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Abstract 

Background  To develop and validate classifier models that could be used to identify patients with a high percent-
age of potentially recruitable lung from readily available clinical data and from single CT scan quantitative analysis at 
intensive care unit admission. 221 retrospectively enrolled mechanically ventilated, sedated and paralyzed patients 
with acute respiratory distress syndrome (ARDS) underwent a PEEP trial at 5 and 15 cmH2O of PEEP and two lung CT 
scans performed at 5 and 45 cmH2O of airway pressure. Lung recruitability was defined at first as percent change in 
not aerated tissue between 5 and 45 cmH2O (radiologically defined; recruiters: Δ45-5non-aerated tissue  > 15%) and 
secondly as change in PaO2 between 5 and 15 cmH2O (gas exchange-defined; recruiters: Δ15-5PaO2  > 24 mmHg). Four 
machine learning (ML) algorithms were evaluated as classifiers of radiologically defined and gas exchange-defined 
lung recruiters using different models including different variables, separately or combined, of lung mechanics, gas 
exchange and CT data.

Results  ML algorithms based on CT scan data at 5 cmH2O classified radiologically defined lung recruiters with similar 
AUC as ML based on the combination of lung mechanics, gas exchange and CT data. ML algorithm based on CT scan 
data classified gas exchange-defined lung recruiters with the highest AUC.

Conclusions  ML based on a single CT data at 5 cmH2O represented an easy-to-apply tool to classify ARDS patients 
in recruiters and non-recruiters according to both radiologically defined and gas exchange-defined lung recruitment 
within the first 48 h from the start of mechanical ventilation.

Key points 

–	 Machine learning based on a single CT imaging at the admission in intensive care unit provided a reliable tool 
to classify ARDS patients in responder and not responder to lung recruitment within the first 48 hours from the 
start of mechanical ventilation.
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Introduction
ARDS is typically defined as a non-cardiogenic pulmo-
nary edema characterized by different degree of hypox-
emia, alveolar shunt and not aerated lung regions [1]. 
The commonly suggested lung protective ventilation 
strategy includes lung recruitment maneuvers to reopen 
not-aerated lung regions (i.e., collapsed areas) in order to 
reduce VILI, improve lung oxygenation and CO2 removal 
[2]. However, several data showed that lung recruitment, 
although improving the oxygenation, could also, at the 
same time, impair the hemodynamics without improv-
ing the 28-day mortality [3, 4]. Furthermore, a system-
atic review and meta-analysis reported that in patients 
with moderate–severe ARDS, the use of higher PEEP 
with prolonged lung recruitment was associated with 
increased risk of death compared to similar PEEP with-
out lung recruitment [5]. Thus, selecting an appropriate 
ventilatory strategy balancing the levels of PEEP and lung 
recruitment is therefore critical.

Among the different lung imaging techniques, the CT 
is the reference method both for a morphological analy-
sis and for an accurate quantitative computation of lung 
recruitability [6–8]. The measurement of lung potential 
recruitment is fundamental to establish the therapeu-
tic efficacy of PEEP [8–10]. It has been reported that the 
amount of lung recruitability ranged from 0 up to 70% of 
the total lung weight [8, 10]. Moreover, the lung recruita-
bility was poorly predictable, being affected by the dis-
tribution of the lung disease, amount of edema, timing 
of ARDS onset and alteration in respiratory mechanics 
[9–12].

Recently, several applications of machine learning tech-
niques have been applied in critical care medicine with 
promising results [13, 14]. Machine learning algorithms 
have been proposed to classify patients into ARDS sub-
phenotypes using readily available clinical data [15–19]. 
Various studies demonstrated that machine learning 
can be used to predict patients who required prolonged 
mechanical ventilation and also the outcome [14, 15]. 
In a secondary analysis of a randomized trial apply-
ing machine learning, three different ARDS clusters 
were found, differing in the injury effect of an open lung 
recruitment strategy and the outcome [20]. Recently, 
several prediction models of COVID-19 have been also 
developed with a focus on CT diagnosis and prognosis 
[21–25].

Thus, we hypothesized to apply machine learning algo-
rithms for the detection of lung recruitment, defined 
both from radiological and gas exchange data, in ARDS 
patients. In particular, the aim of the present study was to 
develop and validate classifier models to identify patients 
with a high percentage of potentially recruitable lung 
from readily available clinical data (namely mechanics 

and gas exchange) and using single CT scan at admission 
at 5 cmH2O of PEEP. The secondary aim was to develop 
models that use a more limited set of available clinical 
and CT scan data.

Materials and methods
The study is a retrospective analysis of ARDS patients 
previously enrolled from 2016 to December 2022 and 
partially included in other already published studies 
[26]. The study was approved by the Institutional Review 
board of our hospital (Comitato Etico Interaziendale 
Milano Area A, protocol number 2016/ST/143 on the 
22nd June 2016, entitled “PEEP test”) and informed con-
sent was obtained according to the Italian regulations. 
The study protocol flowchart is shown in Additional 
file 1: Figure S1.

Study protocol
At Intensive Care Unit (ICU) admission, patients were 
maintained deeply sedated and paralyzed, ventilated in 
volume control ventilation, with a tidal volume between 
6 and 8  ml/kg of ideal body weight, a respiratory rate 
to ensure an arterial carbon dioxide partial pressure 
(PaCO2) between 40 and 50  mmHg; positive end-expir-
atory pressure (PEEP) and FiO2 were set by the attend-
ing physician to ensure an arterial saturation between 88 
and 92%. An esophageal balloon catheter (Smart Cath, 
Viasys, Palm Springs, USA) was placed in the lower third 
of the esophagus, as already described before [27].

Patients were enrolled within 48 h from ICU admission 
and the study protocol was started.

At the beginning of the study, a recruitment maneu-
ver was performed in pressure controlled ventilation at 
PEEP 5  cmH2O, with a plateau pressure of 45  cmH2O, 
I:E 1:1, respiratory rate of 10 breaths/min for 2  min. 
Subsequently, the previously applied tidal volume and 
respiratory rate were resumed and a PEEP trial at 5 and 
15  cmH2O was performed; the FiO2 was adjusted at the 
beginning of the trial to ensure an arterial saturation 
between 88 and 92%. At each PEEP level, after 20  min, 
end-inspiratory and end-expiratory pauses were per-
formed and arterial and central venous blood gas analy-
sis were obtained; consequently, we recorded partitioned 
respiratory mechanics, gas exchange and hemodynam-
ics variables. Partitioned respiratory mechanics of lung 
and chest wall elastance was computed according to the 
following standard formulas [9]. Gas exchange-defined 
lung recruitment was assessed as the difference in PaO2 
between 15 and 5 cmH2O of PEEP.

After the PEEP trial, two whole lung CT scan in static 
condition at 5 cmH2O of end-expiratory airway pressure 
and 45 cmH2O of end-inspiratory airway pressure were 
performed.
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Lung CT quantitative analysis
An integrated approach was used based on manual seg-
mentation of the lung by a dedicated software and sub-
sequently automatically analyzed (Soft-E-Film). The total 
lung weight, the gas volume, and the amount of the dif-
ferent compartment (not inflated, poor inflated, well 
inflated and overinflated) were computed [6]. Radiologi-
cally defined lung recruitment was assessed as the ratio 
between the difference in not aerated tissue at 5 cmH2O 
and 45 cmH2O of airway pressure to the total lung tissue 
weight at 5 cmH2O of airway pressure.

Statistical analysis
Continuous variables are presented as mean ± standard 
deviation or median (interquartile range), as appropri-
ate, whereas categorical data are reported as percentages. 
Clinical data of recruiters and non-recruiters at 5 cmH2O, 
as well as the differences in respiratory mechanics and 
gas exchange between 5  cmH2O and 45  cmH2O of air-
way pressures were compared by the Student’s t test or 
Mann–Whitney rank-sum test, as appropriate. Categori-
cal data were compared by the Chi-square test. Tests 

were two-sided with significance α level set at less than 
0.05.

Machine learning models
Machine learning models were implemented in Python 
using the Scikit-Learn package [28]. Data management 
was performed using the Pandas library [29]. The work-
flow is summarized in Fig. 1.

Outcome  The outcome of interest was the prediction of 
patients with a percentage of potentially recruitable lung 
greater than the median value of the whole population. 
Radiologically defined lung recruitability was assessed as 
the ratio of the change in not aerated lung tissue between 
5 cmH2O and 45 cmH2O to the total lung tissue weight at 
5 cmH2O at CT scan. Gas exchange-defined lung recruit-
ment was assessed as the difference in PaO2 between 
15 and 5 cmH2O of PEEP (Δ15-5 PaO2). For the two out-
comes, the median values for the whole population were 
15% and 24 mmHg, respectively. Furthermore, to evalu-
ate the model performance over different lung recruita-
bility thresholds, the analyses on the overall dataset was 

Fig. 1  The machine learning workflow. Input parameters included lung mechanics at PEEP 5 cmH2O (M5), lung mechanics at PEEP 15 cmH2O 
(M15), respiratory partitioned mechanics (RPM), gas exchange measured at PEEP 5 cmH2O (G5), gas exchange measured at PEEP 15 cmH2O (G15), 
CT imaging acquired at PEEP 5 cmH2O (CT5). A grid search strategy with a stratified fivefold cross-validation repeated 10 times was performed to 
optimize algorithms’ parameters, for both feature selection and model training. The hold-out test set was used to test the re-trained models in terms 
of mean area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity
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repeated for all models by assigning classes using cut-
offs of 10%, 20% and 30% for radiologically defined lung 
recruitability and using cut-offs of 20 mmHg, 30 mmHg 
and 40 mmHg for gas exchange-defined lung recruitabil-
ity.

Predictor variables  With the rationale of investigat-
ing the best measuring conditions in the clinical setting, 
classifier models were developed using demographic data 
with the addiction of sparse sets of variables that were 
grouped according to the variable type: lung mechanics 
(M), gas exchange (G) and CT imaging data acquired at 
PEEP 5 cmH2O (CT5). Lung mechanics and gas exchange 
variable sets were further subdivided according to the 
measuring condition: lung mechanics at PEEP 5 cmH2O 
(M5), lung mechanics at PEEP 15 cmH2O (M15), respira-
tory partitioned mechanics (RPM), gas exchange meas-
ured at PEEP 5 cmH2O (G5) and gas exchange measured 
at PEEP 15 cmH2O (G15). A total of 44 features were used 
as independent variables for the development of the mod-
els (Additional file 1: Figure S2).

Data pre‑processing  To ensure the availability of all pre-
dictors in models’ development, we excluded features with 
more than 30% missing data. In the remaining features, 
residual missing data were imputed with the median value 
of the respective feature. Finally, the data were normalized 
and scaled to have zero mean and unit variance such that 
variables with different scales can contribute equally to 
the analysis. For the purposes of evaluation, we reserved 
30% of the dataset, chosen at random, as a hold-out data-
set and used the remaining 70% to train, validate, and iter-
ate the predictive models. The hold-out dataset was used 
to assess the performance of the models on totally unseen 
data. As imbalanced class distribution can affect model 
performance, the Synthetic Minority Oversampling Tech-
nique (SMOTE) was applied during training to balance 
the dataset [30].

Feature selection  The purpose of this step is to find the 
smallest number of relevant and informative features. In 
the training set, the least absolute shrinkage and selection 
operator (LASSO) was repeatedly applied, each time with 
a different random data split, and the features that had 
been selected in more than 50% of the case were retained. 
Additional details on feature selection are reported in 
Additional file 1: Section S3.

Machine learning classification algorithms (classifi‑
ers)  Four conventional ML algorithms were imple-
mented to classify recruiters, considering their robustness 
in binary prediction problems. Logistic regression (LR) is 
a widely used machine learning model in medicine for 

classification tasks, which assumes a linear relationship 
between the input variables and the outcomes. Support 
Vector Machine (SVM) is a maximum margin classifier 
that performs classification by finding a decision bound-
ary, which generates the maximum separation between 
decision classes [31]. Random Forest [32] and XGBoost 
[33] are two ensemble techniques, respectively, a bagging 
and a boosting type of ensemble, characterized by high 
generalizability and robustness, which are effective at cap-
turing interactions and non-linear relationships between 
variables, by aggregating sub-models that have no or low 
correlation with each other [34, 35]. During models’ devel-
opment, a fivefold cross-validation (stratified fivefold CV) 
routine was defined so that the data were partitioned into 
five folds of equal size: training occurred on four of the 
folds, and the remaining fold was used as validation set, 
to monitor the performance of the algorithm. Folds were 
created 10 times, each time with a different data split, to 
remove any bias in selecting training and validation sub-
sets (repeated (stratified) fivefold CV). Models’ hyper-
parameters were defined through a cross-validated grid 
search, as the combination of parameters that maximized 
models’ performance: for each model, various combina-
tions of parameters were tried and the one with the best 
cross-validation accuracy was selected. As recommended 
by Hsu et al. [36], a coarse grid was first used to identify 
the “best region” of each parameter, followed by a finer 
grid within this region. This parameter search has been 
done for each set of features, as the parameters’ setting 
may vary with different set of features.

The median value of the area under the receiver oper-
ating characteristic curve computed from the validation 
folds (validation AUC) was chosen as the summariz-
ing metric. The comparison between the percentages of 
patients having high or low lung recruitability, based on 
the different classification models, was performed with 
the Cochran’s Q test. When applicable, significant dif-
ferences between the percentages were tested using the 
McNemar test. These tests were implemented using the 
python library mlxtend. The model with the best valida-
tion AUC was retained and its performance was evalu-
ated on the test set, which was kept isolated from the 
model development process, by calculating AUC, accu-
racy, sensitivity and specificity.

Results
A total of 221 patients were retrospectively ana-
lyzed [9]. According to the median value of radiologi-
cally defined and gas exchange-defined recruitability, 
recruiters and non-recruiters were 110 and 111, respec-
tively. The main clinical characteristics of the popula-
tion at 5 cmH2O of PEEP divided in recruiters (n = 110) 
and not recruiters (n = 111) according to radiologically 
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defined lung recruitability are reported in Table  1. 
The recruiter group presented a significantly higher 
percentage of pulmonary ARDS origin compared to 
the non-recruiter (73% vs 51%). The recruiter group 
was ventilated with a significantly lower tidal volume 

compared to non-recruiters (500 [425–560] vs 522 
[461–600] mL) but with a similar minute ventilation. 
At 5 cmH2O of PEEP, respiratory system and lung 
elastances were both significantly higher in recruit-
ers (27 [6, 19–32] vs 24 [6, 17–27] cmH2O/L and 21 

Table 1  Baseline characteristics at 5 cmH2O of PEEP in patients divided according to lung potential recruitment (LPR)

Continuous data are expressed as mean ± SD or median (interquartile range), while categorical data are expressed as %. Student’s t test or Mann–Whitney rank-sum 
tests and Chi-square test were used as appropriate

Variables Recruiters (LPR > 15%) Non-recruiters (LPR ≤ 15%) p-value

Demographic

 Number 110 111

 Age (years) 62 (47, 74) 61 (48, 72) 0.317

 Male sex (%) 44 56 0.739

 Weight (kg) 75 (61, 85) 75 (61, 89) 0.718

 BMI (kg/m2) 25 (22, 28) 25 (22, 29) 0.894

 SAPS II 43 ± 17 42 ± 13 0.406

 Origin of ARDS 0.001
  Pulmonary (%) 73 51

  Extrapulmonary (%) 27 49

 ARDS severity  < 0.001
  Mild (%) 61 27

  Moderate (%) 28 42

  Severe (%) 11 31

Ventilatory parameters

 Tidal volume (TV, ml) 500 (425, 560) 522 (461, 600) 0.013
 TV per ideal body weight (mL/kg) 7.9 (6.7, 8.5) 8.0 (7.3, 9.2) 0.017
 Respiratory rate (breath per minute) 16 (14, 20) 16 (14, 18) 0.541

 Minute ventilation (L/min) 8.3 (6.9, 9.9) 8.4 (7.6, 10.0) 0.252

 Peak inspiratory pressure (cmH2O) 28 (23, 34) 26 (23, 29) 0.029
 Plateau pressure (cmH2O) 19 (16, 22) 18 (15, 20) 0.030
 Physiological dead space 0.66 ± 0.13 0.57 ± 0.12  < 0.001

Respiratory mechanics

 Driving pressure (cmH2O) 13 (10, 16) 12 (10, 15) 0.112

 Respiratory system elastance (cmH2O/L) 27 (21, 35) 24 (19, 30) 0.007
 Mechanical power (J/(min kg)) 15 (11, 20) 15 (11, 18) 0.890

Respiratory partitioned mechanics

 Lung elastance (cmH2O/L) 21(14, 28) 18 (13, 24) 0.048
 Chest wall elastance (cmH2O/L) 6 (4, 9) 6 (4, 8) 0.995

Gas exchange

 PaCO2 (mmHg) 47 (41, 53) 42 (38, 49)  < 0.001
 PaO2 (mmHg) 68 (60, 75) 76 (65, 91)  < 0.001
 PaO2/FiO2 113 (84, 144) 163 (119, 207)  < 0.001

CT parameters

 Total lung volume (mL) 2377 (2073, 2798) 2701 (2056, 3201) 0.022

 Total lung weight (g) 1598 (1278, 1968) 1319 (1116, 1472)  < 0.001
 Total lung gas volume (mL) 736 (504, 979) 1233 (912,1798)  < 0.001
 Not aerated lung tissue (%) 52 ± 14 35 ± 14  < 0.001
 Poorly aerated lung tissue (%) 31 (21, 39) 28 (22, 39) 0.652

 Well aerated lung tissue (%) 14 (10, 22) 34 (26, 42)  < 0.001
 Overaerated lung tissue (%) 0.00 (0.00, 0.04) 0.03 (0.00, 0.29)  < 0.001
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[12–26] vs 18 [11–22] cmH2O/L, respectively). Arte-
rial oxygenation (PaO2/FiO2) was significantly lower in 
recruiters compared to non-recruiters (113 [84–144] 
vs 163 [119–207]). At 5 cmH2O of PEEP, recruiters 
had a lower lung gas volume and higher lung weight 
compared to non-recruiters (736 [504–979] vs 1233 
[912–1798] mL and 1598 [1278–1968] vs 1319 [1116–
1472] g). Similarly, the percentage of not aerated and 
well-aerated tissue was, respectively, higher and lower 
in recruiters compared to non-recruiters (52 ± 14 vs 
35 ± 14% and 14 [8, 10–20] vs 34 [6, 11, 24–38] %).

The PEEP test response of the population divided 
according to radiologically defined lung recruitability 
is shown in Additional file 1: Table S1 and described in 
Additional file 1: Section S2.

Development of classification models
From set of predictor variables (M5, M15, RPM, G5, G15, 
CT5), using LASSO, subsets of the most informative 

variables, were produced and used in building ML mod-
els, and are summarized in Table 2. See also Additional 
file 1: Section S3.

Model performances
Radiologically defined lung recruitability: ML algorithm 
selection
Figure 2 shows the validation AUCs for each pair of set 
of variables and ML algorithm, when lung recruitability 
was radiologically defined (recruiters: Δ45-5non-aerated 
tissue > 15%). More details on the comparison between 
the classifiers are reported in the online Additional file 1: 
Section S4. Based on the results, logistic regression 
(LR) was chosen as ML classification algorithm (classi-
fier) when lung recruitability was radiologically defined, 
as faster and more interpretable compared to the other 
algorithms. Additional metrics for the logistic regression 
algorithm are reported in Additional file 1: Table S2.

Table 2  Subsets of the most informative variables selected according to the frequency with which they were chosen after repeating 
the least absolute shrinkage and selection operator (LASSO) algorithm

Lung recruitability was defined both as the percent change in not aerated tissue between 5 cmH2O and 45 cmH2O (recruiters: Δ45-5non-aerated tissue > 15%) and 
as the change in PaO2 between 5 cmH2O and 15 cmH2O (recruiters: Δ15-5PaO2 > 24 mmHg). Input parameters included lung mechanics at PEEP 5 cmH2O (M5), lung 
mechanics at PEEP 15 cmH2O (M15), respiratory partitioned mechanics (RPM), gas exchange measured at PEEP 5 cmH2O (G5), gas exchange measured at PEEP 15 
cmH2O (G15), CT imaging acquired at PEEP 5 cmH2O (CT5)

Feature group name Data

Outcome: Δ45-5non-aerated tissue > 15%

 M5 ARDS origin, tidal volume, plateau pressure, driving pressure

 M5 + M15 ARDS origin, tidal volume, plateau pressure, driving pressure, Δ15-5 mechanical power

 M5 + M15 + RPM ARDS origin, tidal volume, plateau pressure, driving pressure, Δ15-5 mechanical power, lung elastance

 G5 ARDS origin, PaO2/FiO2

 G5 + G15 ARDS origin, PaO2/FiO2, Δ15-5 PaO2

 CT5 Age, ARDS origin, well-aerated lung tissue, non-aerated lung tissue

 CT5 + G5 Age, ARDS origin, well-aerated lung tissue, non-aerated lung tissue, PaO2/FiO2

 CT5 + M5 Age, ARDS origin, well-aerated lung tissue, non-aerated lung tissue

 CT5 + G5 + G15 Age, ARDS origin, well-aerated lung tissue, non-aerated lung tissue, Δ15-5 PaO2

 CT5 + M5 + M15 + RPM Age, ARDS origin, well-aerated lung tissue, non-aerated lung tissue, Δ15-5 mechanical power

 CT5 + G5 + G15 + M5 + M15 + RPM Age, ARDS origin, well-aerated lung tissue, non-aerated lung tissue, Δ15-5 PaO2, Δ15-5 mechanical power

Outcome: Δ15-5PaO2 > 24 mmHg

 M5 ARDS origin, BMI, mechanical power

 M5 + M15 ARDS origin, BMI, mechanical power, Δ15-5 driving pressure

 M5 + M15 + RPM ARDS origin, BMI, mechanical power, Δ15-5 driving pressure, chest wall elastance

 G5 ARDS origin, BMI, PaO2

 CT5 ARDS origin, total lung weight, poorly aerated lung tissue, well-aerated lung tissue

 CT5 + G5 ARDS origin, total lung weight, poorly aerated lung tissue, well-aerated lung tissue, PaO2

 CT5 + M5 ARDS origin, total lung weight, poorly aerated lung tissue, well-aerated lung tissue, mechanical power

 CT5 + M5 + M15 + RPM ARDS origin, total lung weight, poorly aerated lung tissue, well-aerated lung tissue, Δ15-5 driving pres-
sure, chest wall elastance

 CT5 + G5 + M5 + M15 + RPM ARDS origin, total lung weight, poorly aerated lung tissue, well-aerated lung tissue, Δ15-5 driving pres-
sure, chest wall elastance, PaO2

 M5 ARDS origin, BMI, mechanical power

 CT5 + G5 + G15 + M5 + M15 + RPM Age, ARDS origin, well-aerated lung tissue, non-aerated lung tissue, Δ15-5 PaO2, Δ15-5 mechanical power
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Radiologically defined lung recruitability: logistic 
regression performance on different set of variables
Figure 2 shows that models based only on lung mechan-
ics and gas exchange variables showed worse AUCs, 
with the highest values achieved by the models trained 
on gas exchange variables measured at PEEP 5 cmH2O 
and 15 cmH2O (0.79 for the LR model). The Cochran 
test reported no statistically significant difference among 
mechanical models (p = 0.920), among gas exchange 
models (p = 0.317) and between mechanical and gas 
exchange models (p = 0.893). The model based on all fea-
tures (CT5 + G5 + G15 + M5 + M15 + RPM) showed the 
highest validation AUC (0.90), but no significant differ-
ence was obtained when only CT data model (CT5; AUC 
0.89) was evaluated (p = 0.466). Models including CT 
parameters reported statistically significant higher AUCs 
compared to models based only on lung mechanics (M5, 
M5 + M15, M5 + M15 + RPM) and gas exchange (G5, 
G5 + G15) (p < 0.001) (Fig. 2).

Gas exchange‑defined lung recruitability: ML algorithm 
selection
When lung recruitability was defined based on gas 
exchange (recruiters: Δ15-5PaO2 > 24  mmHg) (Fig.  3), 

random forest resulted in the statistically highest vali-
dation AUCs on gas exchange and CT models and was 
chosen as classification algorithm. More details on the 
comparison between the classifiers is reported in the 
online Additional file  1: Section S4. Additional metrics 
for the random forest algorithm are reported in Addi-
tional file 1: Table S3.

Gas exchange‑defined lung recruitability: random forest 
performance on different set of variables
Figure 3 shows that random forest algorithm based only 
on lung mechanics (M5, M5 + M15, M5 + M15 + RPM) 
and gas exchange variables (G5) showed AUCs lower 
than 0.6. No statistically significant difference among 
mechanical models was found (p = 0.108). Significant dif-
ference was reported among models including CT data 
(p = 0.005), with better performance of CT5 (AUC 0.77) 
compared to CT5 + M5 (AUC 0.76) (McNemar’s test 
p = 0.032). Models based on CT parameters reported 
statistically significant higher AUCs compared to mod-
els based only on lung mechanics (p = 0.009) and gas 
exchange (p = 0.035).

The models’ performance over a range of thresholds 
of radiologically defined and gas exchange-defined lung 

Fig. 2  Validation AUC for each pair of dataset and machine learning algorithm, when lung recruitability was radiologically defined (recruiters: 
Δ45-5non-aerated tissue > 15%). M5, lung mechanics at PEEP 5 cmH2O, M15, lung mechanics at PEEP 15 cmH2O, RPM, respiratory partitioned 
mechanics, G5, gas exchange measured at PEEP 5 cmH2O, G15, gas exchange measured at PEEP 15 cmH2O, CT5, CT imaging acquired at PEEP 5 
cmH2O. XGBoost, gradient-boosted tree; RF, random forest; LR, logistic regression; SVM, support vector machine
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recruitment is presented in Table 3 using the overall data-
set (CT5 + G5 + G15 + M5 + M15 + RPM). For radiologi-
cally defined lung recruitment, similar performance was 
obtained from logistic regression when lung recruitabil-
ity is defined using a cut-off 10% and 20%, whereas sensi-
tivity worsened when 30% was used as threshold.

Discussion
In the present study, the lung recruitability was defined 
at first as the change in not aerated tissue between 5 
cmH2O and 45 cmH2O to the total lung tissue weight at 5 
cmH2O, and secondly as Δ15-5 PaO2. Our findings showed 
that the best approaches to predict lung recruitment were 

Fig. 3  Validation AUC for each pair of dataset and machine learning algorithm, when lung recruitability was gas exchange-defined (recruiters: 
Δ15-5PaO2 > 24 mmHg). M5, lung mechanics at PEEP 5 cmH2O, M15, lung mechanics at PEEP 15 cmH2O, RPM, respiratory partitioned mechanics, 
G5, gas exchange measured at PEEP 5 cmH2O, CT5, CT imaging acquired at PEEP 5 cmH2O. XGBoost, gradient-boosted tree; RF, random forest; LR, 
logistic regression; SVM, support vector machine

Table 3  Models’ performance over a range of thresholds defining lung recruitment

Lung recruitability was defined both as the percent change in not aerated tissue between 5 cmH2O and 45 cmH2O (recruiters: Δ45-5non-aerated tissue > 15%) 
and as the change in PaO2 between 5 cmH2O and 15 cmH2O (recruiters: Δ15-5PaO2 > 24 mmHg). Performance is evaluated in terms of mean area under the 
receiver operating characteristic curve (AUC), accuracy (acc), sensitivity (sens) and specificity (spec). Models were trained using the overall dataset (respectively, 
CT5 + G5 + G15 + M5 + M15 + RPM and CT5 + G5 + M5 + M15 + RPM) and least absolute shrinkage and selection operator (LASSO) algorithm for feature selection

Validation Test

AUC​ acc Sens Spec AUC​ acc Sens Spec

Outcome: Δ45-5non-aerated tissue

  > 10% (n = 142) 0.85(0.07) 0.77(0.07) 0.78(0.10) 0.76(0.10) 0.90 0.81 0.80 0.82

  > 20% (n = 76) 0.88(0.05) 0.81(0.06) 0.81(0.12) 0.81(0.08) 0.84 0.78 0.75 0.79

  > 30% (n = 32) 0.89(0.07) 0.82(0.07) 0.81(0.18) 0.82(0.08) 0.85 0.87 0.37 0.93

Outcome: Δ15-5PaO2

  > 20 mmHg (n = 124) 0.78(0.07) 0.71(0.07) 0.71(0.11) 0.73(0.12) 0.77 0.71 0.77 0.60

  > 30 mmHg (n = 88) 0.75(0.11) 0.74(0.06) 0.73(0.13) 0.75(0.11) 0.76 0.69 0.41 0.87

  > 40 mmHg (n = 63) 0.75(0.08) 0.70(0.08) 0.57(0.20) 0.75(0.08) 0.79 0.69 0.21 0.95
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the one that included lung CT scan taken at 5 cmH2O 
of PEEP. The addition of respiratory mechanics and gas 
exchange did not significantly improve accuracy.

Concerning ventilatory management in ARDS, lung 
protective strategies include the application of lung 
recruitment and adequate PEEP levels to reopen col-
lapsed lung regions by increasing the transpulmonary 
pressure [37]. The reopening of perfused collapsed/
atelectatic lung regions should improve gas exchange, 
decrease alveolar shunt and ameliorate gas exchange 
by promoting CO2 clearance. However, the increase in 
transpulmonary pressure, by increasing the end-expira-
tory lung volume, may also promote lung hyperinflation 
and higher lung stress at the interface between ventilated 
and not ventilated lung regions [38].

Among the different monitoring techniques (such as 
changes in respiratory mechanics, pressure–volume 
curves, lung ultrasound, electrical impedance tomogra-
phy), quantitative lung CT analysis, although time-con-
suming and potentially harmful by exposing the patient 
to ionizing radiation, remains the most accurate method 
[6, 7, 11]. By using CT technique, lung recruitment 
potential is computed as the percentual difference of non-
aerated lung tissue at two levels of pressure [8]. Previous 
studies showed that the application of a machine learning 
algorithm based on chest radiographs or CT at admis-
sion showed a good accuracy in detecting the presence 
of lung pathologies and ARDS, predicting clinical sever-
ity, the need of mechanical ventilation and outcome [15, 
16, 24, 39–42]. Zampieri et  al., according to a machine 
learning reanalysis of the ART clinical trial, showed that 
the application of a recruitment maneuver was associated 
with higher mortality in ARDS patients with pneumonia 
compared to sepsis [20]. Thus, the assessment of lung 
recruitability remains a challenge.

In the present study, we evaluated the possible use 
of machine learning to predict lung recruitment in 
ARDS patients, starting from clinical data and CT data 
obtained at 5 cmH2O. The results showed that CT scan 
at 5 cmH2O is the most accurate tool for evaluating lung 
recruitment and that adding data on lung mechanics and 
gas exchange does not increase accuracy. When only data 
on respiratory mechanics were used, low performances 
were achieved. Thus, while respiratory mechanics moni-
toring during the course of ARDS remains of paramount 
importance for VILI prevention and prognostication, 
our data may suggest that PEEP-induced changes in res-
piratory mechanics do not yield sufficient information 
about the potential for lung recruitment and that cau-
tion should be adopted when using PEEP-setting strategy 
based on compliance maximization [4, 43]. When only 
gas exchange data were used for training, low-to-mod-
erate accuracy was found, suggesting that PEEP-induced 

changes in PaO2 and PaCO2 are complex and may suf-
fer from the interference of interdependent physiologic 
mechanisms [43]. Logistic regression was the preferred 
and stable machine-learning method for the differentia-
tion of recruiters and non-recruiters when lung recruita-
bility was radiologically defined, whereas random forest 
was the preferred method when lung recruitability was 
gas exchange-defined. In this study, parsimonious algo-
rithms with higher potential for clinical use were inves-
tigated. According to the frequency with which each 
feature was selected, ARDS origin was the feature 
selected with the highest frequency in all the dataset. 
Respiratory partitioned mechanics features were rarely 
retained. When considering lung CT features measured 
at PEEP 5 cmH2O, age was always selected to predict 
radiologically defined lung recruitability. We hypothesize 
that this may be related to the use of fixed thresholds to 
define lung aeration compartments, whereas age-related 
changes of lung volume and tissue density may occur 
[44].

The best lung recruitment potential cutoff to classify 
recruiters/non-recruiters remains unknown. In the pre-
sent study we stratified recruiters and non-recruiters 
according to the median value of the lung recruitment 
potential of our whole population (15% and 24 mmHg), 
as previously suggested [8, 9]. To increase the translat-
ability of the study, we investigated also models classify-
ing recruiters using different thresholds. Comparable 
results were obtained when using thresholds near the 
median value of the whole population to define CT-based 
lung recruitability (10% and 20%, probably because the 
SMOTE algorithm reduces the impact of classes imbal-
ance); when 30% was used, the worst sensitivity was 
achieved. On the contrary, using different cutoff to clas-
sify recruiters/non-recruiters based on gas exchange 
data (20 mmHg, 30 mmHg and 40 mmHg), led to wors-
ening specificity and sensitivity, suggesting that the 
SMOTE algorithm is not sufficient to reduce the impact 
of classes imbalance and that other techniques should be 
investigated.

Our study has several strengths. First, it is the first 
study analyzing a large dataset of CT scans data which 
showed the possibility to use a machine learning algo-
rithm to divide patients in recruiters and non-recruiters. 
Secondly, we investigated cross-combinations of three 
feature selection methods and four classification meth-
ods which have commonly been used and achieved high 
performance in previous studies. Thirdly, if applied these 
models could avoid the need of a second lung CT scan, 
decreasing the risk of radiation exposure of the patients 
and reducing the working time to complete the necessary 
computation.
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However, in this study it was applied an hybrid 
approach with a manual lung segmentation of CT slides, 
which is time-consuming, with a quantitative analysis 
and machine learning algorithm. However, automatic 
lung CT segmentation is now available, which could sig-
nificantly reduce the radiologic work [45]. The median 
imputation method was adopted for missing values, as 
simple and easy interpretable, but more advanced impu-
tation methods [46, 47] can be explored to account for 
the existing relationship among features. Also, data were 
collected from a single center and a multicentre study 
with a large sample size is needed for further validation.

Conclusions
In conclusion, this study showed the possibility to use 
a machine learning algorithm based on a single CT 
imaging at the admission in intensive care unit to clas-
sify ARDS patients in responder and not responder to 
lung recruitment within the first 48  h from the start of 
mechanical ventilation. The application of this machine 
learning algorithm with an automatic lung segmentation 
and quantitative analysis could reduce the computational 
burden and the ionizing radiation load of the traditional 
method to assess lung recruitability, helping to improve 
the tailoring of ventilatory management according to the 
parenchymal and functional impairment of the ARDS in 
the acute phase of the disease.
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