithm to attack the RSA cryptosystem exponentially

faster than any known classic algorithm — later adapted to attack cryptosystems based on elliptic

curves [57] — created the need for cryptographic schemes capable of withstanding both classical

computing and quantum computing attacks.

The quest for cryptographically sound primitives spurred the US National Institute of Standards

and Technology (NIST) [51] to run a standardization initiative program for Post-Quantum Cryptog-

raphy (PQC), started in 2016. The EU ETSI, on the other hand, established in 2020 a working group
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on quantum safe cryptography [27], with the aim of assessing and making recommendations for

quantum-safe cryptographic primitives.

Error-correcting codes, formalized by Shannon in [61] and originally thought as a way of

detecting and correcting corrupted piece of information over a noisy communication channel, have

seen an increasing interest in their use as the backbone of asymmetric cryptosystems, as shown by

NIST decision arrived in mid-2022 of advancing all code-based cryptographic schemes to the fourth

stage of the competition [49]. Indeed, in order to have an alternative to lattice-based cryptosystems,

NIST suggests in the same report that one of the three code-based candidates, namely Classic

McEliece [12], BIKE [3] and HQC [47], will be standardized with high probability. For the only other

alternative cryptosystem advanced to the fourth round, SIKE [35], an efficient polynomial-time

algorithm has just recently been found [18], making its advancement to the standardization stage

unlikely. It is therefore crucial to accurately assess the computational complexity of an attack

to code-based cryptosystems accelerated through the help of a quantum computer, in order to

precisely tune the parameters for these cryptographic schemes.

Code-based cryptographic schemes, dating back to the proposal by Robert McEliece [46], build

their security on the hardness of the (search-)syndrome decoding problem (SDP), proven to be

NP-hard in [10]. The problem can be summarized as finding a solution to an underconstrained set

of simultaneous linear equation, having a fixed amount of non-zero elements. The best known

classical algorithm to solve SDP, called Information Set Decoding (ISD), still runs in exponential

time, while theorized quantum-aided attacks do not go beyond the quadratic speed-up provided

by Grover’s framework [31]. The first work theorizing a potential speed-up in the ISD attack

accelerated by a quantum computer [11] showed indeed a considerable decrease in the amount of

computation required when Grover’s framework is used. The work, however, did not present any

concrete circuit, offering only asymptotic estimates in terms of number of gates and number of

qubits. To the best of our knowledge, the first concrete implementation of a full quantum circuit

using the ISD strategy to solve the SDP problem was reported in [54], in which the authors report a

computational effort smaller by a factor of 2
4
with respect to the asymptotic effort estimated in [11],

for cryptographically relevant sizes of the problem instance. In the same work, they also show how

the parameter choices made for BIKE and Classic McEliece results in a larger computational effort

than the one required by NIST, which was set as a comparison to the effort of breaking symmetric

cryptosystems. Recently, the authors of [26] reported a similar implementation of a quantum SDP

solver based on the ISD strategy, and proposed a strategy trading off number of qubits with circuit

depth.

Contribution. In this article, we present a quantum circuit implementing the Prange variant of

the ISD strategy to solve the SDP, extending and improving the work [54], as well as improving the

current state-of-the-art. We provide exact measures for the gate count (size), number of required

qubit (width), and depth of our quantum circuit design. Our measures depend only on the linear

code parameters, allowing code designers to fine-tune them to match the desired security level.

• We improve the depth × width figure with respect to the previous theoretical proposals

presented in [11], the estimates provided in [25] and the implementations detailed in [54]

and [26]. The improvements are mainly due to an adaptation of the classical decoding one

out of many strategy [60] to our quantum circuit, and to a series of optimizations to the

state-of-the-art proposal for a quantum version of the Gauss-Jordan Elimination (QGJE)

circuit presented in [54].

• We evaluate, according to the criteria specified by NIST, the complexity of carrying out

attacks against all the code-based cryptosystems advanced to the fourth round of the NIST

Post-Quantum standardization initiative, namely Classic McEliece, BIKE and HQC, extending
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the previous analysis presented in [54], limited only to the first two of the three candidates. To

retrieve our measures, we target both a reversible gate set extended with uncontrolled phase-

rotation gates (i.e. R𝑦), and the Clifford + T gate set, which is the most promising candidate for

fault-tolerant quantum computation. The latter gate set allows a direct comparison against the

best known quantum circuits designed to bruteforce the AES cryptographic scheme [67, 44].

• By constraining the depth of our circuits, and hence parallelizing our algorithm across

multiple instances, we show that the parameter choice for the Classic McEliece intended to

be matching the robustness of AES-192, yields an ISD strategy which can be solved with ≈ 2
4

less computational effort than the expected bar, a concern already brought forward in [25]

and by NIST itself in its latest report [49].

• We show that the most convenient way to attack code-based post-quantum cryptosystems

relying on quasi-cyclic random codes (i.e., HQC and BIKE) is to employ our quantum Prange

ISD approach. Indeed, taking the symmetric cipher AES-128 as the bar for the parameters’

selection, the code length required to ward-off a quantum cryptanalytic attack exceeds the one

required to ward-off the classic attack (considering quantum and classic attacks against AES

as the bars, respectively). This fact shows that the design of the parameters for cryptosystems

such as BIKE and HQC should take into account the results derived from our quantum

circuit. By contrast, for the Classic McEliece cryptosystem, the estimates on the parameters

required to match the computational effort of breaking AES-128 either classically or not yield

substantially the same figures.

2 BACKGROUND
In this section, we provide a summary of the basics of code-based cryptography and the ISD

technique. We recall the framework proposed by Grover in [31], and we conclude the section

providing a background on two classical algorithmic techniques, sorting networks and Hamming

weight computation via adder trees, for which we employed the quantum counterparts in our

quantum circuits.

Notation. Vectors in this work are denoted with lowercase bold letters, e.g., v. They have a

finite dimension, and their elements are in the set {0, 1}, i.e. a vector having 𝑑 components is said

to belong to the finite, binary field ∈ F𝑑
2
. A subscript to the column vector of the form v𝑖 denotes

element at index 𝑖 of vector v, 0 ≤ 𝑖 ≤ 𝑑−1, while vS denotes the projection of the elements of v
on the indexes of the set S, i.e. vS = {v𝑖 |𝑖 ∈ S}.

Finite, binary matrices are denoted as uppercase boldface letters, e.g., M ∈ F𝑑1×𝑑2
2

, where 𝑑1 and

𝑑2 denote the number of rows and columns respectively. Similarly to the vector case, we denote

with M𝑖, 𝑗 the element of the matrix at row 𝑖 and column 𝑗 , 0 ≤ 𝑖 ≤ 𝑑1−1 and 0 ≤ 𝑗 ≤ 𝑑2−1. The
notation MS1,S2 denotes a selection of the rows indexed by the elements in S1 and of the columns

indexed by the element in S2, i.e.MS1,S2 = {M𝑖, 𝑗 |𝑖 ∈ S1, 𝑗 ∈ S2}. In this context, we use the colon

to represent the set of all rows, i.e.M𝑖,: denotes the vector obtained taking all the elements of matrix

M in row 𝑖 . By extension, MS1,: is the matrix obtained selecting the rows indexed by the elements

in S1, while keeping the whole set of columns. The colon notation is extended to the selection of

one or multiple rows, denoted as M:, 𝑗 or M:,S2 respectively.
Finally, we use the notation Wt (v) to denote the Hamming weight of the vector v, i.e. the

number of its elements different from 0.
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2.1 Linear error-correcting codes
A binary linear code C is a linear subspace of the vector space F𝑛

2
having dimension 𝑘 . A linear

code is used to encode a message, represented as a 𝑘-length binary vector m ∈ F𝑘
2
, into another

binary vector c ∈ F𝑛
2
, called codeword, belonging to C. The encoding is done through the addition

of 𝑟=𝑛−𝑘 bits, called redundancy bits, to m. Denoting as y a corrupted codeword, we can express it

as the bitwise sum of two binary vectors ∈ F𝑛
2
, namely the original codeword c and an error vector

e, i.e., y = e + c, withWt (e) = 𝑡 .

The encoding process can be described through a standard matrix-vector multiplication between

a matrix G ∈ F𝑘×𝑛
2

, called generator matrix, and the original message m, i.e., C = {c | c = G𝑇m}. In
our work, we will use the alternative, though equivalent, formulation of the code through the matrix

H ∈ F𝑟×𝑛
2

, called parity-check matrix, such that HG𝑇 = 0𝑟×𝑘 and therefore C = {c | Hc = 0𝑟×1}. The
decoding process, on the other hand, consists in removing the 𝑟 redundancy bits from the (possibly)

corrupted codeword y = c + e. The codeword decoding problem (CDP) consists in retrieving the

original codeword c starting from y. Given the linearity of the code, the two challenges of retrieving

either c or e starting from y are equivalent. In this work we thus consider the syndrome decoding

problem (SDP), that asks to retrieve the error e given only its syndrome vector s = Hy = H(c+e) = He.

2.2 Code based cryptosystems
The use of linear codes as a way to build trapdoor functions for cryptographically-safe primitives

is justified by the result of [10], showing that the decision version of both CDP and SDP are

NP-complete if the matrix H is randomly chosen among the ones in F𝑟×𝑛
2

having rank 𝑟 . The first

public-key cryptographic scheme based on linear codes was proposed by McEliece in [46]. The

proposal uses as a private key a parity-check matrix H′ for which an efficient decoding algorithm

correcting up to weight 𝑡 errors is known, together with a random non-singular matrix A𝑟×𝑟 and
a random permutation matrix P𝑛×𝑛 . If the matrix H = AH′P is indistinguishable from a random,

full-rank one, this allows its use as a public key. In order to encrypt a message, the sender encodes

the message in an error vector e of weight 𝑡 , computes the syndrome s = He and sends it through

an insecure channel. An attacker willing to recover e is then forced to find a solution to the SDP for

a random-looking H, while the legitimate receiver can simply compute s′ = A−1s and efficiently

solve the SDP for the non-random H.
TheMcEliece cryptosystemwithstood deep scrutiny over the years and, since no efficient classical

or quantum attack undermining its security has been found up to now, it was promoted to the

fourth round as a finalist in the NIST Post-Quantum Cryptography initiative [49]. New families of

codes yielding on smaller key sizes have been proposed, such as the Quasi-Cyclic Moderate-Density

Parity-Check codes (QC-MDPC) presented for the first time in [48]. Their design builds upon the

theory of quasi-cyclic codes. More specifically, for the proposed codes, denoting the code length 𝑛

as the product of two positive integers, 𝑛 = 𝑛0𝑟 , the parity-check matrix H of a quasi-cyclic code is

described with 𝑛0 circulant matrices of size 𝑟×𝑟 . Each of the circulant matrices, called circulant block

is defined starting from a single row, generating all the other 𝑟 − 1 ones by cyclically shifting it by

an amount in {1, . . . , 𝑟 − 1}. This allows a significant reduction in the size of the public key, as the

public quasi-cyclic parity check matrix can be reconstructed from a single row. The main drawback

of QC-MDPC codes is that the cyclic structure of the parity-check matrix can be exploited in order

to parallelize the solution to the SDP. Indeed, by shifting 𝑟−1 times the given syndrome s, we can
derive a set of 𝑟 distinct associated syndromes, corresponding to the same cyclic shifts in the error

vector e that we want to retrieve. All of these instances are associated to the same parity-check

matrix H and the same weight 𝑡 and, acting on 𝑟 distinct syndromes, can be run in parallel. Finding

the solution for any of the 𝑟 syndromes allows to immediately retrieve the required error vector.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 0000.
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Algorithm 1: Prange algorithm
Input :H: 𝑟×𝑛 parity-check matrix

s: 𝑟×1 syndrome

𝑡 : weight of e
Output :e: 𝑛×1 column vector s.t.

He = s,Wt (e) = 𝑡

Data :P: 𝑛×𝑛 permutation matrix

Ĥ: H after permutation

H̃: Ĥ after GJE

s̃: s after GJE
1 repeat

// random choice of J
2 P← RandomPermutation (𝑛)

// error vector is ê = P⊺e
3 Ĥ← HP
4 [H̃ | s̃] ← GJE

(
[Ĥ|s]

)
5 [W𝑟×𝑟 | V𝑟×𝑘 ] ← H̃
6 untilWt (s̃) ≠ 𝑡 orW ≠ I𝑟
7 ê← [s̃ | 0⊺

1×𝑘 ]
8 return e = Pê

Algorithm 2: Gauss-Jordan Elimination GJE

Input :L: 𝑟×𝑛 + 1 matrix, 𝑛 > 𝑟
Output :L in reduced-row echelon form, or

failure

1 for 𝑥 ← 0 to 𝑟 − 1 do
2 𝑖 ← 𝑥

// Part 1.
// Put 1 in pivot position if it

contains a 0
3 while 𝑖 < 𝑟 and L𝑖,𝑥 = 0 do
4 𝑖 ← 𝑖 + 1
5 if L𝑖,𝑥 = 0 then
6 return ⊥
7 if 𝑥 ≠ 𝑖 then
8 swapRow

(
L𝑥,:, L𝑖,:

)
// Part 2.

// Put 0 in all elements above and
below pivot

9 for 𝑖 ← 0 to 𝑟 − 1 do
10 if 𝑖 ≠ 𝑥 and L𝑖,𝑥 = 1 then
11 L𝑖,: ← L𝑖,: ⊕ L𝑥,:
12 return L

Pseudo-code for the classical implementation of Prange’s algorithm, calling in its loop body the Gauss-Jordan
Elimination (GJE) function acting on the augmented matrix L = [Ĥ | s].

Depending on the desired degree of parallelization, we can tune the number of instances𝑀 , with

1 ≤ 𝑀 ≤ 𝑟 .

2.3 Information Set Decoding
The most efficient method known to solve the SDP generically relies on the fact that knowing

the 𝑘 error-free positions of the corrupted codeword y allows the retrieval of the corresponding

information word m, as it uniquely identifies it.

The first work employing the Information Set as a decoding technique is due to Prange [56].

Prange’s ISD technique considers a set I ⊆ {0, . . . , 𝑛 − 1} of size 𝑘 , the Information Set, or equiva-

lently, the complement set J = {0, . . . , 𝑛 − 1} \ I of size 𝑛 − 𝑘 = 𝑟 . After randomly guessing J ,

the proposed algorithm proceeds by assuming that the error vector e, withWt (e) = 𝑡 , has all its

𝑡 asserted bits in the positions indexed by J . As a consequence, all the bits of e in the positions

indexed by I are 0. We can express the previous desiderata as eI = 0𝑘×1, while Wt

(
eJ

)
= 𝑡 .

We can split the syndrome computation, originally obtained as s = He, as the bitwise addition
between two distinct vectors, i.e. s = H:,JeJ ⊕ H:,IeI . When the assumption made by Prange is

true, that is, eI = 0𝑘×1, the value of the syndrome is s = H:,JeJ , which can be seen as a system

of linear equations with unknown eJ . If H:,J is invertible, we can derive eJ =
(
H:,J

)−1s and,
from there, reconstruct the whole error vector e. If either the submatrix H:,J is not invertible or

Wt

(
eJ

)
=

(
H:,J

)−1s ≠ 𝑡 , the algorithm proceeds to guess another random J and restarts.

This approach is summarized in Algorithm 1. At line 2, we associate the random choice of J to

a random permutation matrix P∈F𝑛×𝑛
2

, used in the next line to bring the columns of H indexed by

J to its leftmost 𝑟×𝑟 portion, leading to a new matrix Ĥ = HP = [H:,J | H:,I]. To note that, from

s = He, we also derive s = (HP) (P⊺e), that, by renaming the two parts of the equation, can be seen

as the new system of linear equations s = Ĥê, with unknown vector ê = [eJ | eI]. The condition on
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the invertibility on the 𝑟×𝑟 matrix H:,J is restated as a check on the matrix H̃ = GJE

(
Ĥ
)
, in which

GJE (·) denotes the GJE algorithm: if, after the GJE procedure, H̃ has an identity in its rightmost

𝑟×𝑟 submatrix, then the initial matrix H:,J was invertible. While performing the GJE algorithm, we

also obtain the vector s̃ =
(
Ĥ:,{0,...,𝑟−1}

)−1
s by building the augmented matrix L𝑟×(𝑛+1) = [Ĥ|s] and

then performing GJE (L). If the leftmost 𝑟×𝑟 submatrix of the result is an identity matrix and s̃ has
weight 𝑡 , we can trivially retrieve e.

Prange’s algorithm is a Las Vegas algorithm, i.e., a randomized algorithm outputting the correct

result — the value of e — using a probabilistic amount of computational time. Its runtime can be

computed starting from the probability of success, Pr𝑠𝑢𝑐𝑐−𝑃𝑅 , of a single iteration of the outer loop.

Since for each loop iteration the matrix P, corresponding to a specific choice of J , is independent

of all other iterations, the probability of success of a single loop iteration is independent of the

others.

The first factor of this probability is obtained by dividing the number of permuted error vectors

matching Prange’s requirements, i.e. all the vectors of length 𝑟 and weight 𝑡 ,
(
𝑟
𝑡

)
, divided by the

total number of error vectors, i.e. all the vectors of length 𝑛 and weight 𝑡 ,
(
𝑛
𝑡

)
.

To note that this part of the probability can also be expressed as the division between

(
𝑛−𝑡
𝑟−𝑡

)
and

(
𝑛
𝑟

)
since, among all the

(
𝑛
𝑟

)
choices of distinct J , we need the one placing all the 𝑛 − 𝑡

zeros in exactly 𝑟 − 𝑡 positions of the 𝑟 -length vector eJ . The second and last contribution to

the probability of success of a single iteration is given by the probability that the leftmost 𝑟×𝑟
submatrix is invertible, which corresponds to finding an identity matrix after the GJE procedure.

We recall that the probability that a random 𝑟×𝑟 binary matrix is non-singular is

∏𝑟
𝑖=1 (1 − 2−𝑖 ), a

value quickly converging to ≈ 0.288 for increasing values of 𝑟 .

The cost C𝑖𝑡𝑒𝑟 of a single iteration of Prange’s algorithm is dominated by the GJE algorithm,

detailed in Algorithm 2, applied to the augmented matrix L = [Ĥ | s]. The procedure iterates on
the 𝑟 rows of L and, for each such a row, denoted by 𝑥 , makes two different kinds of operations.

The first one (Part 1 in the algorithm) corresponds to finding the first row L𝑖,:, 𝑥 ≤ 𝑖 < 𝑟 , such that

L𝑖,𝑥 is not null (lines 2– 4). If no such row exists, the random choice of J selected a singular 𝑟×𝑟
submatrix of H, and the procedure aborts. Indeed, for all ISD algorithms, since we want to check

on the invertibility of the submatrix HJ , it is not sufficient to only have the matrix in row-reduced

echelon form — we specifically need the leftmost 𝑟×𝑟 submatrix of L matrix to be an identity

matrix. When, instead, such a row L𝑖,: is found, the algorithm swaps it with L𝑥,:, ensuring that

L𝑥,𝑥 = 1 (line 8). The second operation (Part 2 in the algorithm) sets to 0 all the elements above

and below the pivot by adding the row L𝑥,: to all the other rows L𝑖,:, 𝑖 ≠ 𝑥 , whenever L𝑖,𝑥 = 1. The

computational complexity of Algorithm 2, as reported in [54], is C𝐺𝐽 𝐸 = O
(
3𝑛𝑟 2

4
+𝑛𝑟

4
−𝑛

2
+ 3𝑟 2

4
− 𝑟

2

)
bit operations. The remaining factor in the cost of Prange’s algorithm, denoted as C𝐻𝑊𝐶𝐶 , is the

cost of computing the Hamming weight of s̃ and check that it has weight equal to 𝑡 , which is in

O(𝑟 ). Overall, the cost of Prange’s algorithm is therefore

C𝑖𝑡𝑒𝑟

Pr𝑠𝑢𝑐𝑐−𝑃𝑅
≈

(
𝑛
𝑡

)
0.288

(
𝑟
𝑡

) (
C𝐺𝐽 𝐸 +C𝐻𝑊𝐶𝐶

)
≡

(
𝑛
𝑟

)
0.288

(
𝑛−𝑡
𝑟−𝑡

) (
C𝐺𝐽 𝐸 +C𝐻𝑊𝐶𝐶

)
(1)

2.4 Grover’s algorithm
Grover’s algorithm, presented in [31], solves the following search problem: given a function

𝑓 : {0, 1}𝑛 → {0, 1} to which a black-box access is provided, find the unique argument 𝑥∗ such
that 𝑓 (𝑥∗) = 1. In the query-model, which is used to evaluate Grover’s algorithm and to show its

speedup, we are given a black-box access to a quantum circuit𝑈𝑓 implementing 𝑓 . The goal is to
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|ψ0⟩
n

|0⟩⊗m
m

|0⟩
Uf

|f(x)⟩ Z

Uf
†

|ψ1⟩
|0⟩⊗m

|0⟩

(a)

q

|0⟩

...

|f(x)⟩ Z

=
q ...

(b)

Fig. 1. (a) Implementation of Grover’s oracle circuit𝑈𝑂 through the𝑈𝑓 . Starting from state |𝜓0⟩, we obtain,
at the end of the circuit, a state |𝜓1⟩ which has the same basis states of |𝜓0⟩, but a different sign on the
amplitude of the searched basis state |𝑥∗⟩. (b) Two equivalent circuits to perform the sign flip on the amplitude
of the basis state |1𝑞⟩ stored on 𝑞 qubits. While the first one requires a multi-controlled X gate and a Z

gate using one additional ancilla qubit, the other requires only a multi-controlled Z without ancillae. The
multi-controlled Z is represented in the rightmost quantum circuit without an explicit Z box as it alters the
phase of the entire basis component if all controlling qubits are set to one

use as few applications as possible of𝑈𝑓 to find 𝑥∗. In the classical computing paradigm, we have

to query the function 𝑓 — or equivalently, the classical circuit implementing it— 2
𝑛
times in the

worst case, and 2
𝑛−1

times on average. In contrast, the quantum algorithm proposed by Grover,

after encoding all the bitstrings composing the domain of 𝑓 as quantum basis states, performs only

≈ 2
𝑛/2

queries to retrieve 𝑥∗, achieving therefore a quadratic speedup. Grover’s algorithm can be

expressed using three main stages: (1) input preparation, (2) oracle, (3) diffusion. By repeating (2)

and (3) ≈ 2
𝑛/2

times, the probability of observing the basis state |𝑥∗⟩ encoding the wanted state 𝑥∗

upon measurement get close to 1.

Input preparation stage. In the input preparation stage, a uniform superposition of all 2
𝑛
basis

states belonging to the domain {0, 1}𝑛 of 𝑓 is prepared. Such a superposition is obtained through a

layer of H gates applied to 𝑛 input qubits, initially in state |0⟩. After the application, we obtain

|𝜓0⟩ = 𝐻⊗𝑛 |0𝑛⟩ = 1

√
2
𝑛

2
𝑛−1∑︁
𝑥=0

|𝑥⟩

If the domain of the function 𝑓 is not composed by all the Boolean strings of length 𝑛, but it is

instead 𝐷 ⊂ {0, 1}𝑛 , the input preparation stage is implemented with a dedicated quantum circuit

𝑈𝐷 preparing a uniform superposition of only the basis states labeled as bitstrings belonging to 𝐷 ,

i.e.

|𝜒0⟩ = 𝑈𝐷 |0𝑛⟩ =
1√︁
|𝐷 |

∑︁
𝑥∈𝐷
|𝑥⟩ (2)

Oracle stage. In Grover’s original framework, the oracle is considered as a black-box circuit

implementing 𝑓 and additionally changing the sign of the amplitude associated to the basis state

|𝑥∗⟩ encoding the input bitstring 𝑥∗ we are looking for. The goal of this circuit, denoted as𝑈𝑂 , is to

obtain a new state

|𝜓1⟩ = 𝑈𝑂 |𝜓0⟩ =
1

√
2
𝑛

©«− |𝑥∗⟩ +
∑︁

𝑥∈{0,1}𝑛,𝑥≠𝑥∗
|𝑥⟩ª®¬

which, for our proposed circuit, becomes

|𝜒1⟩ = 𝑈𝑂 |𝜒0⟩ =
1√︁
|𝐷 |

(
− |𝑥∗⟩ +

∑︁
𝑥∈𝐷,𝑥≠𝑥∗

|𝑥⟩
)

(3)
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It is easy to see, from the previous equations, that the oracle operator can be expressed as 𝑈𝑂 =

𝐼 − 2 |𝑥∗⟩ ⟨𝑥∗ |, a notation used to highlight that the unitary matrix denoting the quantum circuit

𝑈𝑂 only changes the amplitude associated to |𝑥∗⟩, leaving all other basis states untouched. This
operator, indeed, can be seen as the operator performing an inversion around the set of basis states

orthogonal to |𝑥∗⟩.
The main ingredient of the oracle circuit is the quantum circuit 𝑈𝑓 implementing the Boolean

function 𝑓 . The𝑈𝑓 circuit, after computing 𝑓 (𝑥), stores the results on an additional qubit, initialized

to |0⟩, as |𝑓 (𝑥)⟩. For non-trivial functions,𝑈𝑓 also involves additional𝑚 qubits in order to carry on

the computation in a reversible way. As shown in Figure 1a, the flip in the sign of the amplitude of

the wanted state performed by the oracle can be computed applying a Z gate on the qubit storing

the result of the computation.

Usually, for the circuit implementing 𝑈𝑓 , there is a multi-controlled X gate right to the end that,

if the state of some set of 𝑞 qubits is equal to |1𝑞⟩, 1 ≤ 𝑞 ≤ 𝑚 + 𝑛, sets the output qubit to |1⟩.
This part of the circuit, that we denote as C

𝑞 (X), is shown on the left side of Figure 1b. However,

since the goal of the overall𝑈𝑂 circuit is to perform a phase flip on the amplitude of |𝑥∗⟩, we can
avoid the use of the additional ancilla qubit storing the result, directly using a multi-controlled Z

gate, denoted as C
𝑞 (Z), involving only the 𝑞 qubits, as shown on the right side of Figure 1b. This

alternative approach can be seen as using a different function 𝑓 ′ : 𝐷 → {0, 1}𝑞 , that is such that

𝑓 : 𝐷
𝑓 ′

−→ {0, 1}𝑞
𝑔
−→ {0, 1}, in which 𝑔 computes the logic and of the bits composing the output

of 𝑓 ′. In other words, 𝑓 ′ produces an all 1’s bitstring of length 𝑞 if the same conditions of 𝑓 are

satisfied. The circuit𝑈𝑓 ′ implementing 𝑓 ′ will need therefore one less qubit.

As a final remark, we notice that we can express the whole oracle circuit as 𝑈𝑂 = 𝑈𝑓 ′𝑈𝑥∗𝑈
†
𝑓 ′ , in

which𝑈𝑥∗ corresponds to applying the C
𝑞 (Z) gate involving the 𝑞 qubits storing the results, while

the quantum circuit implementing𝑈
†
𝑓 ′ has the same gates of𝑈𝑓 ′ , but applied in reverse order and

with complex conjugated parameters with respect to the𝑈𝑓 ′ .

Diffusion stage. The diffusion stage of Grover’s algorithm is expressed as the operator𝑈𝜓0
=

H
⊗𝑛𝑈0H

⊗𝑛
applied to the first 𝑛 qubits. Operator 𝑈0, expressed as 𝐼 − 2 |0𝑛⟩ ⟨0𝑛 |, is analogous to

the𝑈𝑥∗ of the oracle stage, performing an inversion around the state |0𝑛⟩. As before, to implement

it we have to use a multi-controlled Z gate, this time acting on all the 𝑛 qubits storing the input of

our circuit and therefore defined as C
𝑛 (Z). Generalizing the formulation of this stage to adapt it

to our algorithm, we defined the diffusion stage as𝑈𝜒0 = 𝑈𝐷
†𝑈0𝑈𝐷 , in which 𝑈𝐷 is the quantum

circuit we used to prepare our input.

Since the standard C
𝑛 (Z) gate flips the sign of the amplitude if and only if all the input qubits

are in state |1⟩, while we want instead a rotation if and only if all of them are in state |0⟩, we need
to apply a wall of X gates on all the 𝑛 qubits before and after the C

𝑛 (Z) gate. We denote this circuit

as𝑈1 = X
⊗𝑛𝑈0X

⊗𝑛
.

Number of iterations. Grover observed that, at each iteration, the amplitude of the sought state

|𝑥∗⟩ increases by ≈ 1/
√
2
𝑛
— which becomes ≈ 1/

√︁
|𝐷 | in the case of our modified algorithm —

while at the same time the amplitudes of all other states decrease. After applying the oracle and

diffusion stage ≈ 𝑂 (
√
2
𝑛), we have a probability close to 1 to observe the wanted state |𝑥∗⟩ upon

measurement. In [16] it is shown how executing half of the said number of repetitions provides a

success probability close to 50%. Moreover, they also show how the optimal number of iterations is

indeed close to 0.58278 ·
√
2
𝑛
, obtaining a success probability close to 0.84458. Finally, they also

show how if, instead of having a single state |𝑥∗⟩ for which our function 𝑓 evaluates to 1, we have

𝑀 of them, the number of repetitions decreases by

√
𝑀 .
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Fig. 2. (a) Comparator element employed in a sorting network. (b) A 4-wires sorting network, used to sort a
4-bits string. (c) A binary adder tree computing the Hamming weight of a 4-bits string.

2.5 Sorting networks
A key component of our oracle implementation is a restructuring of the classical circuit used to

sort an 𝑛-length bitstring into its reversible variant. Different alternatives of such circuits, known

as sorting networks, are extensively analyzed in [43, Chap. 5.3.4]. All of them have as their building

block a comparator element, depicted in Figure 2a, that upon receiving two bits on its two input

wires 𝑎 and 𝑏, outputs the maximum between them on the top wire and the minimum on the

bottom one. The comparator can analogously be thought as a device that, taking as input two wires

𝑎 and 𝑏, swaps them only if 𝑎 < 𝑏, while it does nothing in all other cases. The idea underlying a

sorting network is to use a fixed sequence of such comparators, organized in layers as shown in

Figure 2b, in order to obtain at the end of the circuit a bitstring with all the 1’s on top and all 0’s on

the bottom. The values on the wires at the end of the circuit, read from bottom to top, represent

the sorted version of the input bitstring.

All comparators in a layer act on different pairs of wires. A comparator object can produce an

output value only when both of the values on its input wires are ready. If we assume that the

computation of each comparator takes a fixed amount of time, which is realistic given that all the

comparators have the same identical structure, the running time of the overall sorting network is

given by the largest number of comparators acting on any wire, a quantity known as depth. Since

inside each layer all the comparators can be run in parallel, the total depth of the network is given

by the number of layers, and it is not directly influenced from the total number of comparators.

Distinct amounts and configurations of comparator layers can be employed to achieve the sorting

of the 𝑛 values present on the input wires. The two main factors to consider when evaluating the

efficiency of a sorting network are the number of comparators used and the degree of parallelization

that they can reach. Indeed, there exist several sorting networks specialized for fixed 𝑛, minimizing

either the amount of comparators or the depth. Since our primary objective is to embed the sorting

network in a quantum circuit in the most general way, we focused on generalizable proposals

minimizing the overall depth.

For bitstrings having 𝑛 ≈ 2
10
, as it happens in our scenario, [1] reports a design having an asymp-

totically optimal depth, i.e., O(log(𝑛)). However, Knuth reports in [43, Chap. 5.3.4] that this network
design is not of practical interest, since the constants hidden by the asymptotic notation are signifi-

cant. We employ therefore the sorting network topology detailed in [19, Chap. 27.5], where a careful

analysis of the network gives a total number of comparators equal to (𝑛 − 1) log
2
(𝑛) (log

2
(𝑛) − 1)

and a total depth of
1

2
log

2
(𝑛) (log

2
(𝑛) + 1). Figure 2b shows an example of such a network applied

to an 𝑛 = 4-length input bitstring.

2.6 Hamming weight computation
In our quantum SDP solver, we need to compute the Hamming weight of a binary string. This

computation can be efficiently carried out by a binary tree composed of integer adders with a
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suitable operand width. The underlying concept behind the classical circuit known as binary adder

tree is to use a cascade of adders, organized in layers composed of adders of increasing sizes, in order

to perform the sum of two input bitstrings. We exploit the binary adder tree design to compute the

Hamming weight of an 𝑟 -length bitstring, with 𝑟 being a power of two.

The number of layers of an adder tree circuit is log
2
(𝑟 ). The first layer is composed by 𝑟/2 adders

adding together 2 distinct single bits of the original bitstring. All the following layers compute a

sum based on the output of the previous layers, adding their results in pairs, and hence involving

addends whose bitsize increases by 1 with respect to the previous layer. In other words, at layer 𝑖 ,

each adder of the 𝑖-th layer takes as input two distinct length-𝑖 bitstrings and produces in output

an 𝑖 + 1 bitstring, 1 < 𝑖 ≤ log
2
𝑟 . An example of such a circuit is shown in Figure 2c.

In the 𝑖-th layers, 𝑟/(2𝑖 ) adders are employed, leading to a total count of

∑log
2
(𝑟 )

𝑖=1
𝑟/2𝑖 = 𝑟 − 1

adders. The overall number of gates required is given by

log
2
(𝑟 )∑︁

𝑖=1

𝑟

2
𝑖
· AdderGates (𝑖) (4)

where AdderGates (𝑖) denotes the gate cost of an adder taking as inputs two 𝑖-length bitstrings.

The tree structure allows taking advantage of parallelism, reducing the overall depth of the

circuit. All the adders acting at the same level have an identical structure and, acting on different

qubits, can be run in parallel. For this reason, the overall depth of the circuit is

log
2
(𝑟 )∑︁

𝑖=1

AdderDepth (𝑖) (5)

where AdderDepth (𝑖) denotes the depth of an adder taking as inputs two 𝑖-length bitstrings.

3 A QUANTUM CIRCUIT FOR PRANGE’S ISD
Notation. We will denote a set of qubits composing a quantum register as qreg. Since, in our

work, a quantum register is used to hold either a binary matrix M or a binary vector v, we will use
the same notation for matrices and vectors introduced at the beginning of Section 2. Thus, v𝑖 will
denote the qubit of v corresponding to the element at position 𝑖 in the vector v, while M𝑖, 𝑗 the qubit
corresponding to elementM𝑖, 𝑗 of the matrix. We extend the colon notation to the quantum registers

as well, therefore using M𝑖,: (M:, 𝑗 ) to denote the set of qubits corresponding to all the elements ofM𝑖,:

(M:, 𝑗 ). Analogously, MS1,: (M:,S2 ) is used to express the elements belonging to MS1,: (M:,S2 ).

3.1 Adapting Grover’s framework to the ISD technique
To employ Grover’s framework to accelerate the Prange ISD solver, we rephrase the ISD strategy as

a search procedure for a solution of the Boolean function 𝑓 ′ : 𝐷 → {0, 1}𝑞 , in which 𝐷 ⊂ {0, 1}𝑛 is

defined as the set of all binary vectors of length 𝑛 having weight 𝑡 ,𝐷 = {v | v ∈ {0, 1}𝑛,Wt (v) = 𝑡}.
The size of our domain is |𝐷 | =

(
𝑛
𝑡

)
, since this is the number of distinct vectors of length 𝑛 having

weight 𝑡 . The choice of such a domain is motivated by the use of the vectors belonging to it as

a way to represent the Information Set complement J . That is, J = { 𝑗 | v𝑗 = 1, v ∈ 𝐷}, which
expresses that the set of all the indexes of the asserted bits of a vector belonging to the domain

corresponds to J . The function 𝑓 ′ will output the bitstring 1
𝑞
if and only if (i) the given choice of

J selected a matrix H:,J which is invertible and (ii) the syndrome vector s̃ has weight equals to 𝑡 .
In the following, we also detail how to adapt our quantum circuit to the case in which we have

𝑀 > 1 syndromes at our disposal, all associated to the same parity-check matrixH and error-weight

𝑡 , which is useful to accelerate the attack against the circulant codes presented in Section 2.2. We can
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indeed adapt the algorithm performing Gauss-Jordan Elimination (GJE) presented in Algorithm 1

by building an augmented matrix L of size 𝑟×(𝑛+𝑀), at the cost of an increased number of qubits.

As common in the literature, we assume that all the qubits of our quantum circuit are initially in

state |0⟩.

Input circuit: superposition of all permutations. The first challenge in adapting Grover’s

algorithm to the ISD problem is to have a circuit𝑈𝐷 capable of generating a uniform superposition

of all the

(
𝑛
𝑟

)
bitstrings of length 𝑛 and weight 𝑟 , thought as labels of

(
𝑛
𝑟

)
distinct basis states. Such a

superposition, that will be stored on a quantum register called inp of size 𝑛, can be expressed as

|𝐷𝑛
𝑟 ⟩ =

1√︃(
𝑛
𝑟

) ∑︁
Wt(𝑥 )=𝑟

|𝑥⟩ , 𝑥 ∈ {0, 1}𝑛 (6)

Many proposals result in a quantum circuit capable of producing such a state, known as Dicke

state. To the best of our knowledge, the most efficient circuit producing a Dicke state in a deter-

ministic way is the one reported in [50]. This work improved the previous best result provided

in [7] both in terms of number of gates and depth. The overall circuit for the input preparation

stage, that we denoted as 𝑈𝐷 , requires 𝑟 X, 5𝑛𝑟−5𝑟 2−2𝑛 CNOTs and 4𝑛𝑟−4𝑟 2−2𝑛+1 Ry gates. By

analyzing the circuit carefully and by using the same considerations made for the depth evaluation

in [7], we can derive an upper bound on the total depth of the circuit as the sum of the CNOTs and

Ry gates, divided by ⌊ 𝑟+1
3
⌋ − 1. The resulting depth for the input preparation circuit is therefore

≤ 27𝑛𝑟−12𝑛−27𝑟 2+3
𝑟−2 ∈O(𝑛).

Oracle operator. In this section we present the components composing our oracle circuit,

denoted as a whole as𝑈𝑂 . As explained in Section 2.4, we can describe the unitary representing

this circuit as𝑈𝑂 = 𝑈𝑓 ′𝑈𝑥∗𝑈
†
𝑓 ′ . The first four components compute𝑈𝑓 ′ and producing the state |1𝑞⟩

on a set of 𝑞 qubits, contained in a quantum register named out. Since the circuit corresponding to

𝑈𝑓 ′ does not contain phase rotations, but only classical reversible gates, the circuit corresponding

to 𝑈
†
𝑓 ′ corresponds to the application of the gates belonging to 𝑈𝑓 ′ in reverse order. Finally, the

circuit corresponding to𝑈𝑥∗ , which can be implemented by simply applying a C
𝑞 (Z) gate on the

set of qubits belonging to out for𝑀 = 1, has a slightly different structure when we are encoding a

number of syndromes𝑀 greater than one.

Data encoding: H and s as quantum states. The first subcircuit of the oracle encodes the parity-
check matrix H and the syndrome s in a quantum state. Since the input matrices only contains bits,

it is straightforward to put them in one-to-one correspondence with qubits basis states |0⟩ and |1⟩.
We denote the qubits representing H as H and the ones representing s as s. Since those set of qubits
are in state |0⟩ at the beginning of the circuit, we need to apply an X gate each time our input

binary data contains a 1. Given that H, with size 𝑟 · 𝑛, and s, with size 𝑟 , are both random-looking,

we expect on average to have𝑀 (𝑟𝑛 + 𝑟 )/2 bits set to 1, and therefore the same number of X gates

in their quantum encoding. Since all the gates can be applied in parallel, the depth of this stage is 1.

Column permutation: from H to Ĥ. The superposition obtained on the inp register will be

composed by basis states labeled as bitstrings of length 𝑛 and weight 𝑟 . The indexes of the qubits of

inp having state |1⟩ correspond to the Information Set complement J , and we logically bind each

qubit of inp to a set of qubits of H corresponding to a column of H. This stage, corresponding to
line 3 of Algorithm 1, moves the columns of H indexed by J to the left of the matrix H, obtaining
the matrix Ĥ = [HJ | HI] on the qubits of H. This is equivalent to sorting the bitstring stored in

inp in descending order, simultaneously moving the associated qubits of H corresponding to the

columns of H. For this reason, we designed a quantum circuit to sort the bitstring stored in inp,
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Fig. 3. (a) The quantum comparator used for the circuit of Section 3.1, swapping the two qubits 𝑎 and 𝑏

only if 𝑎 is in state |0⟩ and 𝑏 in state |1⟩. (b) The quantum sorting network corresponding to the example of
Figure 2b. Each of the qubits of inp is used to address a set of 𝑟 qubits of H, corresponding to a single column
of the parity-check matrix, allowing to swap its columns together with the inp register.

for which we can exploit the reversible sorting network circuit presented in Section 2.5. Figure 3a

depicts our proposal of a quantum circuit implementing a comparator element, denoted as quantum

comparator. It uses one additional qubit, denoted 𝑐 , that, starting from state |0⟩, will be put in state

|1⟩ if the qubit denoted as 𝑎 is in state |0⟩. Only in this case, we swap the amplitudes of the quantum

state associated to 𝑎 and 𝑏.

The gate count of a quantum column permutator can be trivially derived by adding together

the gate count of a single quantum comparator together with the 𝑟 additional swaps needed to

swap the 𝑟 elements of the column, i.e., 2 X gates (to convert the positive to a negative control),

1 CNOT gate and 𝑟 + 1 CSWAP gates. Analogously to the classical case, the gates belonging to

distinct quantum permutators acting at the same layer can be executed in parallel, as they compare

and swaps different sets of qubits. Therefore, for the depth computation, we can focus only on

a single quantum column permutator per layer. A significant reduction in the circuit depth is

achieved rescheduling the CSWAP gates acting on H. Indeed, the CSWAP gates inside a single

quantum column permutator are sequentially locked as they employ the same (ancilla) control

qubit. By contrast, CSWAP gates from different quantum permutators — acting on different pairs of

elements of H — can be executed in parallel, as they employ different (ancillae) controls. Since each

permutator requires 𝑟 CSWAPs for the H register, we can conclude that the number of CSWAPs

required by a single quantum column permutator is less than the number of overall permutators,

(𝑛 − 1) log
2
(𝑛) (log

2
(𝑛) − 1). As a result, we can interleave the swaps associated to different

permutators, circumventing the dependence of the CSWAPs from the same control qubit. This

scheduling leads to a total depth of log
2

2
(𝑛) + log

2
(𝑛) + 𝑟 − 1.

QuantumGauss-JordanElimination (QGJE): from [Ĥ | s] to [H̃ | s̃]. One of themajor challenges

in porting an ISD algorithm in its quantum form is the ability to find a reversible variant of the

GJE. Indeed, as we saw in Section 2.3, the dominant cost of one iteration of Prange ISD variant is

associated to this stage. At this point, we have a matrix Ĥ ∈ F𝑟×𝑛
2

and a vector s ∈ F𝑟
2
, encoded in the

state of the quantum registers H and s respectively. The goal is to perform a set of row operations

on the augmented matrix L𝑟×(𝑛+1) = [Ĥ | s], obtaining at the end a new matrix H̃ =

[
H̃ |s̃

]
. In a

later stage, we have to check that the obtained matrix H̃ has an 𝑟×𝑟 matrix in its leftmost portion.

In the general case of𝑀 > 1 distinct syndromes, the augmented matrix L has size 𝑟×(𝑛 +𝑀), since
we want to represent all the possible𝑀 syndromes on the right portion of the augmented matrix.
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Algorithm 3: Reversible Gauss-Jordan Elimination

Input :L ∈ F𝑟×𝑛+1
2

: augmented matrix, 𝑛 > 𝑟

Data :B ∈ F𝑟 (𝑟−1)/2
2

: auxiliary vector initialized to all 0’s

C ∈ F𝑟 (𝑟−1)
2

: auxiliary vector initialized to all 0’s

Output :L in reduced-row echelon form

1 𝑏 ← 0, 𝑐 ← 0

2 for 𝑥 ← 0 to 𝑟 − 1 do // 𝑥-iteration
// Part 1. Put 1 in pivot position if it contains a 0

3 if 𝑥 ≠ 𝑟 − 1 then
4 for 𝑖 ← 𝑥 + 1 to 𝑟 − 1 do // for all rows below pivot row
5 if L𝑥,𝑥 = 0 then // swap operation must be performed
6 B𝑏 = B𝑏 ⊕ 1 // ≡ B𝑏 = 1

7 if B𝑏 = 1 then // or equivalently, L𝑥,𝑥 = 0

8 swapRow(L𝑥,:, L𝑖,:)
9 𝑏 ← 𝑏 + 1

// Part 2. Put 0 in all elements above and below pivot

10 for 𝑖 ← 0 to 𝑟 − 1 do
11 if 𝑖 = 𝑥 then continue
12 if L𝑖,𝑥 = 1 then // column addition operation must be performed
13 C𝑐 = C𝑐 ⊕ 1 // ≡ C𝑐 = 1

14 if C𝑐 = 1 then // or equivalently, L𝑖,𝑥 = 1

15 L𝑖,: ← L𝑥,: ⊕ L𝑖,:
16 𝑐 ← 𝑐 + 1

However, all the additional syndromes, being treated as just other columns of L, have no impact

on the description of the algorithm, and hence we will continue to describe it for the basic case in

which𝑀 = 1.

The main challenges to the translation of Algorithm 2 in an appropriate reversible algorithm are:

(C1) a data-dependent early-abort (line 6) (C2) the presence of a non-countable loop to search for a

pivot (line 3) (C3) conditional operations acting on data also present in the condition calculation.

Algorithm 3 is semantically equivalent to Algorithm 2, but it also takes care of removing all the

previous challenges. Challenge (C1) is indeed common to all quantum algorithms. Since we act

on a quantum state composed of a superposition of distinct basis states encoding both a failure

and a success of the algorithm, we have no way to remove the basis states encoding a failure from

the superposition without compromising the whole superposition. To overcome the problem, we

need, later in our quantum circuit, an additional piece capable of detecting the failure, and hence

act accordingly without performing any external observation. In our specific case, the early abort

of Algorithm 2 due to a singular submatrix in the leftmost 𝑟×𝑟 part of Ĥ, is managed through an

a-posteriori check on the presence of an identity submatrix in this portion of H̃, and we therefore

removed altogether the runtime check in Algorithm 3.

Challenge (C2), i.e., the presence of a non-countable loop to find the pivot (lines 3 of Algorithm 2),

has to be tackled with a countable loop. Our strategy consists into having a loop sweeping over all

the rows 𝑖 , with 𝑖 starting from the one right below the pivot row 𝑥 until the last row 𝑟 − 1, and
swapping the 𝑖-th row with the 𝑥-th one only if the 𝑥-th row does not contain a valid pivot. This is

shown in line 4 of Algorithm 3.

The presence of conditional operations in our circuit, which was our challenge (C3), is overcome

employing auxiliary vectors, namely B and C. To explain why they are needed, we first analyze the

conditional operations present in our classical algorithm. Classical conditional operations (i.e., if
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conditions) are generally translated in reversible operations through the help of controlled gates.

For example, each swap operations at line 8 of Algorithm 3 can be directly implemented with 𝑛

CSWAP gates, having as control one qubit belonging to B and target a pair of elements belonging

to columns L𝑥,: and L𝑖,:. In that operation, the goal is to apply the CSWAP gates only if the pivot

of the row under analysis (L𝑥,𝑥 ) is in state |0⟩. The use of an additional ancilla belonging to B is

required because it is not possible to apply the CSWAP between the qubits containing L𝑥,𝑥 and L𝑖,𝑥 ,
having L𝑥,𝑥 acting both as target and as control of the controlled gate. Therefore, if L𝑥,𝑥 is in state

|0⟩, we set to |1⟩ the value of the corresponding ancillary qubits containing B (line 5), using its

value later to control the set of 𝑛 CSWAPs. Overall, to take into account all the pivot checks, we

need a number of ancillary qubit equal to the number of times we execute part 1 of Algorithm 3.

Following the same line of reasoning, the additional vector C is required to store, in part 2, the

results of checking if the elements below and above the pivot are equal to |1⟩. The sizes of the new
ancillary registers are therefore evaluated to be

|B| =
𝑟−2∑︁
𝑥=0

(
𝑟−1∑︁
𝑖=𝑥+1

1

)
=
1

2

𝑟 (𝑟 − 1) |C| =
𝑟−1∑︁
𝑥=0

(
𝑟−2∑︁
𝑖=0

1

)
= 𝑟 (𝑟 − 1)

andwewill use |B| and |C| to denote as well the number of times we execute part 1 and 2 respectively.

Another point worth stressing is related, once again, to line 8. Indeed, the condition of line 7,

unlike the classic algorithm, does not check that the row 𝑖 under analysis also contains a valid pivot,

but only that the current pivot of row 𝑥 is not valid. This means that, if row 𝑥 does not have a valid

pivot, we will swap rows 𝑖 and 𝑥 even if row 𝑖 does not contain an alternative valid pivot. While for

the candidate pivot of row 𝑥 nothing changes, since we are exchanging qubits in the same basis

state, the rest of the row will change, since we are performing a swap on all the elements. However,

the only goal of part 1 is to set the pivot to |1⟩, while part 2 will put all the elements below and to

the left of the pivot — and hence also the remaining elements of row 𝑥 — to |0⟩ regardless of their
previous state.

The circuit corresponding to Algorithm 3 is shown in Figure 4, which is similar to the one

reported in [54]. In this circuit, we stored the two vectors B and C inside the two quantum registers

denoted as b and c. Remember also that the values of the matrix L, containing [Ĥ | s] at the
beginning of the computation and the matrix [H̃ | s̃] at the end, are stored on the two quantum

registers H and s.
The obtained quantum circuit requires an overall number of ancillae equals to |B| + |C| =

3𝑟 (𝑟 − 1)/2. For what concerns the gate count, first we note that in order to translate each |0⟩-
control on the pivot elements of part 1 into |1⟩-control, we have to use a number of X equals to

2|B| = 𝑟 (𝑟 − 1). To check that the qubit of the candidate pivot is |0⟩ in part 1 and the elements

under pivot are |1⟩ in part 2, we need to drive a CNOT targeting an ancilla (belonging to B or C
respectively). The total number of CNOT required is therefore |B| + |C| = 3𝑟 (𝑟 − 1)/2. To swap

elements of each row in part 1 and to sum elements of each row in part 2, we need a total of

|B| · (𝑛 +𝑀) = 1

2
𝑟 (𝑟 − 1) (𝑛 +𝑀) CSWAP and |C| × (𝑛 +𝑀) = 𝑟 (𝑟 − 1) (𝑛 +𝑀) CCNOT respectively.

Compute Hamming weight of s̃. At this stage, the s register contains the representation of s̃. To
check if condition (ii) is true, that is, the Hamming weight of this register is 𝑡 , we have to check

that the bitstring labeling the quantum basis states of s has weight equal to 𝑡 . To perform such

a computation we use a reversible variant of the classical binary adder tree design presented in

Section 2.6. Numerous papers have been published to show quantum circuits to perform integer

additions between two 𝑥 qubit operands on quantum computers. The proposal of [23] exploits

the Quantum Fourier Transform (QFT) algorithm to perform quantum integer addition. The main
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Fig. 4. Basic quantum circuit employed to perform the Gauss-Jordan Elimination on the augmented matrix
[Ĥ | s] having 𝑟 = 3 and 𝑛 = 4. The quantum register containing the elements of the parity-check permuted
matrix is denoted by H, while the one containing the elements of the syndrome is denoted by s. b and c are
the registers associated to the two vectors B and C employed in Algorithm 3.
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H0,3
s0

H1,0
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H1,2
H1,3
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H2,2
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s2
b0
b1
b2
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c1
c2
c3
c4
c5

Row 0 part 1 Row 0 part 2 Row 1 part 1 Row 1 part 2 Row 2 part 2

drawback of this approach is the use of controlled arbitrary rotation gates, which are difficult to be

translated into fault-tolerant gates, such as the Clifford+T gate set.

Subsequently, other approaches were proposed, porting techniques from the classical world

into reversible circuits. These techniques all rely on the use of X, CNOT and CCNOT gates, that

have the main advantage of being less expensive to be implemented in a fault-tolerant fashion. For

example, the Cuccaro adder presented in [20] has a depth of O(2𝑥) and uses two single ancilla

qubits, while the one proposed in [63] increases the depth to O(5𝑥), while not using any additional

qubit. The first adder to go under the linear depth threshold was proposed in [24], which has the

main drawback of requiring 2𝑥 additional qubits.

Since for all the proposed adders the depth of the adder circuit grows at most linearly with

the number of input qubits, and given that the widest adder employed in the Hamming weight

check circuit has a number of input qubits equal to log
2
(𝑟 ), choosing an adder with respect to the

other does not have a significant impact on the depth of the global circuit, which will always stay

∈ O(log2
2
𝑟 ). On the other hand, since the number of adders required is 𝑟 − 1, the use of a smaller

number of qubits for each adder is expected to have a bigger impact on the overall measures. We

decided therefore to use the adder presented in [63], a reversible variant of the classical ripple carry

adder; we will refer to it as TTK adder. The TTK adder stores the sum of its input 𝑎 and 𝑏 in the

qubit where 𝑏 is stored, with one additional qubit 𝑐 for the carry-out. We need therefore exactly

𝑟 − 1 carry-out ancillary qubits Figure 5a shows an example for the case in which 𝑟 = 4.

To determine the gate count for this subcircuit, we note that a TTK adder operating on 𝑖 qubit

inputs requires 2𝑖 − 1 CCNOT gates, 5𝑖 − 5 CNOT gates, and has a circuit depth of 5𝑖 − 3. Replacing
this figures in Equation 4 and 5, we obtain the gate-count and depth reported in Table 1. Notice

how the number of gates and additional qubits required by this stage have to be multiplied by𝑀 .
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Fig. 5. (a) Hamming weight compute and check subcircuits for the s register. The result of the addition
at each step is stored on the qubits marked with a black triangle. The final result is compared against the
Boolean complement of the natural binary representation of the constant 𝑡 . (b) The oracle phase flip, involving
the qubits containing the diagonal of matrix H̃ and the ones storing the Hamming weight of s.

However, since all the𝑀 syndromes are stored on distinct qubits belonging to s̃, all the operations
can be performed in parallel, and as such, the depth is not influenced.

At level 𝑖 , the output of the sum of a single adder is stored on exactly 𝑖 + 1 qubits, as TTK’s design
reuses the qubits of one of the operands to store part of the result. Hence, in the final stage, the

final sum of a single syndrome will be stored on a register composed of log
2
(𝑟 ) + 1 qubits, denoted

as hws. In the case of 𝑀 > 1, the result of the 𝑀 distinct adder trees will be stored on 𝑀 distinct

qubits registers, denoted as hws𝑖 , each of which has size log
2
(𝑟 ) + 1. At this point, we should check

if hws — or one of the hws𝑖 if𝑀 > 1 — contains the binary representation of 𝑡 . To this end, we XOR

into the qubits of hws the Boolean complement of the natural binary representation of 𝑡 . This is

done to ensure that, if a given state is such that Wt (hws) = 𝑡 , then all the qubits contained in the

hws register will become |1⟩. In this way, they can be used as control qubits in the multi-controlled

gate of the next stage. This operation is therefore performed via a set of X gates, as the number

being added (at most log
2
(𝑟 ) + 1 if 𝑡 = 0) is smaller than 𝑟 , and can thus be represented on the

same number of qubits. We need therefore to use log
2
(𝑟 ) + 1 − log

2
(𝑡) = log

2
(𝑟/𝑡) − 1 X gates to

perform the XOR. Thus, if the output of previous stage contains a state with the binary encoding

of 𝑡 , hws will be in the basis state |1log2 (𝑟 )+1⟩. Once again, for circulant codes, the figures for the X
should be multiplied by𝑀 , while the depth stays unchanged.

Phase flip. To perform the phase flip of the oracle circuit, we need to put a set of 𝑞 qubits in state

|1𝑞⟩ if both conditions (i) and (ii) are satisfied. Condition (i) can be verified by simply checking that

the 𝑟 qubits of H containing the main diagonal of H̃ are in state |1⟩. Indeed, given the description of

the QGJE circuit of Section 3.1, it is enough to check that all the diagonal elements are in state |1⟩
to ensure that there is an identity stored in the portion of H containing the leftmost 𝑟×𝑟 part of L,
hence ensuring that the original matrix was invertible. Condition (ii), on the other hand, checks

that the weight of the syndrome s̃ is equal to 𝑡 . The previous stage of the oracle ensured indeed

that, if this is the case, the log
2
(𝑟 ) + 1 qubits of hws were all in state |1⟩. As explained in Section 2.4,

at this point, the flip in the sign of the amplitude associated to the basis state containing |𝑥∗⟩ in the

first 𝑛 qubits can be obtained by performing a multi-controlled Z gate, C
𝑞 (Z), applied on all the

𝑞 = 𝑟 + log
2
(𝑟 ) + 1 qubits storing the output of the oracle function, as shown in Figure 5b.

For circulant codes, additional care must be taken. Indeed, at this point, we should check, as

before, that the 𝑟 qubits on the diagonal of H̃ are in state |1⟩. Differently from before, however,

we should also check all the distinct𝑀 syndromes obtained at the end of the QGJE procedure to

check if (at most) one of them has the correct weight 𝑡 . Since the syndromes are obtained from

the shift of the single original syndrome s, we are sure that all the distinct𝑀 syndromes with the

correct weight will be associated to a distinct choice of J , corresponding to a simple (and known)

shift of the original J found for s. For this reason, instead of involving 𝑀 distinct C
𝑞 (Z) gates,
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each one controlled by the same 𝑟 qubits of the identity, but distinct log
2
(𝑟 ) + 1 qubits associated

to the Hamming weight check results of the previous stage, we can use a single C
𝑟 (X) gate for

the identity check, that has the aim of setting an additional ancilla to |1⟩ if the identity check is

positive. Then, we can perform𝑀 distinct C
log

2
(𝑟 )+2 (Z) gates, having in common only the single

ancilla of the previous stage, while using𝑀 distinct sets of log
2
(𝑟 ) + 1 qubits storing the weight of

the𝑀 syndromes. The depth, for this reason, is equal to𝑀 .

Diffusion operator. The diffusion operator employed by our circuit, as already explained in

Section 2.4, can be expressed as𝑈
†
𝐷
𝑈1𝑈𝐷 , in which𝑈𝐷 is the quantum circuit preparing the Dicke

state explained in Section 3.1 and 𝑈
†
𝐷
is the same sequence of gates applied in reverse order, with

a sign change in the angles of the Ry gates. The circuit corresponding to 𝑈1, once again, can be

implemented as a C
𝑛 (Z) gate applied on the input qubits and two walls of X gate before and after it.

Number of repetitions. As already seen in Section 2.4, the Oracle and Diffusion operators must

be repeated roughly

√︂
|𝐷 |

0.288·𝑀 ·(𝑛−𝑡𝑟−𝑡)
times, with the numerator denoting the size of our domain

— i.e.,

(
𝑛
𝑟

)
— and the denominator the number of solutions. If 𝑀 = 1, the number of solutions

is trivially .288
(
𝑛−𝑡
𝑟−𝑡

)
, as we saw in Section 2.3. For circulant cryptographic schemes, having the

representation of𝑀 > 1 distinct syndromes allows use to solve𝑀 distinct instance of the syndrome

decoding problems, each of which has the same starting parity-check matrix H and the same

error weight 𝑡 and, most importantly, a single solution. This strategy, known as decoding one out

of many, or DOOM for short, and presented for the first time in [60], translates into 𝑀 distinct

solutions for our function and a quantum speedup of

√
𝑀 . To conclude, following the observations

highlighted in Section 2.4, we fix the number of repetitions of the Oracle and Diffusion stage to

0.58278 ·
√︂

|𝐷 |
0.288·𝑀 ·(𝑛−𝑡𝑟−𝑡)

.

3.2 Reducing width and depth of the quantum circuit for QGJE
The authors of [54] propose some optimizations to the basic implementation of Section 3.1. In this

section, we propose a set of optimizations to the QGJE circuit which encompass the ones of [54],

and carry the savings further. Since all the optimizations focus on the leftmost 𝑟×𝑘 portion of the

augmented matrix L — i.e., the portion storing the parity-check matrix H — we will describe them

disregarding the rightmost part of L, containing the 𝑀 syndromes. We take Algorithm 3 and its

quantum circuit implementation shown in Figure 4 as starting points.

Optimization 1 — CSWAP to CCNOT. It replaces all the CSWAPs of part 1 with CCNOTs.

Indeed, the computation of the swap control condition and the actual swaps (lines 7–8) can be

replaced by the bitwise sum H̃𝑥,:=H̃𝑥,:⊕H̃𝑖,:, conditioned on the value of H̃𝑥,𝑥 being 0. This operation,

although yielding a linear combination for row 𝑥 containing the pivot element as opposed to a

simple row swap, has nonetheless the effect of setting the pivot to |1⟩, which is the goal of part 1

of the QGJE algorithm. The underlying assumption of this optimization is that, despite common

universal quantum gate sets include neither CSWAP nor CCNOT, they offer better translations of

the CCNOT in terms of both number of gates and depth with respect to the CSWAP.

Optimization 2 — Avoid clearing pivot column. It substantially improves part 2 by deleting

all the CCNOTs involving the elements in the same column of the pivot ones. In part 2, when we

find an element in position H̃𝑖,𝑥 with value |1⟩, we should add to row 𝑖 under analysis the pivot row

𝑥 , in order to set it to |0⟩. However, this addition is not required for the element H̃𝑖,𝑥 itself, since

we will not use its value in the rest of the circuit, as, in order to check the identity later, we will
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Fig. 6. Quantum subcircuits highlighting the first three optimizations. The red wires show the qubits corre-
sponding to the pivot element of the row that we need to set to |1⟩ (part 1), while the blue wires the qubit
that we need to set to |0⟩ (part 2). Figure (a) shows the effect of optimization 1, that replaces all the swaps
of part 1 with CCNOTs. Additionally, the green boxes highlight the gates and qubits that can be removed
thanks to optimization 2. Building up on the previous optimizations, the red boxes in (b) show the gates that
can be removed after optimization 3.

just use the value of the 𝑟 qubits containing the diagonal of H̃. As a final result, the whole vector
C is now useless, since all the CCNOT gates can directly use as control qubit the one H𝑖,𝑥 . This

optimization leads therefore to a reduction of |C| = 𝑟 (𝑟 − 1) CCNOTs and the same number of

qubits. For simplicity, we will still use |C| to refer to the total number of part 2.

Optimization 3 — Removing 0-controlled gates. After part 2 of each outer iteration — that we

call 𝑥-iteration — all the qubits corresponding to elements of the matrix at column 𝑥 (except the

one containing the pivot) will be in state |0⟩. For this reason, all the CCNOTs involving them in

the following 𝑥-iterations are useless.

Optimization 4 — Skipping computation of last 𝑟 columns. It is only valid for the Prange

variant of ISD algorithm, in which we do not need the rightmost 𝑟×𝑘 submatrix of the row-reduced

H̃ matrix at the end of the computation, but only the leftmost 𝑟×𝑟 one. For this reason, we can
completely avoid all the row additions (i.e., CCNOT gates) involving those columns. In other words,

for each of the |B| + |C| = 3

2
𝑟 (𝑟 − 1) operations of part 1 and 2, we can spare 𝑘 CCNOT gates.

Optimization 5 — Removing redundant X gates. In part 1 of Algorithm 3, to control if the

pivot under analysis is 0, we need to check that the corresponding qubit is in state |0⟩ by using

it as control in a CNOT gate. Since quantum circuits usually work with |1⟩-controlled gates and

not |0⟩-controlled ones, to have a semantically equivalent circuit we need, for each of the |B| pivot
checks, an X gate applied on the control right before and right after the CNOT. In [54] the authors

propose to reduce the number of X to just 2(𝑟 − 1), by applying a single X gate on the candidate

pivot only at the beginning and at the end of each part 1. With this optimization, we improve the

proposal by anticipating the first X required to transform the |0⟩ control into a |1⟩ control right
after the first row addition of the part 1 of the previous 𝑥-iteration. In this way, the overall depth is
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Fig. 7. Continuing Figure 6. The red wires show the qubits that we need to set to |1⟩ (the pivots), while the
blue wires represent the qubits that we need to set to |0⟩. The yellow boxes of Figure (a) shows the effect of
optimization 4, which allows excluding operations on the rightmost V submatrix of Ĥ. The purple boxes of fig.
(b), instead, describe the X gate removed after optimization 5, with the arrows signaling the rearrangement
of the remaining ones used to reduce the overall depth of the circuit. The black arrows, on the other hand,
shows the gate rearrangements of CCNOTs due to optimization 6, that allows to anticipate the first gates of
part 2, and hence reduce the global depth.

not affected by the X gates, except for a constant additional factor of 1 due to the first X of the first

part 1, which however can be easily interleaved with previous subcircuits.

Optimization 6 — Rescheduling the setting of the last pivot. It rearranges gates in order to

reduce the overall depth of the circuit. In part 1, in the last sequence of swaps involving the last row

of the matrix, we can postpone the CCNOT on the pivot until the last operation of the sequence

of CCNOTs applied on the rightmost 𝑟×𝑟 matrix. The fundamental observation is that, differently

from previous rows, we do not need the pivot qubit in the rest of the circuit. Furthermore, in part 2

of the same 𝑥-iteration, the other control qubit used in this CCNOT — i.e., the qubit in the same

column of the pivot, but on row 𝑟−1 — will be involved only in the last part 2 iteration of the same

𝑥 iteration, while all the other CCNOTs of part 1 involve qubits that will be used earlier.

Finally, we remark that the whole QGJE circuit is extended in a straightforward fashion to include

one or more syndromes, depending on if the starting code is a circulant one. As explained before,

they can be treated just as other columns of the matrix, on which we cannot skip any operation, so

it has an overall number of CCNOTs equals to ( |B| + |C|) ·𝑀 , which is equal to
3

2
𝑟 (𝑟 − 1)𝑀 .

The final gate count and depth for this improved version are reported in Table 1. The depth was

experimentally confirmed for increasing value of 𝑟 , for which we adapted the approach used in

classical combinatorial circuits reported in [15]. The idea is to represent the circuit as a directed

acyclic graph, in which each node corresponds to a gate applied to a given (set of) qubit(s). This

counting approach gave us a depth of 3/2𝑟 2 − 1/2𝑟 + 2 + 𝑀 , which, since 𝑀 ≤ 𝑟 , results in an

asymptotic value of O(𝑟 2). Even more interestingly, in the general case in which we also need the

right part of the matrix after QGJE and we cannot apply Optimization 4, the resulting depth only

increase by a factor of 𝑘 , keeping it in the order of O(𝑟 2).
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Table 1. Number of quantum gates as a function of the linear code parameters (𝑛, 𝑘 , 𝑟 = 𝑛 − 𝑘) and the
wanted Hamming weight (𝑡 ) for the different quantum subcircuits used to solve Prange ISD. Except for the
multi-controlled Z and X gates, all the gate figures of the Oracle phases should be multiplied by 2 to take into
account the uncomputation stage. Each multi-controlled gate, denoted as C𝑚 (·), involves𝑚 control qubits
and a single target qubit. The 𝑀 variable represents the number of syndromes represented in the circuit,
which is 𝑟 for circulant codes and 1 for the other ones..

State Preparation Oracle Diffusion

Cost Dicke Data Pack Gaussian Hamming weight Amplitude
metric state preparation columns elimination compute and check flip

X 𝑟 𝑟+𝑟𝑛
2

2(𝑛−1) log
2
(𝑛) (log

2
(𝑛)−1) 2(𝑟−1) 𝑀 (4𝑟− log

2
(𝑟/𝑡)−3) 0 𝑛 + 2𝑟

CNOT 5𝑛𝑟 − 5𝑟 2 − 2𝑛 0 (𝑛−1) log
2
(𝑛) (log

2
(𝑛)−1) 1

2
𝑟 (𝑟 − 1) 𝑀 ( 9

2
𝑟 − 5 log

2
(𝑟 ) − 11) 0 10𝑛𝑟−10𝑟 2−4𝑛

CCNOT 0 0 0
1

6
𝑟 (𝑟−1) (5𝑟+9𝑀−1) 𝑀 (3𝑟−2 log

2
(𝑟 )−3) 0 0

CSWAP 0 0 (𝑛−1) log
2
(𝑛) (log

2
(𝑛)−1) (𝑟+1)−𝑛

2
0 0 0 0

Ry 4𝑛𝑟−4𝑟 2−2𝑛+1 0 0 0 0 0 8𝑛𝑟−8𝑟 2−4𝑛+2
C
𝑟 (X) 0 0 0 0 0 1 0

C
log

2
(𝑟 )+2 (Z) 0 0 0 0 0 M 0

C
𝑛 (Z) 0 0 0 0 0 0 1

Depth ≤ 27𝑛𝑟−12𝑛−27𝑟 2+3
𝑟−2 1 log

2

2
(𝑛)+ log

2
(𝑛)+𝑟−1 3

2
𝑟 2− 1

2
𝑟+𝑀+2 log

2

2
𝑟+7 log

2
(𝑟 )−4 M ≤ 27𝑛𝑟−12𝑛−27𝑟 2+3

𝑟−2

Qubits 𝑛 𝑟𝑀+𝑟𝑛 (𝑛−1) log
2
(𝑛) (log

2
(𝑛)−1) 1

2
𝑟 (𝑟−1) 𝑀 ( 5𝑟

4
−1) 1 0

4 QUANTITATIVE EVALUATION OF THE SOLUTION EFFICIENCY
In this section, we provide quantitative measures for all code-based cryptographic schemes that

advanced to the fourth stage in the latest NIST report [49]. We provide a direct comparison between

our proposal and all the relevant works solving the same problem, together with a comparison to

the quantum algorithms used to attack AES. We additionally provide a translation of our quantum

gates into the Clifford+T gate set, and provide a definition of quantum security margin inspired

from the one used in [25], following the recommendation by NIST. Finally, we make an asymptotical

analysis of our quantum circuit depth for increasing values of 𝑛.

4.1 Conversion to canonical gate sets
In the previous sections, we used abstract multi-qubits quantum gates to model the logic of

our quantum circuit. However, these abstract gates do not accurately reflect the capabilities of

concrete quantum computers, which in turn offer only 1- and 2-qubits gates. Additionally, different

implementations of quantum computers rely on different gate sets, making it harder to target

a general architecture when designing a quantum algorithm. Finally, much work is spent into

optimally decompose commonly used quantum gates, especially for 3-qubits gates (like the CCNOT

and CSWAP), and arbitrary, optionally controlled, rotation gates (like the R𝑦 or Z). Willing to obtain

precise, concrete estimates for the quantum gate count required to compute our ISD solver, we

analyze two different translations of the multi-qubit gates we employ into simpler ones, each one

with a different focus.

Translating multi-controlled gates. We only translate multi-qubit gates acting on more than

3 qubits, namely the C
𝑚 (Z) gate and C

𝑚 (X) gates, with𝑚 being the number of controls, matching

the current state of the art for complexity measures. Since such gates are repeated at each iteration

of Grover’s algorithm, their decomposition should not dominate the depth of the circuit, i.e. it

should be smaller than the QGJE circuit having depth O(𝑟 2), and width smaller than the data

representation portion of the circuit, which has depth O(𝑟𝑛 + 𝑟 ). The problem of decomposing a

C
𝑚 (Z) gate is indeed equivalent to the one of decomposing a C

𝑚 (X) gate, since we can replace an

C
𝑚 (Z) with an C

𝑚 (X), taking care to add an H gate before and after on the target qubit. Different

approaches to decomposing multi-controlled gates were explored in literature, focusing on reducing

width and depth with respect to the number of control qubits, using both approximate and exact
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q
=

q

q − 2

Fig. 8. Decomposition of an C
3 (Z) gate into CCNOT gates and a single CZ. The decomposition requires 2

additional qubits and has depth 3.

decompositions. The work proposed in [6] shows two exact decomposition for the multi-controlled

Z requiring respectively O(𝑚) gates and O(𝑚) qubits, or O(𝑚2) gates and O(𝑚2) depth without

additional qubits. Our approach stems from both [53] and [6, §7.1], with a special focus on depth.

For the case in which𝑚 is equal to a power of 2, minus 1, the decomposition requires𝑚−2 additional
qubits, and resets all of them to their initial state. The gate count is of 2𝑚−4 CCNOT, plus 1 CZ.
Such a decomposition, shown in Figure 8 for an C

3 (Z) gate, has a depth equal to log
2
(𝑚+1) + 1.

An interesting approach, described in [58], shows a linear-depth decomposition of C
𝑚 (X) gates

using no additional qubits. The work uses a circuit in which all gates are controlled Rx rotation

gates with arbitrary angles and precision. As described in [41], controlled Rx gate can be further

expanded into a single Rx and 2 CSWAP gates. This approach, however, did not show any practical

advantage in our circuit, producing almost identical figures, since the main contribution to depth

comes from the QGJE circuit.

Translation into a fault-tolerant gate set. The second gate basis considered in this work is the

Clifford+T one, a universal set of gates introduced in [17], and considered the most promising one

for fault-tolerant quantum computation. The gates belonging to the Clifford group are generated

starting from the set {H,CNOT, S}. As a consequence, all the Pauli gates employed in our work,

namely X and Z, can be directly derived from them, as Z = S
2
and X = HS

2
H. Additionally, we can

derive the CZ employed in the two reflections required by Grover’s algorithm at each iteration

by applying a H gate on the target qubit, followed by a CNOT having the same control and target

qubit as the CZ, and a final H gate on the target qubit.

On the other hand, the CCNOT, CSWAP, Ry and the multi-controlled Z gates employed in our

circuits cannot be generated using the Clifford gates only. The inclusion of the T gate to the Clifford

basis is indeed fundamental to reach the universality, as such inclusion allows to approximate all

the quantum gates up to an arbitrary small approximation factor. However, T requires extensively

more resources to be implemented in a fault-tolerant fashion with respect to the Clifford gates [39],

and for this reason most of the proposed algorithms in cryptography considers the number of T

gates and the T-depth the most important measure, where the T-depth is defined as the number of

stages in the circuit involving only non-Clifford group gates. To offer a comprehensive analysis, we

use as well the additional measure, proposed in [38], of the product of the number of qubits times

the T-depth of the circuit.

Table 2 summarizes the translations used in our work. In fact, we are only concerned with

the translation of the CCNOT and Ry gate, since the CSWAP gate can be immediately obtained

using 1 CCNOT gate and two CNOT gates, while the multi-controlled Z gate can be decomposed

into multiple CCNOT gates plus 1 CZ, as shown in the previous section. Different techniques to

efficiently decompose CCNOT gates have been explored in the literature, trading off number of

qubits, number of T gates and T-depth. For example, in [2] the authors present a translation that,

without any additional qubit, requires 2 H, 7 T and 7 CNOT gates, with an overall T-depth of 3.
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Table 2. Translation of the non-Clifford gates employed in our circuit. The Ry gate is translated using the
approximation algorithm presented in [42], using a precision of 10−15. For the CCNOT translation, we used
the results of [37], requiring shallower circuits with respect to all the other proposals.

Gate to Type & number of gates for translation Additional Equivalent
translate H CNOT S T Qubits T-depth

CCNOT [37] 2 8 1 4 1 1

CCNOT
†
[37] 1 2 3 0 0 0

Ry [42] 151 0 82 149 0 149

The use of a single additional qubit, on the other hand, allows them to obtain a T-depth of 2. On

the other hand, in [37] the authors, by combining two previous techniques presented in [59, 28],

show a T-depth 1 decomposition of the CCNOT requiring only a single additional qubit, initialized

in state |0⟩, and restored to its value at the end. Their circuit is further detailed in [36, Appendix C],

in which they also show a circuit for the CCNOT
†
not relying on non-Clifford gates, but only on

an additional measurement operator and a classical bit.

For our quantum circuit, the technique proposed in [37] leads to better T-depth ·Width measures

with respect to the others. In order to not alter the depth results presented in the previous sections,

the number of additional qubits required to translate the CCNOT and CSWAP gates must still allow

the same degree of parallelization between them. For the CSWAP gates involved in the column

permutation of the oracle, we should have a number of additional qubits equal to the maximum

number of CSWAPs that we can apply in parallel. Applying the same thoughts of Section 3.1, we

obtain an additional number of qubits equal to 𝑟 . On the same line of reasoning, the number of

parallel CCNOT involved in the QGJE circuit is in the order of 𝑟 2. As a consequence, since we can

reuse both set of qubits in different submodules, the total number of additional qubits required is

the maximum between the two, i.e., 𝑟 2.

The only gate among the ones employed by us for which there is no straightforward translation

is the Ry gate. An active field of research is indeed focusing on efficiently approximating single

qubit gates with arbitrary rotations using only gates belonging to the Clifford+T. In [42], they

propose an exact synthesis algorithm showing how, fixing an arbitrary precision 𝜖 , on average

3.067 log
2
(1/𝜖) − 4.322 T are required to achieve a given quality of approximation. An 𝜖 = 10

−15
, a

value sufficient for most applications [42], gives us a T-count of ≈ 149, a value confirmed by the

extensive usage of their tool in our metrics. Since Ry (𝜃 ) = SHRz (−𝜃 )HS†, we can therefore say that

the T-count is equivalent to ≈ 149. Note that although S
†
does not belong to the Clifford basis, it is

equivalent to S
3
. Since the gates obtained from the decomposition of the Rz gate are sequentially

applied to the same qubit, the T-depth of the translation is equivalent to the T-count.

4.2 Evaluating the cryptanalytic effort on NIST post-quantum code based
cryptosystems standardization candidates

In order to assess the security of the different cryptographic schemes proposed, NIST defined in

its call for proposal [52] a classification method based on security categories obtained through a

comparison with existing NIST standards in symmetric cryptography. To this end, NIST defined

three distinct levels for public-key encryption, namely 1, 3 and 5, corresponding to a computational

effort comparable to or greater than the one required for key search on the AES block cipher with

a 128-bit key (AES-128), 192-bit key (AES-192) and 256-bit key (AES-256) respectively. Table 3

contains the parameter set proposed for each of the cryptographic schemes under scrutiny, with

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 0000.



Improving the Efficiency of Quantum Circuits for Information Set Decoding 1:23

Table 3. Number of gates and qubits required by our ISD circuit design for three code-based cryptosystems:
BIKE, HQC and McEliece. All the gates are considered to have the same impact on the overall measures. We
report as well the overall depth of the circuit for our proposal, and we extend the analysis with the 𝐷 ·𝑊
measure, multiplying together the depth and the width (i.e. the number of qubits), which better captures the
overall cost of our proposal. Except for the code parameters 𝑛, 𝑘 and 𝑡 , all the values are expressed in base-2
logarithm.

Algorithm Sec. Code parameters Grover Grover gates Total
Level 𝑛 𝑘 𝑡 Iter.s X CNOT CCNOT CSWAP RY CZ Gates Depth Qubits D ·W

BIKE (key) L1 24, 646 12, 323 142 65 95 97 108 101 96 65 108 93 29 123

BIKE (key) L3 49, 318 24, 659 206 96 129 131 142 135 129 96 142 127 31 158

BIKE (key) L5 81, 946 40, 973 274 130 164 166 178 170 164 130 178 162 33 195

BIKE (message) L1 24, 646 12, 323 134 61 91 93 104 97 92 61 104 89 29 119

BIKE (message) L3 49, 318 24, 659 199 93 125 127 139 132 126 93 139 123 31 155

BIKE (message) L5 81, 946 40, 973 264 125 159 161 173 165 159 125 173 157 33 190

HQC L1 35, 338 17, 669 132 59 91 93 104 97 91 59 104 89 30 119

HQC L3 71, 702 35, 851 200 93 126 128 140 133 127 93 140 125 32 157

HQC L5 115, 274 57, 637 262 123 159 160 173 165 159 123 173 157 34 190

McEliece L1 3, 488 2, 720 64 72 94 97 101 101 97 72 102 92 22 114

McEliece L3 4, 608 3, 360 96 93 116 119 124 123 119 93 125 115 23 138

McEliece L5 6, 688 5, 024 128 131 155 159 164 163 158 131 165 154 24 178

McEliece L5 6, 960 5, 413 119 132 156 159 164 163 159 132 165 155 24 178

McEliece L5 8, 192 6, 528 128 150 174 178 183 182 178 150 184 173 24 197

the submitters of McEliece cryptographic scheme proposing three distinct parameters for the level

5 security.

Starting from the closed-form equations reported in Table 1, and additionally converting the

multi-controlled gates into simpler ones as explained in Section 4.1, we show in Table 3 the

assessment of the effort needed to attack the three code-based cryptosystems being evaluated in

NIST’s post quantum standardization call: Classic McEliece [12], BIKE [3] and HQC [47]. In the

table, we report the number of gates, divided by kind, required to build our quantum circuit to solve

the SDP problem using Prange’s ISD variant. In the same table, we also report the total number

of gates required, considering an equal cost for all of them, as implied by NIST in [52]. Lastly, for

each cryptographic scheme, we report the depth, the number of qubits (also known as width) and

the Depth ·Width metric, as suggested in [38].

4.3 Comparing computational efforts with breaking real AES
Since NIST call assess the cryptographic security of PQC proposals by relating them to the compu-

tational effort required to break AES with a quantum computer, we compare our proposal to the

current state-of-the-art implementation for the acceleration of AES through the usage of Grover’s

framework [67], which extensively relies on the metrics related to the Clifford+T gate sets. The

proposal improves on all the previous works [30, 44, 37] in terms of the CCNOT-Depth ·Width

metric, and additionally highlights how the figures shown in [37] arise from a bug in the Q#

framework used in the implementation. We note that the work of [44], although having slightly

worse figures in terms of the CCNOT-Depth ·Width metric, has nonetheless the best values in

terms of all the gate counts and the CCNOT-Depth alone. Moreover, the work additionally reports

the overall depth of the circuit, and not only the CCNOT-depth. Later on, two other works came

out in [32] and [66]. However, both of them only target AES-128, and therefore we did not use their

results in our comparison. In our analysis, we additionally take into account the work presented

in [33], that, while offering an extensive review of all the previous technique, additionally improves
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on all of them in all the metrics. To the authors’ knowledge, this work has not been peer-reviewed

yet. Table 4 reports all the relevant T measures for each of the cryptographic schemes listed in

Table 1 and a comparison of our results with respect to the Grover based AES key search of [67],

[44] and [33].

In order to have a fair comparison, we elaborated all the AES figures reported in the works

under analysis. Firstly, while, due to unicity distance constraints, the number of ciphertexts needed

to univocally find the key with high probability is equal to 2, 2 and 3 for AES-128, -192, -256

respectively [37], nonetheless the work presented in [21] shows that the computational complexity

of AES is equivalent to one call to a single AES circuit. For this reason, we used a number of

AES instances equal to 1 for all proposals. Furthermore, when using the AES circuit in Grover’s

framework, we need an uncomputation stage to restore all the qubits to their original values,

effectively doubling the gate count of the oracle. Additionally, the oracle instance requires a multi-

controlled X gate, with the number of controls equal to the block size of AES, that is, 128. Finally,

while all the works on AES omit the diffusion stage from their analysis, we also take into account the

multi-controlled Z required by this stage, with the number of controls being equal to 𝑘 for an AES-𝑘

variant, with 𝑘 = {128, 192, 256}. For the multi-controlled gates, we used the same decomposition

shown in 4.1. To conclude, we set the number of Grover’s iterations for all AES proposals to the

optimal value of 0.58278
√
2
𝑘
, as discussed in Section 2.4.

In order to rephrase the CCNOT measures used by all the AES proposals in terms of the T

measures used in our work, for both [67] and [44] we used the T-depth 4 conversion of [2], since it

results in better T-Depth ·Width values. On the other hand, the proposal of [33], due to the higher

number of qubits and lower number of CCNOT gates with respect to the other proposals, shows

better results when the T-depth 1 translation using one ancillary qubit [37] is used.

In the following, exploiting the figures obtained in Section 4.1, we detail how we retrieved the

T measures for all the different subcircuits employed in our proposal. For the Dicke state, the

only gates involving a T gate in their decomposition are the Ry ones, each of which requiring

≈ 149 T gates. The same assumptions made in [7] for the circuit depth, namely the possibility

of parallelizing Ry gates involved in different subparts, can be used to derive a straightforward

T-depth of O(𝑛). The T-count of the subcircuit to permute the columns of matrix H can be obtained

by simply multiplying the number of CCNOT and CSWAP by 7. The T-depth can be obtained

using a way of reasoning equal to the normal depth. Since indeed CSWAPs and CCNOTs belonging

to different comparators can be interleaved, we can also parallelize the T gates involved in their

decomposition, leading to a T-depth equal to log
2
(𝑛) (log

2
(𝑛) + 1) + O(1). For the Q GJE circuit,

the only gates involved in the relevant measures of this stage are the CCNOTs. The T-count is

simply obtained by multiplying the overall CCNOT-count by 7. The T-depth, instead, can be taken

as equal to the original depth since, once again, the assumptions originally made in the evaluation

of the depth still holds. The only non-Clifford gate of the Hamming weight compute and check

stage is the CCNOT gate, so the T-count is simply obtained by multiplying the figures by 7. The

T-depth can be roughly approximated to the original depth, since the circuit provides a high degree

of parallelization between layers. Finally, with respect to the multi-controlled gates, [59] shows

a decomposition requiring 8𝑚 T gates and a T-depth of 2 log
2
(𝑚) + 1, using the same amount of

additional qubits of our previous decomposition.

We observe from our results that all the cryptographic schemes analyzed require considerably

more effort to be broken than the corresponding symmetric ciphers employed as a gauge of

their security level. These results indicate that, with respect to an attack conducted with our

implementation of Prange’s ISD, the choices made by the proposers of Classic McEliece, BIKE and

HQC are strongly conservative in terms of security. We highlight that the difference between the
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Table 4. Computational effort required to break AES via Grover-based key search using the AES implementa-
tion in [67], [44] and [33] (not peer-reviewed), compared to the computational effort to solve the ISD problem
on BIKE, HQC and Classic McEliece with our ISD implementation. All the values are expressed in base-2
logarithm.

Sec. Algorithm Qubits Clifford + T-measures
Level T-Count T-Depth T-Depth ·W

L1 AES [67] 9 80 76 86

L1 AES [44] 10 80 76 86

L1 AES [33] 13 80 71 84

L1 BIKE (key) 57 110 91 121

L1 BIKE (message) 57 106 87 117

L1 HQC 59 106 87 117

L1 McEliece 41 105 90 112

L3 AES [67] 10 113 108 118

L3 AES [44] 10 112 108 118

L3 AES [33] 13 112 103 116

L3 BIKE (key) 61 144 125 156

L3 BIKE (message) 61 141 121 153

L3 HQC 63 142 123 155

L3 McEliece 43 127 113 135

L5 AES [67] 10 145 140 150

L5 AES [44] 11 145 140 151

L5 AES [33] 13 144 135 148

L5 BIKE (key) 63 180 160 193

L5 BIKE (message) 63 175 155 188

L5 HQC 65 175 155 188

L5 McEliece 45 167 152 176

L5 McEliece 45 168 153 176

L5 McEliece 45 186 171 195

D ·W measure of our proposal and the ones of the AES implementations is significantly lower

for the McEliece cryptographic scheme at level 3 with respect to all the others. These findings are

consistent with the ones reported by [25].

4.4 Constraining the depth of the quantum circuit
Motivated by the difficulty of running extremely long serial computations, in its original call for

proposal [52] NIST suggests also taking into account quantum-accelerated attacks in which the

quantum circuits are restricted to a maximum depth, called MAXDEPTH, with plausible values equal

to {240, 264, 296}. Under depth constraints, it estimates the quantum gates needed to recover the

key on AES to be equal to QAES/MAXDEPTH, with QAES equal to 2
170

for AES-128, 2
233

for AES-192

and 2
298

for AES-256. To obtain such values, NIST likely adapted the figures for the quantum

attack to AES proposed in [30], the only one available at the time of the call for proposals, to a

depth-constrained parallel version of Grover’s algorithm.

Considering a partition of the whole search space into 𝑆 disjoint sets, a parallel version of

Grover’s algorithm assigns each set to a distinct quantum circuit, hence allowing the execution of

all the circuits in parallel. Denoting as 𝑁 the number of Grover iterations required by a sequential

Grover’s algorithm, this value is reduced to 𝑁 /
√
𝑆 in its parallel version. At the same time, both

the depth 𝐷𝑖𝑡 and number of gates 𝐺𝑖𝑡 required by a single Grover iteration remain approximately
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equal. Therefore, by parallelizing Grover search across 𝑆 quantum instances, we reduce the total

depth of a single quantum circuit from the original 𝑁 ·𝐷𝑖𝑡 down to 𝑁 ·𝐷𝑖𝑡/
√
𝑆 . Analogously, the

total number of quantum gates required by a single circuit is equal to 𝑁 ·𝐺𝑖𝑡/
√
𝑆 .

Nonetheless, the overall computational effort required by the parallel version of the algorithm is

computed by considering a sequential execution of all the quantum circuits, i.e., by multiplying by

𝑆 the results obtained for a single instance, obtaining therefore the following expressions for the

overall depth and number of gates respectively

𝐷𝑝 =
√
𝑆 ·𝑁 ·𝐷𝑖𝑡 (7)

𝐺𝑝 =
√
𝑆 ·𝑁 ·𝐺𝑖𝑡 (8)

Once we constrain the depth of a single quantum circuit to the depth values required by NIST,

we derive MAXDEPTH = 𝑁 ·𝐷𝑖𝑡/
√
𝑆 , and hence 𝐷𝑝 = 𝑆 ·MAXDEPTH. By using the values of

√
𝑆 obtained

from the previous equation, we can restate Equation 8 as

𝐺𝑝 =
𝑁 2·𝐺𝑖𝑡 ·𝐷𝑖𝑡

MAXDEPTH
(9)

that can be employed to derive the plausible definition of QAES used by NIST as

QAES = 𝑁 2·𝐺𝑖𝑡 ·𝐷𝑖𝑡 (10)

Additionally, we can derive the number of instances as

𝑆 = (𝑁 ·𝐷𝑖𝑡/MAXDEPTH)2

Finally, note that the previous equation immediately produces an alternative formulation of the

overall depth as

𝐷𝑝 =
𝑁 2·𝐷2

𝑖𝑡

MAXDEPTH
(11)

Using this parallel approach, the QAES values obtained by replacing the results of [30] in Equa-

tion 10 are almost identical to the ones estimated by NIST in [52], as we show in Table 5, and not

much different to the ones obtained using the results of [44]. On the other hand, if we consider the

implementation of the quantum circuit for AES of [67], the results show a reduction of roughly 2
10
.

However, the work of [67] only reports the figures related to the T gate, avoiding the discussion on

the overall depth, making the comparison with the other works only partial. Finally, the gap with

the NIST estimates increases to roughly 2
25
if we consider the proposal presented in [33], which,

however, has not been peer-reviewed yet.

Relying on the same kind of parallelization technique and the QAES values specified in the original
NIST requirements [52], in [25] the authors derive a parameter called quantum security margin,

denoting the ratio between the overall depth 𝐷𝑝 of the parallelized version of Grover’s framework

adapted to Prange algorithm, and the number of gates QAES/MAXDEPTH estimated by NIST to recover

the key of AES at the same level. By using Equation 11, we can observe that this ratio will be given

by

𝑁 2𝐷2

𝑖𝑡

MAXDEPTH

/ QAES

MAXDEPTH
=
𝑁 2𝐷2

𝑖𝑡

QAES
whose value is independent of the MAXDEPTH parameter. Table 6 shows a comparison between [25],

which estimates the depth of a single Grover iteration to 𝑟 2.5, and our exact depth measures obtained

using the depth values taken from Table 3 and the T-depth values taken from Table 4. The security

margin is obtained therefore by subtracting from the log
2
of the number of quantum gates required

by AES, the log
2
of the depth of the code-based cryptographic scheme at the same level. We note

that the number of iterations in our work is almost the same of [25]. As explained in Section 2.3,
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Table 5. QAES values for the parallelized version of the quantum implementation of AES for all the three
computational tasks. The value proposed by NIST in [52] are almost identical to the ones obtained substituting
the results of [30] in Equation 10. We show as well the QAES values obtained using the results of [44], the
most up-to-date peer-reviewed implementation of a quantum circuit for AES showing also metrics related to
the overall depth and number of gates. On the other hand, [67] do not report values related to the overall
depth, hence the computation of the QAES value is based only on the number of T gates and the T-depth.
Finally, we report the QAES values obtained using the results of [33], which, to the authors’ knowledge, has
not been peer reviewered yet.

Quantum AES QAES
implementation AES-128 AES-192 AES-256

[52] 170 233 298

[30] 169 232 298

[44] 167 233 298

[67]
♢

159 223 288

[33] 154 219 283

♢
Values computed considering only the T-count and T-depth

we indeed take into account also the probability that a random 𝑟×𝑟 matrix is non-singular and

as well we set the success probability of Grover to .84458, producing a negligible increase of

.58278/
√
.288 ≈ 1.09 in the number of iterations. With our proposed implementation, the security

margin is reduced for all the cryptographic schemes, with the considerable decrease for BIKE and

HQC due to the

√
𝑟 reduction in the number of Grover iterations achievable for circulant codes.

Most importantly, the already low security margin reported by [25] for the parameters choice of

the level 3 version of Classic McEliece, also taken into account by NIST in [49], is further reduced

in our circuit implementation by 7 bits, failing to pass the required security with respect to its AES

counterpart. Moreover, considering the T-depth values, the security margin is further reduced by 4

bits.

Since NIST, in the original submission requirements [52], defines estimates for AES in terms

of the number of quantum gates, in the last four columns of Table 6 we also report additional

measures expressing the ratio between the overall number of gates𝐺𝑝 of the parallelized version of

Grover’s framework adapted to Prange algorithm, and the ratio QAES/MAXDEPTH. In this case, it is

not possible to ignore the MAXDEPTH values as we did before, and for this reason we report in Table 6

figures related to each suggested value of MAXDEPTH. Note that, in order to have up-to-date figures,

we use the values of QAES obtained by [44], and reported in Table 5, since it is the most up-to-date

work showing measures related to the overall depth and number of gates. The observations on the

security of McEliece parameters proposed for level 3 is confirmed, with the number of security

bits falling behind the other candidates for the same level, though still above the requirements.

Additionally, we can see that each of the cryptographic scheme under analysis does not require

any parallelization for level 1 security and MAXDEPTH = 2
96
, since the depth of a single quantum

circuit is already below the 2
96
depth indicated by NIST to be the approximate number of gates

that quantum computers could perform in a millennium.

As an additional point, we give here a clue on the different strategies that can be adopted in order

to constrain the depth of a single circuit to a fixed value. A naive way to implement the partition

strategy hinted in this section would consist in setting up 𝑥 < 𝑟 qubits of the 𝑛 representing J
to |1⟩, while generating a Dicke state |𝐷𝑛−𝑥

𝑟−𝑥 ⟩ for the remaining portion. With respect to a serial

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 0000.



1:28 Simone Perriello, Alessandro Barenghi, and Gerardo Pelosi

Table 6. Results of the parallelization of our proposed algorithm, required to comply with the upper bounds on
the values of the MAXDEPTH suggested by NIST for a single quantum circuit. To have a comparison against [25,
Tab. 5], in which the authors estimate a depth of 𝑟2.5 for each Grover’s iterations, we report the base-2
logarithmic difference between the depth measures and the estimates given by NIST [52, § 4.A] on the number
of quantum gates required to break AES for the same level, a quantity referred to as depth margin. The results
are independent of the MAXDEPTH values.
Additionally, in the last four columns, we compare the number of quantum gates required by our circuit with
respect to the ones required to break AES for the same level, using however the results of [44]. Since in this
case the results depend on the value chosen as the maximum depth of a single quantum circuit, we use a
shorthand notation in which the set of three exponents correspond to setting this depth to the three values of
{240, 264, 296}, suggested by NIST as reference for MAXDEPTH. All the values are expressed in base-2 logarithm.

Algorithm Sec. Depth margin Circuit Overall Overall Gates
Level [25] Tab. 3

♢
Tab. 4

♦ Instances Depth Gates margin

BIKE (key) L1 41 17 13 {107, 59, 0} {147, 123, 93} {161, 137, 108} {34, 34, 37}
BIKE (key) L3 47 21 17 {174, 126, 62} {214, 190, 158} {229, 205, 173} {36, 36, 36}
BIKE (key) L5 53 26 22 {244, 196, 132} {284, 260, 228} {300, 276, 244} {42, 42, 42}

BIKE (message) L1 32 9 5 {99, 51, 0} {139, 115, 89} {153, 129, 104} {26, 26, 33}
BIKE (message) L3 40 14 10 {167, 119, 55} {207, 183, 151} {222, 198, 166} {29, 29, 29}
BIKE (message) L5 43 16 12 {234, 186, 122} {274, 250, 218} {290, 266, 234} {32, 32, 32}

HQC L1 33 8 4 {98, 50, 0} {138, 114, 89} {153, 129, 104} {26, 26, 33}
HQC L3 43 16 12 {169, 121, 57} {209, 185, 153} {225, 201, 169} {32, 32, 32}
HQC L5 44 15 11 {233, 185, 121} {273, 249, 217} {290, 266, 234} {32, 32, 32}

McEliece L1 21 15 11 {105, 57, 0} {145, 121, 92} {154, 130, 102} {27, 27, 31}
McEliece L3 3 −4 −8 {149, 101, 37} {189, 165, 133} {200, 176, 144} {7, 7, 7}
McEliece L5 18 11 7 {229, 181, 117} {269, 245, 213} {279, 255, 223} {21, 21, 21}
McEliece L5 18 11 7 {229, 181, 117} {269, 245, 213} {280, 256, 224} {22, 22, 22}
McEliece L5 56 48 44 {266, 218, 154} {306, 282, 250} {317, 293, 261} {59, 59, 59}

♢
Depth margin obtained by using the gate set {X,CNOT,CCNOT,CSWAP, RY,CZ}

♦
T-depth margin obtained by using the Clifford+T gate set

computation, the domain of our oracle function will be reduced by a factor of

(
𝑛
𝑟

)
/
(
𝑛−𝑥
𝑟−𝑥

)
, which

allows tuning the correct 𝑥 giving the required MAXDEPTH.
Another strategy to reduce the depth of a single quantum circuit is to use a hybrid classical-

quantum algorithm. In [55] the authors use a hybrid version of Lee-Brickell algorithm, in which

the classical part performs the column permutation and the Gauss-Jordan elimination, obtaining

the matrix H̃ = [W | V]. If W = I𝑟 , the quantum circuit will check if 𝑝 columns of the matrix V,
added to the syndrome, results in a vector of weight 𝑡 − 𝑝 . While in [55] the authors tune 𝑝 in order

to reduce the overall gate count, the parameter may be easily adapted to obey the requirements on

MAXDEPTH.

4.5 Consequences from a code-based cryptosystem design perspective
Designing post-quantum code-based cryptosystem targeting a specific security level is a major

challenge, requiring to choose the right set of parameter 𝑛, 𝑘 and 𝑡 so that it provides just the

required security level, as designing larger-than-needed parameters would penalize the efficiency

of the cryptosystem without need. For this reason, designers of cryptographic schemes have to

perform a computational complexity analysis of their proposals, later deciding which is the best

choice of parameters for a specific security level.
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(a) 𝑅 = 3

4
, 𝑡 from GV-bound (b) 𝑅 = 1

2
, 𝑡 =
√
𝑛

Fig. 9. Computational cost of a classical implementation of the Prange’s ISD strategy, in terms of 𝜆 =

log
2
(no. of gates) (solid blue line) as a function of the code length 𝑛, and the classical computational cost of

bruteforcing AES-128 (horizontal dotted blue line). The blue point highlights theminimum code length required
to match the classical AES-128 security. Quantum computational cost of our quantum implementation of the
Prange’s ISD strategy, in terms of 𝜆 = log

2
(𝑑𝑒𝑝𝑡ℎ) (solid red line) as a function of the code length 𝑛, and the

depth of the quantum circuit implementing AES-128 (horizontal dotted red line). The red point highlights
the minimum code length required to match the quantum AES-128 security. (a) refers to QC-MDPC codes
with rate 1/2 and no. of errors 𝑡 =

√
𝑛, e.g., the ones employed in HQC and BIKE cryptosystems; (b) refers to

algebraic codes with rate 3/4 with no. of error equal to the GV-bound, e.g., the Classic McEliece cryptosystem.
From the perspective of a post-quantum code-based cryptosystem designer, (a) shows that the code length of
QC-MDPC based ciphers is bounded by the quantum Prange’s ISD; (b) shows that the code length of the
McEliece cryptosystem is equally bounded by both classical and quantum attacks. The plots additionally
show the security level for the BIKE, HQC (in (a)) and McEliece (in (b)) proposals when performing a BJMM
attack, additionally highlighting their memory requirements.

The choice of parameters is usually based only on two parameters, namely the 𝑛 and the ratio

𝑘/𝑛, known as rate of the code, and denoted by 𝑅. By analyzing the parameters of the code-based

cryptosystems advanced to the final stages of NIST competition, reported in Table 3, we note that,

while the rate for HQC and BIKE is fixed to
1

2
, a value mandated by the nature of the chosen code

family, it assumes different values for McEliece. In our analysis, we assumed a ratio of
3

4
, obtained

by approximating the average ratio of this family of cryptosystems.

When studying the asymptotic performance of random codes, the value of the maximum error

weight 𝑡 which can be corrected determined from 𝑛 by using the Gilbert-Varshamov (GV) bound.

This approximation, found independently by the two authors in [29] and [65], represents the largest

value of 𝑡 for which the SDP has a unique solution with overwhelming probability. Denoting as

𝐻 (𝑥) the binary entropy function𝐻 (𝑥) = −𝑥 log
2
(𝑥)− (1−𝑥) log

2
(1 − 𝑥), the value of 𝑡 is obtained

as 𝑡 = ⌊𝐻−1 (1 − 𝑅) 𝑛
2
⌋. While the error weight used in the McEliece cryptosystem is quite close to

the GV bound, BIKE and HQC use a different value of 𝑡 = O(
√
𝑛). In both cases, the error weight

𝑡 is sublinear with respect to the code length 𝑛, and all the advantages of techniques improving

on the basic Prange’s strategy have been shown to asymptotically vanish [64]. For this reason, all

the designers of code-based cryptosystems base their choice of parameters on the Prange’s basic

strategy, with a further heuristic polynomial factor to keep into account for polynomial speed-ups

obtainable when applying more advanced ISD algorithms.
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Figure 9 shows the results of our analysis under the previous assumptions using a Prange attack,

both in its classical form and its quantum one. To obtain the figures for the Prange’s classical

attack, we relied on the tool obtainable at [9], made freely available by the authors of [25]. For the

quantum analysis, instead, we imposed a value for the maximum depth allowed for a quantum

circuit (introduced in Section 4.4) of 2
96
.

Both figures show, for increasing values of 𝑛, two distinct plots related to a Prange attack: the

depth obtained using our quantum implementation (solid red line); the classical number of gates

required estimated using [9] (solid blue line). In both plots, we also represent the number of classical

gates assumed by NIST to be needed to break AES-128 (dotted horizontal blue line), together with

the depth of the best quantum circuit in terms of overall depth [44] (dotted horizontal red line), as

explained in Section 4.3.

Figure 9a shows the results obtained for codes with 𝑅 = 3

4
and 𝑡 matching the one correctable at

the GV-bound, i.e., an approximation of the values used by McEliece. We note how the code lengths

required to target the AES-128 security level are almost identical between the classical and quantum

version of the Prange’s attack. Figure 9b, on the other hand, shows the results obtained for codes

with 𝑅 = 1

2
and 𝑡 =

√
𝑛 relying on quasi-cyclic random codes, i.e., BIKE and HQC. Unlike what

happens in the previous case, we note instead that, if we choose AES-128 as a bar, our quantum

Prange’s attack mandates a greater code length𝑛 with respect to its classical counterpart, suggesting

that designers of this family of cryptosystems should take into account also the results derived

from our proposal when calibrating their parameters.

To conclude, in Figure 9, we report the classical computational cost of the most advanced ISD

algorithm, i.e., BJMM [8], for all the code-based cryptosystems targeting AES-128, pointing out

also their requirements in terms of memory. This attack, indeed, trades off the execution time

and memory usage, and implies a memory usage of 2
38
, 2

39
and 2

97
for BIKE, HQC and McEliece

respectively [25]. At the best of our knowledge, quantum circuit designs related to advanced

versions of the ISD algorithm (such as BJMM) have still not been investigated, as quantum memory

models does not still have a physical counterpart. Furthermore, the NIST requirements for the

cryptanalytical resistance of post-quantum candidates do not consider quantum memories.

5 COMPARISON TO THE STATE-OF-THE-ART
In this section, we offer a comparison of our proposal for QGJE with respect to the state-of-the-art

proposals. We also extensively compare our full quantum circuit proposal with respect to the

literature, highlighting the differences and similarities in their respect. We conclude this section

with a comparison towards other ISD variant, discussing how, although providing improvements

in the classical paradigm of computation, do not offer any advantage in the quantum one.

5.1 AlternateQuantum-Gauss Jordan elimination approaches
The first work showing a quantum version of the Gauss-Jordan Elimination algorithm is [22].

In their proposal, the authors sketch an algorithm adapting Grover’s algorithm to find, for each

candidate pivot (part 1 of our algorithm), one non-zero entry in the matrix rows following the

pivot one. However, for an 𝑟 × 𝑟 matrix, the algorithm requires a number of gates ∈ O(2𝑟/2), that is,
exponential in the size of the square matrix.

To the best of our knowledge, the first work proposing a polynomial version of a QGJE is [54], in

which the authors report, for the typical 𝑟 ×𝑛 parity-check matrix, a depth ∈ O(𝑛𝑟 2) and a number

of additional qubits ∈ O(𝑟 2), plus the additional one 𝑟 × 𝑟 needed to represent the matrix.

On the other hand, in [34] the authors propose a different implementation of the QGJE, targeting

the ISD parity-check matrix. They report an additional number of qubits in the order of O(𝑘2), but
they do not provide exact complexity measures for the number of gates and depth of the circuit.
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Table 7. Comparison of our figures against different works: the asymptotical estimates of [11] and [25], the
results of the previous proposal of [54], and a more recent work shown in [26]. We report that our proposal
outperforms all the other ones in all the relevant metrics, except for a negligible overhead in terms of number
of qubits with respect to [26]. The 𝐷 ·𝑊 metrics multiplies depth and width (i.e., number of qubits), giving
a more reasonable measure of the computational effort required by our implementation. All the values are
expressed in base-2 logarithm.

Algorithm Sec. Qubits Number of gates Depth D ·W
Level Table 3 [54] [26] [11] Table 3 [54] [11] Table 3 [54] [26] [25] Table 3 [54] [26]

BIKE (key) L1 29 29 28 29 108 114 115 93 114 113 105 123 143 141

BIKE (key) L3 31 31 30 31 142 149 150 127 149 148 140 158 180 178

BIKE (key) L5 33 32 32 33 178 186 186 162 186 184 176 195 218 215

BIKE (message) L1 29 29 28 29 104 110 111 89 110 109 101 119 139 137

BIKE (message) L3 31 31 30 31 139 146 147 123 146 144 136 155 177 175

BIKE (message) L5 33 32 32 33 173 181 181 157 181 179 171 190 213 210

HQC L1 30 30 29 30 104 111 112 89 111 110 101 119 141 139

HQC L3 32 32 31 32 140 148 149 125 148 146 138 157 180 177

HQC L5 34 33 33 34 173 181 182 157 181 179 171 190 214 212

McEliece L1 22 22 21 24 102 104 107 92 104 111 95 114 126 133

McEliece L3 23 23 22 24 125 127 129 115 127 134 118 138 150 156

McEliece L5 24 24 23 25 165 167 169 154 167 174 158 178 191 198

McEliece L5 24 24 23 26 165 167 170 155 167 175 158 178 191 198

McEliece L5 24 24 24 26 184 186 189 173 186 194 177 197 210 218

Furthermore, they employ a large number of multi-controlled gates, in which the number of control

qubits is sequentially increasing each time the algorithm selects a new pivot. No gate decomposition

in the Clifford+T or other implementable gate set is provided.

The authors report the measures of the QGJE for a small example of an 8 × 8 matrix. Using a

generic, multi-qubit gate set, they show a width of 88 and a depth of 1404. For the same matrix, we

report a width of 92 qubits — mainly due to the translation of our multi-controlled gates in one-

and two-qubit gates — and a ≈ 14× lower width of 92.

5.2 Comparison to previous circuit design
In [11] Bernstein provided the first high-level description of an attack to the classical McEliece

cryptographic scheme, showing an asymptotic speedup with respect to the classical case. The

work adapts Grover’s framework to find the random choice of the Information Set complement J
satisfying the conditions of Prange’s variant of ISD, and shows how the complexity of an attack to

McEliece cryptosystem drops from 𝑐 (1+𝑜 (1) )𝑛/log (𝑛) to 𝑐 (1/2+𝑜 (1) )𝑛/log (𝑛) , where 𝑐 = 1/(1 − 𝑅)1−𝑅 ,
with 𝑅 being the code rate 𝑘/𝑛. The proposal, though, does not provide a quantum circuit and

reports only asymptotic complexity values, stating that the oracle would need a number of gates in

the order of O(𝑛3). Our proposal, as we can see from Table 1, cuts the number of gates down to

O(𝑟 3), a value obtained from the gate-demanding Gauss-Jordan Elimination circuit. With respect

to the number of qubits, [11] gives an estimate of 𝑛O(1) , i.e., polynomial in 𝑛. Since the theoretical

algorithm proposed represents the whole generator matrix of size 𝑘×𝑛, and given that ancillary

qubits are most likely needed, it is safe to assume a number of qubits in the order of 𝑛2, which is

indeed close to the results obtained by our quantum algorithm based on the parity-check matrix.

Finally, we note that the asymptotic analysis of [11] does not consider in the gate counts the cost

of the input preparation and, consequently, of the diffusion subcircuits. However, in order to have

a number of basis states with non-zero amplitude in the input superposition exactly equal to

(
𝑛
𝑟

)
,

which yet is used in [11], it is not possible to use the depth 1 layer of Hadamard gates as per
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Table 8. Comparison of our figures against the work proposed in [26]. While the detailed depth cost of our
different subcircuits is detailed in Table 1, here we only provide their asymptotic version for the sake of clarity.
We note that [26] does not report the figures for the Hamming weight check and computation figures, but
analyzing the provided source code we deduced that both width and depth are at least in the order of O(𝑛).

Cost Dicke Pack Gaussian Hamming weight
Source metric state columns elimination compute and check

Table 1 Depth O(𝑛) O(log2
2
(𝑛)) O(𝑟 2) O(log2

2
(𝑟 ))

[26] Depth O(𝑛𝑟 log (𝑟 ) log (log (𝑟 ))) 𝑟𝑛2 O(𝑛3 log (𝑛)) Not Reported

Table 1 Qubits 𝑛 (𝑛−1) log
2
(𝑛) (log

2
(𝑛)−1) 1

2
𝑟 (𝑟−1) 𝑀 ( 5𝑟

4
−1)

[26] Qubits 𝑛+2⌈log (𝑘 + 1)⌉ 0 𝑛−2 Not Reported

Grover original proposal, and hence to neglect the cost in the overall measures. A more complex

input preparation subcircuit is needed, such as the one presented in Section 3.1, that produces a

non-negligible number of gates, that are in the order of O(𝑛𝑟 ). Despite that [11] aims at providing

a conservative estimate of the cost, our realization has a number of gates smaller by a factor of

≈ 2
4
, as shown in Table 7.

To the best of our knowledge, the first practical implementation of a full quantum circuit based

on the theoretical work proposed by Bernstein was presented in [54]. The authors report indeed

a number of gates and qubits quite similar to the one reported in [11], but also used additional

metrics based on depth, that better captures the computational power required by quantum circuits.

This proposal significantly improves the previous work [54] in terms of gate count and, more

importantly, total depth. The optimizations made to the QGJE circuit shown in Section 3.2 enabled

indeed a depth reduction by a factor of O(𝑛) and a width reduction of O(𝑟 2). The adaptation of the

DOOM strategy for quasi-cyclic codes to our quantum circuit made also possible a depth reduction

of

√
𝑟 , at the expense of number of qubits increase of O(𝑟 2). However, since we already use 𝑟 · 𝑛

qubits to represent the parity-check matrix, and O(𝑟 2) ancillary qubits (cf. Table 1), this width

increase does not have a relevant effect on the overall width. Indeed, as Table 7 confirms, we report

a more pronounced reduction for BIKE than for McEliece with respect to [54]. We also report that,

with respect to [54], this work also extends the measures two other cryptosystems, namely HQC

and the BIKE attack to recover the private key of the cryptosystem.

Additionally, in the wake of [25], we devoted Section 4.4 to the parallelization of our quantum

circuit across distinct instances, reporting a comparison to our work in Table 6. While [11] focuses

on an estimation of the number of gates and the number of qubits, in [25] the authors give instead

an asymptotic value for the depth of a single Grover iteration, estimated to be in O(𝑟 2.5). This is
slightly above our value of O(𝑟 2) based on a practical quantum circuit implementation. We include

their estimates in Table 7.

In [26] the authors propose a circuit implementation similar to the one presented in [54]. Since

it is quite close to our proposal, we provide a more detailed comparison in the next section.

5.3 Quantitative comparison with the state-of-the-art circuits
In [26] the authors propose an implementation of a quantum circuit for Prange ISD using the same

structure of [54]. From the analysis of the work and the inspection of the provided source code, we

report better figures in our proposal for all the relevant metrics, as reported in Table 8. The circuit to

generate the superposition of

(
𝑛
𝑟

)
, i.e., the Dicke state, is similar to [7] that we used in our proposal.

However, while [7] obtains a depth of O(𝑛), with no other qubits being used except for the original𝑛
containing the superposition, the authors of [26] report a depth of O(𝑛𝑟 log (log (𝑟 ))) and a number

of qubits equal to 𝑛 + 2⌈log (𝑟 + 1)⌉. The quantum circuit used to move all the columns of the
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Information Set complement J at the beginning of H, in [26] has a depth of O(𝑟𝑛2). The proposal
indeed relies on the direct application of CSWAPs controlled by the qubits storing the Dicke state,

and has to unroll in the quantum circuit all the possible controlled swaps of elements of the columns

in advance. For this reason, they do not need additional qubits. Our proposal, on the other hand,

stemming from the classical sorting network algorithm introduced in Section 2.5, has a depth in the

order of O(log2 (𝑛)), additionally requiring O(𝑛 log2
2
(𝑛)) qubits which, since we already require

𝑛 · 𝑟 to store H, do not constitute a significant overhead. The Gauss-Jordan Elimination circuit,

which is the most expensive circuit of our proposal, has both depth and width in the order of O(𝑟 2).
In [26] the equivalent circuit has instead depth O(𝑛3 log (𝑛)), while additionally using 𝑛 − 2 qubits.
Since 𝑟 ≤ 𝑛/2, considering only the figure of merit equal to the depth × width of the circuit, both

approaches are comparable. In the Grover’s iteration of [26] there is already another subcircuit with

depth of O(𝑟𝑛2), and hence the global depth of the iteration is not significantly increased. However,

introducing this variant of the QGJE in our Grover’s iteration would produce a significant increase

of the depth from O(𝑟 2) to O(𝑛3). The reduction on the number of qubits, although significant, does

not make the tradeoff convenient in our design. Finally, in [26], the authors do not report the depth

and width of the Hamming Weight computation and check procedure. From the analysis of the

associated source code, their proposal uses an accumulator, adding one by one the qubits containing

the syndrome and storing the result in a separate accumulator register. For this reason, the depth is

at least linear in 𝑟 , since the accumulation is strictly sequential, while our implementation has a

depth of O(log
2
(𝑟 )).

In [26], the authors additionally propose a way to reduce the required number of qubits of the

circuit by applying, before performing the quantum computation, a classical Gauss-Jordan Elimina-

tion procedure to the parity-check matrix H, in order to obtain its systematic form H′ = [I𝑟 | A𝑟×𝑘 ].
The main reported advantage is that, by using this approach, we can avoid the representation of

the elements of the identity submatrix, effectively sparing 𝑟 2 qubits, and hence materialize in the

quantum circuit only the 𝑟×𝑘 right submatrix A. In the classical case the pre-processing of the

matrix allows reducing the number of operations needed in the Gauss-Jordan Elimination stage.

In the quantum case, however, this approach does not produce any improvement. The authors

of [26] report indeed an additional cost of O(𝑛2) additional row swaps, each one involving O(𝑛)
qubits. Even if they do not report the depth of such a circuit, it is plausible that this optimization

will have a depth in the order of O(𝑛2), since swaps of elements belonging to different rows can be

interleaved. Since their most demanding subcircuits have already depth in the order of O(𝑛3), this
algorithm will not affect much the depth figures, while providing a reduction of 𝑟 2 in terms of used

qubits. However, since they report an overall number of qubits in the order of 𝑛2, this improvement

will bring only negligible results. Considering an adaptation of this improvement to our proposal,

since our Gauss-Jordan Elimination algorithm is already in O(𝑟 2), and it is the deepest subcircuit

of our total quantum circuit, applying this idea would only increase by one order of magnitude the

depth at each iteration.

5.4 Comparing to other ISD variants
More advanced classical algorithms for ISD are known, such as the Lee-Brickell variant [45]. For this

reason, Bernstein in [11] suggested that quantum ISD solvers could indeed provide a speed-up with

respect to the classic Prange variant. However, practical implementations do not seem to offer a

tangible advantage through a direct translation, since they rely either on an increase in the number

of quantum states — and consequently an increase in the number of Grover’s iteration — or into a

deeper and wider circuit. Even hybrid approaches that tried to offload some of the computation

onto a classical processor (see for example [45] or [26]), showed no practical advantage. We refer

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 0000.
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the reader to Appendix A for a detailed cost analysis of different implementation strategies for the

quantum version of a Lee-Brickell attack.

Concerning improved ISD variants, a potentially promising line of research stemmed from [40],

where the authors showed how, by generalizing Grover’s search framework into a quantum walk

framework, a theoretical improvement on the quantum version of the ISD problem is possible.

However, up to now, no quantum circuit design was proposed to concretize this approach.

6 CONCLUSION
In this work, we present a full quantum circuit implementing an attack against code-based cryp-

tosystems, based on Prange variant of the ISD problem accelerated through Grover’s framework.

We translate our high-level gates in the Clifford+T gate set, the major candidate for noiseless

quantum computation and widely employed in cryptographic proposals, comparing our results

against the state-of-the-art implementation of a quantum attack against symmetric cryptography.

Based on our results, we can state that the large majority of the parameter choices made by the

NIST finalist cryptographic scheme s provide conservative margins with respect to the desired

target security.

We also compared our measures with the estimates in terms of number of quantum gates given by

NIST for attacking AES circuits, and as well to the estimates provided in a more recent proposal. In

this case, the upper limit on the maximum depth required to run a single quantum circuit required

a parallelization of our algorithm. We found that when the overall depth of our quantum attack is

compared to the estimates provided by NIST, the McEliece cryptographic scheme at level 3 falls

slightly below the requirements, while it is tightly above the requirements if we consider instead

the overall number of gates of our attack. Further studies are needed in order to understand the

effect of the parallelization on the quantitative measures for all the cryptographic schemes and

provide more concrete figures.

In implementing our proposals, we developed reversible circuits to sort bitstrings — adapted

in our circuit to perform matrix column permutations —, to compute the Hamming weight of a

given bitstring, and, most notably, a circuit performing Gauss-Jordan Elimination on a matrix,

which can be of independent interest. Such an implementation, for example, may also be of interest

in devising new quantum circuits to attack code-equivalence based public-key digital signature

primitives, such as LESS [14]. We note as well that the ISD strategy can be used to find solutions to

the Permuted Kernel Problem (PKP) [13]. In general, all the components we presented can be used

in any quantum accelerated attack to code-based cryptosystems based on ISD, since all of them

reuse the same general structures.

All the subcomponents composing our quantum circuit have been fully validated and tested using

the Atos Quantum Learning Machine [4] simulator. The source code related to all the components

of our circuit is available at https://github.com/paper-codes/2023-TQuantum
1
.

Finally, we report that our algorithm solves a general combinatorial problem, and it can be

seen as a binary constraint satisfaction problem. We note as well that it may easily be adapted to

compute the spark of a matrix, which can be of independent interest.
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A ANALYSIS OF THE QUANTUM VERSION OF LEE-BRICKELL
In the following, we analyse the improvement proposed by Lee and Brickell in [45], highlighting

why a set of strategies for the transposition of the approach onto our quantum ISD solver does not

provide speedups.

Lee and Brickell analysed the costs of allowing a fixed number of asserted bits in the 𝑘 bits

indexed by I. In other words, while in Prange we hadWt (eI) = 0 andWt

(
eJ

)
= 𝑡 , in Lee and

Brickell’s variant we assume Wt (eI) = 𝑝 and Wt

(
eJ

)
= 𝑡 − 𝑝 . For this reason, the number of

admissible vectors increases from

(
𝑟
𝑡

)
to

(
𝑟

𝑡−𝑝
) (

𝑘
𝑝

)
, leading to a probability of success of a single

iteration given by Pr𝑠𝑢𝑐𝑐−𝐿𝐵 =
(

𝑟
𝑡−𝑝

) (
𝑘
𝑝

)
/
(
𝑛
𝑡

)
. As we did for Prange, we can alternatively rephrase

the probability of success as

(
𝑛−𝑡

𝑟−(𝑡−𝑝 )
) (

𝑡
𝑡−𝑝

)
/
(
𝑛
𝑟

)
, since we want to put, in the error vector indexed

by J , all the 𝑛 − 𝑡 zeros in 𝑟 − (𝑡 − 𝑝) positions, and all 𝑡 ones in the remaining 𝑡 − 𝑝 positions.

The increase in the probability of success of a single iteration leads to a reduction in the expected

number of iterations, at the price of an increased cost of a single iteration of the algorithm, C𝑖𝑡𝑒𝑟−𝐿𝐵 .
Indeed, after performing the GJE procedure (line 4 of Algorithm 1), we obtain thematrix H̃ = [W | V]
and the corresponding vector s̃, that we should use to retrieve the unknown error vector ê such
that s̃ = H̃ê. The previous equation can be expanded as s̃ = [W | V] [eJ | eI] and can be seen as

the bitwise addition of two distinct vectors, namely s̃ = WeJ ⊕ VeI . If, as per Prange’s hypothesis,
we have W = I𝑟 — signalling that HJ is invertible — we can rewrite the previous equation as

eJ = s̃ ⊕ VeI . Lee-Brickell’s algorithm assumes thatWt

(
eJ

)
= 𝑡 − 𝑝 andWt (eI) = 𝑝 , and hence

the multiplication VeJ can be seen as the sum of the 𝑝 columns of V indexed by the position of the

𝑝 asserted bits of eI . Given this, in Lee-Brickell algorithm we insert, after line 5 of Algorithm 1, an

additional iteration over all the

(
𝑘
𝑝

)
possible picks of 𝑝 columns of the matrix V, reporting a success

if, for one of these picks, adding together the 𝑝 columns of V to s̃ gives a vector of weight 𝑡 − 𝑝 .
The cost of a single iteration for classical Lee-Brickell’s algorithm is

C𝑖𝑡𝑒𝑟−𝐿𝐵
Pr𝑠𝑢𝑐𝑐−𝐿𝐵

≈
(
𝑛
𝑡

)
0.288

(
𝑟

𝑡−𝑝
) (

𝑘
𝑝

) (
C𝐺𝐽 𝐸 +

(
𝑘

𝑝

)
(C𝑆𝑈𝑀 +C𝐻𝑊𝐶𝐶 )

)
(12)

in which C𝑆𝑈𝑀 is the cost of adding 𝑝 vectors of length 𝑟 to the syndrome at each iteration, having

a classical cost ∈ O(𝑟𝑝), while C𝐻𝑊𝐶𝐶 is the cost of computing, each time, the Hamming weight of

the resulting vector. By comparing the probabilities of success of Lee-Brickell and Prange variants,

we obtain

Pr𝑠𝑢𝑐𝑐−𝐿𝐵
Pr𝑠𝑢𝑐𝑐−𝑃𝑅

=

(
𝑟

𝑡−𝑝
) (

𝑘
𝑝

)(
𝑛
𝑡

) (
𝑛
𝑡

)(
𝑟
𝑡

) =

(
𝑘

𝑝

) (
𝑟

𝑡−𝑝
)(

𝑟
𝑡

) =

(
𝑘

𝑝

)
𝑡 !

(𝑡 − 𝑝)!
(𝑟 − 𝑡)!

(𝑟 − (𝑡 − 𝑝))! (13)

which exponentially increases for increasing 𝑝 ≪ 𝑡 . Consequently, the expected number of itera-

tions, obtained as the inverse of the probability of success, shows an exponential decrease, which

is balanced by the

(
𝑘
𝑝

)
number of distinct sums of columns required, at each iteration, to sum 𝑝

columns of V to the syndrome. For this reason, while the admissible values for 𝑝 are in {1, . . . , 𝑡 −1},
the trade-off between the number of iterations and the computational cost of a single iteration

shows its optimal value for the classic Lee-Brickell solver at 𝑝 = 2, as shown in [5].

When switching from Prange’s ISD variant to Lee-Brickell’s in a quantum setting, the number of

required Grover iterations decrease of a quantity proportional to the square root of the inverse

of Equation 13, as a consequence of the incremented number of admissible solutions. This comes

at the cost of adapting the circuit in order to perform the inner

(
𝑘
𝑝

)
column additions, for which

different strategies can be explored. Before analysing them, we note that in Lee-Brickell’s approach

we need the entire result of the QGJE on the H matrix, hence Optimization 4 cannot be applied.
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Adaptation strategy 1. The idea of Strategy 1 is to implement a reversible circuit capable of

generating all the

(
𝑘
𝑝

)
possible choices of the columns of V and check the result of their addition to

s̃. If the sum is, as required, equal to 𝑡 − 𝑝 , we set an additional ancilla to |1⟩ to signal a success.

This strategy requires a reversible circuit capable of enumerating, on an auxiliary register comb

of length 𝑘 , all the
(
𝑘
𝑝

)
choices of vectors of length 𝑘 and Hamming weight 𝑝 , one at a time. After

that, we can use the qubits of comb to conditionally sum the columns of V to the quantum register

storing s̃ through CCNOT gates. Any possible algorithm will have at least depth O(𝑘) to generate

each item of the enumeration, and has to be performed

(
𝑘
𝑝

)
times. Even with 𝑝 = 1, i.e., the smallest

possible 𝑝 value, we obtain a circuit depth of O(𝑘2). Given that the deepest circuit in our plain

Prange’s algorithm has a depth in O(𝑟 2) and that 𝑘 ≥ 𝑟 , the depth of the overall circuit will be

substantially increased, nullifying the benefits of a decreased number of iterations.

Adaptation strategy 2. Given the complexity of the previous quantum circuit and the fact that

𝑝 is fixed, one can think of obtaining the combinations of columns sums needed for each

(
𝑘
𝑝

)
at

circuit generation time, i.e. classically, and hence translate the obtained sequence of sums into the

corresponding CNOT quantum gates. In other words, Strategy 2 will not use an additional quantum

register to drive the sum of columns of V in the quantum circuit, but, while classically generating

the quantum circuit, will decide which gates to apply based on classical results. This is the approach

sketched in [26], where the authors report an additional cost of 𝑂

( (
𝑘
𝑝

)
𝑝

)
for this circuit and no

additional qubits. Indeed, each of the

(
𝑘
𝑝

)
combination has to add together 𝑝 columns. However,

each column addition involves 𝑟 elements sum, done through CNOT gates, and since 𝑝 ≪ 𝑟 , there

is not much room for parallelization between elements belonging to different columns, giving

therefore a depth which is more realistically equal to O(
(
𝑘
𝑝

)
𝑟 ). Additionally, [26] does not consider

the cost of computing and checking the Hamming weight for each pick of 𝑝 columns. Using our

approach for this subcircuit would require O(𝑟 ) qubits and O(log2
2
𝑟 ) depth. Finally, each sum of

𝑝 columns must be uncomputed before proceeding to the next combination. We argue therefore

that the overall depth will be in the order of O(
(
𝑘
𝑝

) (
2 · 𝑟 · log2

2
𝑟
)
). Once again, even the smallest

value for 𝑝 , that is, 𝑝 = 1, will give us a depth equal to O(𝑘𝑟 ), making it again at least as deep as

the QGJE circuit, and hence bringing no concrete benefit.

An important drawback of Strategies 1 and 2 is that, at each Grover iteration, the inner circuit

performing the column addition of all the 𝑝 columns of V is uncomputed, meaning that, upon

measurement, we will not have any way to tell which of the possible

(
𝑘
𝑝

)
pick of columns of V

generated the right result. In other words, upon measurement, we will measure multiple choices of

J that generated an invertible matrix HJ and for which some pick of 𝑝 columns of the matrix V
gave the correct result. After the execution of the whole quantum circuit, we have to introduce an

additional classical step, performing a permutation and a GJE step on H based on the value of J
found through the quantum circuit, followed by an exhaustive search on the obtained rightmost

submatrix V to detect which of its columns produces the correct result.

Adaptation strategy 3. The idea behind Strategy 3 is to generate, alongside the original Dicke

state generating a superposition of all the

(
𝑛
𝑟

)
possible choices of J , another one generating a

superposition of all the

(
𝑘
𝑝

)
pick of columns of V. By using this approach, we still need the CCNOTs

for the sum, but we need a single Hamming weight compute and check circuit at each Grover

iteration. The additional subcircuit will have therefore a depth in the order of O(𝑘), since 𝑘 · 𝑟
CCNOT gates must be computed among all the qubits representing the elements of the matrix and,

since 𝑟 ≤ 𝑘 , the CCNOT gates can be interleaved. This strategy has the main drawback that the

number of input states increases by

(
𝑘
𝑝

)
, leading therefore to an additional

√︃(
𝑘
𝑝

)
Grover iterations
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Table 9. Comparison of the different strategies to translate the Lee-Brickell ISD variant into a quantum circuit
with respect to the Prange ISD variant shown in this work. The number of classical iterations is required
only in the hybrid approach of strategy 4. The product of values on each row equals the D ·W cost of the
corresponding strategy.

ISD Qubits Grover Grover iteration Classical
variant iterations depth iterations

Prange 𝑟𝑛 + 𝑟 2 + 𝑛
√︂
(𝑛𝑡 )
(𝑟𝑡)

O(𝑟 2) -

L-B strategy 1 𝑟𝑛 + 𝑟 2 + 𝑛 + 𝑘
√︂
(𝑛𝑡 )
( 𝑟
𝑡−𝑝) (𝑘𝑝)

O(𝑟 2) +
(
𝑘
𝑝

)
O(𝑘) -

L-B strategy 2 𝑟𝑛 + 𝑟 2 + 𝑛
√︂
(𝑛𝑡 )
( 𝑟
𝑡−𝑝) (𝑘𝑝)

O(𝑟 2) +
(
𝑘
𝑝

)
O(𝑟 ) -

L-B strategy 3 𝑟𝑛 + 𝑟 2 + 𝑛 + 𝑘

√︄
(𝑛𝑡 ) (𝑘𝑝)
( 𝑟
𝑡−𝑝) (𝑘𝑝)

O(𝑟 2) + O(𝑘) -

L-B strategy 4 [55] O(𝑘𝑟 )
√︃(

𝑘
𝑝

)
O(𝑘) (𝑛𝑡 )

( 𝑟
𝑡−𝑝) (𝑘𝑝)

with respect to the other strategies, leaving therefore only a small reduction in the number of

iterations with respect to Prange. Once again, no substantial improvement can be obtained with

this approach.

Adaptation strategy 4. A final strategy, Strategy 4 and explored in [55], is to accelerate only one

part of Lee-Brickell algorithm using a quantum circuit. In [55], for example, the authors try to

accelerate only the inner loop of the algorithm, by applying Grover’s framework to find which pick

of 𝑝 columns of V among all the possible ones gives the correct solution. However, while they show

that the quantum circuit alone has a reasonable depth and width, it has to be executed a number of

times equal to the number of iterations required by the classical Lee-Brickell algorithm, and hence

does not bring many benefits.

Table 9 summarizes the costs of the previous strategies to parallelize the Lee-Brickell approach, ad-

ditionally comparing them to the plain Prange approach. In conclusion, translating the Lee-Brickell

approach onto a quantum implementation does not appear to provide a significant improvement to

the efficiency of the solver, as it is the case for the classical ISD solver counterpart.
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