
http://www.aimspress.com/journal/mine

Mathematics in Engineering, 5(6): 1–36.
DOI:10.3934/mine.2023096
Received: 30 November 2022
Revised: 04 May 2023
Accepted: 14 July 2023
Published: 05 September 2023

Research article

Long-time prediction of nonlinear parametrized dynamical systems by deep
learning-based reduced order models

Stefania Fresca, Federico Fatone and Andrea Manzoni*

MOX–Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133
Milano, Italy

* Correspondence: Email: andrea1.manzoni@polimi.it.

Abstract: Deep learning-based reduced order models (DL-ROMs) have been recently proposed to
overcome common limitations shared by conventional ROMs–built, e.g., through proper orthogonal
decomposition (POD)–when applied to nonlinear time-dependent parametrized PDEs. In particular,
POD-DL-ROMs can achieve an extremely good efficiency in the training stage and faster than real-
time performances at testing, thanks to a prior dimensionality reduction through POD and a DL-based
prediction framework. Nonetheless, they share with conventional ROMs unsatisfactory performances
regarding time extrapolation tasks. This work aims at taking a further step towards the use of DL
algorithms for the efficient approximation of parametrized PDEs by introducing the µt-POD-LSTM-
ROM framework. This latter extends the POD-DL-ROMs by adding a two-fold architecture taking
advantage of long short-term memory (LSTM) cells, ultimately allowing long-term prediction of
complex systems’ evolution, with respect to the training window, for unseen input parameter values.
Numerical results show that µt-POD-LSTM-ROMs enable the extrapolation for time windows up to 15
times larger than the training time interval, also achieving better performances at testing than POD-
DL-ROMs.

Keywords: reduced order modeling; deep learning; proper orthogonal decomposition; long-short
term memory networks; time forecasting; parametrized PDEs

1. Introduction

Parameterized PDEs are extensively used for the mathematical description of several physical
phenomena. Some instances include fluid dynamics, heat transfer, waves and signal propagation
and structure dynamics (including microsystems) [1–3]. However, traditional high-fidelity, full order
models (FOMs) employed for their numerical approximation, such as those based on the finite element
method, become infeasible when dealing with complex systems and multiple input-output responses

http://www.aimspress.com/journal/mine
http://dx.doi.org/10.3934/mine.2023096

2

need to be evaluated (like, e.g., for uncertainty quantification, control and optimization) or real-time
performances must be achieved. In fact, despite being accurate up to a desired tolerance, they entail
unaffordable computational times, sometimes even orders of magnitude higher than the ones required
by real-time computing [4].

In this context, projection-based reduced order models (ROMs)–such as POD-Galerkin ROMs–
have been introduced with the goal of enhancing efficiency in timing critical applications. ROMs
rely on a suitable offline-online computational splitting, aimed at moving in the offline stage, i.e., the
phase where the model is trained and refined before its deployment, the computationally expensive
tasks in order to make the online one, i.e., the phase where the model is used for the solution of the
problem for new parametric instances, extremely efficient. These methods rely on the assumption
that the parameterized PDE solutions manifold can be represented by the span of a small number of
basis functions built starting from a set of FOM solutions (computed in the offline stage), the so-called
reduced manifold. This pipeline allows for a significant dimensionality reduction of the PDE problem
and a consequent speed-up in its numerical solution timing, for example a O(102) speed-up is achieved
for Navier-Stokes application [5–7], and even more for applications in structural mechanics [8, 9].

Nevertheless, despite being physics-driven, POD-Galerkin ROMs show severe limitations when
addressing nonlinear time-dependent PDEs, which might be related to (i) the need to rely on
high-dimensional linear approximating trial manifolds, (ii) the need to perform expensive hyper-
reduction strategies, or (iii) the intrinsic difficulty to handle complex physical systems with a linear
superimposition of modes [2]. Furthermore, usually such ROMs do not allow for an effective
extrapolation in time when dealing with time- and parameter-dependent problems–they can make
predictions beyond the training time range in the case of time-dependent linear (or mildly nonlinear)
systems not including any parameter dependence, requiring extremely long offline stages in order to
compute FOM snapshots defined on a sufficiently long time domain.

To overcome these drawbacks, several nonlinear–and in particular artificial neural networks (ANNs)
based–methods have been massively considered to provide fast approximation of PDE solutions in the
last few years, and even before. For instance, the possibility to approximate differential equations
solutions through ANNs had already been proposed in [10,11], relying on the universal approximation
theorem [12]. Interest on the topic and practical applications increased recently at a fast pace [13–15],
while variations aimed at introducing physics related losses to link more deeply the ANN framework
with the underlying physical model, e.g., with the concept of physics-informed neural networks
(PINNs) [16, 17], show the significance ANNs are gaining in scientific computing. Furthermore,
relevant theoretical results concerning the complexity bounds of the neural network architectures
for the approximation of either continuous and discretized functions or operators have also been
investigated, see, e.g., [18–21] and [22–24] respectively, thus providing a rigorous mathematical setting
to ANNs based methods.

The combination of the extremely accurate approximation capabilities of ANNs [18, 20] and the
ROM paradigm led to the introduction of ANN-based ROMs, whose main idea is to use deep learning
(DL) algorithms to perform a nonlinear projection onto a suitable reduced order manifold. For instance,
in [25–27] a DL-based regressor is employed but a linear reduced manifold is still considered. In [28],
an ANN-inferred correction term is used to increase the accuracy of the linear projection, while [29,
30] approximate the reduced manifold by means of an ANN. In [31], a convolutional autoencoder is
considered to model the reduced order manifold, however advancing in time through a quasi-Newton

Mathematics in Engineering Volume 5, Issue 6, 1–36.

3

method that requires the approximation of a Jacobian matrix at every time step.
A recently proposed strategy [32] aims at constructing DL-based ROMs (DL-ROMs) for nonlinear

time-dependent parametrized PDEs in a non-intrusive way. DL-ROM aims at approximating both
the PDE solution manifold, that is the set of all PDE solutions by varying time and parameters, by
means of a low-dimensional, nonlinear trial manifold, and the nonlinear dynamics of the intrinsic
coordinates on such trial manifold, as a function of the time coordinate and the parameters. The
approximated manifold is learnt by means of the decoder function of a convolutional autoencoder
(CAE) neural network; the reduced dynamics through a (deep) feedforward neural network (FFNN),
and the encoder function of the CAE. DL-ROMs outperform projection-based ROMs such as the
reduced basis method–regarding both numerical accuracy and computational efficiency at testing
stage. With the same spirit, POD-DL-ROMs [33] enable a more efficient training stage and the use
of much larger FOM dimensions, without affecting network complexity. This is achieved by means
of a prior dimensionality reduction of FOM snapshots through randomized POD (rPOD) [34], and
a multi-fidelity pretraining stage, where different models (exploiting, e.g., coarser discretizations or
simplified physical models) can be combined to iteratively initialize network parameters. The POD-
DL-ROM technique has proven to be effective for instance in the real-time approximation of cardiac
electrophysiology problems [35, 36], problems in fluid dynamics [37] and Micro-Electro-Mechanical
Systems application [38].

This work extends the POD-DL-ROM framework [33] in two directions: first, it replaces the CAE
architecture of a POD-DL-ROM with a long short-term memory (LSTM) based autoencoder [39, 40],
in order to better take into account time evolution when dealing with nonlinear unsteady parametrized
PDEs (µ-POD-LSTM-ROM); second, it aims at performing extrapolation forward in time (compared
to the training time window) of the PDE solution, for unseen values of the input parameters–a task
often missed by traditional projection-based ROMs. Several works have tried to account for temporal
correlations between consequent time instances. For example, in [41] a time-stepping procedure based
on the use of residual neural networks is presented but no extrapolation forward in time is performed
for the test cases reported, as in [42]. Instead, other contributions have focused on the temporal
advancement of the approximated solution on a time window larger with respect to the one seen during
the training phase, such as in [43, 44], where either causal convolutions and LSTMs, or a three levels
neural network are employed for future time steps predictions.

Our final goal is to predict the PDE solution on a larger time domain (Tin,Tend) than the one, (0,T),
used for the ROM training–here 0 ≤ Tin ≤ Tend and Tend > T . To this aim, we train a µ-POD-LSTM-
ROM using Nt time instances and approximate the solution up to Nt + M time steps from the starting
point, taking advantage of a time series LSTM-based architecture (t-POD-LSTM-ROM) besides the µ-
POD-LSTM-ROM introduced before. These architectures mimic the behavior of numerical solvers as
they build predictions for future times based on the past. Besides this, the implications of the novelties
proposed by the present work are multiple. In particular, the main advantages concern:

• The possible long-term time extrapolation capabilities of the proposed framework, allowing for a
faster offline stage, as FOM snapshots defined on a shorter time domain are required to train the
model;
• The possibility to predict entire sequences instead of single outputs, that makes the presented

method even more efficient than the (already faster than real-time) POD-DL-ROMs [33],

while at the same time preserving the main strengths of POD-DL-ROMs, which are:

Mathematics in Engineering Volume 5, Issue 6, 1–36.

4

• The possibility to query the ROM at a specific time instance, without requiring the solution of a
dynamical system until that time as usual time marching schemes would do;
• The possibility of using coarser temporal discretizations with respect to the ones used to ensure

stability for high-fidelity numerical solvers [35];
• The avoidance of using expensive hyper-reduction techniques often required by POD-Galerkin

ROMs;
• The possibility to return outputs depending on selected problem state variables, without requiring

to approximate all of them.

The paper is divided in five sections: In Section 2 we describe the µt-POD-LSTM-ROM framework
used to predict PDE solutions for unseen parameter instances and times. Section 3 and Section 4
introduce the µ-POD-LSTM-ROM and t-POD-LSTM-ROM architectures, the former enriching POD-
DL-ROM with LSTM-based autoencoder and the latter providing time extrapolation capabilities to the
framework. In Section 5 we report the accuracy results and performances assessments of µt-POD-
LSTM-ROM on three parametrized test cases, namely: (i) 3 species Lotka-Volterra equations, (ii)
unsteady advection-diffusion-reaction equation, (iii) incompressible Navier-Stokes equations.

2. Achieving time extrapolation capabilities with LSTM cells

After recalling the formulation of a POD-DL-ROM, in this section we address the construction of
the proposed µt-POD-LSTM-ROM framework to predict PDE solutions for unseen parameter instances
and times; the main ingredients to reach this goal–the µ-POD-LSTM-ROM and the t-POD-LSTM-
ROM architectures–will instead be detailed in the following sections. The space and time discretization
on a nonlinear, time-dependent, parametrized PDE problem–performed, e.g., through a finite element
method–produces a (high-dimensional) dynamical system of the form:{

M(µ)u̇h(t;µ) = f(t,uh(t;µ);µ), t ∈ (0,T),
uh(0;µ) = u0(µ).

(2.1)

where uh : (0,T)×P → RNh is the parametrized solution of (2.1), u0 : P → RNh is the initial datum, f :
(0,T)×RNh ×P → RNh is a (nonlinear) function, representing the system dynamics and M(µ) ∈ RNh×Nh

is the mass matrix of this parametric FOM, assumed here to be a symmetric positive definite matrix.
Here Nh and P ⊂ Rnµ denote the FOM dimension and the parameters’ space, respectively.

Linear projection-based ROMs exploit singular value decomposition (SVD) of the FOM snapshot
matrix S, i.e., the data structure containing the full order solutions (snapshots) used for training, in order
to build a N-dimensional space basis and project the system (2.1) on it. In this way, an N-dimensional
reduced solution manifoldMN is obtained [2]. Since solving the FOM (2.1) can be computationally
unaffordable, we aim at replacing it with the approximation obtained through suitable ROMs.

Since (2.1) entails a temporal evolution of the described phenomenon, the ROMs used to
approximate its dynamics must include some kind of time parameter (even dimensionless), or at least
some procedure allowing the advancement in time of the solution to work properly. POD-Galerkin
ROMs, for instance, usually consider a time marching scheme to handle the dynamical system they
entail, similarly to the ones used at the FOM level (e.g., finite differences or backward differentiation
formulas). POD-DL-ROMs as described in [33] treat instead the time like an additional physical

Mathematics in Engineering Volume 5, Issue 6, 1–36.

5

parameter to be provided as input to the feedforward neural network φFFNN
n (·; ·, θFFNN)–being θFFNN its

trainable parameters. This function maps the parameter vector µ ∈ P ⊂ Rnµ to the low (n-)dimensional
nonlinear trial manifold, approximation of the solution manifold, i.e. the set of all the PDE solution
by varying time and parameters, where n is very close or even equal to the intrinsic dimension of the
problem (nµ + 1):

un(t;µ) = φFFNN
n (t;µ, θFFNN),

so that in the end, the network learns a mapping of the form

φFFNN
n (·; ·, θFFNN) : (0,T) × Rnµ → Rn.

In this way, starting from each pair (time, parameters), φFFNN
n (·; ·, θFFNN) produces the low-

dimensional representation of the solution for those particular instances with a direct input-output
relation for each time instant. Despite being fast and accurate, this approach neglects the correlation
between consequent time steps of the solution, leaving the opportunity to further increase its efficiency.
In fact, the simple selection of an initial condition and of an initial time should ideally contain enough
information to reconstruct the entire temporal evolution of the solution. In this context, it would be
ideally possible–and desirable–to obtain a map under the form

ΛN(·, θΛ) : Rnµ → RN × (0,T)

that, considering the initial time as t = 0, would provide the solution for a time horizon (0,T) as long
as necessary, thus enhancing time extrapolation capabilities. In this case, time would be considered
implicitly by the model; this latter shall then learn the evolution of the problem through its trainable
parameters. This would entail the setting of an algorithm–conceptually closer to a classical numerical
solver than what presented before–as the obtained solution would be a sequence of vectors representing
the evolution of the system in time, rather than a single result of a specific time query.

To better fit the working mechanism of numerical solvers, the application of recurrence strategies
to ANNs emerges as a suitable solution, as they add to traditional feedforward architectures feedback
connections allowing to treat inputs and outputs in the form of sequences. This is expected to enhance
the reconstruction of the underlying dynamics, as this latter can be learned by the network implicitly.

Moreover, such architectures have proven to be effective in time series prediction problems [45]–
even in the context of PDEs approximation [46]–opening the possibility for ROMs to advance in time
with respect to the FOM snapshots they are trained with, performing extrapolation in time. Finally,
recurrence mechanisms such as LSTM are also suitable for increasing speed performances at prediction
time, as entire long temporal sequences can be returned as output from the architecture, requiring less
neural network queries, and thus improving the overall efficiency of the method.

2.1. Time extrapolation problem

In the context of ROMs, the problem of time extrapolation requires the training of a ROM
(eventually based on deep learning) on a training set including snapshots

uh(t;µ) with µ ∈ Ptrain and t ∈ (0,T) (2.2)

to be used to predict solutions defined on a larger temporal domain T = (Tin,T f in) with 0 ≤ Tin ≤ T f in

and T f in > T :

Mathematics in Engineering Volume 5, Issue 6, 1–36.

6

uh(t;µ) with µ ∈ Ptest and t ∈ T . (2.3)

Parameters Ptest ⊂ P and Ptrain ⊂ P are such that µtrain,min
i ≤ µtest

i ≤ µtrain,max
i ∀i ∈ {1, . . . , nµ}.

In this case, an analogy with time marching numerical solvers can be found. Indeed, traditional
numerical solvers integrate in time the system of PDEs starting from the given initial condition uh(0;µ),
and build the solution iteratively exploiting past solution’s values found by the solver itself. Our goal
is to build a DL-based solution approximator able to proceed in time in a similar fashion. Ultimately,
our objective is to train the framework using (the first) Nt time steps of the FOM solution, to get the
solution of the problem up to Nt + M time steps from the starting point.

2.2. µt-POD-LSTM-ROM architecture

The problem addressed in this paper is therefore two-fold: it deals with (i) the prediction of the
solution of the parametric PDE problem for a new instance of the parameters’ space belonging to the
set Ptest ⊂ P ∈ R

nµ (solution inference for new parameters values) and (ii) the forecast of the temporal
evolution of that solution for unseen times (time extrapolation). A natural way to tackle this problem is
to pursue a divide-and-conquer strategy, splitting its solution into a two-steps process that exploits two
paired LSTM-based ANN architectures: the first one (µ-POD-LSTM-ROM) addressing the issue of
predicting the solution for unseen parameters; the second one (t-POD-LSTM-ROM, where “t” stands
for time series) extending the solution in time, starting from the sequence predicted by the former. We
note that the t-POD-LSTM-ROM could, in principle, be combined with other parameter-dependent
architectures or reduced order modeling framework.

The resulting technique (µt-POD-LSTM-ROM) can be described as follows (see Figure 1):

• The training stage is performed in parallel for the two paired architectures on the same dataset
obtained from FOM solutions after a first POD-based dimensionality reduction. In the end, the µ-
POD-LSTM-ROM will produce a structure able to predict the solution for unseen parameters, but
on the same time domain considered during training, while the t-POD-LSTM-ROM will produce
a time series predictor Λp(·) that takes p time steps from the past and µ, and returns as output the
forecast for k time steps in the future for that µ value. From now on, the two architectures will act
as separate entities;
• The µ-POD-LSTM-ROM takes the vector (ti,µ) of a starting time in the interval (0,T) (discretized

in {t0, . . . , tNt−1} time istances which are collected in subsequences) and of the parameters’
instance, and performs the approximation of the solution on this time domain seen during the
training stage. This step produces very accurate outputs that are also smoother in the time variable
w.r.t. POD-DL-ROM ones thanks to the LSTM architecture producing sequences as outputs and
not treating different time instances as independent. This enhances the performances of the time
series predictor, as it would potentially incur stability issues by propagating the small oscillations
somehow unavoidable in the POD-DL-ROM framework without LSTM cells. Note that all the
predictions at this stage are performed in the reduced dimension N (the POD basis one);
• The t-POD-LSTM-ROM takes the last p time steps of the µ-POD-LSTM-ROM predicted

sequence and advances another k steps. Then, it takes the last p time steps of the new predicted
sequence and advances of other k steps, and keeps advancing the prediction in this way. This
strategy thus performs extrapolation in time, virtually with no final time limit, acting as an auto-
regressive model. Note that the t-POD-LSTM-ROM architecture is general enough to be used

Mathematics in Engineering Volume 5, Issue 6, 1–36.

7

also on top of other ROMs–e.g., POD-DL-ROMs or POD-Galerkin ROMs–in order to provide
time extrapolation.

POD

POD Training setTraining set t-POD-LSTM-ROM

Training
(1)

𝝁

𝝁-POD-LSTM-ROM
Prediction

(2)
t

t

𝚲p(⋅)

𝚲p(⋅)

Time series
predictor

(3) Time
Advancement

T

T

Figure 1. The µt-POD-LSTM-ROM framework. (1) Training: Both µ-POD-LSTM-ROM
and t-POD-LSTM-ROM are trained on the same set of FOM snapshots reduced by means
of (r)POD; (2) Prediction: The µ-POD-LSTM-ROM is employed to predict the (r)POD
coordinates on the time interval (0,T) on which the training snapshots were defined for new
parameters instances; (3) Time advancement: Starting from the sequence predicted by the µ-
POD-LSTM-ROM, the t-POD-LSTM-ROM time series predictor is used to advance in time
and perform time extrapolation.

3. µ-POD-LSTM-ROM

The first component of the µt-POD-LSTM-ROM framework is a µ-POD-LSTM-ROM, originating
from the application of a LSTM autoencoder structure in the context of POD-DL-ROMs. While a POD-
DL-ROM aims at reducing the dimensionality of the solution by means of a nonlinear projection onto
a suitable subspace, the proposed µ-POD-LSTM-ROM framework focuses on the compression of the
information necessary to build an entire sequence of solutions. In particular, a LSTM autoencoder [47]
takes a set of sequential inputs and through a LSTM architecture, the encoder, provides a lower
dimensional representation of the entire sequence as a single vector. Another LSTM based ANN, the
decoder, takes as input the aforementioned compressed representation and reconstructs the sequence of
solutions used to produce it. Hence, such an autoencoder provides a convenient way of representing a
sequence of solutions by compressing it in a much lower dimensional single vector, that can be inferred
by a properly trained (ANN-based) regressor.

The structure of the µ-POD-LSTM-ROM described above (see Figure 2) starts with a first
dimensionality reduction through the projection of the snapshots onto the POD basis as in a POD-
DL-ROM. Snapshots are then put sequentially together in batches and–optionally–further reduced via
some dense layers. Then, they are passed as sequences to the LSTM encoder architecture and the
reconstruction process follows symmetrically through the decoder. At the same time, a feedforward
neural network is set up for inferring the hidden representation of the LSTM autoencoder and, from

Mathematics in Engineering Volume 5, Issue 6, 1–36.

8

that, for reconstructing the solution sequence starting from the tuple (µ, ti)*.

𝒖!([𝑡" …𝑡"#$%&], ; 𝝁)

POD

𝑽'(𝒖!([𝑡" …𝑡"#$%&]; 𝝁)

LS
TM

LS
TM

LS
TM 𝒖,)(𝑡"; 𝝁, 𝜽*)+)

LSTM
encoder

Low dimensional
representation

(𝑡"; 𝝁) FFNN

𝒖)(𝑡"; 𝝁, 𝜽,,'')

LS
TM

LS
TM

LS
TM

POD

𝒖,'([𝑡" …𝑡"#$%&]; 𝝁, 𝜽,,'', 𝜽-*+)

𝑽'𝒖,'([𝑡" …𝑡"#$%&]; 𝝁, 𝜽,,'', 𝜽-*+)

1	 − 𝜔!
2 𝒖'" 𝑡#; 𝝁, 𝜽$"% − 𝒖" 𝑡#; 𝝁, 𝜽&&'' (

𝜔!
2 𝒖''([𝑡# …𝑡#)*+,]; 𝝁, 𝜽&&'' , 𝜽-$%) − 𝑽'.𝒖!([𝑡# …𝑡#)*+,]; 𝝁)

(

LSTM
decoder

Figure 2. The µ-POD-LSTM-ROM architecture. The full order vectors are reduced by
means of POD and assembled in sequences, that are fed to a LSTM autoencoder structure
in order to obtain a low-dimensional representation ũn(ti,µ, θenc) of the entire sequence.
A (deep) feedforward neural network is used to infer that low-dimensional representation
starting from the initial time ti and the parameters vector µ and a LSTM decoder structure
allows for the prediction of the sequence of ROM solutions.

The working scheme of the µ-POD-LSTM-ROM method can be divided in the following blocks:

• POD is performed on the snapshot matrix S ∈ RNh×NtrainNt (being Nh the finite discretization
dimension of the numerical solver used to produce the snapshots, Ntrain the number of input
parameters instances used for building the training set and Nt the number of temporal step used
for the time discretization). In the test cases presented, POD was executed in its randomized
fashion [34], as in many high-dimensional cases the costs of computing the SVD of the snapshot
matrix could become unfeasible [48]. This determines a first dimensionality reduction aimed at
making the snapshots dimension suitable for feeding the subsequent neural network part. The
projection is then performed as

uN(t;µ) = VT
Nuh(t;µ), (3.1)

being VN the POD projection matrix.
• Once dimensionally reduced by means of (r)POD, snapshots are sequentially stacked

in matrices of the form VT
Nuh([ti . . . ti+K−1];µ) ∈ RK×N where uN([ti . . . ti+K−1];µ) =

[uN(ti;µ), . . . ,uN(ti+K−1;µ)]. Such matrices are then grouped in (mini) batches tensors of
dimension dimbatch × K × N to enable the training.

*Note that ti ∈ (0,T−K∆t) denotes a generic starting time–not necessarily the one of the solution approximation–and that the notation
[ti . . . ti+K−1] (with ti+ j = ti + j∆t) when used in place of a specific time t indicates the stacking of K subsequent vectors referring to the
reported times.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

9

• The sequences of size K × N from the (mini) batches tensor are then fed to a LSTM encoder
structure. The encoder then takes sequentially the VT

Nuh(t;µ) as input and modifies its internal
state coherently with the evolution of the vectors it receives. The output of the encoder is
neglected as it would be of no utility in this context. In particular, the low-dimensional hidden
state representation of the LSTM encoder state is built according to the following function:

ũn(ti;µ, θenc) = λenc
n (uN([ti . . . ti+K−1];µ), θenc), (3.2)

where ũn(·; ·, θenc) : [0,T) × Rnµ → Rn. In the end, the information coming from a sequence of
inputs is reduced into a lower dimensional manifold of dimension n < N � Nh.
• The reconstruction of the low-dimensional hidden state representation of the LSTM encoder,

embedding a kind of characterization of the previous time-step data, is performed by a suitable
(deep) feedforward neural network consisting in multiple layers of linear transformations and
subsequent nonlinear activation functions. The relation learned by this network is

un(ti;µ, θFFNN) = φFFNN
n (ti;µ, θFFNN), (3.3)

with un(·; ·, θFFNN) : [0,T) × Rnµ → Rn. Note that just the initial time ti, along with the
current parameter instance, is passed as input to this feedforward neural network but the hidden
representation it infers contains the information coming from an entire sequence of K solutions.
This low-dimensional representation is then crucial for the compression of information that allows
this architecture to work with sequences, as it provides a convenient way to infer the evolution of
the solution by considering a single vector as regression target.
• The reduced nonlinear trial manifold S̃n

N is modeled using a LSTM decoder that takes as input the
approximated hidden representation coming from the feedforward neural network. In particular,
the reduced nonlinear trial manifold can be defined as

S̃n
N ={λdec

N (un(t;µ, θFFNN); θdec) |
un(t;µ, θFFNN) ∈ Rn, t ∈ [0,T) and µ ∈ P ⊂ Rnµ} ⊂ RN ,

(3.4)

where λdec
N (·; θdec) : Rn → RN , and it can be obtained through a µt-POD-LSTM-ROM.

Nevertheless, the novel LSTM cell implementation is able to provide a more meaningful
approximated solution manifold to this scope, S̃n

N,K , that allows for each input tuple (µ, t) the
reconstruction of the entire sequence ũN([t, . . . , t + (K − 1)∆t];µ) ≈ uN([t, . . . , t + (K − 1)∆t];µ):

S̃n
N,K ={λdec

N (un(t;µ, θFFNN); θdec) |
un(t;µ, θFFNN) ∈ Rn, t ∈ [0,T − K∆t) and µ ∈ P ⊂ Rnµ} ⊂ RN×K .

(3.5)

In this context, λdec
N (·; θdec) : Rn → RN×K is a suitable LSTM decoder function, taking as input the

hidden state of a LSTM encoder and reconstructing the solution starting from it.
• Once an output sequence has been produced by the decoder function λdec

N (·; θdec) in (3.5),

ũN([ti . . . ti+K−1];µ, θFFNN , θdec) = λdec
N (un(ti;µ, θFFNN); θdec), (3.6)

each of its components is expanded from dimension N to dimension Nh by means of the POD
basis found before:

ũh([ti . . . ti+K−1];µ, θFFNN , θdec) = VNũN([ti . . . ti+K−1];µ, θFFNN , θdec); (3.7)

finally, a stack of Nh full dimensional time sequential solutions is found.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

10

In the notation used above, parameters vectors θenc, θFFNN and θdec contain the trainable parameters
of the networks. Their hyperparameters (such as, e.g., the number of stacked LSTM cells or their
possible bidirectionality or the depth of the deep FFNN) should be considered as well in a separate
optimization process.

Remark 1. The dimensionality of each POD-reduced snapshot composing the input sequence can be,
optionally, further reduced by means of a time distributed feedforward neural network before passing
through the LSTM autoencoder. This network applies to each uN(t;µ) = VT

Nuh(t;µ) in the sequence
uN([ti . . . ti+K−1];µ) the same nonlinear transformation that reduces its dimensions from N to Nred. For
simplicity, in this work we will assume Nred = N. Furthermore, the low-dimensional representation
provided by the autoencoder can be (optionally) compressed by means of a FFNN.

Remark 2. Note that Nh and N represent the discretization dimensions. In case of vectorial PDE
problems, for each time at each spatial discretization point we associate a vector in Rnch . In this case
the dimensionality of the FOM solution increases from Nh to Nhnch and the one of the POD reduced
solution increases from N to Nnch. The structure just described, though, is still valid also in this case
provided that the involved dimensions are suitably modified.

The offline training stage consists of the solution of an optimization problem in which a loss function
expressed as a function in the variable θ = (θenc, θFFNN , θdec) should be minimized. In particular, for the
training of the µ-POD-LSTM-ROM, the snapshot matrix S ∈ RNh×NtrainNt (with Ntrain being the number
of unique instances drawn from the parameters’ space and Nt is the number of timesteps chosen for
the time discretization of the interval (0, T)) is compressed by means of POD as explained before to
become SPOD ∈ R

N×NtrainNt . Then, sequences from this matrix are extracted to form the so called base
tensor T ∈ RNtrain(Nt−K)×N×K , to be fed to the network,

T(i, j, k) = (uN(tαi + k∆t,µβi
)) j,

with αi = imod(Nt − K) and βi = i−αi
Nt−K and (·) j denoting the extraction of the jth component from a

vector. The minimization problem can therefore be formulated in this case as

min
θ
J(θ) = min

θ

1
Ntrain(Nt − K)

Ntrain∑
i=1

Nt−K∑
k=1

L(tk,µi; θ), (3.8)

where the loss function is defined by

L(tk,µi; θ) =
ωh

2
Lrec(tk,µi; θ) +

1 − ωh

2
Lint(tk,µi; θ), (3.9)

with
Lrec(tk,µi; θ) = ‖T(i, :, k) − ũN(tαi + k∆t;µβi

, θFFNN , θdec)‖2

and
Lint(tk,µi; θ) = ‖ũn(tαi + k∆t;µβi

, θenc) − un(tαi + k∆t;µβi
, θFFNN)‖2,

with || · || intended as the Euclidean norm || · ||2. The loss function (3.9) penalizes the reconstruction
error from the LSTM autoencoder throughLrec and the difference between the low-dimensional hidden
representation learned by the encoder and the prediction from the feedforward neural network fed with

Mathematics in Engineering Volume 5, Issue 6, 1–36.

11

the problem parameters through Lint. The coefficient ωh ∈ [0, 1] regulates the importance of the two
components of the loss function.

During the online stage (at testing), just the feedforward part φFFNN
N (·; ·, θFFNN) and the decoder

λdec
N (·; θdec) are used. The encoder part is added at training time in order to help the network learning

the correct hidden representation of the sequences in a data-driven fashion.

4. t-POD-LSTM-ROM

The t-POD-LSTM-ROM is the second component of the µt-POD-LSTM-ROM framework,
providing it with time extrapolation capabilities. As the name suggests, it works on time series
forecasting by solving iteratively a sequence to sequence (also referred to as seq2seq) learning problem,
that can be defined (see, e.g., [49]) as the forecasting of a certain number (k) of steps ahead in a time
series y(t). Therefore, its solution provides a model (the predictor), that takes as input p time steps in
the past and returns as output the forecasted k steps ahead in the future. The predictor is a function
taking as input a sequence, and returning a sequence as output as well

[y(t − p + 1), y(t − p + 2), . . . , y(t)] 7→ [ŷ(t + 1), ŷ(t + 2), . . . , ŷ(t + k)]. (4.1)

Traditional machine learning models, such as simple regression, support vector regression, ARIMA
and feedforward neural networks have been used to tackle the problem [50]. Hidden Markov models
or fuzzy logic based models have also proven to be somehow effective in the field [51, 52]. Recently
though, artificial neural networks featuring recurrence mechanisms such as simple recurrent neural
networks or LSTM cells have become the standard for time series prediction when having large
amount of data available for the training [49, 50, 53, 54]. The idea of a windowed auto-regressive
prediction has been exploited in neural ODEs [55,56], where deterministic numerical solvers consider
also statistically learned residuals in order to perform the PDE integration in time. This method is very
effective in time extrapolation capabilities, but still considers numerical integration of high dimensional
systems. A similar approach exploited in the field of ROMs has been considered in [28], where
a correction parameter was included in the numerical time integration process. Since the use of a
numerical integrator can negatively impact the time performances of the method, we decided to rely on
a time series forecasting problem as described before. In particular, in [57] a time series approach for
PDE problems using LSTMs proved to be effective in forecasting reduced barotropic climate models
and showing interesting time performances, however neglecting in that case the parametric nature of the
problem. Note that considering architectures based on the seq2seq paradigm shows close similarities
with the behavior of numerical solvers, as they build predictions for future times based on the past,
mimicking time marching numerical schemes.

In this work, we introduce the t-POD-LSTM-ROM architecture, aimed at solving the seq2seq
problem in the context of ROMs for parameterized dynamical systems. In particular, the novel
framework allows to extend in the temporal dimension the ROM solution provided by the µ-POD-
LSTM-ROM framework introduced before, by considering the seq2seq problem on the reduced order
vectors. The training of this additional neural network does not require an increased number of
snapshots, keeping the temporal cost of the offline phase relatively low. Furthermore, the possibility to
extend the temporal domain of definition of the solution could in principle allow for the training using
full order snapshots defined on a shorter period of time, thus requiring less computational expenses
when generating them.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

12

The architecture of the t-POD-LSTM-ROM, summarized in Figure 3, consists of the components
listed below:

• The same POD-reduced sequences VT
Nuh([ti−p+1 . . . ti];µ) created to feed the µ-POD-LSTM-ROM

framework, and formed by the p − 1 snapshots preceding the one at time ti and the one at time
ti itself, are collected in pairs with VT

Nuh([ti+1 . . . ti+k];µ), the sequence formed by the k following
reduced snapshots to be used in the training phase.
• A LSTM encoder is then applied to provide a low-dimensional representation of the data extracted

by the past time steps sequence. In particular, the encoder acts according to

hn(ti;µ, θenc) = Λenc
n (VT

Nuh([ti−p+1 . . . ti];µ); θenc). (4.2)

The low-dimensional vector containing an embedded representation of the input which is used to
build the sequence of future solutions by means of a LSTM decoder.
• A feedforward neural network is then used to provide information on the parameter instance

considered to the architecture. First, some dense layers are applied in order to expand the
information contained in the parameters’ vector µ and then the result of this operation is
concatenated to the low-dimensional representation as hn(ti;µ, θenc) ⊕ φ1(µ, θFFNN1)† Differently
from µ-POD-LSTM-ROM, the output of the LSTM encoder and the one of the feedforward
neural network are not matched but rather concatanated; indeed, in t-POD-LSTM-ROM the two
outputs represent different quantities. This concatenation is then fed to another feedforward neural
network aimed at merging the information coming from the past snapshots and the one coming
from the parameters in order to build a more accurate low-dimensional representation of the data,
of the form

h′n(ti;µ, θenc, θFFNN) = φ2(µ, [hn(ti;µ, θenc) ⊕ φ1(µ, θFFNN1)]; θFFNN2), (4.3)

with θFFNN = (θFFNN1, θFFNN2), being θFFNN1 and θFFNN2 the vectors of parameters of the two
feedforward neural network parts, namely φ1 and φ2.
• A LSTM decoder then takes the informed low-dimensional representation h′n(ti;µ, θenc, θFFNN)

as input, and extracts the forecast reduced future sequence according to

ũN([ti+1 . . . ti+k];µ, θFFNN , θenc, θdec) = Λdec
n (h′n(ti;µ, θenc, θFFNN)). (4.4)

From this output, the sequence of full order predicted solutions is then reconstructed by means
of the POD basis. In contrast with the µ-POD-LSTM-ROM technique considered before (and the
POD-DL-ROM one), in this case the architecture of the autoencoder–and therefore that of the
entire network–remains the same during both the training and the testing stages.

†We define in this context ⊕ with the concatenation between two vectors by appending the second after the first. By defining a ∈ Rn1

and b ∈ Rn2 , then a ⊕ b = [a,b] = c ∈ Rn1+n2 .

Mathematics in Engineering Volume 5, Issue 6, 1–36.

13

𝒖ℎ([𝑡𝑖−𝑝+1…𝑡𝑖], ; 𝝁)

POD

𝑽𝑁
𝑇𝒖ℎ([𝑡𝑖−𝑝+1… 𝑡𝑖]; 𝝁)

LS
TM

LS
TM

LS
TM

𝒉𝑛(𝑡𝑖; 𝝁, 𝜽𝑒𝑛𝑐)

LSTM
encoder

Low dimensional
representation

𝝁 FFNN

LS
TM

LS
TM

LS
TM

POD

𝒖𝑁([𝑡𝑖+1…𝑡𝑖+𝑘]; 𝝁, 𝜽𝐹𝐹𝑁𝑁 , 𝜽𝑑𝑒𝑐)

𝑽𝑁𝒖𝑁([𝑡𝑖+1…𝑡𝑖+𝑘]; 𝝁, 𝜽𝐹𝐹𝑁𝑁 , 𝜽𝑑𝑒𝑐)

𝑴𝑺𝑬(𝒖𝑁([𝑡𝑖+1…𝑡𝑖+𝑘]; 𝝁, 𝜽𝐹𝐹𝑁𝑁, 𝜽𝑑𝑒𝑐), 𝑽𝑁
𝑇𝒖ℎ([𝑡𝑖+1…𝑡𝑖+𝑘]; 𝝁))

LSTM
decoder

FFNN

𝒉′𝑛(𝑡𝑖; 𝝁, 𝜽𝑒𝑛𝑐 , 𝜽𝐹𝐹𝑁𝑁)

Informed low dimensional
representation

Figure 3. The t-POD-LSTM-ROM architecture. After an initial POD-based dimensionality
reduction, the sequence of reduced vectors passes through a LSTM encoder. The low-
dimensional representation hn(ti;µ, θenc) thus obtained is then enriched with the information
coming from the problem’s parameters and starting from it a LSTM decoder finally extracts
the k-steps forecast sequence.

Also in this case, the parameters vectors θenc, θFFNN and θdec group the trainable weights and biases
of the networks. The training of the network described above is then performed as an optimization
problem in which a loss function expressed in the variable θ = (θenc, θFFNN , θdec) should be minimized.
After the definition of the base tensor T ∈ RNtrain(Nt−K)×N×K , as described when introducing a µ-POD-
LSTM-ROM, with K = k + p, we divide it in two parts: the previous steps tensor P ∈ RNtrain(Nt−K)×N×p

and the horizon tensor H ∈ RNtrain(Nt−K)×N×k. In particular, we define

P = T(:, :, 1 : p) and H = T(:, :, (p + 1) : K), (4.5)

so that the tensor P represents the previous time steps to be used for the prediction and H contains
the target sequences to forecast. In the end, the minimization problem solved during training can be
defined as

min
θ
J(θ) = min

θ

1
Ntrain(Nt − K)

Ntrain∑
i=1

Nt−K∑
j=1

L(t j,µi; θ), (4.6)

where we define

L(t j,µi; θ) = MSE
[
ũN([t j+1 . . . t j+k];µi, θFFNN , θenc, θdec), VT

Nuh([t j+1 . . . t j+k];µi)
]

(4.7)

Mathematics in Engineering Volume 5, Issue 6, 1–36.

14

with

MSE
[
ũN([t j+1 . . . t j+k];µ, θFFNN , θenc, θdec), VT

Nuh([t j+1 . . . t j+k];µ)
]

=
1

Nk

N∑
l=1

k∑
p=1

((
ũN(t j+p;µi, θFFNN , θenc, θdec)

)
l
−

(
VT

Nuh(t j+p;µi)
)

l

)2
.

The loss function (4.7) therefore penalizes prediction errors and maximizes the accuracy in prediction.

5. Results

In this section we present a set of numerical results obtained on three different test cases, related
with (i) a 3 species Lotka-Volterra equations (Section 5.1), (ii) unsteady advection-diffusion-reaction
equation (Section 5.3), (iii) incompressible Navier-Stokes equations (Section 5.5). To assess the
accuracy of the numerical results, we consider the same two error indicators defined in [33], namely:

• the error indicator εrel ∈ R defined as

εrel(uh, ũh) =
1

Ntest

Ntest∑
i=1

√∑Nt

k=1 ||u
k
h(µtest,i) − ũk

h(µtest,i)||2√∑Nt
k=1 ||u

k
h(µtest,i)||2

 , (5.1)

• the relative error εk ∈ R
∑

i Ni
h , for k = 1, . . . ,Nt, defined as

εk(uh, ũh) =
|uk

h(µtest) − ũk
h(µtest)|√

1
Nt

∑Nt
k=1 ||u

k
h(µtest)||2

. (5.2)

Note that uk
h(µtest,i) = uh(tk;µtest,i) and ũk

h(µtest,i) = ũh(tk;µtest,i). Moreover, the error indicator εrel

provides a (scalar) numerical estimation of the accuracy of the method on the entire test set.
To solve the optimization problems, we use the ADAM algorithm [58], which is a stochastic

gradient descent method computing an adaptive approximation of the first and second momentum of
the gradients of the loss function. In particular, it computes exponentially weighted moving averages
of the gradients and of the squared gradients. We set the starting learning rate to η = 10−4, and
perform cross-validation in order to tune the hyperparameters of the neural networks by splitting the
data in training and validation sets with a proportion 9:1. Moreover, we implement an early-stopping
regularization technique to reduce overfitting [59], stopping the training if the loss does not decrease
over a certain amount of epochs. As nonlinear activation function, we employ the ELU function [60].
The parameters, weights, and biases are initialized through He uniform initialization [61].

The µ-POD-LSTM-ROM and the t-POD-LSTM-ROM architectures have been developed using
the TensorFlow 2.4 framework [62]. Details on these architectures are provided in each example.
Regarding the setting of the optimization algorithm and the way to select the hyperparameters, we
refer to [33]. FOM data for test cases (ii) and (iii) have been obtained by the redbKIT v2.2 library [63],
implementing the methods described in [2]. All the simulations have been run on an Intel® Core i9 @
2.40GHz CPU, 16 GB RAM and NVIDIA® GTX1650 video card personal computer. The algorithms
through which the training and testing phases of the networks are performed can be found in the
Appendix.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

15

5.1. Lotka-Volterra competition model (3 species)

The first test case is the 3 species Lotka-Volterra competition model, selected to provide a proof-of-
concept of the method on a simple but aperiodic test case. The goal is the reconstruction of the solution
u = u(t; µ) ∈ R3 of the following system:

du1

dt
(t) = u1(t)(µ − 0.1u1(t) − 0.5u2(t) − 0.5u3(t)) t ∈ (0,T),

du2

dt
(t) = u2(t)(−µ + 0.5u1(t) − 0.3u3(t)) t ∈ (0,T),

du3

dt
(t) = u3(t)(−µ + 0.2u1(t) + 0.5u2(t)) t ∈ (0,T),

ui(0) = 0.5 ∀i ∈ {1, 2, 3}.

(5.3)

Note that due to the low-dimensionality of the problem (Nh = 3), in this case the use of POD is not
necessary and therefore it is not performed. Nevertheless, the entire deep learning-based architecture
is still used, providing a first glance on the performances of the presented framework when considering
time extrapolation capabilities. The parameter µ ∈ P = [1, 3] models both the reproduction rate of the
species 1 (the prey) and the mortality rate of species 2 and 3 (predators), assumed to be equal. The
impact of µ on the solution concerns both the amplitude and the frequency of the oscillation of the 3
species’ populations. The equations have been discretized by means of an explicit Runge-Kutta (4,5)
formula with a time step ∆t = 0.1 over the time interval (0,T), with T = 9.9.

The LSTM-ROM framework used to find the solution of the system considers Nt = 100 time
instances with Ntrain = 21. In particular, the selected µ for the training are equally spaced in the
interval P = [1, 3] (that is, Ptrain = {1, 1.1, 1.2, . . . , 2.9, 3}). The LSTM sequence length used for the
training is K = 20, the hidden dimension of the LSTM network has been chosen to be n = 40 and the
loss parameter ωh introduced in (3.9) has been set equal to ωh = 0.9. These choices are the result of
a random search hyperparameters tuning [64] considering both accuracy and time performances. The
number of epochs have been fixed to a maximum of nepochs = 4000 with the early stopping criterion
intervening after 50 epochs of missed improvement of the loss function over the validation set during
optimization.

We present here, for the sake of comparison, also the results obtained with the DL-ROM framework,
for which we considered the same training set used to train the µ-LSTM-ROM network with the
same maximum number of epochs and early stopping criterion. The low-dimensional manifold
representation was n = 40 for the µ-LSTM-ROM and n = 10 for the DL-ROM. Note that in
this case n > Nh. This happens in the context of µ-LSTM-ROMs because the low-dimensional
representation should contain enough information for the decoder to reconstruct an entire sequence
of Nh = 3−dimensional vectors of length K = 20 resulting in a Nh × K = 3 × 20 = 60 components
output. Also a DL-ROM in this case showed better performances with n = 10 > nµ+1, probably due to
the extremely low magnitude of Nh. In general though, the proposed LSTM-based framework requires
larger dimensional reduced manifolds with respect to a POD-DL-ROM in order to provide the decoder
with enough information to reconstruct POD-reduced solution sequences.

Regarding the architectures considered, we chose to rely on a much larger LSTM-ROM architecture
(34433 trainable parameters) with respect to the DL-ROM one used (2943 trainable parameters). This
unbalance is recurrent in all the test cases presented. A µ-POD-LSTM-ROM requires in fact a larger

Mathematics in Engineering Volume 5, Issue 6, 1–36.

16

number of parameters as it needs to encode more information with respect to a POD-DL-ROM. The
µ-LSTM-ROM training took 3124 epochs (932 s), while the DL-ROM one took 1441 epochs (274s).
Results in terms of time evolution of the 3 species for a representative instance of parameters space
(µ = 1.95, equally distant from the extremes of Ptest) are reported in Figure 4.

0 2 4 6 8 10

0
5

10
15

True
µ−LSTM−ROM

time

S
pe

ci
es

 1

0 2 4 6 8 10

0
2

4
6

8

time

S
pe

ci
es

 2

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

S
pe

ci
es

 3

0 2 4 6 8 10

0
5

10
15

True
DL−ROM

time

S
pe

ci
es

 1

0 2 4 6 8 10

0
2

4
6

8

time

S
pe

ci
es

 2

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

time

S
pe

ci
es

 3

Figure 4. Test case 1–Lotka-Volterra system. Simulated results for µ = 1.95. Top: µ-LSTM-
ROM framework, bottom: DL-ROM framework.

The error indicator εLS T M−ROM
rel for the LSTM-ROM case is 5.582 · 10−3, while for the DL-ROM

we find εDL−ROM
rel = 1.363 · 10−2. Hence the novel framework provides slightly better results in terms

of accuracy in this particular application. Table 1 reports the obtained relative error εk, together with
the 95% bootstrap confidence intervals for the mean relative error εmean

k .

Table 1. Test case 1–Lotka-Volterra system. Error results and 95% bootstrap confidence
intervals in comparison between µ-LSTM-ROM and DL-ROM methods.

εmean
k εmax

k CLS T M−ROM
0.95

µ-LSTM-ROM 4.836 · 10−4 6.703 · 10−3 [4.660 · 10−4, 5.007 · 10−4]

DL-ROM 1.076 · 10−3 1.082 · 10−2 [1.040 · 10−3, 1.110 · 10−3]

Mathematics in Engineering Volume 5, Issue 6, 1–36.

17

The loss in accuracy regarding both methods when considering the third species has to be accounted
to the smaller scales characterizing it. Furthermore, we need to consider the disparity in the number
of parameters among the two neural networks. Both architectures though are extremely simple and
the DL-ROM one includes the deepest networks and it is the result of a the composition of a higher
number of nonlinear layers; hence these features should partly compensate for its lower parameters’
number.

Regarding prediction times, we consider them from a double perspective. We will report the
crude time tNN that the neural network structure takes to perform the forward pass and thus produce
a prediction of the solution for each instance of the parameters’ test space Ptest, and the total time
trec which considers also the construction of the full order vectors. Note that the µ-POD-LSTM-ROM
neural network would require 1

K input-output pairs with respect to the POD-DL-ROM one in this phase,
because it needs just one prediction every K time steps–it deals with sequences of data and not just with
a single time instance–to be able to build the time evolution of the solution. The quantity trec takes also
into account the amount of time required to assemble the actual solutions, but this is strictly code and
language dependent. The bottleneck in computations is in our opinion represented by tNN .

For the case at hand we found, after a run of 100 queries on the entire Ptest, the times reported
in Table 2. A 34.6% reduction in tmean

NN and a 31.0% reduction in tmean
rec can be observed when using

a µ-LSTM-ROM instead of a DL-ROM, thus highlighting an increased efficiency of the new method
with respect to the old one also when considering the entire solution reconstruction phase. Moreover,
the time entailed by the solution of the FOM, by means of an explicit Runge-Kutta (4,5) formula on
the interval (0,T), is equal to 1 s.

Table 2. Test case 1–Lotka-Volterra system. Temporal results for the comparison between
µ-LSTM-ROM and DL-ROM frameworks.

tmin
NN tmean

NN tmax
NN tmin

rec tmean
rec tmax

rec

µ-LSTM-ROM 0.0364 s 0.0415 s 0.0598 s 0.0381 s 0.0446 s 0.3281 s

DL-ROM 0.0583 s 0.0635 s 0.0813 s 0.0587 s 0.0646 s 0.0802 s

5.2. Lotka-Volterra time extrapolation

We then tested the time extrapolation capabilities of the method both in the short and the long term.
In particular, we present the results of the µt-LSTM-ROM framework for the same training and test
sets (Ptrain and Ptest) just considered. In this case, though, the training snapshots have been acquired
from the time interval (0,T), with T = 9.9 and ∆t = 0.1, while the testing ones are taken in [Tin,T f in],
where Tin = 5 and T f in = 14.9. Training parameters are the same as in the interpolation case. We
therefore consider an extrapolation window of length Text = 5, half of the training time interval length.

The t-LSTM-ROM architecture used in addition to the LSTM-ROM one already described
considers p = 10 previous time steps in order to make inference on a k = 10 time steps horizon.
Its training, performed without accounting for early stopping, took 1000 epochs (355 s). The plots in
Figure 5 show the extrapolation performances of the method when applied to this test case.

For the problem considered the relative error εk obtained in the aforementioned time extrapolation
context is summarized in Table 3. Extrapolation performances of the presented framework are very

Mathematics in Engineering Volume 5, Issue 6, 1–36.

18

satisfying also considering long extrapolation windows, as shown for µ = 2.45 in Figure 6. In
particular, the temporal evolution of the problem on a time window which is 10 times larger than
the training domain is predicted with remarkable accuracy as well as the equilibrium asymptotes.

Table 3. Test case 1–Lotka-Volterra system. Relative error indicators for the µt-POD-LSTM-
ROM framework applied to the aperiodic Lotka-Volterra system.

εmean
k εmax

k

1.341 · 10−3 3.241 · 10−2

Single species trend

6 8 10 12 14

4
6

8
10

12

True
µt−LSTM−ROM

time

S
pe

ci
es

 1

6 8 10 12 14

2
3

4
5

6
7

time

S
pe

ci
es

 2

6 8 10 12 14

0.
2

0.
6

1.
0

1.
4

time

S
pe

ci
es

 3

Phase space plots

4 6 8 10

2
4

6
8

True
µt−LSTM−ROM

Species 1

S
pe

ci
es

 2

2 3 4 5 6 7

0.
2

0.
6

1.
0

1.
4

Species 2

S
pe

ci
es

 3

Figure 5. Test case 1–Lotka-Volterra system. Simulation results considering the aperiodic
Lotka-Volterra model for µ = 1.25, µt-LSTM-ROM framework. Grey dotted line indicates
the starting extrapolation time.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

19

0 20 40 60 80 100

4
5

6
7

8
9 True

µ−LSTM−ROM

time

S
pe

ci
es

 1

0 20 40 60 80 100

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

time

S
pe

ci
es

 2

0 20 40 60 80 100

0.
8

1.
0

1.
2

1.
4

time

S
pe

ci
es

 3

Figure 6. Test case 1–Lotka-Volterra system. Long term (Text = 100) time extrapolation for
the evolution of the three species in the aperiodic Lotka-Volterra case.

5.3. Unsteady advection-diffusion-reaction equation

We now consider the case of a parameterized unsteady advection-diffusion-reaction (ADR)
problem. In particular, our goal in this case is to approximate the solution u = u(x, t;µ) of a linear
parabolic PDE initial value problem of the following form:

∂u
∂t
− div(µ1∇u) + b(t) · ∇u + cu = f (µ2, µ3), (x, t) ∈ Ω × (0,T),

µ1∇u · n = 0, (x, t) ∈ ∂Ω × (0,T),
u(0) = 0 x ∈ Ω,

(5.4)

in the two-dimensional domain Ω = (0, 1)2, where

f (x; µ2, µ3) = 10 exp(−((x − µ3)2 + (y − µ4)2)/0.072) and b(t) = [cos(t), sin(t)]T .

Regarding the parameters, we took nµ = 3 parameters belonging to P = [0.002, 0.005]× [0.4, 0.6]2.
A similar framework has been considered in [33]. In particular we discretized the training parameters

Mathematics in Engineering Volume 5, Issue 6, 1–36.

20

space Ptrain with µ1 ∈ {0.002, 0.003, 0.004, 0.005} and (µ2, µ3) ∈ {0.40, 0.45, 0.50, 0.55, 0.60}2, for a
total Ntrain = 100 different instances in Ptrain. Parameters µ2 and µ3 influence the location of the
distributed source in the spatial domain, while the dependence on µ1 impacts on the relative importance
between the advection and the diffusion terms.

Note that the dependence of the solution on µ2 and µ3 is nonlinear and therefore the problem is
nonaffinely parametrized. This would have required the extensive use of hyper-reduction techniques
such as, e.g., the discrete empirical interpolation method (DEIM) [65] in order to properly address the
construction of a projection-based ROM exploiting, e.g., the reduced basis method, thus reducing the
performance of this latter. The FOM snapshots have been obtained by means of a spatial discretization
obtained with linear (P1) finite elements considering Nh = 10657 degrees of freedom (DOFs) and a
time discretization relying on a Backward Differentiation Formula (BDF) of order 2. The time step
used for the time discretization is ∆t = 2π/20 on (0,T) with T = 10π.

The µ-POD-LSTM-ROM network used to tackle this problem was trained on Nt = 100 time steps
for each instance of the parameters space. The dimension of the hidden representation of the LSTM
autoencoder has been fixed to n = 100. In particular, the network is composed by an initial dense
part aimed at reducing the POD dimensions to properly feed an encoder composed by two stacked
LSTM cells and then a further dense part is traversed in order to reach the reduced dimension state.
The decoder is then symmetrically composed by a dense part, two stacked LSTM cells and another
dense network to expand the output up to the required N dimension, for a total number of trainable
parameters equals to |θ| = 402154.

The POD dimension was set to be N = 64 and the randomized version of the POD has been
performed in order to reduce the computational effort required by this stage. After POD, the reduced
order snapshots have been scaled in the [0, 1] range. This choice has been taken because of the low
magnitude of the solution, ranging in [0, 0.1]. In such cases, a MinMax normalization, defined as

x′ =
x − min(x)

max(x) − min(x)
∈ [0, 1]

has proven to be useful when applied to the reduced order vectors for maximizing neural network
performances [66].

Also in this case, we consider the POD-DL-ROM framework for the comparison with a µ-POD-
LSTM-ROM. In particular, the POD-DL-ROM architecture used in this context is the one considered
in [33] and it is based on a convolutional architecture aimed at the dimensionality reduction of the input.
Therefore, the architecture relies on an initial convolution followed by a feed forward neural network
for the encoder, and then symmetrically another feed forward neural network and some deconvolution
layers in order to reconstruct the spatial dependence of the solution, for a total number of trainable
parameters of |θ| = 269207. The training of the µ-POD-LSTM-ROM took 1243 epochs (2145 s), while
the one of the POD-DL-ROM took 591 epochs (1121 s). The obtained POD-DL-ROM and the µ-POD-
LSTM-ROM results for an instance of the testing parameters space (µ = (0.0025, 0.4250, 0.4250)) are
reported in Figure 7.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

21

𝑡 = 0.5𝜋 𝑡 = 3𝜋 𝑡 = 3.9𝜋

FO
M

-P
O
D
-L
ST
M
-R
O
M

P
O
D
-D
L-
R
O
M

Figure 7. Test case 2–ADR equation. Simulation results for µ = (0.0025, 0.4250, 0.4250).
Top: FOM results, center: µ-POD-LSTM-ROM results, bottom: POD-DL-ROM results.

The error indicator εPOD−LS T M−ROM
rel for the LSTM-ROM case is 8.123 · 10−2, while for the POD-

DL-ROM case we find εPOD−DL−ROM
rel = 4.290 · 10−2, regarding these latter, the obtained results are

compatible with those observed in [33]. Regarding the relative error εk, we found the results reported
in Table 4. The 95% bootstrap confidence intervals for the mean relative error εmean

k are for the µ-
POD-LSTM-ROM case CPOD−LS T M−ROM

0.95 = [2.523 · 10−4, 2.571 · 10−4] and CPOD−DL−ROM
0.95 = [1.303 ·

10−4, 1.316 · 10−4] in the POD-DL-ROM case, showing a better overall accuracy performance of a
POD-DL-ROM. Moreover, we have observed in our experiments that the performances of the POD-
DL-ROM improve significantly when scaling the input, while the µ-POD-LSTM-ROM seems to be
more robust to non-scaled data.

Table 5 summarizes the testing time performances of the µ-POD-LSTM-ROM in comparison with
a POD-DL-ROM. Also in this case we report the results in terms both of the neural network involved
time and reconstruction time (see the Lotka-Volterra results for details). We obtained a 52.0% decrease
in tmean

NN and a 14.5% decrease in tmean
rec by using a µ-POD-LSTM-ROM over POD-DL-ROM. Also in

this case, we report the time required by the solution of the FOM for a single parameter-instance on
the interval (0,T) given by 51 s.

In conclusion, µ-POD-LSTM-ROM results to be more efficient than the POD-DL-ROM technique
by preserving, at the same time, high levels of accuracy.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

22

Table 4. Test case 2–ADR equation. Error indicators in comparison between µ-POD-LSTM-
ROM and POD-DL-ROM frameworks.

εmean
k εmax

k

µ-POD-LSTM-ROM 2.547 · 10−4 3.864 · 10−3

POD-DL-ROM 1.309 · 10−4 2.103 · 10−3

Table 5. Test case 2–ADR equation. Temporal results for the comparison between µ-POD-
LSTM-ROM and POD-DL-ROM.

tmin
NN tmean

NN tmax
NN tmin

rec tmean
rec tmax

rec

µ-POD-LSTM-ROM 0.0807 s 0.0892 s 0.3202 s 0.7609 s 0.8437 s 1.4095 s

POD-DL-ROM 0.1681 s 0.1857 s 0.4973 s 0.8727 s 0.9864 s 3.7111 s

5.4. Unsteady advection-diffusion-reaction time extrapolation

In this example, e tested the framework to assess its time extrapolation capabilities, both in the
short term and in the long term. Such results in this context are remarkable, as traditional ROMs are
not capable of time extrapolation for different parameter values than the ones used for training. Here
we consider the same training parameters used before, while reducing the training time domain in
order to consider only the first 60 time steps ((0,T) = (0, 6π)). A similar procedure is carried out for
the test set, that includes snapshots for the same parametric instances µ ∈ Ptest considered before, but
a reduced time domain, chosen in order to contain just the last 60 time steps of the previous one, i.e.,
(Tin,T f in) = (4π, 10π). In this way, it is possible to test, on unseen parametric instances (in Ptest), a 40
time steps long time extrapolation.

The µ-POD-LSTM-ROM architecture used to build the µt-POD-LSTM-ROM framework is the
same as the one considered before, while the t-POD-LSTM-ROM architecture considers p = 10
previous time steps in order to predict the following k = 10 time steps horizon. The number of
trainable parameters for this latter network is |θts| = 151164; its training took 1000 epochs (156 s).

The obtained results for an instance of the test set (µ = (0.0035, 0.4750, 0.4750)) are reported
in Figure 8. The extrapolation precision is extremely high, even more considering that traditional
projection-based methods do not allow for time extrapolation. Figure 9 reports the time evolution for a
single DOF as well as the corresponding relative error evolution, while Table 6 reports some relevant
quantities regarding the relative error for the time extrapolation task.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

23

𝑡 = 0.5𝜋 𝑡 = 3𝜋 𝑡 = 3.9𝜋

FO
M

-P
O
D
-L
ST
M
-R
O
M

Figure 8. Test case 2–ADR equation. Simulation results for µ = (0.0035, 0.4750, 0.4750).
Top: FOM results, bottom: µt-POD-LSTM-ROM results.

FOM vs µt-POD-LSTM-ROM

15 20 25 30

0.
00

0.
04

0.
08

0.
12 True

µt−POD−LSTM−ROM

time

u

Relative error evolution

15 20 25 30

0.
00

00
0.

00
04

0.
00

08
0.

00
12

time

u

Figure 9. Test case 2–ADR equation. Solution (left) and relative error (right) time evolution
obtained with the µt-POD-LSTM-ROM framework.

Table 6. Test case 2–ADR equation. Relative error indicators for the µt-POD-LSTM-ROM
framework.

εmean
k εmax

k

2.599 · 10−4 6.261 · 10−3

Mathematics in Engineering Volume 5, Issue 6, 1–36.

24

The long-term extrapolation capabilities of the framework are extremely satisfying. In Figure 10 we
report a long-term time extrapolation plot for the temporal evolution of a single DOF that considers a
time window 16 times larger than the training domain. In general, over the entire test set performances
are satisfying also in the long run, with some issues arising concerning scaling. A maximal systematic
error of ∼ 20% arise when such time scales are considered, nonetheless the period is correctly
reconstructed and there are no stability issues nor error explosion on the long term.

0 50 100 150 200 250 300

0.
00

0.
04

0.
08

0.
12

True
µt−POD−LSTM−ROM

time

u(
t)

Figure 10. Test case 2–ADR equation. Long term (1000 time steps) time extrapolation for
the solution at 8430th DOF using µt-POD-LSTM-ROM framework.

5.5. Unsteady Navier-Stokes equations

We finally focus on a fluid dynamics example–the well-known benchmark case of a two-
dimensional unsteady flow past a cylinder–based on incompressible Navier-Stokes equations in the
laminar regime. Our goal is to approximate the solution u = u(x, t; µ) of the following problem:

ρ
∂u
∂t

+ ρu · ∇u − ∇ · σ(u, p) = 0 (x, t) ∈ Ω × (0,T),

∇ · u = 0 (x, t) ∈ Ω × (0,T),
u = 0 (x, t) ∈ ΓD1 × (0,T),
u = h (x, t) ∈ ΓD2 × (0,T),
σ(u, p)n = 0 (x, t) ∈ ΓN × (0,T),
u(0) = 0 x ∈ Ω, t = 0.

(5.5)

The reference domain represents a 2D pipe containing a circular obstacle with radius r = 0.05
centered in xobs = (0.2, 0.2), i.e., Ω = (0, 2.2) × (0, 0.41)\B̄r(0.2, 0.2) (see Figure 11 for reference);
this is a well-known benchmark test case already addressed in [33, 37]. The domain’s boundary is
∂Ω = ΓD1 ∪ ΓD2 ∪ ΓN ∪ ∂B0.05(0.2, 0.2), where ΓD1 = {x1 ∈ [0, 2.2], x2 = 0} ∪ {x1 ∈ [0, 2.2], x2 = 0.41},
ΓD2 = {x1 = 0, x2 ∈ [0, 0.41]}, and ΓN = {x1 = 2.2, x2 ∈ [0, 0.41]}; n denotes the outward directed
versor, normal w.r.t. ∂Ω. We consider ρ = 1 kg/m3 to be the (constant) fluid density, and denote by

σ(u, p) = −pI + 2νε(u)

the stress tensor; here ν is the fluid’s dynamic viscosity, while ε(u) is the strain tensor,

ε(u) =
1
2
(
∇u + ∇uT).

Mathematics in Engineering Volume 5, Issue 6, 1–36.

25

Figure 11. The 2D domain considered for the unsteady Navier-Stokes equations test case.

We assign no-slip boundary conditions on ΓD1 , while a parabolic inflow profile

h(x, t; µ) =

(
4U(t, µ)x2(0.41 − x2)

0.412 , 0
)
, with U(t; µ) = µ sin(πt/8), (5.6)

is prescribed at the inlet ΓD2; zero-stress Neumann conditions are imposed at the outlet ΓN . In this
problem, we consider a single parameter (nµ = 1), µ ∈ P = [1, 2], which is related with the magnitude
of the inflow velocity and directly reflects on the Reynolds number, varying in the range Re ∈ [66, 133].

Equation (5.5) has been discretized in space by means of linear-quadratic (P2 − P1), inf-sup stable,
finite elements, and in time through a BDF of order 2 with semi-implicit treatment of the convective
term over the time interval (0,T) with T = 6, considering a time-step ∆t = 2 × 10−3, leading to a
computational time equal to 25000 s to solve the FOM.

For the sake of training speed we consider Nt = 300 uniformly distributed time instances and
take Ntrain = 21 different parameter instances uniformly distributed over P and Ntest = 3 parameters
instances for testing, with Ptest = {1.025, 1.725, 1.975}, in order to perform testing considering both the
center and the boundary of the parameters domain P. In order to assess time extrapolation capabilities
of µ-POD-LSTM-ROMs, we consider a testing time domain consisting in Nt = 340 time steps over
the time interval t ∈ (0, 6.8], resulting in an extrapolation time window of 13.3% w.r.t. the training
interval. In this test case, scaling proved to deliver worse results in terms of accuracy and therefore no
scaling is performed on POD-reduced data. We are interested in reconstructing the velocity field, for
which the FOM dimension is equal to Nh = 32446 × 2 = 64892, selecting N = 256 as dimension of
the rPOD basis for each of the two velocity components.

We highlight the possibility, by using a µ-POD-LSTM-ROM, to reconstruct only the field of interest,
i.e., the velocity u, without the need of taking into account the approximation of the pressure p.

The µ-POD-LSTM-ROM architecture used for this benchmark case consists of a LSTM
autoencoder built considering a single LSTM cell both for the encoder and the decoder, without further
reducing the dimensionality of the POD-reduced vectors fed to the network. The hidden representation
dimension was set to be n = 200, while the sequence length used for the training was fixed to K = 20.
The number of trainable parameters for the network is |θ| = 1365947. The t-POD-LSTM-ROM
architecture used for time extrapolation considers p = 10 time steps in the past in order to build
the inference on k = 10 time steps in the future, exploiting a single LSTM cell autoencoder and a
3-layers feedforward regressor, for a total number of trainable weights |θt| = 1616692. The training
of the µ-POD-LSTM-ROM network took 2415 epochs (total time: 5692 s), while the training of the
t-POD-LSTM-ROM architecture took 325 epochs (total time: 694 s).

Mathematics in Engineering Volume 5, Issue 6, 1–36.

26

The obtained results for two instances of the test set (µ = 1.025, near the border in Ptest and no
vortex shedding, and µ = 1.725, central inPtest with vortex shedding) are reported in Figure 12 together
with absolute and relative errors. A good accuracy is obtained considering time extrapolation, as the
relative error reported in Table 7 shows. The mean relative error bootstrap 0.95 confidence interval is
CPOD−LS T M−ROM

0.95 = [9.029 · 10−5, 1.053 · 10−4]. Error indicator for this test case is εrel = 5.806 · 10−2.
The little magnitude of the error is especially remarkable considering (a) the failure of projection-based
methods in time extrapolation, (b) the fact that architecture is just informed on the velocity field and
thus cannot take advantage of data on pressure to increase the accuracy of the velocity field prediction
and (c) the complexity of the problem at hand.

µ = 1.025

µ = 1.725

Figure 12. Test case 3–Navier-Stokes equations. µt-POD-LSTM-ROM velocity magnitude.
Top: Re = 68–no vortex shedding; Bottom: Re = 117–vortex shedding. Time extrapolation
starts at t = 6.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

27

Table 7. Test case 3–Navier-Stokes equations. Relative error indicators for the µt-POD-
LSTM-ROM framework applied to the unsteady Navier-Stokes problem.

εmean
k εmax

k

9.808 · 10−5 5.460 · 10−3

6. Conclusions

In this work we introduced µt-POD-LSTM-ROMs, a novel non-intrusive LSTM-based ROM
framework that extends previous DL-based ROMs with time extrapolation capabilities. In addition,
we improved the online performance of the already faster than real-time POD-DL-ROM framework.
The strategy followed to pursue our goal splits the solution approximation problem into two parts: (a)
the prediction of the solution for a new parameter instance and (b) the time extrapolation problem.

We therefore introduced two different LSTM-based architectures to address tasks (a) and (b)
separately. In this way we have been able to replicate the extremely good approximation performances
of POD-DL-ROMs on unseen parameters instances and–more importantly–we enriched the pre-
existing DL-based ROMs with time extrapolation capabilities, otherwise hardly obtainable with POD-
Galerkin ROMs.

We assessed the approximation accuracy, the computational performances and the time
extrapolation capabilities on three different test cases: (i) a Lotka-Volterra 3 species prey-predator
model, (ii) a linear unsteady advection-diffusion-reaction equation and (iii) the nonlinear unsteady
Navier-Stokes equations with laminar flow. In particular, we observed extremely accurate time
extrapolation capabilities, even on a longer term, for both periodic and simple aperiodic cases.
Satisfactory time extrapolation capabilities (≈ 15% of the training time domain) have also been
obtained on complex test cases such as the considered benchmark test case in fluid dynamics. An
immediate implication of this result is the possibility to produce the FOM snapshots on smaller time
domains and therefore to observe a performance improvement in the offline phase. Furthermore, we
obtained a 52.0% reduction of prediction times while maintaining the same order of magnitude on the
relative error with respect of the (already extremely fast) POD-DL-ROM when applying the framework
to advection-diffusion-reaction problems. This allowed us to obtain faster than real-time simulations of
physical phenomena occurring in time scales of tenths of a second. Remarkably, the time performances
of our novel framework allow for an “in local” training and testing, thus reducing deployment costs by
avoiding the usage of cloud GPU clusters.

Ultimately, we provided a novel, fast, accurate and robust framework for the online approximation
of parametric time-dependent PDEs, trainable also relying on black-box high-fidelity solvers and
applicable to problems of interest in different realms.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

28

Acknowledgements

This work has been supported by Fondazione Cariplo, Italy, Grant n. 2019-4608. SF has also
been supported by the PNRR-PE-AI FAIR project funded by the NextGeneration EU program. SF
would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and
hospitality during the programme “The mathematical and statistical foundation of future data-driven
engineering” where work on this paper was undertaken. This work was supported by EPSRC grant no
EP/R014604. AM has also been supported by the National Group of Scientific Computing (GNCS) of
INDAM - Istituto Nazionale di Alta Matematica.

Conflict of interest

The authors declare no conflicts of interest.

References

1. P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction
methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483–531.
https://doi.org/10.1137/130932715

2. A. Quarteroni, A. Manzoni, F. Negri, Reduced basis methods for partial differential equations: an
introduction, Springer, 2016. https://doi.org/10.1007/978-3-319-15431-2

3. P. Benner, A. Cohen, M. Ohlberger, K. Willcox, Model reduction and approximation: theory and
algorithms, SIAM, 2017.

4. A. Quarteroni, A. Valli, Numerical approximation of partial differential equations, Springer, 1994.
https://doi.org/10.1007/978-3-540-85268-1

5. A. Manzoni, An efficient computational framework for reduced basis approximation and a
posteriori error estimation of parametrized Navier-Stokes flows, ESAIM: Math. Modell. Numer.
Anal., 48 (2014), 1199–1226. https://doi.org/10.1051/m2an/2014013

6. F. Ballarin, A. Manzoni, A. Quarteroni, G. Rozza, Supremizer stabilization of POD-Galerkin
approximation of parametrized steady incompressible Navier-Stokes equations, Int. J. Numer.
Meth. Eng., 102 (2015), 1136–1161. https://doi.org/10.1002/nme.4772

7. N. Dal Santo, A. Manzoni, Hyper-reduced order models for parametrized unsteady Navier-
Stokes equations on domains with variable shape, Adv. Comput. Math., 45 (2019), 2463–2501.
https://doi.org/10.1007/s10444-019-09722-9

8. C. Farhat, S. Grimberg, A. Manzoni, A. Quarteroni, Computational bottlenecks for PROMs:
pre-computation and hyperreduction, In: P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza,
W. Schilders, L. Silveira, Model order reduction: volume 2: snapshot-based methods and
algorithms, Boston: De Gruyter, 2020, 181–244. https://doi.org/10.1515/9783110671490-005

9. G. Gobat, A. Opreni, S. Fresca, A. Manzoni, A. Frangi, Reduced order modeling of nonlinear
microstructures through proper orthogonal decomposition, Mech. Syst. Signal Process., 171 (2022),
108864. https://doi.org/10.1016/j.ymssp.2022.108864

Mathematics in Engineering Volume 5, Issue 6, 1–36.

http://dx.doi.org/https://doi.org/10.1137/130932715
http://dx.doi.org/https://doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/https://doi.org/10.1007/978-3-540-85268-1
http://dx.doi.org/https://doi.org/10.1051/m2an/2014013
http://dx.doi.org/https://doi.org/10.1002/nme.4772
http://dx.doi.org/https://doi.org/10.1007/s10444-019-09722-9
http://dx.doi.org/https://doi.org/10.1515/9783110671490-005
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2022.108864

29

10. I. Lagaris, A. Likas, D. Fotiadis, Artificial neural networks for solving ordinary
and partial differential equations, IEEE Trans. Neur. Net., 9 (1998), 987–1000.
https://doi.org/10.1109/72.712178

11. L. Aarts, P. van der Veer, Neural network method for solving partial differential equations, Neural
Process. Lett., 14 (2001), 261–271. https://doi.org/10.1023/A:1012784129883

12. K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, 4
(1991), 251–257. https://doi.org/10.1016/0893-6080(91)90009-T

13. Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, Eur. J.
Appl. Math., 32 (2021), 421–435. https://doi.org/10.1017/S0956792520000182

14. C. Michoski, M. Milosavljević, T. Oliver, D. Hatch, Solving differential
equations using deep neural networks, Neurocomputing, 399 (2020), 193–212.
https://doi.org/10.1016/j.neucom.2020.02.015

15. J. Berg, K. Nyström, Data-driven discovery of PDEs in complex datasets, J. Comput. Phys., 384
(2019), 239–252. https://doi.org/10.1016/j.jcp.2019.01.036

16. M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

17. M. Raissi, Deep hidden physics models: deep learning of nonlinear partial differential equations,
J. Mach. Learn. Res., 19 (2018), 932–955. https://doi.org/10.5555/3291125.3291150

18. J. A. A. Opschoor, P. C. Petersen, C. Schwab, Deep ReLU networks and high-order finite element
methods, Anal. Appl., 18 (2020), 715–770. https://doi.org/10.1142/S0219530519410136

19. G. Kutyniok, P. Petersen, M. Raslan, R. Schneider, A theoretical analysis of deep neural networks
and parametric PDEs, Constr. Approx., 55 (2021), 73–125. https://doi.org/10.1007/s00365-021-
09551-4

20. D. Yarotsky, Error bounds for approximations with deep relu networks, Neural Networks, 94
(2017), 103–114. https://doi.org/10.1016/j.neunet.2017.07.002

21. N. Franco, A. Manzoni, P. Zunino, A deep learning approach to reduced order modelling
of parameter dependent partial differential equations, Math. Comp., 92 (2023), 483–524.
https://doi.org/10.1090/mcom/3781

22. T. De Ryck, S. Mishra, Generic bounds on the approximation error for physics-informed (and)
operator learning, arXiv, 2022. https://doi.org/10.48550/arXiv.2205.11393

23. N. Kovachki, S. Lanthaler, S. Mishra, On universal approximation and error bounds
for Fourier neural operators, J. Mach. Learn. Res., 22 (2021), 13237–13312.
https://doi.org/10.5555/3546258.3546548

24. S. Lanthaler, S. Mishra, G. E. Karniadakis, Error estimates for DeepONets: a deep
learning framework in infinite dimensions, Trans. Math. Appl., 6 (2022), tnac001.
https://doi.org/10.1093/imatrm/tnac001

25. M. Guo, J. S. Hesthaven, Reduced order modeling for nonlinear structural analysis using
gaussian process regression, Comput. Methods Appl. Mech. Eng., 341 (2018), 807–826.
https://doi.org/10.1016/j.cma.2018.07.017

Mathematics in Engineering Volume 5, Issue 6, 1–36.

http://dx.doi.org/https://doi.org/10.1109/72.712178
http://dx.doi.org/https://doi.org/10.1023/A:1012784129883
http://dx.doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/https://doi.org/10.1017/S0956792520000182
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.02.015
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.01.036
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/https://doi.org/10.5555/3291125.3291150
http://dx.doi.org/https://doi.org/10.1142/S0219530519410136
http://dx.doi.org/https://doi.org/10.1007/s00365-021-09551-4
http://dx.doi.org/https://doi.org/10.1007/s00365-021-09551-4
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/https://doi.org/10.1090/mcom/3781
http://dx.doi.org/https://doi.org/10.48550/arXiv.2205.11393
http://dx.doi.org/https://doi.org/10.5555/3546258.3546548
http://dx.doi.org/https://doi.org/10.1093/imatrm/tnac001
http://dx.doi.org/https://doi.org/10.1016/j.cma.2018.07.017

30

26. M. Guo, J. S. Hesthaven, Data-driven reduced order modeling for time-
dependent problems, Comput. Methods Appl. Mech. Eng., 345 (2019), 75–99.
https://doi.org/10.1016/j.cma.2018.10.029

27. J. S. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using
neural networks, J. Comput. Phys., 363 (2018), 55–78. https://doi.org/10.1016/j.jcp.2018.02.037

28. S. Pawar, S. E. Ahmed, O. San, A. Rasheed, Data-driven recovery of hidden physics in reduced
order modeling of fluid flows, Phys. Fluids, 32 (2020), 036602. https://doi.org/10.1063/5.0002051

29. B. A. Freno, K. T. Carlberg, Machine-learning error models for approximate solutions to
parameterized systems of nonlinear equations, Comput. Methods Appl. Mech. Eng., 348 (2019)
250–296. https://doi.org/10.1016/j.cma.2019.01.024

30. E. J. Parish, K. T. Carlberg, Time-series machine learning error models for appproximate solutions
to dynamical systems, 15th National Congress of Computational Mechanics, 2019.

31. K. Lee, K. T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders, J. Comput. Phys., 404 (2020), 108973.
https://doi.org/10.1016/j.jcp.2019.108973

32. S. Fresca, L. Dedè, A. Manzoni, A comprehensive deep learning-based approach to reduced
order modeling of nonlinear time-dependent parametrized PDEs, J. Sci. Comput., 87 (2021), 61.
https://doi.org/10.1007/s10915-021-01462-7

33. S. Fresca, A. Manzoni, POD-DL-ROM: enhancing deep learning-based reduced order models for
nonlinear parametrized PDEs by proper orthogonal decomposition, Comput. Methods Appl. Mech.
Eng., 388 (2021), 114181. https://doi.org/10.1016/j.cma.2021.114181

34. N. Halko, P. G. Martinsson, J. A. Tropp, Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), 217–288.
https://doi.org/10.1137/090771806

35. S. Fresca, A. Manzoni, L. Dedè, A. Quarteroni, Deep learning-based reduced
order models in cardiac electrophysiology, PLoS One, 15 (2020), e0239416.
https://doi.org/10.1371/journal.pone.0239416

36. S. Fresca, A. Manzoni, L. Dedè, A. Quarteroni, POD-enhanced deep learning-based reduced order
models for the real-time simulation of cardiac electrophysiology in the left atrium, Front. Physiol.,
12 (2021), 679076. https://doi.org/10.3389/fphys.2021.679076

37. S. Fresca, A. Manzoni, Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models, Fluids, 6 (2021), 259. https://doi.org/10.3390/fluids6070259

38. S. Fresca, G. Gobat, P. Fedeli, A. Frangi, A. Manzoni, Deep learning-based reduced order models
for the real-time simulation of the nonlinear dynamics of microstructures, Int. J. Numer. Methods
Eng., 123 (2022), 4749–4777. https://doi.org/10.1002/nme.7054

39. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

40. F. Gers, J. Schmidhuber, F. Cummins, Learning to forget: continual prediction with LSTM, Neural
Comput., 12 (2000), 2451–71. https://doi.org/10.1162/089976600300015015

Mathematics in Engineering Volume 5, Issue 6, 1–36.

http://dx.doi.org/https://doi.org/10.1016/j.cma.2018.10.029
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.02.037
http://dx.doi.org/https://doi.org/10.1063/5.0002051
http://dx.doi.org/https://doi.org/10.1016/j.cma.2019.01.024
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.108973
http://dx.doi.org/https://doi.org/10.1007/s10915-021-01462-7
http://dx.doi.org/https://doi.org/10.1016/j.cma.2021.114181
http://dx.doi.org/https://doi.org/10.1137/090771806
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0239416
http://dx.doi.org/https://doi.org/10.3389/fphys.2021.679076
http://dx.doi.org/https://doi.org/10.3390/fluids6070259
http://dx.doi.org/https://doi.org/10.1002/nme.7054
http://dx.doi.org/https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/https://doi.org/10.1162/089976600300015015

31

41. P. Sentz, K. Beckwith, E. C. Cyr, L. N. Olson, R. Patel, Reduced basis approximations
of parameterized dynamical partial differential equations via neural networks, arXiv, 2021.
https://doi.org/10.48550/arXiv.2110.10775

42. R. Maulik, B. Lusch, P. Balaprakash, Reduced-order modeling of advection-dominated systems
with recurrent neural networks and convolutional autoencoders, Phys. Fluids, 33 (2021), 037106.
https://doi.org/10.1063/5.0039986

43. J. Xu, K. Duraisamy, Multi-level convolutional autoencoder networks for parametric prediction
of spatio-temporal dynamics, Comput. Methods Appl. Mech. Eng., 372 (2020), 113379.
https://doi.org/10.1016/j.cma.2020.113379

44. N. T. Mücke, S. M. Bohté, C. W. Oosterlee, Reduced order modeling for parameterized time-
dependent pdes using spatially and memory aware deep learning, J. Comput. Sci., 53 (2021),
101408. https://doi.org/10.1016/j.jocs.2021.101408

45. Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, H. Zhang, Deep learning with long short-
term memory for time series prediction, IEEE Commun. Mag., 57 (2019), 114–119.
https://doi.org/10.1109/MCOM.2019.1800155

46. R. Maulik, B. Lusch, P. Balaprakash, Non-autoregressive time-series methods for stable parametric
reduced-order models, Phys. Fluids, 32 (2020), 087115. https://doi.org/10.1063/5.0019884

47. N. Srivastava, E. Mansimov, R. Salakhutdinov, Unsupervised learning of video representations
using LSTMs, ICML’15: Proceedings of the 32nd International Conference on International
Conference on Machine Learning, 37 (2015), 843–852.

48. P. Drineas, R. Kannan, M. W. Mahoney, Fast Monte Carlo algorithms for matrices II:
computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), 158–183.
https://doi.org/10.1137/S0097539704442696

49. M. Sangiorgio, F. Dercole, Robustness of LSTM neural networks for multi-step
forecasting of chaotic time series, Chaos Soliton. Fract., 39 (2020), 110045.
https://doi.org/10.1016/j.chaos.2020.110045

50. S. Du, T. Li, S. Horng, Time series forecasting using sequence-to-sequence deep learning
framework, 2018 9th International Symposium on Parallel Architectures, Algorithms and
Programming (PAAP), 2018, 171–176. https://doi.org/10.1109/PAAP.2018.00037

51. W. Zucchini, I. Macdonald, Hidden Markov models for time series: an introduction using R, 1 Ed.,
New York: Chapman and Hall/CRC, 2009. https://doi.org/10.1201/9781420010893

52. P. Dostál, Forecasting of time series with fuzzy logic, In: I. Zelinka, G. Chen, O. E. Rössler,
V. Snasel, A. Abraham, Nostradamus 2013: prediction, modeling and analysis of complex systems,
Heidelberg: Springer, 210 (2013), 155–161. https://doi.org/10.1007/978-3-319-00542-3 16

53. F. A. Gers, D. Eck, J. Schmidhuber, Applying LSTM to time series predictable through
time-window approaches, In: G. Dorffner, H. Bischof, K. Hornik, Artificial neural networks
— ICANN 2001, Lecture Notes in Computer Science, Springer, 2130 (2001), 669–676.
https://doi.org/10.1007/3-540-44668-0 93

Mathematics in Engineering Volume 5, Issue 6, 1–36.

http://dx.doi.org/https://doi.org/10.48550/arXiv.2110.10775
http://dx.doi.org/https://doi.org/10.1063/5.0039986
http://dx.doi.org/https://doi.org/10.1016/j.cma.2020.113379
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2021.101408
http://dx.doi.org/https://doi.org/10.1109/MCOM.2019.1800155
http://dx.doi.org/https://doi.org/10.1063/5.0019884
http://dx.doi.org/https://doi.org/10.1137/S0097539704442696
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110045
http://dx.doi.org/https://doi.org/10.1109/PAAP.2018.00037
http://dx.doi.org/https://doi.org/10.1201/9781420010893
http://dx.doi.org/https://doi.org/10.1007/978-3-319-00542-3_16
http://dx.doi.org/https://doi.org/10.1007/3-540-44668-0_93

32

54. S. Siami-Namini, N. Tavakoli, A. Siami Namin, A comparison of ARIMA and LSTM in forecasting
time series, 2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018, 1394–1401. https://doi.org/10.1109/ICMLA.2018.00227

55. R. T. Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations,
NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing
Systems, 2018, 6572–6583. https://doi.org/10.5555/3327757.3327764

56. S. Massaroli, M. Poli, J. Park, A. Yamashita, H. Asama, Dissecting neural ODEs, arXiv, 2021.
https://doi.org/10.48550/arXiv.2002.08071

57. P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, P. Koumoutsakos, Data-driven forecasting of
high-dimensional chaotic systems with long short-term memory networks, Proc. R. Soc. A: Math.
Phys. Eng. Sci., 474 (2018), 1–20. https://doi.org/10.1098/rspa.2017.0844

58. D. P. Kingma, J. Ba, ADAM: a method for stochastic optimization, 3rd International Conference
for Learning Representations, San Diego, 2015.

59. I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016. Available from:
http://www.deeplearningbook.org.

60. D. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential
linear units (ELUs), arXiv, 2015. https://doi.org/10.48550/arXiv.1511.07289

61. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance
on ImageNet classification, Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2015, 1026–1034.

62. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., TensorFlow: large-scale
machine learning on heterogeneous systems, 2015. Available from:
https://www.tensorflow.org.

63. F. Negri, redbkit v2.2, 2017. Available from: https://github.com/redbKIT/redbKIT.

64. J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13
(2012), 281–305. https://doi.org/10.5555/2188385.2188395

65. S. Chaturantabut, D. C. Sorensen, Discrete empirical interpolation for nonlinear model reduction,
Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference, 2009, 4316–4321. https://doi.org/10.1109/CDC.2009.5400045

66. C. M. Bishop, Neural networks for pattern recognition, Oxford University Press, Inc., 1995.

Appendix

In this appendix, we report in extensive form the algorithms used to train and test the µt-
POD-LSTM-ROM framework. In particular, Algorithm 1 and Algorithm 2 describe the procedures
used for training the µ-POD-LSTM-ROM and t-POD-LSTM-ROM architectures respectively, while
Algorithm 3 and Algorithm 4 outline the testing stage of the two architectures. Finally, Algorithm 5
specifies the workflow required by the µt-POD-LSTM-ROM framework in order to obtain the fast
approximation of a parameterized PDE solution with time extrapolation capabilities.

Mathematics in Engineering Volume 5, Issue 6, 1–36.

http://dx.doi.org/https://doi.org/10.1109/ICMLA.2018.00227
http://dx.doi.org/https://doi.org/10.5555/3327757.3327764
http://dx.doi.org/https://doi.org/10.48550/arXiv.2002.08071
http://dx.doi.org/https://doi.org/10.1098/rspa.2017.0844
http://www.deeplearningbook.org
http://dx.doi.org/https://doi.org/10.48550/arXiv.1511.07289
https://www.tensorflow.org
https://github.com/redbKIT/redbKIT
http://dx.doi.org/https://doi.org/10.5555/2188385.2188395
http://dx.doi.org/https://doi.org/10.1109/CDC.2009.5400045

33

Algorithm 1 µ-POD-LSTM-ROM training algorithm.

Input: Parameter matrix M ∈ R(nµ+1)×NtrainNt , snapshot matrix S ∈ RNh×NtrainNt , sequence length K > 1,
validation split α > 0, starting learning rate η > 0, batch size dimbatch, maximum number of epochs
Nep, loss parameter ωh.

Output: Optimal model parameters

θ∗,µ = (θ∗,µFFNN , θ
∗,µ
enc, θ

∗,µ
dec).

1: Compute rPOD basis matrix VN

2: Compute the POD reduced snapshot matrix

UN = [u1| . . . |uNtrainNt]
T = [VT

Nuh,1| . . . |VT
Nuh,NtrainNt]

T

3: Assemble the base tensor T ∈ RNtrain(Nt−K)×N×K with T(i, j, k) = (uN(tαi + k∆t,µβi
)) j with αi =

imod(Nt − K), βi = i−αi
Nt−K and (·) j denoting the extraction of the jth component from a vector.

4: Assemble the base parameters tensor L ∈ RNtrain(Nt−K)×(nµ+1)×K with L(i, j, k) = (M[αi + k, :]) j with
αi = imod(Nt − K), βi = i−αi

Nt−K and (·) j denoting the extraction of the jth component from a vector.
5: Randomly shuffle T and L
6: Randomly sample αNtrain(Nt − K) indices from I = {0, . . . ,Ntrain(Nt − K) − 1} and collect them in

the vector val idxs. Build train idxs = I \ val idxs
7: Split data in T = [Ttrain,Tval] and L = [Ltrain,Lval] (with Ttrain/val =

T[train/val idxs, :, :],Ltrain/val = L[train/val idxs, :, :])
8: Optionally normalize data in T
9: Randomly initialize θ0 = (θ0

FFNN , θ
0
enc, θ

0
dec)

10: ne = 0
11: while (¬early-stopping and ne ≤ Nep) do
12: for b = 1 : Nmb do
13: Sample a minibatch (Tbatch

N,K ,Lbatch) ⊆ (Ttrain
N,K ,L

train)
14: T̃batch

n,K (θNmbne+b
enc) = λenc

n (Tbatch
N,K ; θNmbne+b

enc)
15: Tbatch

n,K (θNmbne+b
FFNN) = φFFNN

n (Lbatch; θNmbne+b
FFNN)

16: T̃batch
N,K (θNmbne+b

FFNN , θNmbne+b
dec) = λdec

N (Tbatch
n,K (θNmbne+b

FFNN); θNmbne+b
dec)

17: Accumulate loss (3.9) on (Tbatch
N,K ,Lbatch) and compute ∇̂θJ

18: θNmbne+b+1 = ADAM(η, ∇̂θJ , θNmbne+b)
19: end for
20: Repeat instructions 13–18 on (Tval

N,K ,L
val) with the updated weights θNmbne+b+1

21: Accumulate loss (3.9) on (Tval
N,K ,L

val) to evaluate early-stopping criterion
22: ne = ne + 1
23: end while

Mathematics in Engineering Volume 5, Issue 6, 1–36.

34

Algorithm 2 t-POD-DL-ROM training algorithm.

Input: Parameter matrix M ∈ R(nµ)×NtrainNt , POD reduced snapshot matrix UN ∈ R
N×NtrainNt , sequence

length K > 2, prediction horizon 1 ≤ k < K, validation split α > 0, starting learning rate η > 0,
batch size dimbatch, maximum number of epochs Nep, loss parameter ωh.

Output: Optimal model parameters

θ∗,t = (θ∗,tFFNN , θ
∗,t
enc, θ

∗,t
dec).

1: Assemble the base tensor

T ∈ RNtrain(Nt−K)×N×K with T(i, j, k) = (uN(tαi + k∆t,µβi
)) j

with αi = imod(Nt − K), βi = i−αi
Nt−K and (·) j denoting the extraction of the jth component from a

vector.
2: Assemble the base parameters tensor

L ∈ RNtrain(Nt−K)×nµ×K with L(i, j, k) = (M[αi + k, : (nµ)]) j

with αi = imod(Nt − K), βi = i−αi
Nt−K and (·) j denoting the extraction of the jth component from a

vector.
3: Randomly shuffle by the first dimension T and L
4: Randomly sample αNtrain(Nt − K) indices from I = {0, . . . ,Ntrain(Nt − K) − 1} and collect them in

the vector val idxs; build train idxs = I \ val idxs
5: Split data in T = [Ttrain,Tval], L = [Ltrain,Lval] (with Ttrain/val = T[train/val idxs, :, :],Ltrain/val =

L[train/val idxs, :, :])
6: Optionally normalize data in T
7: Randomly initialize θ0 = (θ0

FFNN , θ
0
enc, θ

0
dec)

8: ne = 0
9: while (¬early-stopping and ne ≤ Nep) do

10: for b = 1 : Nmb do
11: Sample a minibatch (Tbatch

N,K ,Lbatch) ⊆ (Ttrain
N,K ,L

train)
12: Consider Tbatch

0 = Ttrain
N,K [:, :, : (K − k)] and Tbatch

1 = Ttrain
N,K [:, :, (K − k) : K)]

13: Rbatch
0 (θNmbne+b

enc) = λenc
n (Tbatch

0 ; θNmbne+b
enc)

14: Rbatch
1 (θNmbne+b

FFNN1) = φ(Lbatch; θNmbne+b
FFNN1)

15: Hbatch
n (θNmbne+b

FFNN , θNmbne+b
enc) = φ′([Rbatch

1 ,Rbatch
0]; θNmbne+b

FFNN2)
16: T̃batch

N,k (θNmbne+b
enc , θNmbne+b

FFNN , θNmbne+b
dec) = λdec

N (Hbatch
n (θNmbne+b

FFNN , θNmbne+b
enc); θNmbne+b

dec)
17: Accumulate loss (4.7) on (Tbatch

1 ,Lbatch) and compute ∇̂θJ
18: θNmbne+b+1 = ADAM(η, ∇̂θJ , θNmbne+b)
19: end for
20: Repeat instructions 11–18 on (Tval

N,K ,L
val) with the updated weights θNmbne+b+1

21: Accumulate loss (4.7) on (Tval
N,K ,L

val) to evaluate early-stopping criterion
22: ne = ne + 1
23: end while

Mathematics in Engineering Volume 5, Issue 6, 1–36.

35

Algorithm 3 µ-POD-LSTM-ROM testing algorithm.

Input: Testing parameter matrix Mtest ∈ R(nµ+1)×NtestNt , rPOD basis matrix VN , optimal model
parameters (θ∗,µFFNN , θ

∗,µ
dec).

Output: ROM approximation matrix
S̃h ∈ R

Nh×(NtestNt).

1: Build the reduced testing parameter matrix Mtest
red ∈ R

(nµ+1)×Ntest ·Nt/K s.t. Mtest
red [:, i] = Mtest[:,K · i]

∀i ∈ {0, . . . ,Ntest · Nt/K − 1}
2: Load θ∗,µFFNN and θ∗,µdec
3: Tn,K(θ∗,µFFNN) = φFFNN

n (Mtest
red ; θ∗,µFFNN)

4: T̃N,K(θ∗,µFFNN , θ
∗,µ
dec) = λdec

N (Tn(θ∗,µFFNN); θ∗,µdec)
5: Reshape T̃N,K(θ∗,µFFNN , θ

∗,µ
dec) ∈ R

Nh×Ntest ·Nt/K×K in S̃N(θ∗,µFFNN , θ
∗,µ
dec) ∈ R

Nh×NtestNt

6: S̃h = VNS̃N

Algorithm 4 t-POD-LSTM-ROM testing algorithm.

Input: Testing parameter matrix (without times) Mtest
− ∈ Rnµ×Ntest , rPOD basis matrix VN , µ-POD-

LSTM-ROM reduced approximation matrix optimal model parameters S̃N = VT
NS̃h ∈ R

N×(NtestNt),
extrapolation starting point 1 ≤ text ≤ Nt, extrapolation length Next ≥ 1, prediction horizon
1 ≤ k < K (with K being the sequence length used for training), optimal training parameters
(θ∗,tenc, θ

∗,t
FFNN , θ

∗,t
dec).

Output: ROM extrapolation matrix
Ẽh ∈ R

Nh×(Ntest ·Nextk).

1: Allocate memory for ẼN,K ∈ R
Ntest×N×((Next−1)k+K)

2: Initialize ẼN,K by setting ẼN,K[:, i, : (K − k)] = S̃N[:, (iNt + text − K + k) : (iNt + text)]
∀i ∈ {0, . . . ,Ntest − 1}

3: Load θ∗,tenc, θ
∗,t
FFNN and θ∗,tdec

4: c = 1
5: for j = 1 : Next do
6: Rtest,0(θ∗,tenc) = λenc

n (ẼN,K[:, :, c : (c + K − k)]; θ∗,tenc)
7: Rtest,1(θ∗,tFFNN1) = φ(Mtest

− ; θ∗,tFFNN1)
8: Htest

n (θ∗,tFFNN , θ
∗,t
enc) = φ′([Rtest,1,Rtest,0]; θ∗,tFFNN2)

9: ẼN,K(θ∗,tenc, θ
∗,t
FFNN , θ

∗,t
dec)[:, :, (c + K − k) : (c + K)] = λdec

N (Htest
n (θ∗,tFFNN , θ

∗,t
enc); θ

∗,t
dec)

10: c = c + k
11: end for
12: Consider the matrix containing extrapolation results only, i.e., Ẽext

N,K(θ∗,tenc, θ
∗,t
FFNN , θ

∗,t
dec) =

ẼN,K(θ∗,tenc, θ
∗,t
FFNN , θ

∗,t
dec)[:, :, (K − k) :]

13: Reshape Ẽext
N,K(θ∗,tenc, θ

∗,t
FFNN , θ

∗,t
dec) ∈ R

Ntest×N×Nextk in ẼN(θ∗,tFFNN , θ
∗,t
dec) ∈ R

N×(Ntest ·Nextk)

14: Ẽh = VNẼN

Mathematics in Engineering Volume 5, Issue 6, 1–36.

36

Algorithm 5 µt-POD-LSTM-ROM training-testing algorithm.
Input: The same inputs as Algorithms 1–4.
Output: Time extended ROM approximation matrix

S̃ext
h ∈ R

Nh×Ntest(text+Nextk).

1: Train µ-POD-LSTM-ROM architecture according to Algorithm 1
2: Train t-POD-LSTM-ROM architecture according to Algorithm 2
3: Load (θ∗,µenc, θ

∗,µ
FFNN , θ

∗,µ
dec) and (θ∗,tenc, θ

∗,t
FFNN , θ

∗,t
dec)

4: Obtain S̃h ∈ R
Nh×NtestNt by the procedure described in Algorithm 3

5: Obtain Ẽh ∈ R
Nh×(Ntest ·Nextk) by the procedure described in Algorithm 4

6: Assemble the time extended ROM approximation matrix S̃ext
h by concatenating by column part of

the previous results as in S̃ext
h = S̃h[:, : text] ⊕ Ẽh

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 5, Issue 6, 1–36.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Achieving time extrapolation capabilities with LSTM cells
	Time extrapolation problem
	t-POD-LSTM-ROM architecture

	-POD-LSTM-ROM
	t-POD-LSTM-ROM
	Results
	Lotka-Volterra competition model (3 species)
	Lotka-Volterra time extrapolation
	Unsteady advection-diffusion-reaction equation
	Unsteady advection-diffusion-reaction time extrapolation
	Unsteady Navier-Stokes equations

	Conclusions

