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A B S T R A C T

Background and objective: Many classification tasks in translational bioinformatics and genomics are
characterized by the high dimensionality of potential features and unbalanced sample distribution among
classes. This can affect classifier robustness and increase the risk of overfitting, curse of dimensionality
and generalization leaks; furthermore and most importantly, this can prevent obtaining adequate patient
stratification required for precision medicine in facing complex diseases, like cancer. Setting up a feature
selection strategy able to extract only proper predictive features by removing irrelevant, redundant, and noisy
ones is crucial to achieving valuable results on the desired task.
Methods: We propose a new feature selection approach, called ReRa, based on supervised Relevance-
Redundancy assessments. ReRa consists of a customized step of relevance-based filtering, to identify a reduced
subset of meaningful features, followed by a supervised similarity-based procedure to minimize redundancy.
This latter step innovatively uses a combination of global and class-specific similarity assessments to remove
redundant features while preserving those differentiated across classes, even when these classes are strongly
unbalanced.
Results: We compared ReRa with several existing feature selection methods to obtain feature spaces on which
performing breast cancer patient subtyping using several classifiers: we considered two use cases based on
gene or transcript isoform expression. In the vast majority of the assessed scenarios, when using ReRa-
selected feature spaces, the performances were significantly increased compared to simple feature filtering,
LASSO regularization, or even MRmr — another Relevance-Redundancy method. The two use cases represent
an insightful example of translational application, taking advantage of ReRa capabilities to investigate and
enhance a clinically-relevant patient stratification task, which could be easily applied also to other cancer
types and diseases.
Conclusions: ReRa approach has the potential to improve the performance of machine learning models used
in an unbalanced classification scenario. Compared to another Relevance-Redundancy approach like MRmr,
ReRa does not require tuning the number of preserved features, ensures efficiency and scalability over huge
initial dimensionalities and allows re-evaluation of all previously selected features at each iteration of the
redundancy assessment, to ultimately preserve only the most relevant and class-differentiated features.
Statement of significance

Problem or Issue: Clinically-relevant classifications can suffer from
uneven class distributions and huge, unbalanced dimensionalities of
features, which are often noisy and highly redundant.

What is Already Known: Feature selection is fundamental to
extracting predictive features for robust classification. Yet, widely-
adopted univariate filters, which are computationally efficient and
scalable, struggle to remove redundancy; Relevance-Redundancy ap-
proaches inspect also feature relationships to minimize global redun-
dancy, but cannot easily scale over huge feature sizes.
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What this Paper Adds: We propose ReRa, a new efficient Rele-
vance-Redundancy approach. ReRa uses both global and supervised
class-specific similarity assessments to optimize feature selection, also
considering differential behaviors that can improve classifications.

1. Introduction

1.1. Background

In translational bioinformatics and computational genomics, many
problems can be addressed as machine learning classification tasks
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based on omics data used as quantitative features, like gene expression
values. Key predictive features are extracted from such feature spaces
before or while training a classifier to perform the desired task. Yet,
initial space dimensionality is often extremely high and unbalanced
compared with the restrained number of samples available, which,
in addition, are mostly unevenly distributed among the classes re-
flecting real case occurrences. This exposes learners to the curse of
dimensionality effects and to generalization leaks. Furthermore, fea-
tures are very often noisy and strongly redundant, making the training
longer and a classifier less robust and more subject to overfitting
risk.

In such a context, feature selection (FS) strategies play a crucial
role in achieving valuable results on the desired task: they can ex-
tract from the original feature space a subset of predictive features
appropriate for the task by removing irrelevant, redundant, and noisy
features [1–3]. Canonical univariate filters, which individually evaluate
the predictive power of each feature, are the best option to ensure
computational efficiency and scalability in extracting relevant features
within huge feature spaces [4,5]. Still, they do not account for feature
interactions and redundancy. Relevance-Redundancy FS approaches
have been instead developed as multi-step and/or multi-objective fil-
tering methods that maximize feature relevance by discarding noisy
or irrelevant features for the task and minimize redundancy based
on feature similarity [6–8]. Although this analysis of feature mutual
behaviors overcomes the main weakness of canonical filters, multi-
objective Relevance-Redundancy approaches often struggle to scale
over a huge feature size and do not consider the differential rela-
tionships that can arise among features within different classes of
interest.

1.2. ReRa feature selection strategy

Here we propose a novel supervised FS method based on Relevance-
Redundancy assessments, named ReRa, that aims to improve feature
selection using efficient filtering and multiple similarity evaluations
based on the supervised information provided by the target classes.
Global similarity assessments could hide a differential behavior in a
specific class, which instead could be of potential interest for a clas-
sification task, especially in the case of unbalanced class distributions.
Using also class-specific similarity, our proposed ReRa method discards
real redundant features preserving those differentiated within any of
the considered classes. Thus, it reveals any divergence between pairs
of features that might have a role in providing a better class distinction
but, from a global perspective only, would be ignored.

ReRa feature selection strategy uses two consecutive steps for rel-
evance and redundancy evaluations in classification tasks, ensuring
scalability and wide applicability, since it is very generalizable for
different purposes and scopes. Here, we demonstrated its reliability in
the context of a significant translational application, moving from tran-
scriptomics data analysis to clinically-relevant stratification of diseased
patients in order to improve their characterization and clinical han-
dling. To assess the usefulness of our ReRa approach, it was compared
with several benchmarks, including knowledge-based and statistical
filters, embedded LASSO selection, and another Relevance-Redundancy
approach. Specifically, this validation was carried out through two
example use cases of increasing complexity, i.e., a gene-level and a
transcript isoform-level expression-based stratification of breast cancer
(BRCA) patients into clinically relevant target subtypes [9,10]. These
example use cases demonstrate the value and efficiency of our innova-
tive ReRa approach, beyond highlighting its capability of considering
class-specific feature relationships to improve the feature selection
process for the following classification task. Such characteristics make
the approach precious in the context of omics dataset analysis since the
amount of involved big data, requiring efficient FS methods, together
with the unbalanced input dimensionality and class distribution, can
2

prevent obtaining adequate patient stratification: yet, this is a key
requirement for precision medicine and personalized treatments to face
complex diseases like cancer.

1.3. State-of-the-art for supervised feature selection and Relevance-
Redundancy methods

In a supervised setting, such as the one of predictive machine
learning workflows, supervised label information on training samples
can be used to guide the feature selection process. Supervised fea-
ture selection strategies include all the known categories of selection
methods [1–3] (filters, wrappers, embedded and hybrid methods —
i.e., filter + wrapper), based on label information and using a given
or no interaction with the learner. Even when working with huge
feature spaces, filters ensure computational efficiency and scalability
by selecting features based on their relevance for the task [4,5,11–
13] independently of the predictor subsequently used (i.e., without any
interaction with the learner). Conversely, the computational cost of
wrapper methods [14] (like recursive backward elimination or forward
selection) and of most hybrid methods is prohibitive: though they
could handle the relevance-redundancy trade-off in feature selection,
they require training a model for each of the spaces evaluated during
their recursive search. An embedded technique such as LASSO (Least
Absolute Shrinkage and Selection Operator) [15], where the feature
selection is integrated and optimized into the learning process using
a penalization parameter, can instead provide still valuable results in
a much more efficient way than wrapper methods; as drawbacks, its
selection does not use a minimal redundancy strategy, is often more
suitable just for the model under consideration, and requires a longer
training phase.

Therefore, filters based on statistical measures or prior knowledge
are mostly preferred, despite usually evaluating one feature at a time
without considering any interaction or relationship among features. To
fill this gap, Relevance-Redundancy feature selection approaches were
developed as multi-step and/or multi-objective methods that select only
highly-relevant features while discarding redundant features based on
a similarity measure [6–8]. These approaches reach the simultaneous
goals of maximizing feature relevance (getting rid of irrelevant or
noisy features) and minimizing feature global redundancy: relevance
can be well established for individual features, whereas redundancy is
typically inspected by examining feature subsets and considering their
global relationships, as to overcome the main limitation of filters. While
building the selected feature space, multi-step implementations can
iteratively evaluate the inclusion of one feature at a time, either using a
simultaneous multi-objective optimization of relevance and redundancy
or following two phases: first, assess the relevance and, then, handle
redundancy. One of the most used approaches is the Maximum Rele-
vance minimum redundancy strategy (MRmr) [6], originally presented
as a multi-objective algorithm for feature selection in microarray gene
expression data. This iteratively selects the features at the top of a
relevance ranking, as long as they contribute new and non-redundant
information for the desired task. In this way, the best subset of K differ-
ent features is selected based on feature relationships and redundancy
and is not necessarily made of the best K features, which individually
have the strongest predictive value (i.e., relevance) for the target
variable. Currently, this kind of strategy has different implementations,
using alternative relevance measures and correlation types to estimate
relevance and redundancy, respectively (e.g., [7,8]). A common ex-
ample of MRmr use in computational genomics is identifying gene
signatures, including genes differentially expressed or strongly charac-
terizing a particular phenotype (compared to a normal reference), but
minimizing redundant information. Nonetheless, the MRmr approach
struggles to perform such kind of investigation over big genomic data,
as the ones nowadays produced by Next-Generation Sequencing exper-
iments. Differently from the here proposed ReRa approach, the MRmr
simultaneous multi-objective optimization of relevance and redundancy
cannot be applied over several tens of thousands of features without

requiring computational and memory resources often unaffordable.
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Fig. 1. Flowchart with the two consecutive steps of our supervised maximum relevance minimum redundancy feature selection approach, named ReRa.
2. Methods

We designed an innovative feature selection methodology named
ReRa, based on supervised Relevance-Redundancy assessments, and
compared it with some existing approaches of feature selection; these
latter strategies are discussed in Section 2.2, whilst the next Sec-
tion 2.1 is devoted to a thorough description of the here proposed ReRa
approach.

2.1. Multi-step supervised feature selection with maximum relevance mini-
mum redundancy

Our ReRa supervised feature selection approach aims to remove
redundant features while preserving those relevant and differentiated
across the classes of a classification scenario. In Fig. 1, we schematically
illustrate the two steps of ReRa, described in detail in the following
subsections.

ReRa relevance maximization is implemented as a first filtering step
that ensures scalability over huge data dimensionalities. The redun-
dancy minimization is then performed iteratively over all the relevant
features and allows reevaluating and updating the selected feature
space at each iteration. Similarity measures used for redundancy elimi-
nation are usually computed only globally, i.e., over all the considered
samples independently of their classes; this can hide differential behav-
ior in one or more specific classes. Instead, ReRa also considers the class
labels available for supervised training to tackle feature redundancy:
this is particularly useful for a classification task, especially in the
case of unbalanced class distributions, where global sample assessments
cannot provide sufficient indications. Furthermore, using its combi-
nation of global and class-specific similarity assessments (described
in Section 2.1.2), ReRa can automatically select the features that are
suitable to distinguish the classes of interest better, given whichever
dimensionality of the initially redundant feature space, thus ensuring
both scalability and efficiency.

2.1.1. Filtering step to maximize relevance
The first step of ReRa is a relevance-based filter, which extracts a

meaningful, reduced set of features, like the ones belonging to the top
3

𝑁 percentile of a feature ranking given by a statistical measure (see
panel A of Fig. 1). Selection approaches based on relevance can be led
by a supervised or unsupervised measure: in ReRa, the chosen strategy
is fully supervised since known class labels used in training can drive
towards a more precise selection focused on the desired classification
task. Accordingly, for this first step of feature relevance maximiza-
tion, we considered two alternative supervised statistical measures,
i.e., Fisher Score and Mutual Information (their details are reported
in Section 2.2.1). Yet, this step of relevance maximization can use
other supervised strategies; any supervised filtering method can be
used as ReRa first step, such as filters based on Relief strategy [16]
or other statistical measures, like the Permutation of the Feature Im-
portance [17]. In addition, a reduced set of relevant features can also
be obtained according to a feature set already known to be relevant
for the considered task, based on previous knowledge on the subject.
Accordingly, we also explored this option (see panel A of Fig. 1), taking
advantage of task-related known feature spaces for the application
examples presented in the following.

2.1.2. Supervised similarity-based analysis step to minimize redundancy
Starting from an obtained relevance-based feature space, a com-

bination of similarity analyses is performed to remove redundancy
without discarding features with class-specific differentiation. Similar-
ity assessments are both global, i.e., considering all the given samples
together, and local, i.e., applied separately on each class of samples
based on the supervised target labels that stratify the training data. A
temporary feature space is created and updated after each global and
local assessment until the end of the ReRa algorithm. The workflow of
this second step of ReRa is summarized in panel B of Fig. 1.

At first, a global similarity assessment is performed by considering
iteratively the pairwise correlations of all relevant features previously
selected: each correlation is compared against a data-driven global
threshold, whose definition is reported at the end of this subsection.
If the global correlation of a feature pair is smaller than the global
threshold, the two features are considered globally dissimilar and are
both kept in the temporary feature space; conversely, if their similarity
is equal or greater than the global threshold, they are considered glob-
ally similar, and as many local similarity assessments as the number
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of classes (i.e., target labels) are performed between the two features.
Each of these local assessments has its own data-driven local threshold,
which is compared with the local correlation of the two features. In
panel B of Fig. 1, an OR operator jointly evaluates the predicates on
local dissimilarity: if at least one of the local pairwise correlations
is smaller than the corresponding local threshold, both features are
included in the temporary feature space. Nonetheless, one or both of
them could be discarded later on due to another pairwise evaluation.
Indeed, when all the local correlations of a feature pair are equal or
greater than the corresponding local thresholds (in panel B of Fig. 1,
see the AND predicate on local similarity), just one of the two features
is preserved. Specifically, the kept one is the feature having the highest
local mean deviation, which is a differential measurement between two
classes. This measure is the difference between the mean values of a
feature in the two classes where such mean values are further away
from each other, i.e. the deviation between the maximum and minimum
class mean values for that feature.

Notably, the data-driven global and class-specific thresholds are
the medians of the distributions of the corresponding pairwise feature
correlations on the training set. Specifically, the values of every feature,
respectively, in all training samples or in those samples belonging to
a given class, are used to build an ordered vector, whose correlations
to any other feature vector contribute to obtaining the distributions
of the mentioned pairwise correlations. The choice of using median-
based thresholds makes the ReRa approach more conservative than
other Relevance-Redundancy strategies although the global similarity
assessment is not very stringent: consequently, most of the decisions
are taken based on supervised local similarity assessments.

2.2. Benchmark of feature selection methods

As feature selection benchmarks to compare with ReRa, we consid-
ered a set of canonical filters (also adopted within the relevance-based
ReRa first step), LASSO regularization, and MRmr (as an alternative
Relevance-Redundancy approach). On each feature space found with a
different feature selection method, we used Logistic Regression, linear
and polynomial Support Vector Machines, and Random Forest mod-
els [18–20] to perform the same desired classification and evaluate the
suitability of the feature space under exam for the task.

2.2.1. Filter methods
Two knowledge-based and two statistical-based filters were adopted

as feature selection benchmarks.
PAM50 [21] and LIMMA50 [22] gene signatures, including 50 and

257 genes, respectively, are two examples of filtering based on prior
knowledge about the specific classification task: both signatures are in-
deed adopted for gene-level BRCA stratification into clinically-relevant
subtypes [9,10]. PAM50 signature is used in the well-recognized name-
sake PAM50 subtyping test [21], while LIMMA50 signature has been
recently traced [22] for the same stratification task since it includes
genes differentially expressed among BRCA subtypes.

Alternatively, two univariate statistical filters were used to extract
the most relevant features: Fisher Score [23] and Mutual Informa-
tion [24]. Fisher Score is a measure of class separation, calculated
considering the mean and standard deviation values of a given feature
for each of the considered classes, and computing the sum across
pairwise classes of the class mean differences divided by their standard
deviation sum. Mutual Information computes the mutual dependence
between two variables by measuring the reduction in uncertainty about
one variable given the knowledge of the other one. Thus, it can also be
used to evaluate the dependence of each feature on the target variable.
Based on these statistical measures, we preserved all the features whose
scores were above a given percentile of the Fisher Score or Mutual
Information distribution, respectively.

Notice that each of the four considered filters was also used as an
alternative first step of our ReRa approach, meant to select only the
4

features of higher relevance for the classification task.
2.2.2. Alternative feature selection methods
The LASSO regularization was considered and compared with our

ReRa approach; this embedded feature selection method is widely
adopted since it can select a reduced set of predictive features within
the training data. Indeed, a linear model is fitted with a LASSO regu-
larization term: this shrinks the absolute values of the coefficients and
sets many of them to zero, discarding the corresponding features. The
preserved features can instead be used as a pre-filtered space to train
further models, as we did in this work.

Furthermore, we adopted an already existing maximum relevance
minimum redundancy approach (i.e., MRmr). The MRmr method, first
proposed by Ding et al. [6], is a greedy search algorithm that iteratively
selects the most relevant and non-redundant features from a dataset
based on a combination of statistical measures to estimate feature
relationships with the target variable and with any other feature. The
MRmr algorithm here evaluated uses the analysis of variance (ANOVA)
statistical test to calculate the F-statistic as the ratio between the
variance explained by the predictor and the unexplained one (error
variance) [25]. ANOVA is a parametric hypothesis test that evaluates
any difference of means from two or more groups, using the variances
to determine whether the means come from the same distribution.
It can also work when one variable is numerical, like a quantitative
feature, and one is categorical, like a classification target. The results
of this test can be used for feature selection: those features that are
independent of the target variable can be removed from the space of
interest. The MRmr algorithm begins by selecting the feature with the
highest F-statistic with the target variable and then adds additional
features, one at a time, choosing at each step the feature having the
highest F-statistic with the target variable and the minimum linear
correlation with the already selected features. This selection proceeds
until the desired number of features, which has to be predefined, is
reached.

3. Application example: Clinically relevant genomics stratifica-
tion of breast cancer patients

To show the relevance of our ReRa feature selection compared with
other state-of-the-art methods, we applied it in the complex trans-
lational context of breast cancer patient stratification into clinically
relevant target classes [10,21], based on patient gene or transcript
isoform expression as two example use cases. Particularly, transcript
isoforms are different forms of a gene RNA transcript produced by the
same gene but having different sequences or structures due to alter-
native splicing events and transcription outcomes. These two example
use cases are of increasing complexity in terms of both classification
task, and dimensionalities of the initial feature spaces (12,381 genes
vs. 49,740 isoforms, respectively, after the same pre-preprocessing).
Indeed, the target BRCA classes, known as intrinsic subtypes, are five
classes (Basal, HER2-enriched, Luminal A, Luminal B and Normal-
like) originally traced [9] and still clinically assigned based on gene
expression profiles of BRCA patients [21]. This stratification not only
recognizes heterogeneity in BRCA molecular traits but is very useful
and widely adopted to discriminate good-expected prognoses from poor
ones, helping physicians decide about post-surgery chemotherapy and
more suitable treatment options. Nonetheless, to the best of our knowl-
edge, an in-depth evaluation of the contribution of transcript isoforms
to intrinsic subtyping has not been addressed yet, particularly not
through broad, well-annotated isoform expression data used as feature
space for reliable machine learning techniques. Isoform diversity is
known to be tissue- and disease-specific, and such specificity in BRCA
has already been related to hormonal-status heterogeneity [26,27],
which is also reflected within intrinsic subtypes. Yet, although the
stratification into intrinsic subtypes is crucial in the clinical handling
of BRCA patients, its evaluation at the isoform level as a more com-
plete molecular and prognostically-relevant classification of patients

has barely been touched [28].
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Table 1
Class distributions in the training (410 samples) and test (127 samples) sets extracted
from G_TCGA and I_TCGA datasets. These distributions are equal in the two datasets
since both datasets refer to the same 537 patients, but they include as features 12,381
genes or 49,740 transcript isoforms, respectively.

Set Basal HER2-enriched Luminal A Luminal B Normal-like

Training set 66 (16.1%) 33 (8.1%) 206 (50.2%) 92 (22.4%) 13 (3.2%)
Test set 24 (18.9%) 11 (8.7%) 64 (50.4%) 22 (17.3%) 6 (4.7%)
All data 90 (16.8%) 44 (8.2%) 270 (50.3%) 114 (21.2%) 19 (3.5%)

3.1. BRCA patient expression profiles: Datasets and pre-processing

Breast cancer patient cohorts are commonly stratified through the
PAM50 test, a centroid-based subtyping method that focuses on the
expression levels of 50 genes, known as the PAM50 signature. Assign-
ments predicted by the PAM50 test are reported in the clinical data of
the publicly disclosed BRCA patient dataset belonging to The Cancer
Genome Atlas (TCGA) project [29], which includes gene expression
profiles obtained from RNA-sequencing experiments. Additionally, for
the majority of this patient cohort, transcript isoform expression pro-
files were also produced with RNA-sequencing experiments and are
available to investigate. Therefore, the analyses in our example use
cases are focused on the 537 TCGA patients for which both gene and
transcript isoform expression profiles are at disposal.

Two datasets were considered: the gene-level one (G_TCGA), ini-
tially including 537 samples and 20,440 genes/features, and the
isoform-level one (I_TCGA), initially including 537 samples and
67,347K transcript isoforms/features. For both datasets, Counts Per
Millions (CPM) expression values were derived from the whole set of
RNA-sequencing raw read counts available; then, the following pre-
processing steps were performed:

• The features (genes or transcript isoforms) with null raw count
value in at least 80% of the dataset samples were discarded from
the analysis

• A log2 transformation was applied on the CPM data
• Too lowly expressed features were further discarded: only individ-

ual features whose median CPM value across all the samples was
greater than the first quartile of the distribution of the median
CPM values of all the features were kept.

fter this pre-processing, the feature spaces of our datasets included
2,381 genes for G_TCGA and 49,740 isoforms for I_TCGA, respec-
ively. Furthermore, each dataset was split into training (410 samples,
6.35%) and test (127 samples, 23.65%) sets, both reflecting the un-
ven class distributions of BRCA subtypes (see Table 1); these sets
ad very similar, although not identical, class proportions, due to the
ritical handling of the smallest classes (i.e., Normal-like and HER2-
nriched). This allowed assessing the classification performance in a
cenario with class occurrences likely real. Eventually, multiple feature
paces were obtained with different feature selection approaches and
sed to tune and train alternative classifiers on the training samples
nd evaluate classification results on the testing samples.

.2. Supervised models for gene- and isoform-level subtyping

Different well-established machine learning classification techniq-
es, usually advisable for classification tasks involving complex datasets
f limited size, were compared in performing the same BRCA subtyping
ask when trained on ReRa-based predictive features or feature spaces
rom benchmark selection approaches: Logistic Regression, Support
ector Machines (SVM) with linear and polynomial kernels, and Ran-
om Forest. For every feature space under consideration, each model
as trained supervisely using known subtyping class labels as targets
5

and 10-fold cross-validation to limit the overfitting risk, while an ex-
tensive grid search allowed tuning the needed hyperparameters. Notice
that the balanced accuracy was the chosen metric to be optimized,
so as not to bias evaluations towards results mostly based on the
contributions of the more numerous classes.

Each model was tested over the left-aside samples of the test set:
specifically, given the multi-class context, we evaluated both macro-
and micro-averaged performance measures. In macro-averaging, met-
rics are calculated independently for each class and then averaged
across all classes; this is useful to make them contribute equally to the
result even when classes are unbalanced (as in our case). Conversely, in
micro-averaging, metrics are calculated globally by counting the num-
ber of true positives, false positives, and false negatives across all the
classes; this is useful in unbalanced scenarios to give the same weight to
each assignment (i.e., tested sample) regardless of its class. Yet, micro-
averaged precision and recall in single-label classification contexts
are both equal to the overall accuracy; consequently, the F1-score,
their harmonic mean, is also coincident with the overall accuracy.
Therefore, in the comparative result tables, we reported the overall
accuracy as a micro-averaged measure, the balanced accuracy (i.e., the
macro-averaged recall), the macro-averaged precision, and the macro-
averaged F1-score (i.e., the harmonic mean of the macro-averaged
precision and recall). This allowed us to detect any classification im-
provement due to our ReRa approach and to demonstrate its wide
usability with alternative relevance-based strategies and classifiers.

3.3. Feature importance analysis and translational value assessment

From the two comprehensive evaluations of multiple different clas-
sifiers and feature spaces, we found the two most promising methods
to perform BRCA subtyping at the gene- and transcript isoform-level,
respectively. The two correspondent feature spaces were investigated
using the Shapley Additive Explanations (SHAP) technique [30] for
model interpretability.

Differently from other model-agnostic approaches like Permutation
of Feature Importance [17] or Local Interpretable Model-agnostic Ex-
planations (LIME) [31], the SHAP method computes the Shapley value
of each feature, a measure from cooperative game theory that indicates
how much a feature collaborates to obtain a given class prediction
score. Specifically, this iterative method for feature importance analysis
evaluates each feature based on its contribution to the prediction of all
the testing instances of a given class, considering for each of them all
possible combinations of features, including and excluding the specific
feature under exam. In this way, it is possible to estimate quantitatively
the importance of each feature to identify a given class and the con-
sequences of its absence, also accounting for feature interactions. In
addition, it is possible to estimate also the overall impact of a given
feature on the whole classification task as the sum across all the classes
of its mean SHAP values, each computed by averaging the feature
absolute SHAP scores of all the testing samples assigned by the trained
model to a specific class.

In the end, the features with the most crucial role at the gene- and
transcript isoform-level were extracted and compared to preliminarily
investigate the translational value of the found results, and to better
understand any isoform contribution in distinguishing BRCA intrinsic
subtypes and their clinically-relevant differences.

4. Results

For each of the two example use cases, the results obtained by
the aforementioned classifiers on every assessed feature space are
reported and discussed in the following subsections, focused on BRCA
subtyping application at the gene- or isoform-level, respectively. Such
results clearly demonstrate the efficacy of the proposed ReRa ap-
proach compared to the other feature selection methods described in
Section 2.2.
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4.1. Example use case on gene-level feature space

ReRa approach and benchmark feature selection methods were used
to extract different feature spaces of interest from the 410 samples of
the G_TCGA training set, each containing the expression values of the
12,381 pre-processed genes (i.e., features). Specifically, among these
genes, 49 (out of 50) of the PAM50 signature and 185 (out of 257)
of the LIMMA50 signature were available and sufficiently expressed
to be used as two different feature spaces. By applying Fisher Score
and Mutual Information measures and preserving the 97th, 98th or
99th percentile of their provided feature rankings, six additional feature
spaces were extracted. Each of these 8 filtered feature spaces is also an
intermediate result of the first step of the ReRa approach when using
the corresponding knowledge- or filter-based strategy to maximize the
extracted feature relevance; from them, 8 additional feature spaces
were generated after completing the ReRa selection procedure with the
feature redundancy minimization step.

Using MRmr, we extracted other 3 feature spaces, including 150,
250, or 350 genes, respectively, whose sizes are on purpose comparable
to those selected with filter-based approaches (see the main diagonal
of the table in Supplementary File F1 — Gene Tab); bigger sizes
would indeed require unnecessarily higher computational costs and
would also be more prone to keep some redundancy and noise. Finally,
LASSO preserved a wider feature space of 917 genes, being a task-
related selection method not strictly focused on feature redundancy
minimization.

The amounts of genes included in each feature space and in the
overlaps between pairs of feature spaces are all indicated in Supplemen-
tary File F1 (Gene Tab), together with their percentage with respect
to the initial set of 12,381 genes; most of the independent feature
spaces are barely overlapping, except those selected by MRmr and ReRa
with Mutual Information, which suggests a certain consistency between
linear and non-linear dependencies respectively evaluated by the two
methods.

Performances of machine learning models trained on each of the
feature spaces selected with filters or ReRa can be compared with
those obtained with LASSO or MRmr, as to examine the suitability of
each selection strategy to deal with the task and the features under
consideration. Furthermore, feature dimensionality and classification
performance on a final ReRa feature space can be compared with those
of the corresponding intermediate filtered feature space to assess the
value of the ReRa approach, particularly of its supervised step of feature
redundancy minimization. To this aim, Table 2 shows as many rows
referring to final feature spaces obtained with ReRa as for the 8 filtered
feature spaces based only on feature relevance (each pair is reported in
two consecutive rows of the table).

The performances collected for a given type of classifier were there-
fore evaluated either overall, i.e., against any other model, includ-
ing those trained on LASSO or MRmr feature spaces, or pairwisely,
i.e., comparing any pair of models trained on the intermediate or
corresponding final feature spaces. The first evaluation is globally
relevant: comparing different classifier types allows tracing the best
solution according to the combination of use case, feature selection
strategy and classifier. All pairwise comparisons, instead, highlight any
effect due to the ReRa redundancy handling compared with the simple
use of filtering. This allows us to evaluate our ReRa approach and its
generalization capability, regardless of the chosen classification model
or feature relevance metric maximized in the ReRa first step.

4.1.1. Computational performance and comparison with the state-of-the-art
feature selection

In Table 2, we reported the testing performance of every SVM with
a polynomial kernel properly tuned and trained on each considered
feature space. In addition, when using statistical filters, Table 2 indi-
cates the percentile chosen to extract the features, and, for each ReRa
6

feature space, it also reports the percentage of feature reduction with
respect to the corresponding feature space filtered only based on feature
relevance.

Out of all the models and kernels explored for the considered
classification task, polynomial SVM models appeared the most suitable
overall to perform BRCA subtyping when we focused on our benchmark
feature spaces from filters, LASSO, or MRmr. Also, polynomial SVMs
proved the strengths of our ReRa approach, highlighting the contri-
bution of its innovative similarity-based analysis in handling feature
redundancy. Anyway, the main comments and evidence arising from
the analysis of Table 2 can be straightforwardly extended to the other
classification models: this emerges clearly from Supplementary File F2
(Gene Tab), which lists feature dimensions, tuned values of the main
hyperparameters and testing performances for all the classifiers trained
on each of the compared gene-level feature spaces.

First of all, we can notice that stronger filter-based feature se-
lections mostly bring better results than the commonly-used LASSO
approach; the only exception is given by the Fisher Score-based fil-
tering, which leads to under-performing results for whichever derived
feature space and chosen classification model (Supplementary File F2),
suggesting that this statistical measure is not adequate to retrieve
significantly predictive features for this specific task. Nevertheless,
even when considering such disadvantageous Fisher Score-based fea-
ture spaces and the classification models trained on them, in more
than 80% of the cases, the performances are enhanced when using
our ReRa approach compared to the simple filtering (Supplementary
File F2). Improvements indicate that our ReRa feature spaces allow
obtaining similar or higher (in the vast majority of the cases) perfor-
mances compared to statistical filters, using a further reduced number
of more predictive features. Such improvements concern over 90%
of the collected pairwise comparisons in our gene-level investigation,
particularly all the cases using knowledge-based and Mutual Informa-
tion filtering. Since each classifier is tuned and trained independently
from all the others, we can observe slight changes in the trade-off
between macro- and micro-averaged metrics, even for pairs of models
trained on corresponding intermediate and final feature spaces. Nev-
ertheless, all pairwise comparisons based on Mutual Information or
knowledge-based signatures demonstrate that our ReRa method can
enhance the gene-level subtyping classification compared to canonical
filters, besides greatly outperforming the models trained on LASSO
feature spaces.

Results obtained with ReRa using knowledge-based filters are
mostly comparable with those using the Mutual Information measure.
Yet, these latter ones provided slightly higher performance, particu-
larly when considering the 97th or 98th percentile cut. Conversely,
for greater feature amounts (data not shown) both filter- and ReRa-
based results tend to stability or slight decrease, suggesting to focus
just on the considered percentiles: these allow working on restrained
sets of relevant features able to guarantee better performance and
computational efficiency when applying the complete ReRa approach.

Regarding MRmr feature selection, good performances were reached
all over the assessed feature space cardinalities and considered models,
except for the simple Logistic Regression, which appeared slightly
weaker. Both overall and balanced accuracies were instead particu-
larly valuable when using polynomial SVMs and Random Forests on
such feature spaces. Using this latter ensemble method, our results
based on ReRa feature spaces were comparable to those on MRmr
feature spaces. In contrast, the other ReRa-based classifiers greatly
outperformed MRmr-based ones almost always, also when focusing
on very different feature sizes. Such results are even more interesting
considering the number of overlapping genes among the feature spaces
originating using the Mutual Information measure and those obtained
with MRmr (see Supplementary File F1 — Gene Tab). The ReRa
approach based on Mutual Information selected in a more efficient way
many predictive features confirmed by MRmr; in addition, ReRa was

able to trace other key features leading towards better performance
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Table 2
Feature space dimensionalities and performance evaluations on the test set for each SVM with polynomial kernel tuned and trained on gene-level feature
spaces.
Feature
selection

Percentile
for selection

Kept
features

Feature
reduction

Balanced
accuracy

Overall
accuracy

Precision
macro-avg

F1-score
macro-avg

LASSO selection – 917 – 0.75 0.85 0.80 0.76

MRmr selection – 150 – 0.77 0.88 0.89 0.81
MRmr selection – 250 – 0.82 0.88 0.82 0.82
MRmr selection – 350 – 0.78 0.87 0.81 0.79

PAM50 filter – 49 – 0.79 0.86 0.80 0.79
ReRa (with PAM50) – 41 16.3% 0.81 0.86 0.79 0.80

LIMMA50 filter – 185 – 0.80 0.89 0.85 0.82
ReRa (with LIMMA50) – 154 16.8% 0.83 0.90 0.84 0.83

Fisher Score filter 99% 124 – 0.65 0.78 0.68 0.65
ReRa (with Fisher Score) 99% 84 32.3% 0.63 0.79 0.76 0.63

Fisher Score filter 98% 248 – 0.70 0.82 0.74 0.71
ReRa (with Fisher Score) 98% 169 31.9% 0.71 0.81 0.71 0.71

Fisher Score filter 97% 372 – 0.65 0.79 0.74 0.67
ReRa (with Fisher Score) 97% 248 33.3% 0.65 0.80 0.73 0.67

Mutual Information filter 99% 124 – 0.79 0.87 0.87 0.81
ReRa (with Mutual Info.) 99% 116 6.5% 0.82 0.91 0.92 0.85

Mutual Information filter 98% 248 – 0.80 0.88 0.89 0.82
ReRa (with Mutual Info.) 98% 212 14.5% 0.82 0.91 0.92 0.85

Mutual Information filter 97% 372 – 0.83 0.90 0.86 0.84
ReRa (with Mutual Info.) 97% 320 14.0% 0.85 0.89 0.88 0.86
compared to MRmr: this corroborates the value of our proposed feature
selection strategy.

Finally, from a wider view of this application use case, we can
observe that the predictions of any classifier cannot perfectly recon-
struct the target assignments; this is expected for such a complex
subtyping task since target assignments do not depend on indisputable
ground truth, but on a gold standard method (PAM50) that comes with
its inherent limitations [22]. Nonetheless, for Logistic Regression and
Random Forest models (Supplementary File F2 — Gene Tab), ReRa-
based classifiers appeared enhanced in 100% of the cases, although
these models show lower subtyping capabilities than SVMs. Conversely,
polynomial SVMs show the most significant performances across all
the feature spaces, including benchmark feature spaces; this could have
left smaller room for performance improvement brought by our ReRa
redundancy evaluation step. In contrast, polynomial SVMs trained on
ReRa feature spaces using Mutual Information as a relevance measure
not only outperform their counterparts trained on just filtered feature
spaces but are also among the top most promising classifiers, reaching
the highest overall and balanced accuracies.

Particularly, the best method for gene-level BRCA subtyping was
the polynomial SVM trained on the ReRa feature space of 320 features
selected within the 97th percentile of the most relevant features based
on Mutual Information. After discarding 52 redundant features while
preserving those differentiated within classes, this polynomial SVM
reached the maximum balanced accuracy of 0.85, with both increased
precision and F1-score, and almost unvaried overall accuracy. The
remarkable result found by this model on such ReRa feature space
was investigated with an accurate feature importance analysis, able to
estimate the contribution of each feature to the predictive task.

4.1.2. Comparison against random feature spaces and translational evi-
dences

To further prove the value of our ReRa feature selection, the
ReRa feature space obtained from the 97th percentile of the Mu-
tual Information-based feature ranking, on which we found the most
performing polynomial SVM, was compared to ten random feature
selections (with as many features), used to tune and train polynomial
SVMs. Despite having exactly the same amount of 320 features, these
random feature spaces scarcely overlapped with our ReRa-based feature
space (2.59 ± 0.81%). The high information redundancy within the
nitial gene set allowed collecting barely marginal performances on
7

such random feature spaces, whose results were much lower than those
gained using our ReRa feature space, with balanced accuracy values
approximately 20% smaller.

The features of such best ReRa feature space were also explored with
the computation of their Shapley values (reported in Supplementary
File F3), as to identify the genes with the most crucial roles in BRCA
subtyping, either overall or for each specific BRCA class. All top 10
most relevant genes overall were also in the top 10 genes of at least
one specific class: 3/10 were among the most relevant for the Basal
cases, 4/10 for HER2-enriched, 7/10 for Luminal A, 8/10 for Luminal
B, and 2/10 for Normal-like. Although many genes resulted crucial for
more classes, the contribution of each gene for recognizing one class
may be stronger than for other classes: accordingly, gene orderings and
scores in the six assessed rankings were completely different from one
another.

In Supplementary File F3, we also reported the functional enrich-
ment analysis results obtained by examining the overall top ten genes
against the pathways in KEGG, Reactome and Wikipathways databases.
The significantly enriched annotations were evaluated based on the
involved genes and their presence in class-specific rankings to infer
relationships among different classes and molecular phenomena. Most
of the pathways resulted associated with the majority of the classes,
as expected for ’Breast Cancer pathway’ or annotations referring to
Estrogen or ERBB4 signaling; yet, some of them highlighted particular
traits for only a few subtypes. For instance, both RUNX1 regulation and
the WNT signaling pathway appeared to be associated with the Basal
and HER2-enriched subtypes of BRCA. RUNX1 transcription factor and
WNT signaling pathway are critical in regulating cell proliferation
and differentiation: in Basal BRCA, RUNX1 decreased expression and
loss of function as well as increased WNT pathway activation have
been widely associated with more aggressive disease and poorer out-
comes [32–34]. In HER2-enriched BRCA, although the specific role of
RUNX1 is less clear, the WNT pathway is activated, suggesting that it
may play a key role in this subtype development and progression [35].
Some other annotations still miss clear supporting evidence, like the
Aflatoxin B1 (AFB1) metabolism that may be associated with Luminal
A and Luminal B BRCA subtypes. Exposure to AFB1 has been shown
to cause epigenetic changes leading to carcinogenesis, especially in
hepatocellular carcinoma [36], and the role of epigenetic modifications
in endocrine treatment resistance of Luminal breast cancer is under
study [37,38]. Thus, these highlighted associations may be worthy
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Table 3
Feature space dimensionalities and performance evaluations on the test set for each SVM with polynomial kernel tuned and trained on isoform-level
feature spaces.

Feature
selection

Percentile
for selection

Kept
features

Feature
reduction

Balanced
accuracy

Overall
accuracy

Precision
macro-avg

F1-score
macro-avg

LASSO selection – 1767 – 0.75 0.87 0.83 0.79

MRmr selectiona – 500 – 0.81 0.89 0.85 0.82
MRmr selectiona – 750 – 0.79 0.87 0.83 0.81
MRmr selectiona – 1000 – 0.80 0.88 0.84 0.82

PAM50 filter – 131 – 0.80 0.87 0.79 0.79
ReRa (with PAM50) – 129 1.5% 0.83 0.86 0.79 0.81

LIMMA50 filter – 557 – 0.75 0.87 0.89 0.78
ReRa (with LIMMA50) – 533 4.3% 0.78 0.85 0.81 0.79

Fisher Score filter 99% 498 – 0.61 0.78 0.60 0.60
ReRa (with Fisher Score) 99% 393 21.1% 0.57 0.76 0.55 0.57

Fisher Score filter 98% 995 – 0.63 0.80 0.61 0.62
ReRa (with Fisher Score) 98% 792 20.4% 0.66 0.82 0.64 0.65

Fisher Score filter 97% 1493 – 0.65 0.82 0.64 0.64
ReRa (with Fisher Score) 97% 1208 19.1% 0.64 0.81 0.62 0.63

Mutual Information filter 99% 498 – 0.80 0.88 0.89 0.83
ReRa (with Mutual Info.) 99% 440 11.6% 0.80 0.88 0.89 0.83

Mutual Information filter 98% 995 – 0.81 0.90 0.90 0.84
ReRa (with Mutual Info.) 98% 887 10.9% 0.85 0.88 0.88 0.86

Mutual Information filter 97% 1493 – 0.81 0.90 0.87 0.81
ReRa (with Mutual Info.) 97% 1264 15.3% 0.82 0.87 0.82 0.81

aDue to its computational demand, MRmr is executed on the top 12k most expressed isoforms.
f further investigations to be confirmed, and to inspect any possible
ranslational value for clinical handling or therapeutic design.

.2. Example use case on isoform-level feature space

From the 410 samples of the I_TCGA training set, with their initial
9,740 transcript isoforms (i.e., features), we extracted the feature
paces of interest to train and test supervised models, analogously
o what was done for the gene-level investigation. We selected all
vailable transcript isoforms originating from genes belonging to the
AM50 or LIMMA50 gene signatures: the so-derived PAM50 feature
pace included 131 isoforms, while the LIMMA50 one contained 557
soforms. Statistical filtering (based on Fisher Score or Mutual Infor-
ation) was directly applied on the initial 49,740 transcript isoforms

o extract six additional feature spaces, considering again the 97th,
8th and 99th percentile of the feature rankings. On each of these
feature spaces filtered based on relevance strategies, the ReRa step

f redundancy minimization was applied to obtain corresponding fi-
al ReRa feature spaces. LASSO regularization automatically extracted
,767 isoforms from the initial feature space, while MRmr was used to
elect feature spaces including 500, 750, or 1,000 isoforms, equivalent
o the dimensionalities of the statistical and ReRa-based selections. The
mounts of isoforms/features selected by each method are reported in
upplementary File F1 (Isoform Tab), which also includes the feature
verlaps between each pair of feature spaces.

.2.1. Computational performance and comparison with the state-of-the-art
eature selection

For every classifier and each of the 8 ReRa isoform feature spaces
xtracted, we evaluated performance comparisons against correspon-
ent classification models trained on LASSO, MRmr, or filtered-only
eature spaces. Thus, we assessed the fitness of every filtering strategy
or the specific task and features under exam, as well as the value of
he ReRa step of supervised similarity-based assessments to minimize
elected feature redundancy. Table 3 shows the main results of these
omparisons when focusing on the polynomial SVM models, which still
ominate the other classifiers; the complete set of outcomes is provided
n the Isoform Tab of Supplementary File F2.

Even at the isoform-level, any type of knowledge-based and Mu-
8

ual Information-based feature spaces provides each machine learning
model with fewer but more crucial features for class distinction than
those selected by LASSO, leading to better subtyping performances in
testing. Still, our ReRa feature spaces further enhanced the subsequent
classification compared to corresponding statistical filters for more
than 85% of these cases, letting classification models obtain similar or
mainly higher performances but using a reduced feature amount.

Notice that selected feature sizes are much higher than those pre-
served for gene-level subtyping, although the percentiles of interest
are the same: indeed, the initial isoform-level feature space is more
than 4 times bigger than the gene-level one, and both inner vari-
ability and redundancy risk are greater at the isoform-level. Accord-
ingly, while feature spaces selected using Mutual Information only for
relevance-based filtering include from five hundred to one thousand
and five hundred isoforms, the corresponding ReRa-based ones are
reduced by 10%–15%; this is due to the minimization step that op-
timizes the performances while automatically controlling global and
local redundancy.

Fisher Score-based feature spaces appeared inadequate to perform
the subtyping task also using isoforms. This affected the corresponding
ReRa-based spaces (approximately 20% smaller in size than their
Fisher-based filtered-only counterparts), more reduced than those based
on Mutual Information, but providing just slight performance en-
hancements in barely one-half of the cases across all classification
models.

However, as in gene-level analysis, Random Forest models are al-
ways enhanced by the use of ReRa feature spaces: for both investigation
levels, this kind of model reaches a high performance of overall accu-
racy, although it is slightly penalized in terms of balanced accuracy;
notably, both these metrics are relevant to be assessed in the case of
uneven class distribution.

Overall, all pairwise comparisons based on Mutual Information or
knowledge-based feature spaces demonstrate that our ReRa method,
once chosen a relevance strategy suitable for the task, is able to enhance
the classification also at the isoform-level, compared to filters, LASSO,
or MRmr feature selection. Furthermore, ReRa-based models using
Mutual Information and knowledge-based signatures mostly outper-
formed the models trained on MRmr feature spaces, even when these
latter include comparable feature amounts. Thus, classification results

confirm the capability of our ReRa approach to provide key features
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for class distinction, especially when using the Mutual Information
metric, regardless of the filtering percentile and chosen model, with
clear subtyping improvements (see Supplementary File F2).

Despite subtype predictions cannot perfectly reconstruct the target
assignments, the polynomial SVMs trained on ReRa feature spaces
(based on Mutual Information or PAM50) were again the most perform-
ing models overall. Specifically, the model with the most remarkable re-
sult for isoform-level BRCA subtyping was the polynomial SVM trained
on the ReRa 887-feature space, selected within the 98th percentile of
the Mutual Information ranking. This ReRa feature space discarded
108 redundant features compared to its filtered-only counterpart and
allowed the polynomial SVM to reach a balanced accuracy of 0.85, the
same maximum value reached with gene-level subtyping. Therefore,
such ReRa isoform feature space was accurately investigated to esti-
mate feature importance and assess the contribution of each isoform to
the subtyping task, also comparing this analysis with that performed at
the gene level.

4.2.2. Comparison against random feature spaces and translational evi-
dences

The ReRa 887-feature space coming from the 98th percentile of the
Mutual Information-based feature ranking, (on which the best isoform-
level subtyping result has been obtained) was compared to ten random
selections of the same amount of isoforms, each one used to tune and
train other polynomial SVMs. These random feature spaces had a very
low overlap with our ReRa-based feature space (1.65 ± 0.33%) and
made SVMs reach only marginal performances, with balanced accuracy
values again 20% smaller than that obtained from the ReRa feature
space. This further proved our ReRa feature selection reliability and
value.

The isoforms of such ReRa feature space were also explored to iden-
tify those with the most crucial roles in BRCA subtyping, either overall
or for each specific class. Their computed Shapley values, together with
class-specific and overall rankings, are reported in Supplementary File
F4. All top 10 most relevant isoforms overall also belong to the top
10 isoforms of at least one specific BRCA class: 1/10 in Basal class top
ranking, 6/10 in HER2-enriched, 7/10 in Luminal A, 6/10 in Luminal
B, and 4/10 in Normal-like. Similarly to gene-level BRCA subtyping,
the orderings of the key features differed across the classes, even when
these shared some of their relevant isoforms. In Supplementary File
F4, we also reported the genes of origin for the most relevant top ten
isoforms overall and of each class. For overall and Luminal A feature
rankings, two isoforms originating from the same gene GFRA1 resulted
within the top 10 positions; this also occurred for the HER2-enriched
class with the gene ESR1 and for the Normal-like class with the gene
GABRP, whilst both these genes were not among those encoding the
most relevant isoforms overall.

Additionally, Supplementary File F4 includes the functional en-
richment analysis results obtained by testing the genes of origin of
the top ten overall isoforms against KEGG, Reactome and Wikipath-
ways databases. As for gene-level subtyping, for each significantly
enriched annotation referring to a specific subgroup of BRCA subtypes,
we examined the involved isoform-related genes associated with that
annotation. Interestingly, we found some significant annotations that
highlight additional aspects that did not emerge from gene-level in-
vestigation. These comprise the GDNF/RET signaling pathway, which
has been implicated in the development and progression of various
types of cancer, including BRCA [39], and that may be associated
with more aggressive disease in Luminal B cases, according to some
recent evidence [40,41]. Similarly, additional annotations refer to the
interactions of the NCAM1 cell adhesion molecule, which have been
shown to regard various signaling pathways that are dysregulated in
BRCA, especially in case of cancer migration to lymph nodes and worse
expected clinical outcome [42]. Such annotations, which emerged only
with the isoform-level investigation, reflect molecular phenomena that
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may be useful to improve the tough distinction of Luminal B from
Luminal A (having better expected prognosis) BRCA patients, showing
the value of isoform-level analysis. Comparison between the most
relevant features and consistency of functional annotations arising from
isoform- and gene-level BRCA subtyping are discussed in the following
subsection.

4.3. Comparative evaluation of the two example use cases

From our gene-level and isoform-level investigations, using the
ReRa approach, we retrieved two meaningful feature spaces that guar-
antee convincing BRCA subtyping performances, especially for poly-
nomial SVM classifiers. These two feature spaces were compared con-
sidering for each transcript isoform the corresponding gene of origin:
244 of the 753 genes corresponding to the 887 isoforms of the best
isoform-level ReRa feature space were in common with the 320 genes
of the best feature space selected by ReRa during the gene-level in-
vestigation. Accordingly, more than 75% of the genes involved in
BRCA subtyping at gene-level were confirmed and explained more in
detail considering the isoform specificity, which is usually left out in
such kinds of analyses. Furthermore, for approximately more than 5
hundred other isoforms (and their corresponding genes), we were able
to estimate a quantitative contribution in BRCA subtyping and their
specific relevance for the distinction of each subtype (Supplementary
File F4); this further demonstrates the foreseen relevance of transcript
isoform-level analysis [43–45], which our ReRa approach makes more
computationally affordable.

Eventually, for what concerns functional enrichments, almost one-
third of the significant annotations found based on the top ten fea-
tures for the best gene-level or isoform-level BRCA subtyping mod-
els were detected at both subtyping levels. These include functional
terms clearly associated with BRCA, like ’Estrogen signaling path-
way’, ’Estrogen-dependent gene expression’ and ’Mammary Gland De-
velopment pathway’. However, several other enriched functional terms
emerged as associated with only the top ten features from the gene-
level or isoform-level investigation (see Supplementary File F3 vs F4);
these provide different and interesting preliminary perspectives on the
clinically relevant subtyping task under exam and could steer further
studies, also useful to assess any possible translational value of the
so-found insights.

5. Discussion

Through the illustrated application use cases and the results ob-
tained from their evaluation, we proved the efficacy of our ReRa
feature selection approach in two alternative translational scenarios
for clinically-relevant breast cancer subtyping. Both of them are char-
acterized by feature high dimensionality and redundancy, and by a
limited number of available samples, with a strongly unbalanced class
distribution. The ReRa approach allowed us to select feature spaces
where different classifiers succeed in well distinguishing target classes
despite their uneven proportions, as demonstrated by several perfor-
mance metrics including balanced accuracy and other macro- and
micro-averaged measures that inspect and aggregate the outcomes on
each class.

In the vast majority of the assessed cases, the collected classifi-
cation performances when using ReRa feature spaces are better than
those reached using feature spaces from simple feature filtering, LASSO
regularization, or the MRmr method. The comparison with this latter
one is even more interesting considering that both ReRa and MRmr
are alternative Relevance-Redundancy strategies, and that there is a
good overlap among the ReRa feature spaces originating using the
Mutual Information measure and those obtained with MRmr. While
MRmr, which simultaneously evaluates Relevance and Redundancy for
each feature, struggles to scale up on huge initial spaces, the ReRa

approach has its relevance-based filtering step that ensures scalability
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and discards useless features, especially when working on big unbal-
anced datasets. To this aim, similarly to LASSO and differently from
MRmr, ReRa evaluated both the here-considered initial spaces without
requiring any tuning of the number of features to be kept. MRmr
instead could not even be applied to the initial dimension of our
isoform-level investigation (around 49k isoforms), requiring to decrease
it to approximately one-fifth (based on the most expressed isoforms) to
be run. Also, the time efficiency evaluations, reported in Supplementary
File F5, clearly show that ReRa usually requires much less than half of
the running time compared to MRmr to select a comparable subset of
predictive features. Thus, the ReRa approach selects features in a more
efficient way, regardless of the initial dimensionality.

In addition, ReRa relevance strategy is open to alternatives and
generalizations. This is an added value since any classification task
has supervised strategies of feature relevance estimation more suitable
than others; therefore, it is preferable not to make prior assumptions,
but rather to explore and compare several options (e.g., statistical vs.
knowledge-based filters), as it is good practice also for classifier choice.
However, the most relevant and innovative aspect of ReRa is given by
its second step of supervised feature similarity assessments to minimize
feature redundancy.

The similarity assessments are performed iteratively over the set
of previously chosen relevant features and allow reevaluating and
updating the selected feature space at each iteration; this is another
difference from MRmr. Furthermore, ReRa evaluates both global and
class-specific (local) feature redundancies, with each class being one
of the targets of the predictive task under exam: this allows not ig-
noring any differential behavior that may be remarkable for better
distinguishing a class, but hidden at the global level. Thus, besides
the improvement brought in classification results, our novel ReRa
strategy provides features offering interesting insights about class dif-
ferentiation, worthy of further investigation, especially in the case of
unbalanced class proportions.

This kind of strongly unbalanced scenario, with huge feature spaces
and limited available samples, is very common in relevant biomedical
applications that require dealing with omics data to assign patients to
subgroups, based on their clinical/biological heterogeneity, to ensure
personalized healthcare decisions. Performing patient stratification and
highlighting the most predictive features can increase current knowl-
edge and boost precision medicine. Particularly, the breast cancer
subtyping task considered here to validate our ReRa approach is an
insightful example of translational bioinformatics computational appli-
cation. Investigating transcript isoforms as features for this clinically-
relevant task and comparing isoform- and gene-level stratifications
may have interesting translational implications: isoform differentia-
tion, hidden at the gene level, could be a precious resource to better
characterize, distinguish, and even treat different cancer subtypes.
Transcript isoforms can indeed alter and discriminate functions and
molecular products, and their further study could underline actionable
drug targets. Here, we used our comparative survey not only to validate
our ReRa approach but also to provide meaningful parallelism between
gene- and transcript isoform-level subtyping based on machine learning
models, particularly offering new knowledge about isoform role in
subtype differentiation. Furthermore, the investigation performed here
is well generalizable and can be easily applied also to other cancer types
and diseases to dissect their heterogeneity at different molecular levels.

6. Conclusions

We proposed and comparatively evaluated our innovative feature
selection methodology, ReRa, based on supervised Relevance-
Redundancy assessments. We clearly proved ReRa efficacy in two
wide comparative translational scenarios aiming to provide clinically-
relevant BRCA patient stratification at gene- and transcript isoform-
level. The two considered use cases represent an insightful example
of translational application, taking advantage of ReRa capabilities to
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investigate and enhance a clinically-relevant patient stratification task,
which could be easily applied also to other cancer types and diseases.

Overall, the innovative ReRa approach demonstrated to be efficient
and scalable, comparable to filter-based and LASSO methods; similarly
to this latter one, it uses an iterative optimization process for feature
selection. While offering these strengths over the MRmr approach, ReRa
is still a Relevance Redundancy strategy; therefore, ReRa can reduce
the initial feature space to a more compact set of relevant and non-
redundant features, after extensive examination of feature relationships
both globally and locally to the target classes. In the vast majority of
the assessed scenarios, when using ReRa-selected feature spaces the
performances were significantly increased compared to simple filtering,
LASSO, or MRmr feature selection. Without the need to tune the
number of preserved features, ReRa reduces the number of features
while ultimately maintaining the most relevant and class-differentiated
ones. To this aim, it iteratively re-evaluates the previously chosen
relevant features getting rid of global and, mostly, local redundancies
found at the level of each class of interest. This peculiarity allows
highlighting class-specific behaviors that can play a hidden crucial role
in a classification task, particularly when unbalanced class distributions
need to be tackled.

Thus, ReRa, with its two-step structure, is able to ensure efficiency
and scalability over huge initial dimensionalities, while selecting a com-
pact set of relevant and non-redundant predictive features. So-selected
features offer better insights about class differentiation in highly un-
balanced classification scenarios and lead to better performance of
machine learning models, even in highly unbalanced classification
scenarios. Lastly, ReRa wide applicability and generalization power
corroborate its proven value as a supervised Relevance-Redundancy
feature selection strategy.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
and includes the following files:

• Supplementary File F1 (Suppl_File_1.xlsx): Tables containing the
amounts of features at gene-level (Gene Tab) or isoform-level
(Isoform Tab) of each considered feature space (on the main
diagonal) or in common (elsewhere) between a pair of feature
spaces;

• Supplementary File F2 (Suppl_File_2.xlsx): Performances of all the
trained classifiers on each of the assessed feature spaces at the
gene-level (Gene Tab) or isoform-level (Isoform Tab);

• Supplementary File F3 (Suppl_File_3.xlsx): Feature importance
and functional enrichment analyses based on the best ReRa fea-
ture space to perform gene-level subtyping of BRCA patients;
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• Supplementary File F4 (Suppl_File_4.xlsx): Feature importance
and functional enrichment analyses based on the best ReRa fea-
ture space to perform isoform-level subtyping of BRCA patients.

• Supplementary File F5 (Suppl_File_5.xlsx): Running time and
number of input and selected features in several experiments
using ReRa approach compared with the MRmr method.

he developed Python code with our ReRa implementation and its
enchmarking is publicly available at https://github.com/DEIB-GECO/
RCA_ISOFORMS.

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jbi.2023.104457.
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