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Abstract
Purpose—Breathing parameters change with activity and
posture, but currently available solutions can perform
measurements only during static conditions.
Methods—This article presents an innovative wearable sen-
sor system constituted by three inertial measurement units to
simultaneously estimate respiratory rate (RR) in static and
dynamic conditions and perform human activity recognition
(HAR) with the same sensing principle. Two units are aimed
at detecting chest wall breathing-related movements (one on
the thorax, one on the abdomen); the third is on the lower
back. All units compute the quaternions describing the
subject’s movement and send data continuously with the
ANT transmission protocol to an app. The 20 healthy
subjects involved in the research (9 men, 11 women) were
between 23 and 54 years old, with mean age 26.8, mean
height 172.5 cm and mean weight 66.9 kg. Data from these
subjects during different postures or activities were collected
and analyzed to extract RR.
Results—Statistically significant differences between dynamic
activities (‘‘walking slow’’, ‘‘walking fast’’, ‘‘running’’ and
‘‘cycling’’) and static postures were detected (p < 0.05),
confirming the obtained measurements are in line with
physiology even during dynamic activities. Data from the
reference unit only and from all three units were used as
inputs to artificial intelligence methods for HAR. When the
data from the reference unit were used, the Gated Recurrent
Unit was the best performing method (97% accuracy). With
three units, a 1D Convolutional Neural Network was the
best performing (99% accuracy).
Conclusion— Overall, the proposed solution shows it is
possible to perform simultaneous HAR and RR measure-

ments in static and dynamic conditions with the same sensor
system.

Keywords—e-Health, Human activity recognition, Respira-

tory monitoring, Internet of medical things, Telemedicine.

INTRODUCTION

A wearable device is a technology that can be worn,
incorporated in clothes or as an accessory, and pro-
vides a series of signals and data regarding the subject’s
status and health, as well as data regarding the sur-
rounding environment.1 By means of wearables, it is
possible to obtain physiological parameters without
interfering with daily life activities, to reduce the
obtrusiveness to a minimum and to enable a continu-
ous and extended monitoring. Wearables find appli-
cations in several fields, including health, wellbeing,
and fitness.4

Examples of parameters which can be measured are
body and skin temperature, respiratory rate (RR),
heart rate (HR) and pulse rate (PR), arterial blood
pressure (ABP), blood glucose concentration, galvanic
skin response (GSR) or electrodermal activity (EDA),
peripheral capillary oxygen saturation (SpO2), photo-
plethysmogram (PPG), electrocardiogram (ECG),
electroencephalogram (EEG), electromyogram
(EMG),18 as well as parameters regarding the sur-
rounding environment such as temperature, humidity,
air pressure, and concentrations of various pollu-
tants.12

Wearables can be integrated in telemonitoring sys-
tem, which usually follow the so-called two-hop
architecture.24 Its name derives from the fact that there
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are two steps of data transmission: the first from sen-
sors to a gateway, with the communication performed
by a sensor-manager link technology, and the second
from the gateway to data management section, thanks
to cellular link technologies such as Wi-Fi, 4G, and
5G.5 The networks that are obtained are called Wire-
less Body Area Networks, or WBANs.1

Remote Monitoring of Respiratory Parameters

In the healthcare field, the opportunity to identify
abnormalities in RR is fundamental to forecast cardiac
arrest,22 exacerbations,23 admissions to the Intensive
Care Unit, and other adverse clinical events.39

Despite the relevance of RR as prognostic factor,
the current gold standard for measuring RR is the
number of breaths performed in one minute, identified
through auscultation or observation, which is not
suitable for prolonged monitoring outside the clinical
environment. An alternative to this is the employment
of dedicated devices, but a limitation that is found in
several studies is that physiological parameters are
usually detected with spot measurements and when the
subject is at rest, while it is known that physical
activity has an influence on cardiorespiratory func-
tion.21,33

Systems for continuous monitoring of breathing can
use wearables based on different technologies:
PPG-derived signals (e.g., in smartwatches31), respira-
tory inductance plethysmography (RIP),41 resistance-
based sensors,11,19,42 capacitance-based sensors,32

inertial measurement units (IMUs),16,42 or fiber optic
sensors.29 Some of these sensors can be embedded in
garments.8 Although there are many proposed solu-
tions, there is still a paucity of commercially available
devices that are dedicated to respiratory parameters.
The most commonly commercially available solutions
are the smartwatches with PPG sensors, but the PPG
signal is reliable for RR estimation only in resting
conditions, due to the excessive motion artifacts pre-
sent when subjects are performing dynamic activities.
Considering the decreased intensity of PPG-derived
respiratory signal with increasing RR, high RR is
difficult to accurately detect from PPG signals, espe-
cially for values higher than 30 breaths per minute
(bpm).27 Other technologies have different limitations.
Most devices based on the movement of the chest wall
and described in the literature only acquire the respi-
ratory monitoring with one degree of freedom. How-
ever, it is known in the literature that different regions
of the chest wall contribute to the breathing activity,
and the level of contribution changes in different
postures.37 In RIP, two bands are applied, one at the
thoracic level and one at the abdominal level, but the
slippage of bands can lead to inaccurate readings.38

The advantage of using wearable devices is that they
are not cumbersome and can be used to monitor
physiological parameters during daily life activities and
outside of clinical settings. However, as respiratory
parameters are known to change during different
activities and in different postures,20 having a system
that combines respiratory parameters in static and
dynamic conditions and human activity recognition
(HAR) would provide even more clinically relevant
information.

Activity Recognition Systems

The current wearable technologies that can be used
to implement HAR can be sensor-based, vision-based,
or radio-based. Sensor-based technologies are the ones
that can be used without environmental constraints.
Linear accelerations13 and angular velocities26 can be
detected via micro-electro-mechanical systems
(MEMS), which measure either capacity changes or
the deflection of magnetically excited comb structures.
Their use is based on demonstrated relationships
between accelerometer output and energy expenditure
in studies on gait analysis and ergonomics.44 Baro-
metric pressure sensors, on the other hand, can be
particularly useful in fall detection.30 Data obtained
from the employed sensors can then be fed to an
artificial intelligence algorithm based on machine or
deep learning techniques.

Aim of the Work

The present research work has three main goals: one
is to present an advanced prototype suitable for con-
tinuous monitoring of respiratory parameters in static
and dynamic conditions; another one is to exploit the
possibility to perform HAR from the same raw sensor
data used for respiratory monitoring; the third one is
to use the knowledge on performed activity to fine-
tune a RR estimation algorithm and thus improve
accuracy. The first point was addressed by optimizing
a previously validated IMU-based technology, while
the second was performed with artificial intelligence
methods. These points are addressed in ‘‘Materials and
Methods’’ section. The third point is presented from
the post-processing point of view in ‘‘Results’’ sec-
tion and a possible workflow for future implementa-
tions is later discussed in ‘‘Discussion’’ section.
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MATERIALS AND METHODS

Dataset

The 20 healthy subjects involved in the research (9
men, 11 women) were between 23 and 54 years old at
the time of the study, with mean age 26.8, mean height
172.5 cm and mean weight 66.9 kg. The experimenta-
tion was approved by the Ethical Committee of
Politecnico di Milano (Protocol number: 20/2020) and
all participants signed an informed consent.

The protocol, shown in Fig. 1, included seven static
postures (sitting with support, sitting without support,
supine, prone, left decubitus, right decubitus, standing)
and five dynamic activities (walking slow at 4 km/h,
walking fast at 6 km/h, running, climbing up and
down the stairs, cycling). Each activity lasted 5 min.
The walking and running activities were performed on
a treadmill, while the cycling activity was performed on
an ergometer.

Hardware, Firmware, and Data Transmission

The present work exploits a wearable respiratory
Holter based on three Inertial Measurement Units
(IMUs).2 Two sensor units are aimed at detecting chest
wall breathing-related movements, one located on the
thorax and the other on the abdomen; the last IMU is
placed in a position not involved in respiratory motion
but integral with body movement.15,16

Data from the 9-axis IMUs were previously vali-
dated to extract respiratory parameters in static con-
ditions. An algorithm for the offline processing of the
obtained data was developed and validated with Opto-
Electronic Plethysmography (OEP) on healthy sub-
jects.17 A comparison with OEP for the breathing
frequency estimation demonstrated that the device
based on the inertial measurement units (IMU-based
device) provided optimal results in terms of mean
absolute errors (< 2 breaths/min) and correlation
(r > 0.963). However, raw data were never exploited
in terms of HAR, which is of great interest in combi-
nation with respiratory parameters.

In this paper, the reference unit is placed on the
lower back because its movement is integral with the
one of the body trunk, but not involved in respiratory
movement. The main components of each unit of the
device are an inertial measurement unit (ICM-20948),
and a microcontroller module with an integrated ANT
transceiver (MDBT42Q, based on the microcontroller
nRF52832). The device is attached to the skin of the
subject with disposable ECG electrodes. The three
units composing the wearable systems, once closed, are
represented in Fig. 2 (top). In the same figure (bottom
left), the thoracic and the abdominal unit are shown

when a subject is wearing them. The thoracic unit is
placed at the level of the abdominal rib cage, while the
abdominal unit is placed next to the belly button.
Fig. 2 also shows the reference unit placed on the
lower back of the same subject (bottom right).

Data coming from the three units are collected ei-
ther by means of an ANT USB2 Stick that is plugged
into a personal computer during the acquisitions or by
an Android smartphone that supports ANT.

The raw sensor data read by the IMU are composed
of three accelerometer components, three gyroscope
components and three magnetometer components and
they are sent to the nRF52832 with a 40 Hz rate. The
microcontroller, then, computes the 9-axis quaternion
with the algorithm developed by Madgwick et al.,28

transmitting one quaternion out of four to the USB2
stick or smartphone, resulting in a 10 Hz frequency,
through the ANT communication protocol.

The USB2 Stick or the smartphone is the receiver of
the data sent by the nRF52832 and it is configured as
the master, while the peripheral units work as the
slaves. The topology of the network is called Shared
Channel and is shown in Fig. 3. The master channel
has a channel period of 30 Hz, so that it has a 10 Hz
time slot to address each of the units.

Each sent quaternion is expressed through a float-
ing-point value, ranging from � 1 to 1 and it is
transmitted in a byte of the data payload. Moreover, it
is also present a counter, increased every four quater-
nions calculated with a frequency of 40 Hz, to identify
the n-th transmission.

Respiratory Signal Processing

The process which leads to the respiratory param-
eters extraction from the data collected by the units is
performed offline using a software that implements the
previously validated algorithm by Cesareo et al.17 In
the cited work, the estimation had a mean absolute
error < 2 breaths/min with respect to a gold standard
measurement (optoelectronic plethysmography) and
was tested only in static conditions. The choice of the
parameters corresponds to what was used in the pre-
viously validated algorithm in static conditions.

Preliminary validation data during dynamic activi-
ties (walking and running at different speeds) showed
good agreement between the presented IMU-based
system and a Cosmed K5 metabolic cart, as shown in a
work by Angelucci et al.7 In dynamic conditions, a
fine-tuning of the algorithm by Cesareo et al.17 to
adapt the code to the processing of breathing during
dynamic activities was added by including the knowl-
edge of the performed activity in the respiratory signal
processing.6 In particular, the variations are in the cut-
off frequencies of some of the implemented filters. The
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whole elaboration algorithm can be subdivided into
four main parts: pre-processing, dimension reduction,
spectrum analysis, and processing.

In the pre-processing phase, the data divided by unit
of origin are organized in four arrays, where missing
data are replaced after interpolation is performed. The
quaternions are created by combining the arrays.
Then, the window to be analyzed is manually selected
to avoid a transitory phase necessary for the quater-
nion to stabilize. The same selection was done in to
train the HAR algorithm that is presented in the next

section. An example of window selection of a single
unit is shown in Fig. 4.

Afterwards, the quaternion product is computed,
providing the orientations of the thoracic and
abdominal unit referred to the orientation of the ref-
erence unit. (1) and (2) show how these computations
are performed:

Th
Refq̂ ¼ Th

Earthq̂� Ref
Earthq̂� ¼ Th

Earthq̂� Earth
Ref q̂ ð1Þ

Ab
Refq̂ ¼ Ab

Earthq̂� Ref
Earthq̂� ¼ Ab

Earthq̂� Earth
Ref q̂ ð2Þ

‘Th’ indicates the thoracic unit, ‘Ab’ the abdominal
unit, and ‘Ref’ the reference unit. y

x
bq is the quaternion

describing the position of a generic point x with respect
to a generic point y, and all quaternions are expressed

in the same way. For instance, Th
Refq̂ describes the

FIGURE 1. Healthy subjects involved in the experimental protocol while performing the various activities.

FIGURE 2. Three units composing the wearable
system (top); thoracic and abdominal units worn by a male
subject (bottom left); reference unit worn by a male subject
and placed on the lower back (bottom right).

FIGURE 3. Schematic representation of the ANT Shared
Channel topology implemented in this research work
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position of the thoracic unit with respect to the refer-
ence unit. * refers to the quaternion conjugate, and �
to the quaternion multiplication.

After the quaternion product, the non-respiratory
movements are reduced because angular changes are
referred to the reference unit, which does not detect
breathing-related motions, but it is integral with trunk
movement. Then, the baseline is computed by means of
the moving average on 97 samples for each quaternion
component and subtracted to them to remove the
residual non-breathing movement. The generated
components are the input for the dimension reduction
block.

With the aim of reducing the dimension of the da-
taset, the Principal Component Analysis (PCA)36,43 is
performed. The first component, the one with the
greatest amount of variance explained, is computed for
the thorax and for the abdomen and considered as
respiratory signal and constitute the basis for the
spectrum analysis.

The generated signals are filtered with a Savitzky-
Golay FIR (Finite Impulse Response) smoothing filter
of the 3rd order with a window length of 31 samples.
This filter works using the linear least squares method
to fit successive sub-sets of adjacent data with a third
order polynomial. In this way, the noise is decreased
without changing the shape and the signal peaks
height. Then, the mean (fmean) and the standard devi-
ation (fstd) of the inverse of the distances between
subsequent peaks are considered to obtain a frequency
estimate. fmean and fstd are used to compute fthresh and
the procedure is performed both for the thoracic
component and the abdominal component as in (3):

fthresh ¼ max fthreshunderscoremin; fmean � fstdð Þ ð3Þ

fthreshunderscoremin is arbitrarily set at different values for
static postures (0.05 Hz, as in Cesareo’s algorithm) or
dynamic activities (0.2 Hz for walking and cycling,
0.4 Hz for running), so that a better filtering of low-
frequency components of dynamic activities is guar-
anteed.

Once the threshold frequencies of both the thoracic
and the abdominal unit are obtained, the low-fre-
quency threshold is computed as the minimum
between the abdominal low threshold and the thoracic
low threshold. The use of a low threshold helps in the
identification of the power spectral density (PSD) peak

related to the RR and does not consider very low
frequency peaks, often caused by movement artifacts.

Subsequently, the PSD estimate is computed
employing the Welch’s method, with the Hamming
window type, 300 samples as window size, and 50
samples of overlap.

The PSD maximum in the interval between the
computed low threshold and a maximum (1 Hz for
static postures, 0.75 Hz for walking and cycling,
1.4 Hz for running) is identified (fpeak). This value is
used to build the adaptive band-pass filter settings
(centered in fpeak). The upper and lower cut-off fre-
quencies, for both thorax and abdomen, are obtained
as in (4) and (5):

fU ¼ fpeak þ 0:04Hz ð4Þ

fL ¼ max fthreshm ; fpeak � 0:04Hz
� �

ð5Þ

The final processing block comprises all the pro-
cesses intended to extract breathing frequency and
other respiratory parameters from the signals obtained
after the dimension reduction block.

The first step is the application of the band-pass
filter with the previously set cut-off frequencies fU and
fL. Since the frequencies are dependent on fpeak, the

result is an adaptive filter, based on the specific anal-
ysed recording.

Then, a parametric tuning based on the fpeak value is

performed. This is necessary for the subsequent steps
of filtering and maxima and minima detection. In
particular, the involved parameters are the window
length in terms of samples for the third order Savitzky–
Golay filter and the minimum peak distance. In fact,
the algorithm chooses the tallest peak in the signal and
ignores all peaks within the decided distance and the
minimum prominence threshold, through which is
possible to set a measure of relative importance; a
more detailed description of the parameters can be
found in the work by Cesareo et al.17

Afterwards, filtered signals are furtherly smoothed
through the application of a third order Savitzky–
Golay FIR filter, to optimize subsequent detection of
maxima and minima point, which are identified
applying the parameters previously set. Moreover, in
addition to the thoracic and the abdominal signal, the
process is repeated also for the sum of the two signals
once they were filtered with the Savitzky–Golay filter.
RR is thus obtained breath-by-breath and the values
obtained for each posture or activity are reported in
Section ‘‘Results’’.

FIGURE 4. Window selection to remove the initial transient
period at the beginning of each activity or posture.
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Human Activity Recognition Algorithm

After the window selection, shown in Fig. 4, the
data processing to train the activity recognition algo-
rithm is different from the one for the respiratory
analysis. All parameters of the algorithms are deter-
mined empirically to maximize the outcome.

The next step involves the creation of a single large
dataset containing all the activity proper labeled for all
the subjects. In a first phase, the algorithm is run on
the data of the reference unit, because it can be con-
sidered representative of the subject’s positions. Sec-
ondly, the algorithm is trained on the signals coming
from all three units (thoracic, abdomen, and refer-
ence). In both cases, a dataset is obtained merging the
tasks ‘‘sitting without support’’ and ‘‘sitting with sup-
port’’ in a single label called ‘‘sitting’’, and the tasks
‘‘walking at 4 km/h’’ and ‘‘walking at 6 km/h’’ in a
label called ‘‘walking’’, so the final dataset has 10 la-
bels. This is done to increase the variability of the
signal during the training process, so that the algo-
rithm can be more robust in identifying a person that
sits with a back support from a supine one and
between a fast walk and a run.

The resulting dataset is unbalanced, because the
labels ‘‘sitting’’ and ‘‘walking’’ had about twice the
data of the other labels. The unbalancing is kept in the
situation with one unit, while data are balanced in the
training with three units. A balancing procedure is
used, which consists in reducing the samples of each
label to same number of the activity with the lowest
amount of data.

The implemented preprocessing steps are data
standardization, label encoding and segmentation.
Standardization is performed with (6), so that data are
centered on 0 and properly scaled. l is the mean and r
is the standard deviation.

xstd ¼ x� l
r

ð6Þ

The data are then segmented in non-overlapping
windows of 200 samples in length, equal to 20 s of
recording.

After these steps, splitting into training and test sets
is required. It is chosen to use 80% of the data for the
training set and the remainder 20% for the test set. The
seed to the random generator was set equal to 42.

In machine learning methods the feature extraction
must be performed before the model training. The se-
lected features are both in time domain and frequency
domain for one unit, while only the ones in time do-
main were used for the three units.

The time domain features are extracted from the
time series of the signal and are the following: mean,
standard deviation, variance, kurtosis, skewness, peak-

to-peak distance, median, interquartile range. The
frequency domain features are extracted from the Fast
Fourier Transform (FFT) of the signal and are the
following: mean, standard deviation, skewness, max-
ima and minima of the FFT, mean and maximum of
the power spectral density.

Three machine learning methods are used: a K-
Nearest Neighbor classifier (KNN), a Random Forest
classifier (RF) and a Support Vector Machine (SVM).

In the case of the KNN classifier, the metric chosen
for the computation of the distance is the Euclidean
metric.34 The optimal number of neighbors K is
around 5, since afterwards the accuracy score
decreased.

In the case of the RF classifier,40 the splitting rule to
create the nodes of the trees that compose the forest is
the Gini Criterion. Afterwards, in each node the cor-
responding attribute is chosen by minimizing the
impurity, as it is traditionally done with RF classifiers.

Since the data of this research project cannot be
separated linearly in the original space, to develop a
SVM a kernel is used. In this case, the Radial Basis
Function Kernel is used, which can be expressed
mathematically as (7):

K X1;X2ð Þ ¼ exp � X1 � X2k k2

2r2

 !

ð7Þ

where r is the variance and the hyperparameter kX1 �
X2k is the Euclidean distance between two points X1

and X2. In this case, distance is used as an equivalent of
dissimilarity: when the distance between the points
increases, they are less similar. By default, r is taken
equal to one, so the kernel is represented by a bell
graph, that decreases exponentially as the distance
increases and is 0 for distances greater than 4.

Five additional networks are created using deep
learning methods; their characteristics are shown in
detail in Fig. 5. The networks used are the following: a
1D Convolutional Neural Network (1DCNN), a 2D
Convolutional Neural Network (2DCNN), a single-
layer Long Short Term Memory (BASE LSTM), a
multi-layer Long Short Term Memory (MULTI
LSTM) and a Gated Recurrent Unit (GRU).

All networks use the Sequential Model to construct
a plain stack of layers where each layer has exactly one
input tensor and one output tensor. During the opti-
mization part of the algorithm, the error at the current
state must be iteratively estimated. For all networks,
the chosen loss function is the Sparse Multiclass Cross-
Entropy Loss as in (8), used to calculate the model’s
loss such that the weights can be updated to minimize
the loss on subsequent evaluations. The Cross-Entropy
loss is defined as:
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J wð Þ ¼ �
X
N

i¼1

yi log ŷið Þ ð8Þ

where w refers to the model parameters, yi is the true
label and byi is the predicted label.

After that, to reduce the losses, an optimizer is used
to adjust the neural network’s attributes such as
weights and learning rate. The optimization method
for the CNNs and GRU used is the Adam optimizer25

based on adaptive estimates of lower-order moments.
For the LSTM networks, the RMSprop optimizer is
used. The batch size is a hyperparameter that defines
the number of samples taken from the training dataset
to train the network before updating the internal
model parameters; the chosen value is 16.

Questionnaire

An evaluation questionnaire was given to the sub-
jects participating in the study to collect impressions
about usability, acceptance, and wearability of the
wearable system. It is based on the System Usability
Scale (SUS)14 and consists of 10 items, with odd-
numbered items phrased positively and even-numbered
items phrased negatively. The evaluation criteria of the
SUS usability questionnaire were maintained in this
application. In particular, the 10 items included in the
ad-hoc questionnaire for the device evaluation are lis-
ted in Table 1.

The items are presented as 5-point scales numbered
from 1 (‘‘Strongly disagree’’) to 5 (‘‘Strongly agree’’)
and the subject had to give a score to each item. Age,
gender, weight, and height were asked at the beginning
of the questionnaire.

RESULTS

Respiratory Rate

RR was studied for the 20 involved subjects in the
different postures and activities. Due to the unfavor-
able signal-to-noise ratio, parameters could not be
extracted in the case of climbing stairs with the previ-
ously validated algorithm, therefore those values are
not included in the analysis. The dataset presented puts
together the two sitting positions but separates
‘‘walking slow’’ and ‘‘walking fast’’ to show the sen-
sitivity of the respiratory analysis algorithm to the
different levels of effort. The boxplots of the median
values obtained for each subject in the different con-
ditions are shown in Fig. 6.

The distributions were statistically compared one
with the other with a non-parametric Friedman test.
The Shapiro–Wilk normality test was failed

(p < 0.05); also, the Equal Variance Test (Brown-
Forsythe) was failed (p < 0.05). The differences in the
mean values among the groups were greater than
would be expected by chance; there is a statistically
significant difference (p £ 0.001).

To isolate the group or groups that differ from the
other, the Bonferroni t-test was used as multiple
comparison procedure. The p-values obtained with
these comparisons were analyzed. The activities,
‘‘walking slow’’, ‘‘walking fast’’, ‘‘running’’ and ‘‘cy-
cling’’ have a statistically significant difference with
respect to static postures (p < 0.05 in all cases), but
not always one with respect to the other. ‘‘Walking
slow’’ and ‘‘walking fast’’ do not significantly differ
from ‘‘cycling’’ (p = 1.000) and between one another
(p = 1.000). This result confirms what is known in the
literature,9,10 i.e. that during physical activity RR
increases and this phenomenon is more evident when
the activity is more demanding (during ‘‘running’’).
Also, there is a statistically significant difference
between the ‘‘supine’’ and the ‘‘prone’’ positions
(p = 0.045) and between the ‘‘lying right’’ and the
‘‘prone’’ positions (p = 0.049). This is likely due to the
fact that the processing algorithm is designed to ana-
lyze the movement of the two units in the front with
respect to the reference unit, while in prone position
also the dorsal movement contributes to ventilation.3

Human Activity Recognition Algorithm

The results obtained with the previously introduced
methods with one unit are reported in Table 2.

Looking at the accuracy, the best performing model
is the GRU.

The results obtained with the previously introduced
methods with three units are reported in Table 3. From
the confusion matrix that can be obtained considering
every individual position or activity, the highest con-
fusion happens when the sitting position is predicted as
supine, and vice versa. This is observed both in case
with one unit and in the case with three units. This is
probably because the posture ’sitting’ includes data
obtained when the subjects were sitting with and
without a back support.

A direct comparison between the HAR methods
developed with one unit and those developed with
three is shown in Fig. 7.

In this case, all methods have better performances
when compared to the case with only one unit. The
best performing one is the 1DCNN. It must be con-
sidered also that the features extracted for the three
units are only concerning time, which suggests that the
inclusion of the frequency features could further im-
prove the accuracy.
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FIGURE 5. Deep Learning Networks implemented in this research project. (a) 1D Convolutional Neural Network (1DCNN); (b) 2D
Convolutional Neural Network (2DCNN); (c) Single-layer Long Short Term Memory (BASE LSTM); (d) Multi-layer Long Short Term
Memory (MULTI LSTM); (e) Gated Recurrent Network (GRU).
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Questionnaire

The subjects found the device easy to wear and
place, however most claimed they needed the support
to manage the device. Nearly eighty percent asserted
that the device attaching method makes placement
easier and improves wearability. Moreover, nobody
reported irritation or itching in the device mounting
areas, and almost no one wanted to take their device
off during activities. Around 70% of the participants
believe the device would not interfere with their daily
activities and that they would be able to sleep while
wearing it. Almost everyone believes that it is possible
to keep the device for long time, but only a few say
they can use it independently, probably because the
reference unit is placed on the lower back, so another

person is needed to place the unit properly at the
beginning of each acquisition. The actual results are
shown in Fig. 8 in comparison to the ideal ones.

TABLE 1. List of items in the ad-hoc questionnaire.

Item number Description Best score Worst score

I1 I think that the device is easy to wear and place 5 1

I2 I think that I need support to handle the device 1 5

I3 The attachment method of the device units makes the placement easier and improves wearability 5 1

I4 I would have preferred to remove the device during some activities 1 5

I5 I think I would be able to use the device independently 5 1

I6 I found the attachment method uncomfortable 1 5

I7 I think I could wear the device for a long time 5 1

I8 I think that using the device would negatively affect my daily life activities 1 5

I9 I think I could sleep as usual while wearing the device 5 1

I10 I had irritation and/or itching in the area of attachment during the test 1 5

FIGURE 6. Boxplots of the obtained values of RR in the different postures and activities. The labels are the following: 1—Sitting;
2—Supine; 3—Prone; 4—Lying Left; 5—Lying Right; 6—Standing; 7—Walking slow; 8—Walking fast; 9—Running; 10—Cycling.

TABLE 2. Evaluation metrics of the algorithms using data
from the reference unit.

Method Accuracy Precision Recall F1-score

KNN 0.92 0.94 0.95 0.94

RF 0.96 0.96 0.95 0.95

SVM 0.91 0.92 0.91 0.92

1D CNN 0.96 0.97 0.96 0.96

2D CNN 0.92 0.90 0.88 0.88

BASE LSTM 0.91 0.95 0.94 0.95

MULTI LSTM 0.90 0.88 0.88 0.88

GRU 0.97 0.97 0.97 0.97
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DISCUSSION

In the presented sensor system,15,16 two sensor units
are aimed at detecting chest wall breathing-related
movements, one is located on the thorax and the other
on the abdomen; the last IMU is placed on a position
not involved in respiratory motion but integral with
body movement, most often on the lower back. In fact,
the influence of posture on chest wall motion is
intensively studied in the literature. It was previously
studied that most of the chest wall volume change is
distributed in the thoracic compartment in vertical
postures and in abdominal compartment in horizontal
postures.37 For this reason, the system’s configuration
is particularly advantageous for a thorough analysis of
the chest movement during breathing in different
postures since it can account for the different contri-
butions of the chest wall in different positions.

The algorithm to extract breathing parameters
allowed to obtain results that confirm what is known in
the literature,9,35 i.e., that the frequency is higher in
dynamic conditions, and increases for increasing ef-
forts. Furthermore, it must be noted that most systems
are not able to provide measurements of RR during
demanding dynamic activities like running.

With a previous knowledge of the performed
activity, the respiratory signal processing can be fine-
tuned, and this system is able to accurately measure
this signal even during dynamic activity. A future
improvement of the project includes a new artificial
intelligence algorithm that combines HAR to auto-
matically decide how to process respiratory data.

A drawback of the actual signal processing algo-
rithm is that it requires a manual analysis window
selection, but this can be easily overcome by imple-
menting a sliding window algorithm.

This system is advantageous both for sports and
medical applications, due to its ability to measure this
parameter in a broad range of situations. However, the
signal-to-noise ratio is too low while climbing the stairs
and the algorithm could not be applied.

The results obtained showed an overall good capa-
bility to recognize different activities, independently
from the age or the gender of the subjects. Although
only features in time and not in frequency were used in
the case with three units, the comparison between the
use of a single units compared to the use of three,
showed that the second case works better, with higher
accuracy and f1-score both for machine and deep
learning methods. The dataset is however small and
during dynamic activities with a prominent frequency
component, like running or walking at a fixed speed.
Data should be collected from more subjects and in

TABLE 3. Evaluation metrics of the algorithms using data
from the three units.

Method Accuracy Precision Recall F1-score

1D CNN 0.99 0.99 0.99 0.99

2D CNN 0.99 0.99 0.99 0.99

BASE LSTM 0.97 0.97 0.97 0.97

MULTI LSTM 0.98 0.98 0.98 0.98

GRU 0.98 0.98 0.98 0.98

KNN 0.98 0.98 0.98 0.98

RF 0.99 0.98 0.98 0.98

SVM 0.98 0.98 0.98 0.98

FIGURE 7. Comparison between the accuracy of the different machine and deep learning methods with one unit (i.e., the
reference unit) and three units.
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more diverse condition to make the algorithm robust
for use outside of laboratory settings. A final consid-
eration regards the first step of the data preparation:
removing the initial transitory might have led to an
overestimation of the accuracy.

This work can be considered original with respect to
state of art of HAR because there are many studies
that works with the output data of the accelerometers
and gyroscopes, while there are few that use only
quaternion data. The three units only send quaternion
data, which allows to reduce the dimension of the
dataset (4 measures instead of 9 of the IMU). Only
using the quaternion allows to send all the needed data
in a single package without losing information.
Quaternions allow to distinguish quite well between
activity orientation-related, such as lying left and lying
right or supine and prone. It is also worth noting that
the device combines breath analysis with activity
recognition, making it very innovative.

A limitation of this work is that the results of res-
piratory parameters were not compared with a gold
standard, so accuracy of the adapted algorithm cannot
be assessed. However, the technical feasibility of this
solution was demonstrated. A trial on healthy subjects
during dynamic activities is needed to fully validate the
algorithm for dynamic activities. Subsequently, a trial
on patients can provide physiological results that are
clinically significant and that can be effectively used for
telemedicine purposes without the supervision of the
clinician. The proposed device could be applied in the
case of chronic respiratory diseases, such as COPD or
asthma, but also in cardiac diseases in which RR is
predictive of an adverse event, such as heart failure or
cardiac arrest. It is also possible to test this solution to

monitor at home the acute phase, the rehabilitation
phase, and the long-term clinical outcomes of Covid-
19. A feature that is needed for patient monitoring is
the generation of real-time alerts, but to determine
what thresholds or trends constitute a critical event a
pilot study is needed to gain relevant clinical data.
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