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Abstract—Recently, the posit number system has demonstrated
a higher accuracy over standard floating-point arithmetic for many
scientific applications. However, when it comes to implementing
accelerators for these applications, the tool support for this
arithmetic format is still missing, especially during the high-level
synthesis (HLS) step. In this paper, we incorporate the posit data
type into the high-level synthesis (HLS) design process, so that
we can generate the register-transfer level (RTL) implementation
directly from a given behavioral specification, but using posit
numbers instead of the classical floating-point notations. Our
evaluations show that, even if posit-based circuits require more
area than their floating-point counterparts, they offer higher
accuracy when using the same bitwidth. For example, using
posit arithmetic can reduce computation errors about two orders
of magnitude when compared to using standard floating-point
numbers. Our approach also includes an alternative to mitigate
the high overheads of the posits and broadening the potential use
of this format. We also propose a hybrid scheme that uses posit
numbers only in the private local memory, while the accelerator
operates in the classic floating-point notation. This solution is
useful when the designers want to optimize local memories and
data transfers, but still use legacy HLS tools that only support
traditional floating-point notations.

Index Terms—HLS, Computer arithmetic, Posit, Floating-point.

I . I N T R O D U C T I O N

IN recent years, data-intensive applications have permeated
many areas of computing due to the rise of deep learning and

the increasing demand for resolution in physical simulations
(e.g., molecular dynamics and weather forecasting). The excep-
tional performance achieved by these applications over the last
few years has been possible mainly due to the large increase in
available datasets and computational resources to analyze them.
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However, this trend of increasing computational models clashes
with the end of Moore’s law and Dennard scaling. Therefore,
maintaining performance improvement nowadays to enable
new software capabilities, such as physical simulations, is both
important and challenging. According to recent studies [1], an
interesting research direction in computer architecture is the use
of domain-specific architectures (DSAs), a class of processors
tailored to a specific domain or class of applications, or even
more specialized processors such as GPUs, field-programmable
gate arrays (FPGAs) and application-specific integrated circuits
(ASICs) (also known as accelerators) [2]. Such accelerators
are closely tailored to the needs of a given application and
can therefore achieve higher performance and higher energy
efficiency than general-purpose CPUs [3]–[6].

The use of FPGA accelerator cards has become more com-
mon in the last years thanks to the progress and availability of
integrated tool flows based upon HLS, which allow generating
highly-optimized hardware starting from a source code with
a higher level of abstraction [7], [8]. Nowadays, most of the
algorithms are written in high-level programming languages
like C/C++, where the functional execution of the program is
much faster and simpler than the counterpart register-transfer
level (RTL) simulation. Therefore, the HLS has boosted the
hardware/software co-design, making it possible to automate the
synthesis of new accelerators and to map complex workloads
onto domain-specific architectures [9].

Alongside the development of DSAs, new arithmetic formats
have also emerged recently in an attempt to mitigate the effects
of the end of Moore’s law and Dennard scaling [10]–[13]. In
the area of scientific and high-performance computing (HPC),
the IEEE 754™ standard for floating-point arithmetic [14] has
been for decades the format used for representing real numbers
in this kind of applications. Nonetheless, the appearance of
the disruptive posit™ arithmetic [15] in 2017 has shaken the
board. This novel way of representing real numbers mitigates
some of the shortcomings that the IEEE 754 standard presents
(such as dealing with signed zero, the multiple-bit patterns
wasted for indicating Not a Number (NaN) exceptions, or the
fact that reproducibility of results is not guaranteed), but is also
able to represent a wider range of values and provide more
accurate computations than floating-point numbers using the
same number of bits. However, these benefits come at a cost—
when implemented in hardware, posits require more hardware
resources, time, and power than the corresponding floating-point
units [16], [17]. The real advantage of using posit arithmetic
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comes from using fewer bits, thereby saving storage, memory
bandwidth, and energy without sacrificing accuracy. Changing
arithmetic, however, affects the entire hardware-software stack
from chip design to the application.

Prior studies have extensively examined the hardware costs
associated with posit arithmetic in the context of individual
arithmetic operations; however, there remains a dearth of
information regarding the interconnection and integration of
these components as a whole. In this paper, we present a proof-
of-concept implementation of an end-to-end methodology that
leverages the properties of posit arithmetic to create FPGA-
based systems and accelerate numerical kernels in scientific
computations. The major contributions of our work can be
summarized as follows:

• We design a RTL library of posit operators that adds
support for all the basic operations required in HLS. The
library is parameterizable for multiple bitwidths, including
32 and 64 bits, and target frequencies.

• We integrate the proposed posit library into an open-
source HLS flow, so accelerators based on this arithmetic
format can be automatically generated from the same
source code as floating-point applications.

• We perform an evaluation of the proposed solutions at
both single operator and application-level with PolyBench.
Experimental results demonstrate that, under the same
bitwidth, posit arithmetic reduces the error of computations
around two orders of magnitude, with an overhead of about
75% more area and 50% more latency with respect to
floating-point arithmetic. In terms of hardware resources,
the proposed 32-bit posit designs require, on average,
1.46× more LUTs, 1.73× more FFs, and 1.30× more
cycles than the corresponding floating-point designs.
Similar figures are found for the 64-bit case.

• We implement a hybrid scheme that uses posit arith-
metic in memory, while the accelerator logic remains
in floating-point format. This allows legacy HLS tools
without support for alternative formats to leverage posit
arithmetic; data can be stored in memory using a lower
bitwidth posit format while preserving the accuracy of
computations. Evaluation results show that this approach
allows for reducing the error of computations with a small
area overhead and a negligible increase in latency.

• We compare the proposed HLS flow with previous
works. FPGA synthesis results show that the proposed
posit designs provide lower overhead than those proposed
in previous works when compared to corresponding
accelerators designed for floating-point arithmetic.

The remainder of this paper is organized as follows: Sec-
tion II presents the basics of posit arithmetic and HLS. The
proposed methodology and strategies for integration of posit
operators into an HLS tool are presented in Section III.
Section IV explains the integration of the posit RTL library
into the tool, while the necessary changes in the design
flow related to memory allocation and integration of new
data formats are detailed in Section V. The application
benchmarks, implementation results and analyses are presented
in Section VII. Finally, Section VIII concludes this paper.
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Fig. 1. Generic n-bit posit binary encoding.

I I . B A C K G R O U N D

A. Posit Notation

Posit arithmetic [15] was introduced in 2017 as an alternative
to the ubiquitous IEEE 754 floating-point standard to represent
and operate with real numbers. Posit numbers (posits in short)
provide reproducible results across platforms and very few
special cases. Furthermore, they do not support overflow or
underflow, which reduces the complexity of exception handling.

A posit number configuration is usually defined by two
parameters ⟨n, es⟩—the total bitwidth n and the exponent size
es, i.e. the number of bits reserved for the exponent field.
Although in literature [15], [18], [19] the most widespread posit
formats have been Posit⟨8, 0⟩, Posit⟨16, 1⟩ and Posit⟨32, 2⟩, in
the latest version of the Posit Standard [20], the value of es is
fixed to 2. This has the advantage of simplifying the hardware
design and facilitates the conversion between different posit
sizes [21]. Therefore, such a configuration will be used in the
rest of the paper, denoting it as PositN , with N being the total
size and the length of the exponent field fixed to 2 bits.

Posit arithmetic only distinguishes two special cases: zero
and Not a Real (NaR), which are represented as 0. . .0 and
10. . .0, respectively. The rest of the bit patterns are used to
represent different real values, which are composed of four
fields as shown in Fig. 1: a sign bit (s), several bits that encode
the regime value (k), up to es = 2 bits for the exponent (e),
and the remaining bits for the normalized fraction (f ). The
regime is a sequence of l identical bits (r) finished with a
negated bit (r̄) that encodes an extra scaling factor k given
by (1),

k =

{
−l if r0 = 0

l − 1 if r0 = 1
. (1)

As this field does not have a fixed length, it may cause the
exponent to be encoded with less than 2 bits, even with no
bits if the regime is wide enough. The same occurs with the
fraction, which must be normalized with respect to the size
of the fraction field (2F ). The variable length of the regime
allows posit arithmetic to have more fraction bits for values
close to ±1 (which increases the accuracy within that range),
or to have fewer fraction bits for the sake of more exponent
bits for values with large or small magnitudes (increasing this
way the range of representable values).

The real value p of a generic posit is given by (2). The main
differences with the IEEE 754 floating-point format are the
existence of the regime field, the use of an unbiased exponent,
and the value of the fraction hidden bit. Usually, in floating-
point arithmetic, the hidden bit is considered to be 1. However,
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in the case of posits, it is considered to be 1 if the number is
positive, or −2 if the number is negative [21], [22].

p = (1− 3s+ f)× 2(1−2s)×(4k+e+s). (2)

In posit arithmetic, NaR has a unique representation that
maps to the most negative 2’s complement signed integer.
Consequently, if used in comparison operations, it results
in less than all other posits and equal to itself. Moreover,
the rest of the posit values follow the same ordering as
their corresponding bit representations. These characteristics
allow posit numbers to be compared as if they were 2’s
complement signed integers, eliminating additional hardware for
posit comparison operations [22]. Another interesting feature of
posit arithmetic is that it includes fused operations. In operations
of this kind, which take more than two operands, intermediate
results are accumulated in a larger register called quire, avoiding
intermediate roundings and thus providing even more accurate
results [23], [24].

Although posit arithmetic was designed to have similar
circuitry to the floating-point format, the variable length of
the fields and the signed hidden bit of the fraction requires
redesigning some of the logic when implementing posit
operators. However, such an effort might be compensated by
the benefits of using posit arithmetic—its higher accuracy, when
compared with standard floating-point, can reduce the bitwidth
of the data and operations of scientific computations without
sacrificing the accuracy of the results, with all the benefits this
entails at the hardware level [25].

B. High-Level Synthesis

HLS is an automated design process that, starting from the
high-level description of an application, an RTL component
library, and specific design constraints, finds an RTL structure
that implements the given behavior [7], [8]. The main steps
an HLS tool executes are the following:

1) Compilation. HLS always begins with the compilation of
the functional specification. This first step transforms the
high-level input description (typically ANSI C/C++) into
a formal representation. Usually, it includes several code
optimization, such as data dependency solving, dead-code
elimination, or loop transformations.

2) Allocation. The type and the number of hardware
resources (such as functional units (FUs), storage, or
connectivity components) are defined according to the
design constraints. Such components are selected from
the RTL component libraries. The use of numerical
representations with lower bitwidth has a direct impact
on the hardware resources of the final design, since less
memory and smaller FUs will be allocated instead.

3) Scheduling. All operations required in the specification
model must be scheduled into control steps. This is done
considering the functional components and the operation
priorities and dependencies. Operations can be chained, or
can be scheduled to execute in parallel provided there are
no data dependencies and sufficient available resources.
Again, different numerical representations might result
in different scheduling results. Typically, reducing the

bitwidth of the signals also reduces the datapath delay,
yielding faster circuits.

4) Binding. Within the computed schedule, each variable
that carries values across control steps must be bound to
a storage unit or register. Variables with non-overlapping
life intervals may share the same register. In a similar
manner, operations must be bound to the capable FUs,
preventing those that execute concurrently from sharing
the same resource instance. Register and FU binding also
depends on interconnection binding, which introduces
the steering logic or connection units (such as buses or
multiplexers) to perform transfers from component to
component. As one may guess, the impact of numerical
representation in the previous steps directly affects the
binding stage. Smaller data might require smaller or fewer
FUs, registers and hardware resources, in general.

5) Netlist generation. The final architecture obtained from
the tasks of allocation, scheduling, and binding is trans-
lated in an RTL model of the synthesized design in a
hardware description language (HDL) like Verilog or
VHDL. This process accesses the resource library, which
embeds the RTL implementation of each resource, and
is target-dependent, so hardware descriptions may differ
for different technologies.

C. Related Work

Our work is focused on the integration of posit arithmetic into
the HLS flow. For that purpose, we start from the implemen-
tation of the required RTL components and then certain steps
of the synthesis process are modified to accommodate such
an arithmetic format. At the time of writing this paper, there
are few published works exploring the use of posit arithmetic
in HLS. Authors in [16] introduced MArTo, a C++ library
for posit arithmetic compliant with Xilinx Vivado HLS. It is
built on a custom internal representation, and supports addition,
subtraction and multiplication of posit datatypes, as well as the
exact accumulation of posit products. Although this library is
designed from a higher abstraction level, it requires adapting
the source codes to use it, and its usage is currently limited to
the aforementioned operations. Moreover, experiments in [16]
evaluated just the performance of standalone posit operators,
but no results on posit-based accelerators generated from HLS
are given. Similarly, previous works [17], [18], [26], [27] also
compare standalone posit and floating-point operators. They all
conclude that even posits provide more accurate results under
the same bitwidth, posit units are almost twice as large and
twice as slow as the corresponding IEEE units.

On the other hand, some works [28]–[30] have evaluated the
effects of using posit arithmetic not for computation, but just
for data storage in many different applications, including deep
learning or climate modeling. Since posits can be as accurate
as floats with a fewer number of bits, data can be compressed
in a lower-precision posit format with negligible effect on the
accuracy. This results in less memory storage required per
operand, so higher computing bandwidths can be achieved, or
hardware requirements can be reduced this way.
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Fig. 2. HLS flow with support for posit arithmetic and memory customization.

I I I . P R O P O S E D A P P R O A C H

In this paper, we consider Bambu, an open-source HLS
research framework [31], [32]. The tool receives as input a
behavioral description of the specification, written in C/C++
language, and generates the HDL description of the correspond-
ing RTL implementation as output, which is compatible with
commercial RTL synthesis tools. In addition, it is designed
in an extremely modular way and supports floating-point
operations through FloPoCo, a generator of arithmetic floating-
point cores [33]. The choice of Bambu as HLS tool for this work
is motivated by its open-source philosophy and its integration
with FloPoCo.

A scheme of the proposed tool flow is depicted in Fig. 2. To
add support for posit arithmetic to the HLS flow, we designed
an RTL library of posit operators based on FloPoCo, and
integrated it within Bambu. The design flow of the tool was
extended to handle such an additional library without the need
of modifying the C/C++ source code. From the point of view of
the programmer, the use of posit arithmetic for the computation
of real numbers should be as transparent as selecting between
single or double-precision floating-point.

Although certain implementation aspects of the proposed
approach are closely tied to the aforementioned software
technologies, the fundamental concepts of our approach can be
extended and potentially applied to other HLS tools. This would
require 1) providing a posit operators library that provides
equivalent functionality to floating-point operations (either at
the RTL or software level), and 2) implementing an arithmetic
back-end selection/substitution mechanism that preserves the
memory infrastructure of the device.

Furthermore, prior research has demonstrated that storing
data in posit format can lead to reduced memory requirements
while preserving accuracy [18], [28]. Such an approach is also
useful when the designers want to customize communication
by reaping the benefits of posits but they still want to use
legacy HLS tools that do not support non-standard formats. In
light of this observation, this study also aims to investigate the
implications of adopting such a design alternative, specifically
examining the impact of employing posit numbers in memory
with accelerators that do not inherently support this arithmetic
format. By doing so, we intend gaining insights into the
potential benefits and challenges associated with incorporating

CPU
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Data

Data
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Fig. 3. Scheme of the different approaches that use float and/or posit arithmetic
in memory and hardware accelerator.

posit-based memory in systems utilizing non-posit arithmetic
accelerators. Fig. 3 illustrates the different strategies we
evaluated in this work. Case #1 represents the classical
floating-point approach, and it serves as a reference point.
It is important to note that in case #3, where just floats are
used in the accelerator, certain data conversion processes would
be necessary to ensure compatibility with the data originally
stored in posit format. For each case, we consider both 32 and
64-bit precisions.

I V. L I B R A RY O F P O S I T O P E R AT O R S

HLS tools transform a high-level specification into an RTL
design. Realistic hardware implementation thus requires the
conversion of floating-point and integer variables into bit-
accurate data types of a specific length (not a standard byte or
word size, as in software) with acceptable computation accuracy.
This is done in the resource allocation step of the HLS process
(see Fig. 4 below), and usually requires RTL libraries to map the
variables and structures in higher abstraction level to specific
hardware components. Bambu has support for floating-point
operators through FloPoCo [33], [34], an open-source C++
framework that generates floating-point arithmetic datapaths in
synthesizable VHDL from the operator specifications.
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Using FloPoCo, we implemented a library of posit opera-
tors that includes the basic arithmetic operations—addition,
subtraction, multiplication and division—, as well as units to
perform the comparison of operands and conversion with integer
arithmetic. More precisely, we rely on the posit arithmetic units
designed in our previous works [17], [35], [36], which have
empirically demonstrated to be efficient in terms of performance
and energy. The advantage of designing posit operators with
FloPoCo is that this tool can generate such operators for
any given bitwidth. In this work, we generate 32 and 64-
bit accelerators, so the same design is used for the different
bitwidths; FloPoCo automatically adjusts the size of internal
wires and signals according to the specified data width. The
tool also allows pipelining the FUs automatically according to
the specified parameters and target frequency.

In order to verify that the proposed architectures are correct,
exhaustive tests were generated with the reference software
library Universal [37] for 8, 10 and 12-bit posits, as well as
random/corner case tests for 16, 32 and 64-bit posits. All these
tests were successful.

The implementation of parameterizable designs with
FloPoCo makes the creation of the library of posit operators
independent from the design of the final accelerator. After the
compilation step, Bambu detects all the arithmetic operations
that are required in the source code. When a floating-point
operation is detected, Bambu calls FloPoCo with the corre-
sponding parameters to generate the required operator according
to the design constraints. At this point is were we can select a
different implementation from the IP library, for example, a
posit adder instead of a floating-point adder circuit. However,
the HLS tool must be aware of the latency of such a component
in order to properly generate the entire accelerator, as will be
discussed in Section VI.

Previous works also used the reference tool FloPoCo to
design basic adders and multipliers [17], approximate FUs [27],
or even fused operations with accumulator [16], [23]. However,
such works just focus on the design and performance of each
individual component. In this work, we additionally developed
comparison and conversion units. Thus, the HLS flow of a
program involving basic arithmetic operations (such as addition,
multiplication, division, and square root) can rely solely on the
proposed posit RTL library, eliminating the need for additional
floating-point operations within the HLS flow.

In addition, we made sure that each of the operators that
constitute the proposed library is at least as efficient as those
proposed by previous works in terms of performance and
hardware resources.

V. M E M O RY C U S T O M I Z AT I O N

Bambu allows using a wide variety of memory allocation
policies and memory accesses. The HLS tool automatically
infers the memory infrastructure according to the constraints,
commands and types of the operands (e.g., integer, float, etc.).
However, the posit data type is neither available in high-level
languages nor commercial hardware devices, so some extra
effort is needed to customize the memory with posit format. In
this work, we consider the 32-bit and 64-bit precisions of the

Algorithm 1 Posit to IEEE 754 float conversion
Require: x ∈ PositN
Ensure: y ∈ Float⟨E,M⟩

1: sign← x[N − 1]
2: val← x[N − 2 : 0]
3: if val = 0 then
4: if sign = 0 then
5: y ← 0
6: else
7: y ← NaN
8: else
9: if sign = 0 then

10: abs val← val
11: else
12: abs val← −val ▷ Take 2’s complement
13: regime, exp, frac← extract fields(abs val)
14: ▷ IEEE float exponent bias = 2E−1 − 1 ◁
15: biased exp← {regime, exp}+ bias
16: y ← {sign, biased exp, frac}
17: ▷ Pad y with 0’s to the right if necessary ◁
18: return y

different arithmetics. Therefore, float (32-bit) and double (64-
bit) C types are used as replacements for Posit32 and Posit64,
respectively, as they have the same bitwidth, and therefore
memory accesses do not change. Using a different number
of bits would require changing either the memory inside the
accelerator or the compiler (so that it understands a different
kind of floating-point operation), which is out of scope.

Posit arithmetic claims to have higher accuracy using the
same number of bits, or sufficient accuracy using fewer bits.
When storing data in fewer bits, the total memory footprint is
reduced, reaching lower power and energy consumption. But
also, when transferring data from an external memory to devices
such as FPGAs, using smaller bitwidths might allow transferring
more data simultaneously under the same bandwidth, increasing
the SIMD vectorization and achieving higher throughput.

In this paper we compare the effects of using 32-bit posits in
memory with regard to 64-bit floats. While this clearly halves
the size of the external memory, it is important to evaluate its
impact on the accuracy of the results.

In addition to this, we propose a hybrid scenario in which the
memory is customized with posit format while the accelerator
logic is kept unchanged in floating-point. The usefulness of
this approach lies in storing the data in a posit format with
a smaller bitwidth than the floating-point format in which
the computations are performed. From the memory point of
view, this is not different from the case when all data is in
posit format. However, under this approach, the input data
must be converted into floating-point format before performing
computations in the accelerator, and the results must be stored
in memory using posit format. The conversion between N -bit
posits and floating-point numbers with E exponent bits and
M fraction bits is depicted in Algorithm 1, and the reverse
analogous process is done for float-to-posit conversion.
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V I . P O S I T- AWA R E H I G H - L E V E L S Y N T H E S I S

Performing HLS with a custom arithmetic format such as
posit is not straightforward, since the data format and the RTL
components interfere in multiple steps of the HLS design flow.
As mentioned in Section II, the synthesis process starts with
the compilation of the C/C++ source code. However, the posit
data type is not supported in such programming languages or
compilers, in contrast to the float or double types. For that
reason, we decided to keep unchanged that part of the process,
and perform further modifications in the subsequent stages of
the synthesis. More precisely, we included an option within
Bambu that indicates whether floating-point data in the high-
level specification must be considered as posit arithmetic. To
accomplish this, it is necessary to modify the allocation and
scheduling stages of the HLS flow, as indicated in Fig. 4.

Regarding the allocation stage, we made modifications to
incorporate the posit RTL library. This involved ensuring that
the appropriate library, whether it is the float or posit library,
is called based on the specified configuration of the HLS. To
facilitate the usage of different back-end arithmetic libraries
for end users, we introduced the option --flopoco=posit
within Bambu. When this posit flag is activated, floating-
point operations in the source code are translated in the
corresponding RTL for posit operations defined in FloPoCo.
The allocation step maps them on the set of available FUs:
their characterization includes information, such as latency,
area, and the number of pipeline stages. The pipeline of the
operators is automatically driven by FloPoCo according to the
specified design constraints such as the clock period. In addition
to FUs, also memory resources are allocated, in this case as
detailed in Section V. Along the entire HLS process, especially
during resource allocation and scheduling, it is necessary to

have certain information about each component in order to
perform synthesis optimizations. For this reason, Bambu adopts
a pre-characterization approach. The latency and resource
occupation of every posit FU are obtained by synthesizing
them for multiple combinations of bitwidths, frequencies and
target devices. This has a direct impact on the scheduling
stage of the HLS design flow, and is a common approach
adopted by other HLS tools such as LegUp [38]. It is worth
noting that this pre-characterization needs to be performed only
once, and allows performing aggressive optimizations. Then,
such characterizations are used to select the most appropriate
configuration for each posit FU and schedule the operations
according to the design constraints. As a result of this work,
from the user perspective, performing HLS in posit arithmetic
with Bambu just requires activating the posit flag, without
modifying the C/C++ source codes that use floating-point data.

As already mentioned, this work also proposes the use of
posit arithmetic in memory (second case in Fig. 3), while
keeping the logic of the accelerator in floating-point. Using
posits as lossy compressed information storage (in 32-bit
precision) can reduce the amount of data transferred up to
a factor 2 with respect to the double-precision accelerator
while maintaining decent accuracies. Also, such an approach
is compatible with commercial HLS tools that do not support
posit arithmetic. When the data in memory is in a different
format or precision with respect to the logic of the accelerator,
data conversion must be performed before and after performing
computations in the accelerator. For that reason, posit-to-float
and float-to-posit units are designed to convert input data and
output results from the accelerator, respectively. Such FUs are
implemented in FloPoCo (as well as the rest of the units of
the proposed library), so the same parameterized design is
used for different bitwidths. In Bambu, it is possible to map
C functions to hand-written HDL modules, which makes this
process straightforward. What is more, such modules could be
also appended to accelerators generated using floating-point,
which makes this a suitable option for those HLS tools without
support for posit arithmetic. However, when using this hybrid
approach, the corresponding conversions must be considered
in the HLS scheduling stage, as data are converted before and
after the real computation.

One may notice that 32-bit posits have higher accuracy
(or precision bits) than 32-bit floats, but lower than 64-bit
floats. Thus, conversion from a more accurate format to a
less accurate one requires handling proper rounding to mitigate
error. Reducing the number of bits in memory has clear benefits
in the design of accelerators—higher computing bandwidths
can be achieved while reaching lower power and energy
consumptions—, but this comes at a cost—additional hardware
is necessary for data conversion, and error might increase due
to rounding.

V I I . H A R D WA R E E VA L U AT I O N

While previous works have already analyzed the hardware
cost of posit arithmetic in the context of individual arithmetic
operations, there is not much information about how all these
pieces fit together. In this section, we analyzed the impact
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of the different arithmetic formats in the design of hardware
accelerators for real applications.

A. Experimental Setup

The effects that each of the schemes depicted in Fig. 3 has in
terms of hardware resources and latency when performing HLS,
were evaluated. It is also important to have an understanding
of the accuracy of each approach. For cases #1, #2 and #3, both
32 and 64-bit precision were considered. When the memories
and accelerator logic have different representations, 32-bit posit
format (Posit32) is used on the memory side.

To compare the performance of the different approaches, we
extracted a series of numerical benchmarks from the PolyBench
4.2 suite1, which includes many common algorithms in fields
such as linear algebra, data mining, and image processing.
In particular, we have chosen the following representative
benchmarks:

• 3mm: Linear algebra kernel that consists of three matrix
multiplications G = ((AB)(CD)).

• cholesky: Cholesky decomposition of a positive-definite
matrix A into a lower triangular matrix L such that A =
LLT .

• covariance: Computes the covariance of N data points,
each with M attributes.

• fdtd-2d: Simplified finite-difference time-domain method
for 2D data. It models electric and magnetic fields based
on Maxwell’s equations.

• gemm: General matrix-matrix product from BLAS, C =
αAB + βC.

• ludcmp: LU decomposition followed by forward and back-
ward substitutions to solve a system of linear equations.

PolyBench implements each benchmark in a single file,
with some header parameters and a series of compile-time
directives, including the data format and dataset size. We
configured PolyBench to use 32-bit and 64-bit precision for all
our experiments. For numerical accuracy evaluation, the code
structure was kept unchanged, including the initialization phase
which populated the input data to the algorithms, just modifying
the data format and test size for different experiments.

For hardware evaluation, the focus is on the HLS generated
accelerators for main kernel computation. Thus, we eliminate
the initialization phase when performing synthesis, while the
kernel core remains unchanged. Instead, we add a wrapper
around the kernel that creates a local copy of the data in the
accelerator. This has two consequences. First, when working
with arrays, it is faster to access the accelerator’s local memory
rather than the host machine’s memory, which significantly
reduces the latency of the accelerators. On the other hand,
in case #3, where the memory data is assumed to be in
posit format but the computation is performed in floating-
point, it is necessary to convert the data to the latter format
before operating, and back to the former at the end of the
computation. Although this conversion could be applied each
time an operation is performed, in cases such as gemm,
where the same piece of data is used for several intermediate

1https://sourceforge.net/projects/polybench/

computations, this approach has a negative impact on operator
latency. However, performing this conversion only once per
single datum and storing it in local memory allows to reduce
the number of conversions (and clock cycles), at the cost of
higher hardware resource cost. To have a fair comparison across
the proposed approaches, this approach is considered in all
the experiments. Performing data conversions at every single
operation might reduce the amount of memory required in the
FPGA at the cost of increasing the data transfers between the
accelerator and the host device, but such a study is out of the
scope of this work.

We performed HLS of each application with Bambu targeting
a Xilinx Artix-7 (XC7A100T-1CSG324C) FPGA device. In
particular, for the HLS with Bambu we included the options
--no-iob (so primary ports from the IOB are disconnected,
and large arrays can be instantiated in the target device)
and --experimental-setup=VVD (which provides sim-
ilar settings for RTL synthesis as the commercial solution
Vivado HLS). Under this approach, all objects and internal
variables that need to be stored in memory are allocated on
BRAMs rather than on external memory. To select a suitable
target frequency for the HLS, we conducted detailed tests for
individual arithmetic operators targeting different maximum
clock frequencies, which allow us to obtain more details in this
regard. Xilinx Vivado 2021.2 was used to perform the logic
synthesis for the comparison of hardware resources.

To generate floating-point logic for the accelerators, the
option --flopoco=float was used, so the floating-point
FUs are the ones provided by FloPoCo. However, such units
are non-compliant with the IEEE 754 standard: although the
memory format is in IEEE 754 format, subnormals are flushed
to zero to save resources. This could produce inaccurate
results in applications that make use of such small-magnitude
data. Also, exceptions are handled in a much simpler way
as required by the standard, and just a single rounding mode
is implemented (round to nearest, ties to even), rather than
the five rounding rules defined in the standard. Therefore,
it should be kept in mind that a fully IEEE 754-compliant
implementation would incur a much higher overhead than the
current one. On the other hand, we extended Bambu with the
option --flopoco=posit to allocate posit FUs in the final
accelerator. Such units are fully compliant with the current
posit standard [20].

Lastly, it is important to mention that all programs in this
evaluation were compiled with the -O3 optimization option,
which applies a standard set of optimizations. By adopting
this approach, the focus is placed squarely on the capabilities
and limitations of the HLS tool itself, without introducing
additional custom optimization strategies. This allows for a
clear assessment of the baseline performance achievable through
compiler optimizations alone.

B. Numerical Error

Prior to the synthesis evaluation, it is important to ascertain
the benefit of each of the encodings proposed in this work
in terms of numerical accuracy. In order to evaluate the
error of each approach, we performed software simulations
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Fig. 5. PolyBench benchmarks error comparison for different number formats.

of each experiment for multiple dataset sizes ranging from
MINI to LARGE. The error is computed by the Frobenius
(or element-wise) norm against the result obtained with an
extended precision format. Such a metric becomes useful when
comparing the precision of different arithmetic formats, as it
effectively measures how much two simulations deviate from
each other by penalizing large errors and giving less importance
to minor differences. In fact, it can be used for either scalars
or matrices and vectors, which is the case in the PolyBench
applications.

To obtain these metrics, we compared the results of the three
cases depicted in Fig. 3 (under both 32 and 64-bit precision)
to the same algorithm computed using the double extended
80-bit format present in x86 processors. The relative error
results (with respect to the norm of the baseline) are shown
in Fig. 5. Note the logarithmic scale on the Y-axis. The trend
in every benchmark is a significantly lower error when using
posit numbers. This is up around one order of magnitude for
32 bits, and between two and three orders less in the case of
64 bits, depending on the benchmark.

The case #3, which mixes both arithmetic formats reveals that
using Posit32 in memory rather than Float64 and performing
computations in the former precision can be a useful option
when posit circuitry is not available, and provides less error
than using Float32 and even Posit32. On the other hand, results
show that, from the point of view of accuracy, there is no
benefit in performing computations with a less accurate format
than the stored data.

Once the error of the different proposed formats and
approaches has been characterized, we will evaluate the
performance of specific accelerators using HLS.

C. Operation-level Evaluation

Prior to the HLS of the PolyBench applications, a synthesis
evaluation of the basic arithmetic operators has been conducted
as the initial step in our assessment of the FPGA implementation
results. This evaluation aimed to provide a more fine-grained
and detailed analysis of the outcomes, isolating as much as
possible the library of posit arithmetic operators from the rest
of the HLS tool. By focusing on individual operations within
the hardware design, we were able to gain in-depth insights
into the performance, efficiency, and potential bottlenecks at a
granular level. The findings and observations obtained from this
operation-level evaluation will guide the subsequent evaluation
of complete applications.

The synthesis results for each arithmetic unit, as well as the
clock cycles obtained by the RTL simulation, are reported in
Fig. 6. Posit adders require about 1.5× hardware resources
(LUTs and FFs) than the corresponding float units, while this
overhead is between 2× and 6× for the rest of the operators.
Nonetheless, the amount of resources required by Posit32 is
always fewer than by Float64 units. Regarding the frequency,
all the functional units except the Float64 multiplier satisfy the
timing target conditions up to 150 MHz. For a target frequency
of 200 MHz a few operators violate the timing constraint,
and none of them reach 300 MHz. Therefore, 150 MHz is
a clear candidate as the target frequency for the HLS of
complex applications. Finally, it must be noted how the iterative
algorithm used for division and square root has a direct impact
on the latency of such units as the target frequency increases,
especially for the Posit64 format.

Additionally to the resources shown in Fig. 6, HLS results
show that, independently of the target frequency, the 32 and 64-
bit floating-point multipliers require 2 and 9 DSPs, respectively,
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(a) Addition
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(b) Multiplication
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(d) Square root

Fig. 6. Bambu HLS results for basic arithmetic operators.

and the corresponding posit multipliers make use of 2 and
12 DSPs, respectively. Also, the design of the floating-point
division includes a table for fast computation, which requires
7 and 14 extra BRAMs when synthesizing the 32 and 64-bit
designs, respectively.

Case #3 proposed in this work considers input data to be
in Posit32 format, while the computation done within the
accelerator is in floating-point. For this hybrid scenario, input
and output data conversion must be done, so it is important to
evaluate separately the hardware overhead of such conversions.
Synthesis results are reported in Fig. 7. As can be seen, the
library of posit converters can be synthesized with Bambu up
to 300 MHz seamlessly. In addition, the units exhibit quite low
latency (3 cycles or less) when targeting up to 150 MHz.

Comparison with previous works: To the best of our
knowledge, MArTo [16] is the only library that provides
posit arithmetic support for HLS up to date. It consists of a
templatized C++ library compliant with Vitis HLS. It currently
offers standalone posit adders, subtracters, and multipliers, but
does not support operations such as division, square root, or
comparison, unlike the proposed work. We use Vitis HLS
2021.2 to perform HLS of the designs, targeting the same
device (Artix-7) and frequency (150 MHz). The RTL synthesis
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Fig. 7. HLS results for posit-float converters.

is performed by Xilinx Vivado with the default configuration.
Although the focus of this work is posit arithmetic, floating-
point designs are generated as well for better comparison and
understanding of the results. It is worth mentioning that while
MArTo provides arithmetic units designs for posit arithmetic,
the floating-point units are from the proprietary Xilinx Floating-
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(b) Multiplication

Fig. 8. Vitis HLS results for basic arithmetic MArTo [16] operators.

Point Operator IP.
In the same manner as with Bambu, we first conduct

experiments for single arithmetic operators. Note that, in this
case, we are not only using a different posit operator library,
but also the HLS tool changes. Therefore, such an operator-
level evaluation allows us to isolate as much as possible the
differences between different HLS tools and to be able to
analyze in more detail the differences between the two posit
operator libraries. The synthesis results for posit addition and
multiplication units provided by MArTo under different target
frequencies are depicted in Fig. 8.

In contrast with the proposed library of posit operators,
in this case, the Posit32 units require even more area than
the corresponding Float64 operators. When compared with
Fig. 6, on average the 32-bit floating-point adders generated
with FloPoCo/Bambu require up to 1.5× more LUTs and
1.33× more FFs than the ones generated with MArTo/Vitis
(respectively, 1.26× and 1.36× for 64-bit adders). However,
the situation is very different with respect to posit adders. The
units generated with the latter tools require on average 4.14×
more LUTs and 2.66× more FFs than the proposed 32-bit
units (respectively, 3.7× and 2.25× for 64-bit posit adders).
The same behavior is observed in the multiplier units, which
also make use of DSP units, again with an overhead for those
multipliers defined at the MArTo library.

If comparing the latency of the operators, noticeable differ-
ences are found between the posit libraries. The 32-bit adders
from MArTo require 1.74× more cycles, on average, than the
proposed units (1.54× more for 64-bit adders), and for the 32-
bit multipliers, the overhead is 1.36× more cycles, on average
(1.25× for the 64-bit units).

Overall, we can conclude that at the operation level, the
library of posit operators for HLS proposed in this work presents
more efficient units in terms of both area and performance than
those proposed in previous works.

D. Application-level Evaluation

By considering the behavior of a diverse range of applica-
tions, we aim to assess the suitability and efficacy of utilizing

floating-point and posit formats in accelerators for real-world
applications. The chosen PolyBench programs were synthesized
with Bambu. This evaluation leverages the frequency results
obtained from the operation-level analysis. In consideration of
the above results, a target frequency of 150 MHz has been set
for all experiments.

Synthesis results for the multiple benchmarks under the
MINI dataset size are depicted in Fig. 9. Larger sizes mainly
affected the latency of the accelerators, in the same proportion
for all the cases. Although each benchmark yields different
results, similar patterns can be found in each of the metrics. In
addition, the geometric mean across the proposed benchmarks
is included for the sake of comprehension.

As can be seen, when comparing LUTs and FFs between
cases #1 and #2, there are two patterns clearly distinguishable.
For the applications that only require addition and multi-
plication, the posit overhead is slightly higher than for the
floating-point case, between 1.06× and 1.45×. On the other
hand, for cholesky, covariance and ludcmp benchmarks, the
overhead of posit accelerators ranges from 1.58× to 3.96×.
This corresponds to the applications using division and square
root. As shown in Fig. 6, those posit operators required much
more hardware resources in comparison with the floating-point
ones, especially in the case of Posit64. Such a discrepancy
suggests that the posit division and square root operators are
not optimized as well as the corresponding floating-point units.
Overall, the Posit32 accelerators have an average overhead of
1.46× and 1.72× in terms of LUTs and FFs, respectively, and
similarly, for the 64-bit case, the LUTs and FFs overhead is
1.73× and 2.12×, respectively.

As for the use of DSPs, all benchmarks show exactly the
same result, which in turn is the same as the one requiring a
single multiplier unit, as mentioned above. This reveals that
the amount of floating-point or posit multipliers is constant
(and equal to one) across the experiments. This is in line with
the behavior of Bambu, which allocates a single instance of
each function/floating-point operation.

For BRAMs evaluation, again two different patterns can be
distinguished between the applications that use division and
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Fig. 9. Bambu HLS results for PolyBench benchmarks.

those that do not. As has been mentioned, floating-point division
units require 7 and 14 extra BRAMs for 32 and 64-bit designs,
respectively. For the rest of the applications, the amount of
BRAMs required by posit-based accelerators is the same as
that used by floating-point kernels since they are encoded with
the same number of bits.

Although the target frequency is set at 150 MHz, as shown in
Fig. 9 this cannot be satisfied by all benchmarks. In particular,
only 32-bit benchmarks satisfy this timing condition in most
cases. The other time-related metric, latency, presents more
differences between number formats. Posit32 requires between
1.09× up to 1.56× more cycles than Float32 accelerators
(1.30× more on average), while the overhead for 64-bit formats
ranges from 1.29× to 1.98× (1.59× more on average). Again,
the higher increments are on the benchmarks that make use of
division and square root operators.

Case #3 is worth mentioning separately. The amount of
DSPs and BRAMs is exactly the same as their floating-point
counterpart, since the arithmetic units employed in this hybrid
scenario are the same as for case #1. However, as depicted in
Fig. 7, such conversions introduce certain hardware overhead
(about 10-15% more LUTs for 32-64 bits, and about 18-19%
more FFs for 32-64 bits, respectively). In addition, the posit-
float conversion also requires some extra clock cycles, but
this is just 1 or 2 cycles per conversion, which results in less
than 3% of overhead when considering any of the PolyBench
programs.

Comparison with previous works: For a further comparison,
we used MArTo to generate posit-based accelerators for the
aforementioned PolyBench applications supported by this tool,
i.e., excluding cholesky, covariance and ludcmp because they
use division and square root, which is not supported. Within
MArTo, posit multiplications return an internal data format

that must be converted back into posit, and subtractions must
be re-written as additions with negative numbers, among other
changes that must be done in the source code. Again, we use
Xilinx Vitis to perform the HLS of the designs.

As can be seen in Fig. 10, the designs obtained with Vitis
HLS lead to very different synthesis results than the ones
generated with Bambu. At first glance, it can be seen that in
this scenario the Posit32 accelerators generally require more
LUTs and FFs than the Float64 accelerators, and also exhibit
higher latency than the latter. In contrast to the previous case,
the synthesis results for Vitis vary considerably between the
benchmarks. Although there are important differences in the
floating-point case, let us focus on the comparison in the posit
designs between the two HLS tools. Comparing the Vitis
accelerators with the one generated by Bambu, it can be seen
that, except for the fdtd-2d application (where the posit designs
do not use any DSPs), the designs generated by Vitis generally
require more hardware resources (between 2.6× and 8.8×
more LUTs, 2.1× and 16.3× more FFs, and 0.91× and 8.5×
more DSPs, depending on the application and format). On the
other hand, the number of BRAMs used for Vitis designs is
half that of Bambu designs.

This hardware overhead has certain advantages in terms
of frequency, as the designs generated with MArTo and Vitis
meet the target frequency in all the benchmarks, even for the
64-bit scenario. The latency is also lower than for the Bambu
accelerators. This may seem to contradict the conclusions of
the previous operator-level comparison. However, there are two
aspects that need to be highlighted here. First, as can be seen,
not only is the latency of the posit-based accelerators lower,
but so is that of the floating-point accelerators. Also, according
to the official Xilinx documentation [39], the default operation
of Vitis HLS is to first maximize performance, while Bambu
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Fig. 10. Vitis HLS results for PolyBench benchmarks.

generates a single instance of each function or floating-point
operation (even if there are multiple call points in the program),
thus providing more area-efficient designs.

The reason for this discrepancy in results is therefore the
scheduling and binding algorithms used by the different HLS
tools, rather than differences in RTL design. However, it should
be remembered that the purpose of this study is to analyze the
impact of the different encodings, rather than to compare the
performance of different HLS tools. In this sense, the results
obtained with Vitis for the PolyBench application follow the
same patterns observed in the previous analysis for the basic
arithmetic operations, i.e. the use of posit arithmetic requires
higher latency and more hardware resources than even Float64.

Despite the potential benefits of Vitis HLS, our evaluations
indicate that our posit library leads to higher performance
and lower area under the same HLS tool. Specifically, our
experiments show that the Posit32 (respectively, Posit64)
designs produced by MArTo require, on average, 1.57× (re-
spectively, 1.64×) more clock cycles than the corresponding
float designs. However, the same set of Posit32 (respectively,
Posit64) accelerators proposed in this work exhibits a lower
latency overhead of 1.15× (respectively, 1.40×) compared to
the float designs. Also, in terms of area requirements, the
posit designs from MArTo present a higher increment factor
with respect to the corresponding designs in floating-point.
For example, the Posit32 designs from previous work use on
average 3.1× more LUTs and 2.67× more FFs than the Float32
designs, while the increment in the proposed work is just of
1.15× and 1.19× for LUTs and FFs, respectively. Similar
figures are obtained for 64-bit precision.

V I I I . C O N C L U S I O N S A N D F U T U R E W O R K

This paper presented an end-to-end HLS flow with support
for posit arithmetic to create custom accelerators that exploit

the higher accuracy of such arithmetic format. Additionally,
a memory customization approach that uses posit numbers
in memory while keeping the logic of the accelerators in
floating-point is proposed, leveraging the benefits of posits
in situations where there is no support for this alternative
format. These solutions are implemented on top of open-source
tools like FloPoCo (for implementation of the RTL library of
posit operators) and Bambu (for the HLS). To illustrate the
capabilities of the proposed workflow, as well as analyze the
effects of the different arithmetic formats, floating-point and
posit kernels for computer-intensive applications were deployed.
The results showed that posit arithmetic consistently outper-
forms classical floating-point notations in terms of accuracy,
without increasing memory usage or requiring additional bits
for numerical representation. This finding could be particularly
valuable in scenarios where memory is a critical resource or
where the cost of expanding memory outweighs the benefits
of improved accuracy. However, such extra accuracy has an
associated cost. The 32-bit posit-based accelerators require
about 1.46× more LUTs, 1.73× more FFs, and 1.30× more
cycles than the corresponding floating-point accelerators. The
proposed High-Level Synthesis (HLS) flow was compared with
previous works that rely on commercial HLS tools. The FPGA
synthesis outcomes demonstrate that, when compared to the
corresponding accelerators devised for floating-point arithmetic,
the proposed posit designs exhibit reduced overhead than
those from previous works. Overall, the findings of this paper
demonstrate a clear trade-off between precision and hardware
resources in posit arithmetic. Consequently, the decision to
utilize and implement a specific format should be left to the
discretion of the hardware designers, taking into consideration
their specific requirements and constraints.

In the future, integration of posit fused arithmetic (using the
quire accumulator) in the HLS flow will be explored, which will
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provide even more accurate results. The proposed workflow
will be further optimized to reduce the current gap between
posit and floating-point arithmetic.
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M. Prieto-Matias, “PERCIVAL: Open-Source Posit RISC-V Core With
Quire Capability,” IEEE Transactions on Emerging Topics in Computing,
vol. 10, no. 3, pp. 1241–1252, 2022.

[23] R. Murillo, D. Mallasén, A. A. Del Barrio, and G. Botella, “Energy-
Efficient MAC Units for Fused Posit Arithmetic,” in 2021 IEEE 39th
International Conference on Computer Design (ICCD), 2021, pp. 138–
145.

[24] L. Crespo, P. Tomás, N. Roma, and N. Neves, “Unified Posit/IEEE-754
Vector MAC Unit for Transprecision Computing,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 69, no. 5, pp. 2478–2482,
2022.

[25] Y. Wang, D. Deng, L. Liu, S. Wei, and S. Yin, “PL-NPU: An Energy-
Efficient Edge-Device DNN Training Processor With Posit-Based
Logarithm-Domain Computing,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 69, no. 10, pp. 4042–4055, 2022.

[26] H. Zhang and S.-B. Ko, “Design of Power Efficient Posit Multiplier,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67,
no. 5, pp. 861–865, 2020.

[27] R. Murillo, A. A. Del Barrio Garcia, G. Botella, M. S. Kim, H. Kim, and
N. Bagherzadeh, “PLAM: a Posit Logarithm-Approximate Multiplier,”
IEEE Trans. on Emerging Topics in Computing, vol. 10, no. 4, 2022.

[28] S. H. Fatemi Langroudi, T. Pandit, and D. Kudithipudi, “Deep Learning
Inference on Embedded Devices: Fixed-Point vs Posit,” in 2018 1st
Workshop on Energy Efficient Machine Learning and Cognitive Com-
puting for Embedded Applications (EMC2). Williamsburg, VA, USA:
IEEE, 2018, pp. 19–23.
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