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Abstract: In recent years, the research on object detection and tracking is becoming important for
the development of advanced driving assistance systems (ADASs) and connected autonomous
vehicles (CAVs) aiming to improve safety for all road users involved. Intersections, especially in
urban scenarios, represent the portion of the road where the most relevant accidents take place;
therefore, this work proposes an I2V warning system able to detect and track vehicles occupying
the intersection and representing an obstacle for other incoming vehicles. This work presents a
localization algorithm based on image detection and tracking by a single camera installed on a
roadside unit (RSU). The vehicle position in the global reference frame is obtained thanks to a
sequence of linear transformations utilizing intrinsic camera parameters, camera height, and pitch
angle to obtain the vehicle’s distance from the camera and, thus, its global latitude and longitude.
The study brings an experimental analysis of both the localization accuracy, with an average error of
0.62 m, and detection reliability in terms of false positive (1.9%) and missed detection (3.6%) rates.

Keywords: road user localization; roadside unit; image detection; I2V communication; intelligent
transportation system

1. Introduction

Computer vision has recently grown quickly thanks to the evolution of computational
units and the possibility to train models on field data [1]. One of the most popular applica-
tions, also thanks to artificial intelligence advancements, is vision-based object detection,
which is employed in many fields, ranging from security in crowded areas [2] to obstacle
avoidance in autonomous driving and intelligent transportation system (ITS) tasks in gen-
eral [3]. Object detection and tracking are in fact fundamental for autonomous vehicles
(AVs), which need to be aware of the environment surrounding them in order to take
decisions at the driver model level. Furthermore, the development of infrastructure-based
object detection systems represents a powerful tool to share information about the traffic
situation with nearby vehicles and other infrastructure devices. Roadside units (RSU) can
also be intended as integrated systems able to scan the portion of the road where the device
is installed by means of cameras, LiDARs, and RADARs and disseminate processed data to
different road users [4].

The advent of cooperative networks exploiting vehicle-to-everything (V2X) communi-
cation (see Figure 1) on the one hand is boosting the improvement of early warning systems,
on the other hand, it still presents issues related both to transmission positioning accuracy
and communication delays [5]. In this framework, the present work proposes a cheap
as well as accurate system for object detection-based localization at urban intersections,
depicted in Figure 2, providing real experimental data. This system represents a necessary
tool for cooperative ADASs intended to warn, by means of infrastructure-to-vehicle (I2V)
communication, other vehicles of potential risks in passing through the intersection.
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Figure 1. Communication categories for intelligent transportation system.

Figure 2. Schematic representation of the scenario under analysis.

The main contributions of this paper are as follows:

• The description of a real-world I2V roadside unit configuration for vehicle localization,
providing operative performance evaluation and an analysis of delay contributions
involved in the entire process.

• A full-scale testing performance analysis of open platforms such as Gstreamer and
NVIDIA® DeepStream SDK for a camera-based vehicle localization system, assessing
both position accuracy and detection reliability.

• A comparison with other state-of-the-art roadside localization methods adopting more
complex and expensive systems.

The remainder of the paper is structured as follows: in Section 2, related works about
cooperative systems and detection-based localization techniques are reviewed, while in
Section 3, the methodology of the proposed system is detailed, focusing on the detection
pipeline, the localization algorithm, and the message publication. Section 4 introduces the
experimental setup adopted for the testing of the system and the metrics adopted for the
comparison of the results with similar state-of-the-art methods. Section 5 reports the results
of the system, analyzing detection reliability, localization accuracy, and delays in message
generation and communication. Furthermore, a comparison of the proposed system with
different methodologies available in the literature is proposed. This provides the possibility
to discuss the obtained results in Section 6, highlighting the advantages and the limitations
of this research work, and finally, Section 7 draws the conclusions and provides some
possible future insights.
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2. Related Work

Connected and automated vehicles (CAVs) in the future will rely on both onboard sen-
sors and devices installed either on neighboring vehicles or on the infrastructure network,
with all these elements being connected, enabling collective perception services [6]. In
general, cooperative intelligent transportation systems (C-ITS) aim to exploit connectivity
among vehicles and roadside units in order to increase safety and efficiency, especially in
urban scenarios.

In [7], cooperative systems related to ITS and infrastructure management are reviewed,
being recognized as a crucial element for future smart transportation. In particular, the
authors categorize intersections into three clusters, distinguishing between signalized
intersections, semi-autonomous intersections, and fully autonomous intersections. In this
framework, the focus is pointed on the spatio-temporal reservation and trajectory planning
as well as on the intersection goals such as efficiency and safety. As stated in [7], most of
the literature available on infrastructure management is related to vehicle-to-vehicle (V2V)
communication, while just a smaller portion of the analyzed papers combined V2V and
V2I cooperatively. Therefore, a further boost to these topics appears to be necessary.

The review in [8] presents some urban traffic management schemes and an overview of
the available traffic sensing technologies, ranging from the inductive loop and microwave
RADAR up to video image processing, reporting the advantages and disadvantages for all
the analyzed technologies. In particular, for camera-based systems, it is pointed out that it
is simple to monitor multiple lanes simultaneously by easily adapting the detection areas.
On the other hand, the performance can be affected by occlusion and bad weather and light
conditions. The authors in [9] go into detail and investigate the occlusion issue of roadside
units involved in V2I systems, discussing the placement scheme for directional sensors
such as cameras, and proposing an occlusion degree model to describe the phenomenon.

Cooperative ITS and driving automation have been recently pushed forward, with the
development of object detection playing a fundamental role in making them possible, since
vehicles need to know what is surrounding them in order to either issue a warning to the
driver or actively take action on the vehicle to respond to a dangerous situation; for example,
the safety ADAS at an intersection developed in [10]. As far as infrastructure-based object
detection is concerned, in [11], four phases are identified for this process: (a) information
collection, that can be performed with different kinds of sensors; (b) edge processing
avoiding transmitting a large amount of data on limited bandwidth (e.g., images coming
from cameras or point clouds generated by LiDARs); (c) cloud fusion, with additional
data coming from other connected devices, can be feasible for high-volume low-latency
networks; (d) message distribution to other road users according to recognized standards.
In the literature, it is possible to find a relevant amount of work dealing with object detection
systems enabling cooperative perception. As far as data and sensor fusion are concerned,
a distinction between late or early fusion schemes for realizing cooperative perception
has to be made. Early fusion systems merge raw sensor data before the detection stage,
while in late fusion algorithms, each sensor observation is processed independently. The
work in [12] proposes both schemes and shows that the early fusion approach guarantees
better performances, although there are higher communication requirements in terms of
bandwidth.

In the vehicle pose estimation framework, there are many approaches available [13].
They can be classified according to the sensor type, the possibility to fuse different sensors’
data, and the presence of depth information, thus distinguishing between 2D and 3D object
detection. Among camera-based systems, ref. [14] presents a 3D object detection and
localization based on a k-means-like method which is a clustering algorithm originally
developed for signal processing. The work adopts the k-means method on the one hand to
classify the contour points of the bottom edge of the bounding box (BB) for better detection,
while on the other hand to estimate the pose and the dimensions of the vehicle. Furthermore,
pose estimation relies on calculations exploiting intrinsic parameters of camera calibrations,
such as focal length and position of the principal point. Then, given the 2D object detection,
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through the a posteriori probability of vehicle position, orientation, and dimensions the
accuracy can be improved.

The authors in [15] propose an automatic traffic camera calibration procedure based
on global navigation satellite system (GNSS) to localize the detected vehicle, thus mapping
from the 2D world coordinates to the 2D camera coordinate. The approach is built on
top of the 2D detection and tracking phase and ground plane coordinates acquisition
using GNSS positioning. The core part of the work is the calculation of the transformation
matrix obtained through a least squares optimization, solved via a homogeneous linear
representation. Another example of vehicle localization based on roadside monocular
camera is presented in [16], where a vanishing point calibration [17], together with a system
running RANSAC [18] on optical flow vectors obtained from the tracking phase, constitute
the vehicle localization algorithm. In addition, to estimate the vehicle states in the 3D world
a Kalman filter is proposed based on a six-DOF rigid body model, with covariance matrices
empirically determined.

Apart from monocular cameras, roadside cooperative perception systems usually
exploit other kinds of sensors such as thermal cameras, RADARs and LiDARs. In [19],
the authors propose a late fusion algorithm for data coming from fish-eye and thermal
cameras to accurately localize vehicles approaching an urban intersection. The proposed
cooperative perception system is split between the roadside unit, in charge of the sensor
data acquisition, edge processing, and communication with surrounding vehicles, and the
cloud entity, where both images and detection data are stored for continuous model re-
labeling and re-training to be then updated on the edge devices. The work in [20] presents
a multi-sensor fusion of LiDAR range information and camera semantic information at
the data layer in order to issue a blind-spot warning system. After the pre-processing of
both images and the point cloud, the latter is projected onto the camera image through a
set of rotations and coordinate transformations. Thus, the point cloud is converted from
the LiDAR coordinate system to the pixel coordinate system of the camera frame.

As far as cooperative LiDAR-based localization algorithms, Ref. [21] proposes a real-
world object perception platform using a single LiDAR installed on a pole in correspondence
of an urban intersection. The detection model used is trained on already available datasets
collected based on vehicle-equipped LiDAR. Downstream of the detection and tracking
phase, objects are geo-localized by the edge computer and data are transmitted to a cloud
server which then disseminates the relevant information about the detected vehicle position
to the surrounding vehicle and finally the driver through a human–machine interface (HMI).
While dealing with LiDAR-based systems, multiple sensors are used in [22], where the
authors propose a localization algorithm relying on multiple LiDARs installed at the corner
of an urban intersection. The system combines an interacting multiple model (IMM) filter
and joint probabilistic data association (JPDA) tracker for vehicle detection and position–
velocity estimation.

This paper proposes a simple and reliable solution for 2D object detection and tracking
based on a single roadside RGB camera installed at an intersection, as schematized in
Figure 2. In particular, the detection and tracking phase is performed through an NVIDIA®
DeepStream SDK 5.0 application which adopts a deep neural network based on YOLOv4
Tiny, in a way similar to the one presented in [23], in which the same detection pipeline was
used to count people standing at a bus stop. As far as the localization method is concerned,
it implements a sequence of linear transformations that uses intrinsic camera parameters
obtained from camera calibration to obtain the relative distance of the bounding box from
the camera, thus moving to the absolute latitude and longitude of the identified object.
Then, the resulting information is included in a standard message for ITS communication
(i.e., decentralized environmental notification message, DENM) broadcast to other vehicles
which, on the basis of this information, can warn the driver in case of danger. It is worth
mentioning that the onboard vehicle control logic for the warning issuing stage goes beyond
the expectations of the present paper, thus it is not covered here.
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3. Methodology

This section is devoted to the description of the system architecture, from the detection
and tracking pipeline to the algorithm for localization of the detected objects and the DENM
message publication.

In Figure 3, it is possible to have an overview of the overall framework adopted and
presented in the following. After the image acquisition, the processing performed by the
computational unit installed on the RSU includes the detection and tracking phase, the
vanishing point calibration, and finally the transformation from the 2D image to the 2D
world coordinate. The last step performed by the RSU is the DENM message broadcasting
via MQTT.

Camera intrinsic
parameters

Detection
& Tracking

Vanishing point 
calibration

DENM 
broadcasting

Image 
acquisition

v

u

x

y

Image 
processing

2D image 
coordinate

2D world 
coordinate

Image‐to‐world 
transformation

Figure 3. Flow chart of the proposed methodology made of image acquisition, image processing, and
DENM broadcasting.

3.1. Detection Pipeline

As mentioned, the detection and tracking phases are carried out using an NVIDIA®
DeepStream SDK 5.0 application, using a deep neural network based on YOLOv4 Tiny.
In particular, these tasks are based on a GStreamer pipeline which goes from the image
acquisition up to the extraction of the information about the detected bounding boxes as
shown in Figure 4. Looking into the details of the items of the pipeline, the starting point is
the streaming of the source video (720p) coming from the camera with an acquisition rate
fixed at 24 frames per second. Each frame is then passed through the central part of the
pipeline, where object detection takes place along with tracking.

Source video 
streaming Object detection Object tracking Bounding Box 

information

1280x720
24 fps

Deepstream SDK 
engine model 
based on 
YOLOv4 Tiny

NvDCF tracker
NV‐adapted
Discriminative
Correlation
Filter

Width, height and 
position of the 
bounding boxes 
along with class 
and object IDs

Figure 4. Representation of the GStreamer pipeline for detection and tracking phases.
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In particular, the object tracking is performed using the built-in GStreamer nvtracker
plugin which tracks detected objects and gives each new object a unique ID. It comes with
three possible low-level libraries and for this application, the NV-adapted discriminative
correlation filter (NvDCF) is selected. NvDCF tracker uses a correlation-filter-based online
discriminative learning algorithm coupled with a Hungarian algorithm for data association
in multi-object tracking [24]. Among the pros of this library, on the one hand, it is possible
to find less frequent ID switches and high robustness, on the other hand, partial occlusions,
shadows, and other transient visual changes may occur.

The final part of the detection and tracking pipeline is the reconstruction of bounding
box information, which contains (a) the pixel coordinates (x and y) of the upper left point
of the BB in the image reference frame (refer to Figure 5); (b) the dimensions of the BB in
terms of width (w) and height (z); (c) the class of the object (e.g., car, person, bicycle, truck);
and (d) the object ID value coming from the tracking.

frame

x

y

BB

w

z

C

x

y

O

Figure 5. Image reference frame and bounding box representation.

These data, which are the output of the detection pipeline, represent the inputs for
the following localization algorithm that aims to reconstruct the absolute position of the
detected object starting from the camera information.

3.2. Localization Algorithm

Once the detection data are gathered, the aforementioned BB information is published
on the ROS network through a publisher on a dedicated topic. This message is the actual
input of the localization algorithm, thus the localization calculations are performed only
when a BB is present in a predefined region of interest (ROI) of the intersection considered,
as represented in Figure 6.

Region of  interest

Figure 6. Representation of the region of interest for localization algorithm.
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Moving to the core part of the localization algorithm, the most relevant part is the
estimation of the distance of the detected object from the camera using Python OpenCV
libraries [25]. The required inputs for the algorithm are:

• intrinsic parameters obtained from the camera calibration, in terms of focal lengths fx
and fy, and principal point coordinates cx and cy;

• camera height hcam;
• camera pitch angle φ.

Assuming a flat road without any hill and knowing the camera intrinsic parameter
calibration values (i.e., fx, fy, cx, and cy) as well as the physical parameters of the camera
installation (i.e., hcam and φ), the solving equation for obtaining the relative distance xloc
and yloc of the detected object from the camera is the following: xloc

hcam
yloc

 =

1 0 0
0 cos φ − sin φ
0 sin φ cos φ

−1 fx 0 cx
0 fy cy
0 0 1

−1xpxl
ypxl

1

s (1)

In Equation (1), xpxl and ypxl represent the non-distorted coordinates of the detected
object in the 2D image reference frame, while s is a scaling coefficient to be determined
while solving the system of equations. It is worth mentioning that the considered point
of the detected vehicle (i.e., xpxl and ypxl) is set as the mid-point of the bottom edge of the
bounding box, represented as C in Figure 5, with this point being the closest to the ground
and, thus, more realistic for this application.

Once the relative distances of the detected object from the camera are obtained, in
order to obtain its absolute position a transformation has to be applied. In particular, a
change in coordinates from latitude–longitude–altitude (LLA) to Universal Transverse
Mercator (UTM) is required. Figure 7 shows the UTM reference system centered in the
camera position, with the x-axis being aligned with the east direction and the y-axis aligned
with the north direction. The local reference frame of the camera is also reported, which is
rotated by the orientation angle θ, i.e., the absolute angle with respect to the north direction.

North

East

𝑌𝑌𝑢𝑢𝑢𝑢𝑢𝑢

𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢

𝜃𝜃
𝛼𝛼

𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙

𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙

Δ𝑥𝑥𝑢𝑢𝑢𝑢𝑢𝑢

Δ𝑦𝑦𝑢𝑢𝑢𝑢𝑢𝑢

𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑐𝑐𝑐𝑐𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑐𝑐𝑐𝑐
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𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢,𝑙𝑙𝑐𝑐𝑢𝑢

𝑌𝑌𝑢𝑢𝑢𝑢𝑢𝑢,𝑙𝑙𝑐𝑐𝑢𝑢

𝑂𝑂

Figure 7. Representation of the UTM coordinate reference frame and the quantities involved in the
coordinates transformations.
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Knowing the car’s position in the local reference frame, the distance from the camera
d is defined as:

d =
√

x2
loc + y2

loc (2)

while the local heading angle α, that is the angle between the yloc-axis and the direction
identified by the position of the vehicle and the camera itself, can be obtained as follows:

α = − arctan
(

xloc
yloc

)
(3)

As a result, knowing all these quantities it is possible to obtain the projections on the
UTM axes of the relative position ∆xutm and ∆yutm as:

∆xutm = d sin (α + θ) (4)

∆yutm = d cos (α + θ) (5)

The last step to obtain the absolute UTM coordinates of the detected car is to add the
projection calculated in Equations (4) and (5) to the known UTM coordinates of the camera
Xutm,cam and Yutm,cam, thus obtaining the absolute position of the detected vehicle:

Xutm,car = Xutm,cam + ∆xutm (6)

Yutm,car = Yutm,cam + ∆yutm (7)

Finally, another transformation (i.e., UTM to LLA) is required so that information
about the latitude and longitude of the detected object is available for the following DENM
message creation.

3.3. Message Publication

Cooperative awareness, as already mentioned, can be obtained by gathering infor-
mation from other vehicles or roadside unit networks. These data have to be conveyed to
the recipients with a protocol compliant with a recognized standard in order to support
cooperative services which need continuous status information from the surrounding envi-
ronment. The European Telecommunications Standards Institute (ETSI) proposed a set of
messages for ITS and vehicular communication. In particular, two messages are extremely
relevant for Day-1 cooperative application systems: the cooperative awareness message
(CAM) and the decentralized environmental notification message (DENM). The CAM is
specifically intended to be used for V2V communication messages [26] for sharing with
surrounding vehicles information about the current position and direction. On the other
hand, the DENM has to be used to warn road users about any event, and as a result, it is a
much more general kind of message with the payload (schematized in Figure 8) structured
as follows [27].

• Management container: includes the timestamp of the event, the source of the message,
as well as the absolute position of the event.

• Situation container: includes details about the information quality, the event cause,
and history.

• Location container: includes data about speed, heading, path history, and road type.
• “À la carte” container: includes additional specific data for ITS-S application.
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Figure 8. Decentralized environmental notification message structure according to ETSI specifica-
tion [27].

According to ETSI, this type of message is designed to be broadcast at a maximum
frequency of 10 Hz and they are suitable for intersection collision risk warning (ICRW) use
cases according to [28].

DENM message creation and dissemination is the last task for the computational
unit installed in the RSU considered in this work for generating warnings about possible
dangerous situations at an urban intersection. The transmission protocol selected is message
queue telemetry transport (MQTT), adopting for this specific case the public Mosquitto
broker [29]. Since the detection and localization algorithm framework is based on ROS, the
DENM message is filled in the same framework, having created an ROS custom message
shaped according to ETSI documentation. Once the message is created, it is passed through
the mentioned mqtt_bridge that, given the name of the topics (i.e., both ROS and MQTT)
and the type of message, makes available an automatic bidirectional bridge between ROS
and MQTT. In this way, the ROS message is converted into a JSON-like message that can
be published on the MQTT broker.

4. Experimental Setup

This section provides a description of the compact and integrated experimental setup
which is positioned on a pole at an intersection as shown in Figure 9.

Camera 
module

Camera view

Figure 9. Picture of the roadside unit installed and camera view example.

The system schematized in Figure 10 is comprised of four modules: (a) power supply,
(b) computation unit, (c) network, (d) camera.
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a b c

d

Figure 10. Scheme of the roadside unit components: (a) power supply, (b) computation unit, (c)
network, (d) camera.

In particular, the power supply module is made of a 12 V automotive battery connected
through a solar recharging regulator to a 50 W photovoltaic panel. The computational
unit is an NVIDIA® Jetson Nano with CPU Quad-core ARM A57@1.43 GHz and GPU
128-core Maxwell, representing a good trade-off between small size and cost, and graphics
performance for image detection. Connected to this unit there is a USB3.0 camera module
with 48° horizontal FOV, as well as a commercial 4G modem for internet connection.

The architecture of the system is based on a robotic operating system (ROS) as far
as image acquisition and data processing are concerned, allowing it to have a simple
framework for managing information coming from different sources. On the other hand,
once the DENM message is generated, it has to be broadcast to the connected road users.
For the experimental tests, a small city car is driven at a known constant speed in a
controlled environment situation, with the vehicle being equipped with a global positioning
system (GPS) and real time kinematic (RTK) correction to have a ground truth reference
localization. Furthermore, in order to have lightweight messaging, a protocol such as
message queue telemetry transport (MQTT) [30] is used to send messages in JSON format.
As a consequence, the DENM message generated in ROS form has to be converted into a
JSON message, so a bridge is used to automatically perform this task [31].

In the following section, the experimental results of the localization algorithm are
reported. All the tests were performed during daylight and standard weather conditions.
In particular, for the localization testing campaign, a city car was specifically instrumented
with an RTK-corrected GPS system in order to have a ground truth value. As far as
the detection reliability analysis is concerned, the data were collected by recording a 10-
minute long video stream of the regular traffic through the intersection where the RSU was
mounted. The most significant frames, i.e., those where a vehicle was actually occupying
the intersection, were then extracted for the detection reliability analysis. In addition to
the quantitative analysis of the performances of the proposed method, a comparison with
a similar sensor configuration method present in the literature is provided. The authors
in [15] proposed the normalized root mean squared error (RMSE) as a metric for assessing
localization performances. The normalized error is defined as:

εnorm
i =

dCAM
i − dGPS

i
dGPS

i
(8)
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where dCAM
i is the calculated distance of the detected object from the camera and dGPS

i is
the ground truth distance of the vehicle, obtained from the GPS RTK coordinates and the
known absolute coordinates of the camera. The RMSE is then calculated as:

RMSE =

√√√√ 1
N

N

∑
i=1

(εnorm
i )2 (9)

with N being the number of localization points.

5. Results

In the Methodology, the algorithmic part for the proposed road user localization by
means of an infrastructure-based camera was presented. In this section, the results of
the experimental tests are presented. In particular, a focus is dedicated to all three tasks
presented in the previous section.

5.1. Detection Reliability

As far as the detection phase is concerned, the analysis of the results is focused on the
reliability of this task which is fundamental for the subsequent localization part. In fact,
since the relative distance evaluation is based on the pixel position of the bounding box,
it is important to understand the reliability of the BB information, which represents the
output of the detection and tracking phase.

Common issues in image detection are occlusions and poor visibility which lead to
missed detection (i.e., so-called false negatives). On the other hand, it happens that in some
cases an object is detected even though it is not actually there (i.e., so-called false positives).
This is typical in highly dynamic situations in which many objects are close to one another
and moving relatively fast.

The analysis is based on the comparison between the number of detected objects in the
region of interest, considering just the car class of objects, and the number of objects actually
present in the frame. Such a number has been manually obtained by visual checking by
the authors for a sample video and checking for the relevant frames in which the region of
interest is occupied.

Figure 11 reports the frames in which false negatives (FN) and false positives (FP)
occur. The FN condition is faced if the number of visible objects nvisible is greater than the
number of detected objects ndetected, thus there has been a missed detection. In the case that
ndetected > nvisible, it means that an object is detected even though it is not present, i.e., a
false positive case.

Figure 11. Detection error for cars in the region of interest.
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Table 1 reports the percentage of false positives and false negatives for car detection,
calculated as the ratio between the number of frames with error and the number of frames
considered in the sample video. Moreover, the maximum number of consecutive frames in
which the detection is not reliable is indicated, as well as the mean value and its variance.

Table 1. Detection reliability indexes with error rate, maximum number of consecutive frames, mean
number of consecutive frames with error, and variance in the number of consecutive frames with
error.

False Positive CAR False Negative CAR

Rate 1.9% 3.6%
Maximum consecutive frames 2 5
Mean 1.07 1.87
Variance 0.07 1.45

As shown in Table 1, the false negative rate is higher than the false positive one, similar
to what is obtained in [19,21], meaning that there is a higher tendency to miss the detection
rather than creating false detections. Moreover, when the error is there it may last for a
relatively long time. In fact, given the frame rate of 24 fps, in the worst-case scenario, an
error lasting for 5 frames is equivalent to about 200 ms duration of missed detection.

As mentioned in Section 2, in the literature there is a relevant amount of studies
regarding roadside vehicle localization. In Table 2, a comparison in terms of detection relia-
bility for the proposed method with respect to different and more expensive technologies
such as multiple fish-eye and thermal cameras [19] and single LiDAR [21] installed at the
intersection is reported.

Table 2. Detection reliability comparison with the state-of-the-art methodologies.

Proposed Method Multiple Cameras [19] Single LiDAR [21]

False Positive 1.9% 0.07% 2.59%
False Negative 3.6% 3.45% 16.38%

From the table, it can be seen how the false positive rate is larger than the one obtained
in the multiple cameras approach, while it is lower than the LiDAR-based system. On the
other hand, the percentage of false negatives is much lower than [21] and still comparable
to [19].

5.2. Localization Accuracy

This paragraph is dedicated to the analysis of the accuracy of the localization per-
formed with the methodology presented in the previous section. In particular, experimental
validation of the model is performed considering as a ground truth a GPS with RTK correc-
tion installed on a small city car used for the tests. The tests were performed driving the
car in the region of interest at the following constant speeds: 5, 10, and 20 km/h.

In Figure 12, it is possible to compare, for different car speed values, the positioning
estimate of the proposed system using the camera (i.e., black circles) and the latitude–
longitude coordinates coming from the RTK-corrected GPS (i.e., red points) assumed as
ground truth.

As shown in the plots, the localization is quite well reproduced for all the vehicle
speeds considered. To perform a more quantitative analysis of the localization accuracy, the
estimation error is calculated by moving to UTM coordinates. It is worth mentioning that
the GPS data, having a sampling frequency of 10 Hz, have been over-sampled with linear
interpolation to match the frame rate of the camera (i.e., 24 fps). Furthermore, in order to
have a better understanding of the performance of the methodology presented, the error is
split into the longitudinal direction of the vehicle and the lateral one, with respect to the
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vehicle heading that has been obtained, considering at each time instant two consecutive
RTK-corrected GPS points.
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(a) (b)
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Figure 12. Latitude–longitude positioning comparison between camera estimate and RTK-corrected
GPS for different velocities. (a) Car speed: 5 km/h. (b) Car speed: 10 km/h. (c) Car speed: 20 km/h.
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Figure 13 shows the point-wise trend of the longitudinal and lateral error with respect
to the vehicle for the different speed values as a function of the distance of the vehicle
from the camera. As can be seen from the plots, the longitudinal error is positive in most
of the cases, meaning that the estimate is ahead with respect to the RTK-corrected GPS
position. This is mainly because of the fact that the point of the 2D bounding box chosen
(i.e., mid-point of the bottom edge) for the localization estimate does not totally match the
GPS antenna position on the car roof. Moreover, it is possible to observe an error increase
for all conditions considered when the distance from the camera is greater than 22 m. A
similar behavior is visible also for the lateral error. In fact, generally, the farther the object
is from the camera, the worse the object detection quality because of a smaller amount of
pixels occupied by the object in the frame. As a consequence, the detection performance
and, thus, the proposed localization technique that relies on the bounding box points’
positions in the image, is lower.

(a) (b)

(c)

Figure 13. Analysis of the longitudinal and lateral error with respect to the vehicle direction. (a) Car
speed: 5 km/h. (b) Car speed: 10 km/h. (c) Car speed: 20 km/h.

In Table 3, the root mean squared values of the error trends for the three conditions
are reported. In general, a good accuracy of the localization can be observed, with the
longitudinal error that seems to have a dependency on the speed of the vehicle, being
anyhow bounded below 1.5 m at the highest speed tested. However, thanks to the specific
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point of the bounding box chosen (i.e., backward with respect to the front of the vehicle),
there is always a physical safety factor equal to half of the vehicle length to be considered,
thus making the positioning communicated by the infrastructure to surrounding vehicles
still conservative. As far as the lateral error is concerned, no significant differences are
shown in Table 3, with all values ranging around 0.4 m for all vehicle speeds considered.

Table 3. Localization root mean squared error analysis.

Error X (m) Error Y (m)

5 km/h 0.68 0.35
10 km/h 0.95 0.49
20 km/h 1.47 0.43

Comparing the localization accuracy results of this experimental campaign to some of
the works reviewed in Section 2, it is important to note that all of the works adopt the same
ground truth source (i.e., RTK-corrected GPS), thus making the comparison reasonable.
Table 4 compares the localization performances of the proposed system with both similar
and different technologies. The work in [15], similar to the present study, adopts a single
RGB camera to reconstruct the vehicle position in the 2D world coordinate system from
the 2D camera coordinates by optimizing the transformation matrix based on the acquired
data. In [19], a detection system is proposed fusing fish-eye and thermal cameras to localize
vehicles at the intersection, while the authors in [21] present a localization method based
on a single LiDAR installed on a pole at an urban intersection. A multiple LiDARs method
is investigated in [22], showing the capabilities of a system combining IMM and JPDA for
vehicle position and velocity estimation.

Table 4. Comparison of localization accuracy with state-of-the-art techniques.

Proposed
Method Single Camera [15] Multiple Cameras [19] Single LiDAR [21] Multiple LiDARs [22]

Average error 0.62 m 1.6 m 0.27 m 0.14 m 0.1 m
Maximum error 1.05 m 2.5 m 0.50 m 0.32 m 0.5 m

Furthermore, the work presented in [15] proposes the normalized root mean squared
error (RMSE) as a metric for assessing the localization performance. Figure 14 shows the
trend of the relative error calculated according to Equation (8) as a function of the distance
from the camera dCAM

i , for the case of a car speed equal to 20 km/h.
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Figure 14. Normalized localization error: car speed 20 km/h.
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Table 5 contains the RMSE, as well as the maximum relative error for the proposed
method and the data reported in [15], showing a relevant improvement in this metric.

Table 5. Relative localization error: RMSE and maximum absolute error.

Proposed Method Single Camera [15]

RMSE 3.9% 12.0%
Maximum error 7.0% 18.0%

5.3. Delay Analysis

The last part of this section is devoted to an analysis of the total delay, accounting for:

• image acquisition;
• image detection and processing;
• communication delay.

The first two sources of delay can be easily evaluated thanks to the “ROS topic delay”
function. Figure 15 shows the trend of the time delay between the image acquisition and
the ROS message publication after image detection and processing, with a mean value
equal to 98 ms.

Time [min]

D
ela

y 
[m

s]

Time [s]

D
ela

y 
[m

s]

Figure 15. Total delay: composed of image acquisition, image detection, and computational time.

To evaluate the image acquisition time, which is a characteristic of the camera module,
a glass-to-glass latency test [32] was performed, showing an average time of 55 ms. In this
way, it is possible to split the average delay of 98 ms into 55 ms as the average time for
image acquisition and the remaining 43 ms as the time required for image detection and
processing.

As far as the communication delay is concerned, as shown in Figure 16, an end-to-end
loop was designed to broadcast a DENM message through the public Mosquitto broker
to an external PC, synchronized with the roadside unit. The RSU republishes the same
message on a new topic to be visible to the roadside computational unit (i.e., Jetson Nano
module), which is then able to calculate the difference between the timestamps of the
originating message and the one re-broadcast by the development PC. Therefore, this time
difference is equivalent to twice the communication delay. In Figure 17, the trend in the
end-to-end communication delay is reported which, by dividing by two, ends up to be on
average 198 ms. This quite high value is mostly due to the use of a public online broker
and the use of 4G modems for the internet connection, which has been analyzed in detail
in [33].
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Figure 16. End-to-end infrastructure communication delay loop.

Figure 17. End-to-end infrastructure communication time delay.

Table 6 summarizes all the sources of delays, with the communication delay proving
to be the most relevant one, being responsible for more than half of the total 296 ms delay.

Table 6. Image acquisition, detection, and communication delay analysis.

Average Process Time (ms)

Image acquisition 55
Image detection 43
Communication 198

Total delay 296

6. Discussion

In the previous section, a comparison with works available in the literature [15,19,21,22]
proposing different methodologies and technologies for cooperative roadside object local-
ization at the intersection was presented. Thus, the aim of this section is to further discuss
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the results previously shown, highlighting the positive and the negative aspects of the
system proposed in this research activity.

As far as the reliability of the detection system based on an open platform (i.e.,
GStreamer and NVIDIA® DeepStream SDK) is concerned, the performed analysis shows
that the detection reliability of the proposed method on the one hand can be improved
for both false positive and false negative conditions. On the other hand, the achieved
results are definitely good if related to the number of devices and to the cost of the sensors
involved in the setup adopted.

When considering the localization performance, the proposed methodology guaran-
tees much higher accuracy than the single camera calibration system presented in [15],
while more complex and expensive configurations are able to achieve even better results in
terms of average and maximum estimation error. It is worth highlighting that the obtained
accuracy is worse than multiple sensor systems using more refined and computationally
expensive methods. In fact, the work in [19,21] provides an indication of the latency re-
quired for the sensor processing time, perception, and localization algorithms, both around
185 ms, a value much higher than the total delay for image acquisition and detection (i.e.,
98 ms) observed and reported in the previous section.

As observed in Figure 13, the quality of the detection and, thus, of the localization
worsen as the vehicle moves further from the camera. This is due to the fact that the
resolution of the camera is limited to 720p in order to find a trade-off between the detection
performances and the costs. In fact, choosing cameras with a higher resolution would re-
quire on the one hand the training of a different neural network for the detection algorithm,
while on the other hand, the computational burden for the roadside unit would increase,
eventually making the overall system not able to run in real-time.

7. Conclusions

This paper presents a full-scale experimental testing of a roadside unit (RSU) for
vehicle localization based on a USB camera module. The detection pipeline is based on
GStreamer, making use of an NVIDIA® DeepStream SDK application, while the positioning
is obtained with simple transformation procedures based on OpenCV libraries. Exper-
imental validation shows limited false positive and negative rates (i.e., 1.9% and 3.6%
respectively) and good localization accuracy, with an error smaller than a similar approach
presented in the literature both in terms of absolute (average 0.62 m) and relative error (3.9%
RMSE). The comparison with state-of-the-art methodologies indicates how the proposed
algorithm has better localization performance with respect to similar studies, while more
complex and computationally expensive systems still exhibit a lower estimation error. Fur-
thermore, the analysis of the delays indicates that in the approach proposed in this paper,
the most relevant source of latency is the communication layer with the online Mosquitto
public broker, while the image acquisition and detection can be limited to less than 100 ms.

These suggest as future developments, on the one hand, to extend the experimental
campaign both to assess different roadside unit locations and the performance in pedestrian
position estimation, and to provide more statistical data. On the other hand, to explore
alternative communication strategies to limit the overall latency, which is crucial for safety-
critical applications.
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