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Abstract: The use of electrochemical cells is becoming more widespread, especially in the energy 

industry and battery energy storage systems (BESSs). As we continue to deploy BESSs, it becomes 

increasingly important for us to understand how these systems age and accurately predict their 

performance over time. This knowledge is essential for ensuring that the systems operate optimally 

and can be properly maintained. Since the structure of a BESS is different from a single electrochem-

ical cell, the existing models at the cell level cannot predict and estimate the life of the BESS with 

suitable accuracy. Furthermore, the test protocols available at the cell level mostly cannot be exe-

cuted at the BESS level for many reasons. Therefore, in this paper, a review of test protocols for 

building aging models for BESSs has been performed. After reviewing the protocols for a single 

electrochemical cell and addressing the differences between BESSs and cells, a review of the works 

performed on a larger scale has been carried out, and the possible ways for testing the BESS for 

aging models were investigated. 

Keywords: BESS degradation test; storage system aging tests; battery degradation; BESS aging 

mechanisms 

 

1. Introduction 

The presence of electrochemical cells can be felt in any part of the industry, from 

portable devices such as smartphones and laptops to much bigger industries such as en-

ergy production. The integration of batteries in electric power systems can lead to a more 

sustainable energy ecosystem, which is one of the main concerns of today’s societies [1,2]. 

Among all batteries, lithium-ion cells have attracted the most attention because of 

their high energy density, high power density, and long expected lifetime [3]. Since BESSs 

equipped with Li-ion batteries have high efficiency and fast ramp rates, they can solve 

many challenges correlated with the electric power system operation and control [4]. Nev-

ertheless, lithium-ion cells suffer from degradation based on their usage profile and envi-

ronmental situations. This could cause several problems correlated to the reliability of the 

maximum energy and the power that a BESS could provide [5]. Moreover, the battery cost 

is a big portion of the total cost for many applications. Therefore, it is necessary to 

properly estimate how aging phenomena affect the BESS’s life [6].  

Since measuring the available capacity and power is not directly possible, methods 

and models based on different approaches have been introduced [5]. The experimental 
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campaigns are generally expensive. Therefore, different approaches, such as laboratory 

protocols, have been tried to gather data instead of doing a test directly on the BESS. Many 

studies have tried to extend the cell-level aging models to the BESS level, but this can give 

rise to many inaccuracies and faults in the models. Based on the experiments, it has been 

shown that the same cycle aging can have different effects on different cells, as can be seen 

in Figure 1. 

The integration of artificial intelligence (AI) into the estimation of the State of Health 

(SOH) has significantly advanced this field. AI offers a dual opportunity for leveraging its 

capabilities: SOH estimation and battery lifetime prediction. Within the literature, numer-

ous studies have explored the application of AI to estimate battery SOH, typically involv-

ing a combination of offline training and online estimation [7]. 

Various statistical data-driven AI techniques, including support vector machines [8], 

Gaussian process regression (GPR) [9], and Bayesian networks [10], as well as neural net-

work-based approaches like feedforward neural networks [11] and recurrent neural net-

works [12], have been deployed to estimate SOH. Furthermore, both non-probabilistic and 

probabilistic AI methodologies can be employed to predict batteries’ remaining useful life 

(RUL), a crucial aspect for subsequent charge control algorithm strategies [7]. 

Additionally, transfer learning (TL) techniques have garnered attention for SOH es-

timation, demonstrating their utility across a spectrum of machine learning algorithms, 

including neural networks and kernel-based data-driven models such as GPR [13]. Self-

adjusted TL approaches, tailored for battery packs and modules with a high cell count, 

have effectively reduced computational overhead while delivering promising results [14]. 

Moreover, predicting the overall lifetime of batteries has been explored by monitor-

ing them over their initial cycles, with a strong emphasis on data-driven methods [15]. 

Extracting extensive features from limited cycle data is pivotal for enhancing predictive 

models. However, as batteries age, they often exhibit a nonlinear degradation phenome-

non known as the “knee point” [16,17]. Accurately predicting this critical transition poses 

a significant challenge for AI methods with limited monitoring cycles. 

 
(a) 

 
(b) 

Figure 1. Capacity degradation for (a) each cell and (b) the battery pack [18]. 

To circumvent these limitations, researchers have advocated the integration of AI 

methods during the manufacturing phase. By doing so, AI can encompass the intricacies 

of battery production that impact its longevity, offering a comprehensive approach to ad-

dress these complexities [16]. 

The technical literature investigating single-cell aging phenomena is very rich; nev-

ertheless, it is pivotal to point out how, in real life, BESS performances are correlated to a 

much more complex architecture than a single cell. The behavior of cells in a BESS is 
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strongly influenced by the battery management system (BMS), power conversion system 

(PCS), and control rules. Therefore, it is hard to extend the models, protocols, and data 

from the cell level to higher levels, such as pack level and utility-scale BESSs. Moreover, 

the available laboratory tests at the cell level cannot be implemented in real-life BESS anal-

ysis [18,19]. 

Various models are available in the literature for estimating the SOH of a battery (in 

this paper, the SOH will represent the capacity fade of the battery); among them, physics-

based models have a high accuracy in estimating and calculating the cell’s SOH using 

nonlinear partial differential equations. The main disadvantage of these models is that 

they are strictly related to the battery’s chemical parameters, which are not available (not 

with proper accuracy) at the large storage level [1]. Moreover, as mentioned above, a real 

BESS has different elements and loads, and none of them are properly taken into account 

in the physics-based models presented in the literature, making them not suitable aging 

models for BESSs [2]. 

The significance of battery energy storage system (BESS) aging can be examined from 

various perspectives. The aging of the battery will introduce nonlinear behavior [20] and 

uncertainties to the system and can impact the efficiency and performance of the system. 

Moreover, they can also cause instability for the power converters [21,22]. Also, from the 

financial point of view, it has been proved that in the aging-aware methods for optimizing 

and controlling a BESS (which benefit from an aging cost in their objective functions), both 

the lifetime and profitability of the system will increase dramatically [23].  

This paper provides a concise overview of aging mechanisms within electrochemical 

cells and explores the existing literature proposing tests for modeling electrochemical 

cells. Subsequently, the investigation shifts toward tests conducted on BESSs, aiming to 

identify methodologies for quantifying and modeling both performance and aging pro-

cesses. 

The selection of papers for this study was based on recent approaches that introduced 

test protocols specifically tailored for developing aging models for BESS systems. It is 

noteworthy that there is a limited number of papers addressing the modeling and aging 

estimation for BESS equipment, as the prevailing focus has been on single cells. Conse-

quently, this paper also delves into approaches dedicated to scaling up single-cell tests to 

the level of BESS systems. 

Given the principal objective of this manuscript to review test protocols encompass-

ing the entire BESS system, papers explicitly targeting this objective were subjected to a 

thorough examination. Notably, a comprehensive comparison of these test protocols is 

provided, encompassing the key steps of the experiments, along with their respective ad-

vantages and disadvantages. 

This review holds significance as it places a central emphasis on BESSs rather than 

individual cells. Moreover, within the existing literature, there is a noticeable absence of 

reviews that concentrate on testing methodologies. Most of the comparable review articles 

in the literature center around single-cell models, particularly those derived from labora-

tory data, disregarding two crucial considerations. The first pertains to the lack of availa-

ble data at the BESS level, data that these models depend on. The second concern is the 

absence of guidance on the testing procedures within these articles. Thus, this paper takes 

strides to address this informational gap by providing more pragmatic explanations of 

these tests. 

2. Short Recap on Aging Mechanisms 

The aging in lithium-ion battery cells occurs because of the side reactions inside the 

battery. There are different aging mechanisms in a cell, such as loss of active material, 

active material dissolution, surface cracking, pore clogging, solid electrolyte interphase 

(SEI) kinetics, diffusion into SEI, electron tunneling, and lithium plating. The effect and 

the formula of each mechanism can be found using the physical-based models. Because 

of the complexity of these models, it is not possible to consider all mechanisms together. 
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Therefore, each study focused on some of them. Generally, it is possible to relate all the 

aging processes to one of the following modes [24]. 

• Loss of lithium inventory 

Lithium ions are affected by parasitic reactions, which lead to capacity fade. Various 

reactions are responsible for this mode. The main one is the growth of the SEI layer; it 

occurs from the reaction of lithium ions and electrons from the electrode [24,25]. 

• Loss of active material in anode and cathode 

Due to some physical phenomena, such as particle cracking (which occurs because 

of alternating stresses), the active mass of the anode or cathode may no longer be available 

for reaction with lithium [24,25].  

Also, the cause of each mode and its relation to the degradation modes are shown in 

Figure 2 [25]. These are only the ones related to the thermodynamics of the battery, which 

has an effect on its open circuit voltage (OCV).  

 

Figure 2. Degradation modes and their causes [25]. 

Generally, it is possible to say that battery aging can be divided into calendar aging 

and cycle aging. Calendar aging is mainly affected by time, the level of state of charge 

(SOC), and the temperature (Tc). It means the level of degradation that occurs in batteries 

during idling. Thus, it is possible to write the calendar aging (Lcal) as [3]:  

𝐿𝑐𝑎𝑙 = 𝑓(𝑡, 𝑆𝑂𝐶, 𝑇𝑐) (1) 

Cycle aging is the degradation that occurs to the battery each time it charges or dis-

charges. According to [26], stress factors are the statistical parameters that relate the aging 

of the battery to the condition of the battery. To avoid considering effects that could be not 

significant, stress factors should be defined according to the application. In general, the 

stress factors that affect the cycle aging can be categorized in Figure 3 [3]. 

 

Figure 3. Cycle aging stress factors [3]. 
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Single-Cell Aging Models 

As we discussed earlier, there are clear differences between models used to under-

stand the aging process in individual cells and those applied to BESSs. However, despite 

these differences, there’s a valuable reason to examine existing aging models designed for 

individual cells. This examination could potentially inspire the development of models 

for BESSs. So, in this section, we take a brief and summarized look at the various aging 

models used for individual cells. 

The existing models in the literature can be assigned to one or more than one of the 

following categories [27]. 

• Electrochemical models: Based on the detail of reactions that happen inside of the 

battery. The main core of these models are the cell’s electrochemical models, such as 

P2D models, SP models, and extended SP models [20,28,29]. For example, the degra-

dation model in [30] has been developed based on three main assumptions. First, they 

assumed that no overcharged or undercharged will occur. Secondly, the aging in the 

cathode has been neglected, and thirdly, aging caused by internal mechanical stresses 

has been neglected. By solving the equations for the transfer function between the 

aging representatives (which are capacity loss, SEI resistance, and deposited layer 

growth). They were able to predict the remaining capacity of the battery with a max-

imum error of 3%. They used EIS, X-ray diffraction and X-ray photoelectron spectros-

copy, and electron microscopy to gather data. To validate the models and obtain the 

model parameters, they cycled the cells in a temperature chamber at 25 °C with a de-

fined protocol at 1C, 2C, and 3C. According to various research [30,31], the side reac-

tions at the anode are the main cause of degradation in electrochemical cells. 

In [32], based on the extended SP model of the battery, and with the help of cycling 

aging and EIS test, the correlation of the model factors and cycling of the battery has 

been obtained. The detail of obtaining each model identification has been explained 

in the paper. According to their results, it can be said that at 1C, besides three identi-

fications, the correlation of the other identifications with the number of cycles was not 

that high. But, as they mentioned in their paper, this way can be a suitable approach 

to finding and building an electrochemical model for the aging of the battery. The 

same approach has been adopted in the [33]. Indeed, they used particle swarm opti-

mization for the identification of the model parameters. The errors obtained by fitting 

the model for predicting the remaining capacity were between 2% and 4% based on 

the data fed to the model. In order to reduce the number of parameters in the electro-

chemical model, in [34], they used a fractional order of simplified P2D model known 

as SPM. By doing so, it is possible to estimate the capacity and resistance. 

• Equivalent circuit-based models: Based on the understanding of the physical and 

chemistry of the cell, it is possible to model the battery as an equivalent circuit model 

(ECM). An ECM has three major parts. The thermodynamics of the battery has been 

shown by a static part. The kinetics aspect of the cell has been modeled with a dynamic 

part and, finally, a load to complete the circuit for charge and discharge [35]. A circuit 

was developed by [36] to see the effect of aging. The constant phase element (CPE) 

has been used to model nonideal impedances that occur between the anode and cath-

ode electrodes. Also, for modeling the diffusion process, a Walburg impedance has 

been used. Then, with the use of the EIS test, the parameter of the ECM was achieved 

every 30 cycles. Therefore, the relation between every parameter of the circuit and the 

SOH of the battery was investigated. A more simple approach has been carried out in 

[37] using the cell’s Thevenin equivalent circuit. The relationship between the circuit 

parameters and SOC, SOH, and temperature was investigated experimentally by per-

forming HPPC and capacity tests at different temperatures. The results were then 

used in a look-up table to predict the terminal voltage. In a more complex model, in 

[38], an ECM has been used along with a minimal electrochemical model (MEM), 

which is based on the loss of lithium inventory to estimate the SOC and SOH of the 
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battery. A recursive least squares method was obtained to identify the ECM parame-

ters online, then using an unscented Kalman filter (UKF)—which is a state estimation 

algorithm for nonlinear systems—the SOC(ECM) (this is SOC estimated from ECM) 

can be calculated. Then, the corrected current can be calculated and fed to the electro-

chemical model to estimate the SOC and SOH. 

• Performance-based models: This approach is based on finding the relationship be-

tween stress factors and aging parameters of the cell, such as capacity fade or re-

sistance increase, by doing experimental tests. It is possible to divide this method into 

three categories: cycle aging, calendar aging, and global aging [27]. To provide an ex-

ample, one of the most famous formulas for calendar aging is to consider the relation 

of capacity and time as a root square. In [39], they proposed another combination, 

such as 𝑡0.75 or ln (1 + 𝑡). Then, by fitting the data in each formula, the results were 

compared as shown in Figure 4. These models are the most suitable models to use in 

machine learning. Also, in [40], they use a deep learning architecture called an atten-

tion-based long short-term memory network (ALSTM) to model the calendar aging. 

The ALSTM network is designed to integrate both knowledge-based features, such as 

the battery chemistry and operating conditions, and data-driven features, such as the 

battery’s discharge profile and temperature history. Similarly, in [41], a degradation 

and cycle life prediction model was built based on the Arrhenius equation, which 

takes into account several factors that contribute to battery degradation, including 

temperature, state of charge, and the number of charge–discharge cycles. After pro-

posing the model, a particle filter-based data-driven method was introduced to track 

the model parameters. In a more complex model, in [42], they tried to optimize a sup-

port vector regression using the data available about the temperature, SOC, and time 

effect on the calendar aging. The results showed that using these data improves the 

prediction of calendar aging by increasing the R-squared by around 0.1 with respect 

to a classic SVR. 

 

Figure 4. The RMSE of validation data for each approach [39]. 

• Empirical and statistical approaches: The empirical models are the ones that are try-

ing to find the relation between stress factors and the cycle or calendar aging in the 

batteries, based on the data gathered from the experiments without considering 

deeply the physical or chemical side of the battery [27,43]. To be exact, empirical mod-

els benefit from the machine learning algorithms fitting a curve in experimental data. 

In [44], different neural networks have been used to fit the data obtained from the 

cycling and IC experiments. These models are suitable for the prediction of the RUL. 

For example, in [45]. A neural network (NN) was applied to establish the link between 

stress factors and SOH. Subsequently, a bat-based particle filter was employed to 
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dynamically adjust the NN-derived model online, enabling the prediction of RUL 

while aligning with the battery’s SOH pattern. Similarly, in [46], they used the voltage, 

current, and capacity of the cells to predict the RUL using empirical decomposition 

and LSTM. A more complicated algorithm has been adopted in [47] by proposing a 

capacity forecast generative adversarial network-based (CFGAN) model. To obtain 

the best from the GAN-based network, they use a conditioner so the data that the 

generator builds would be more accurate. The results show that, compared to other 

deep learning models, the CFGAN has better accuracy in point and probabilistic fore-

casting of calendar aging. 

An important fact in using empirical models is the situation of the tests. The more the 

tests are in a controlled situation, the better the results. As indicated in [43], a proper 

dataset should use full equivalent cycles (FECs) or equivalent measures such as the 

number of cycles or Ah throughput. It also should determine the chemistry of the 

tested LIB reference and keep stress factors such as temperature, depth of discharge, 

mean state of charge, and charge and discharge rate constant throughout the entire 

static degradation test. In addition, the magnitude of these stress factors should be 

determined for each deployed test. After cycling the cells, the measurement tests are 

playing a very important role. In [48], they used incremental capacity analysis (ICA) 

and integrated voltage (IV). In [49], they used the low-frequency EIS measurements 

and Gaussian regression model to fit the data. On the other hand, it is also possible 

not to use any additional experiments. As in [50], they just used the remaining capac-

ity of the battery in different temperatures and DOD to find the relation between ca-

pacity and stress factors. In [51], they combine a support vector regression model and 

an extreme learning machine model to extract features from the battery signal, which 

just consists of the cycle number and capacity of the battery. 

3. Tests for Single Electrochemical Cells 

There are various ways to test an electrochemical cell. It is possible to say that the 

aging tests mainly consist of two steps. One is how to cycle and age a cell, and the second 

step is to use an experimental test to characterize the cell and use the obtained data to 

create a model. Various aging procedures are available in the literature. However, since it 

takes much time and equipment to check all the aging factors, some studies adopt as-

sumptions in order to limit the research space; for example, many tests are performed at 

constant temperatures [34] even though the temperature plays the main role in aging of a 

cell [39]. 

Aging experiments can be divided into calendar and cycle aging. To measure the 

calendar aging, different cells with different defined voltages can be bounded at the same 

temperature. In order to have a precise experiment, the cells should be recharged to their 

defined voltage daily. Then, during the weekly checkups, measurements should be per-

formed on the cells. Finally, specific tests should be performed in order to evaluate the 

temperature’s influence on SOH, e.g., storing some cells with the same voltage at different 

temperatures [39]. To measure the cycle aging, cells can be cycled in different operating 

conditions (i.e., different current rates (C-rates), depth of discharge (DOD), etc.). In some 

studies, the effect of the C-rate has been neglected [3], and it has been shown that if the C-

rate is low enough (at a constant temperature), it does not have an effect on the aging of 

the battery [52]. On the other hand, since it is one of the available measurements, in many 

studies, it has been considered as an input to the model. Additionally, in [41], it has been 

shown that using a constant current rather than a variable current can provide more ac-

curate information to model the battery or predict its remaining life. This leads to more 

reliable data, but on the other hand, such an assumption is not realistic with respect to the 

current profile the storage will be asked to manage. An example of cycle aging has been 

provided in [48] using constant current for cycling different chemistries with different 



Energies 2023, 16, 6887 8 of 26 
 

 

DOD. It is notable that the amount of the cycling current should be chosen according to 

the chemistry of the cell. 

Moreover, before cycling tests, a characterization should be performed to obtain a 

clear and reliable picture of the initial status of the battery. As an example, a protocol in 

[48] suggests that the capacity can be measured after preconditioning the cell. Pulse tests 

with various C-rates and electrochemical impedance spectroscopy (EIS) measurements 

could be performed in order to acquire more information. 

Generally, to characterize a battery (before and after aging experiments) and set up a 

detailed cell model, advanced techniques could be adopted: EIS, X-ray diffraction, X-ray 

photoelectron spectroscopy, and electron microscopy [30]. Moreover, some studies have 

used hybrid pulse power characterization (HPPC) or low-frequency EIS tests in order to 

build an equivalent circuit model for the cell [37,49]. 

Other approaches are based on more straightforward tests: the capacity can be meas-

ured with a static discharge method, the resistance can be measured with a dc internal 

resistance (DC-IR) test [34], various features can be extracted using incremental capacity 

(IC), derivative voltage (DV) or integrated voltage (IV) curves, which are just based on 

voltage and currents measurements. The extracted features from these methods can then 

be used to estimate the SOH directly or indirectly [44]. The IC and IV curves can be ob-

tained online without detaching the battery and the need for any extra instrument, which 

is a very big advantage. Therefore, they are considered as important methods. The IC 

analysis (ICA) can be used to map the relationship between the capacity and the voltage 

of the cell during charging and discharging through a differential equation [44]. It can be 

calculated from (2) directly from the measurements of current and voltage [48]. 

𝐼𝐶 =
𝑑𝑄

𝑑𝑉
 (2) 

where Q is the charge or discharge capacity, and V is the battery’s terminal voltage. The 

charged or discharged capacity can be easily calculated by integrating the measured cur-

rent over the time interval. One of the main issues regarding the ICA is that since the 

measurements are always noisy and there is a differentiation in the method, even very 

low noises will give rise to high unwanted peaks. Therefore, always using a filtering 

method for this analysis is suggested in the literature [53]. Several studies used the IC 

curves along with machine learning methods for estimating the SOH [44,48,53,54]. More-

over, it has been investigated that there is a strong correlation between SOH and IV during 

the charging phase of the cell. IV can be calculated based on the two predefined voltages 

as in (3). Where v is the voltage across the terminals of the battery and t0 and t1 are related 

to the instant that the terminal voltage reaches the two predefined voltages. These volt-

ages play the role of a reference in calculating IV and should be chosen based on the ap-

plication and chemistry of the battery [55]. 

𝐼𝑉 = ∫ 𝑣𝑑𝑡
𝑡1

𝑡0

 (3) 

Given the large amount of data and experiments required to properly model an elec-

trochemical cell, several papers adopt public (open access) datasets provided by external 

labs, e.g., the data repository of the National Aeronautics and Space Administration 

(NASA) [38,51]. NASA dataset is based on the following protocol. First, the cells are cycled 

with randomly generated profiles (i.e., random walk algorithm). Then, after a certain 

number of cycles, a reference charge and discharge occur to estimate the capacity fade. 

Nevertheless, since the cycling profile is random, the charge and discharge capacity may 

not be equal, and this causes uncertainty in the data. The final output of the test is the 

profiles of current, voltage, and SOH. 
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4. Tests for BESS Aging Models 

As mentioned earlier in this paper, the focus of the proposed review is on BESSs, a 

complex architecture that is typically approached with oversimplified models. Therefore, 

we first have a quick glance at what the BESS is and how it is structured and then move 

to the tests for aging models. 

4.1. BESS Structure 

The structure of a BESS is shown in Figure 5. A BESS consists of four major parts: the 

battery, the PCS, the transformer, and the auxiliaries. Depending on the application, the 

BESS may connect to HV/, MV, or in some cases (e.g., residential cases) to the LV busbar. 

Any of the loads and generations that are shown on the right side of the busbar may or 

may not be present in the system. 

 

Figure 5. Architecture of a BESS. 

One important issue in understanding the BESS structure is that each element within 

the BESS will vary depending on the specific application. For instance, the battery can be 

either a lead-acid battery, a lithium-ion battery, or any other available battery type. The 

selection is always influenced by factors such as cost and technical characteristics, such as 

capacity or power versus size [56]. The same principles apply to power converters, where 

different types of inverters are suitable for use in BESSs. Depending on the specific appli-

cation, factors like reliability, failure rate, cost, and various other considerations should be 

taken into account during the design phase [57]. 

In addition to these components, several crucial management systems play a vital 

role in the operation of a BESS. These systems include the battery management system 

(BMS) and energy management system (EMS). 

The BESS’s battery is constructed by connecting multiple cells in both series and par-

allel configurations. The BMS plays a pivotal role in maintaining equilibrium among these 

cells during the charging and discharging processes. Within the existing body of literature, 

various BMS strategies have been developed, each aimed at estimating the SOC and SOH 

more accurately. One such strategy involves ensuring that the cell voltages are maintained 

above a specific threshold, far from their extreme voltages [58]. In general, the BMS could 

be seen as a necessary monitoring device that also produces the opportunity to not only 

connect cells but also connect multiple battery racks with separate BMSs to each other to 

be operated as one. 
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The EMS plays a pivotal role in overseeing the entire system. To put it more precisely, 

the EMS is the system in charge of establishing the desired power setpoint for the PCS. In 

essence, EMS algorithms gather comprehensive data from the system and then configure 

the PCS power setpoint accordingly. Each unique EMS algorithm is designed for specific 

purposes, such as load peak shaving, arbitrage, or residential applications [59]. 

Auxiliary systems play a crucial role in ensuring the proper operation of a system. 

These auxiliary systems encompass various components such as SCADA, fire alarm sys-

tems, and thermal management systems like HVAC. There are two primary reasons for 

incorporating these auxiliary systems into BESS models. Firstly, their performance di-

rectly impacts the effectiveness of the BESS; for example, the performance of the HVAC 

system directly correlates with cell temperature, a critical factor in BESS performance. Sec-

ondly, their overall energy consumption cannot be overlooked within the system, thus 

influencing the overall efficiency of the entire system [60,61]. Studies showed that neglect-

ing the consumption of an auxiliary system can introduce a 10% error in calculating the 

efficiency of the BESS. Also, in low powers, where the consumption of the auxiliary sys-

tems becomes more noticeable, the efficiency of the BESS can drop to 65% [62]. 

The preceding discussions highlight the complexity of constructing a precise model 

to elucidate BESSs. As will become evident in subsequent chapters, integrating an aging 

model into these existing models presents an even greater challenge. This is because a 

robust aging model must consider the influence of all constituent elements within the 

BESS. 

4.2. Tests 

As mentioned in the last section, the BESS is a complex structure that many models 

aging models do not take into account. For example, many existing methods and models 

tend to overlook the significance of these auxiliary components despite their non-negligi-

ble impact. The control of the HVAC system has a strong impact on the aging of the battery 

since the cells will age more under higher temperatures; thus, a suitable aging model 

should consider this relation [19,63]. Moreover, each of the elements in the BESS has its 

separate degradation. For example, power inverters can be degraded for reasons such as 

temperature. The capacitors, metal-oxide-semiconductor field-effect transistors 

(MOSFETs), and other parts can be degraded, not only affecting the efficiency of the in-

verter but also causing failures. The same reasoning for every element of the BESS can 

lead to motivations of needing an aging model that considers more than just a single cell 

in a BESS [64]. 

To cover the lack of information, some studies suggest using the models developed 

for batteries in electric vehicle (EV) applications. However, there are some issues. The stor-

age system in an EV consists of a battery pack, while the storage system in a BESS consists 

of multiple battery packs that connect to each other [65]. This makes it difficult to expand 

the temperature-based degradation models for EVs (such as the one in [66]) to the BESS 

level since, in a BESS system, the dispersion of the heat is different with respect to an EV 

[67]. Furthermore, the cell chemistries used in EVs are confined by factors like volumet-

ric/specific energy density and the need to provide sufficient capacity for a single charge 

to achieve the desired driving range. However, in the case of BESSs, there are no fixed 

requirements or predetermined end-of-life criteria that dictate the choice of cell chemistry 

[65]. Additionally, from the performance point of view, there are critical differences be-

tween BESSs and cells used in EV applications. The load shapes of BESSs and EVs are 

different. The degradation models in EVs mostly assume a daily charging pattern. This is 

not true for BESSs since they mostly follow a stochastic charging and discharging pattern 

[3]. This is important since it has been shown that the difference at the end of life (EOL) of 

the BESS can vary from around 2 to 18 years based on the services that it provides [32]. 

Therefore, it can be said that the available models in the literature based on EV applica-

tions cannot easily be extended to BESS applications, and a dedicated model is needed 

[68]. 
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Other than the technical issues indicated in the last paragraphs, it can be said that the 

cost of experimental campaigns for BESSs is very high, and most of the tests available at 

the cell level cannot or will not be operated by BESS owners since most of the aging tests 

consist of rapid charge and discharge of the battery [23,68]. Therefore, in the literature, the 

tests that use a utility-scale BESS in order to find and build an aging model cannot be 

found. On the other hand, there are some tests that tend to characterize and identify the 

parameters of the BESS, such as efficiency, capacity, etc. In the long run, these tests can be 

used to export data for empirical or semi-empirical aging models. Moreover, there are 

some alternative methods that use the available data from single-cell tests to prepare a 

model for BESSs or try to build a model without performing any special test on the BESS 

and just gathering information from the field. 

4.2.1. BESS Characterization Tests 

Characterization tests in BESSs are important since they test the whole BESS, not just 

the batteries. In order to model the behavior of a BESS, different test procedures have been 

proposed in the literature. These procedures are detailed in the following and summa-

rized and compared in Table 1. 

In [69], the authors proposed a relaxation test consisting of 34 unevenly spaced points 

and 4 h relaxation between each to measure OCV. The capacity was measured with a 

standard constant current and constant voltage (CCCV) profile after an additional 12 h of 

relaxation phase, and finally, the impedance was measured with ±0.5C pulses at different 

temperatures and SOCs. Other than voltage tabs to measure the variation in cell voltages, 

they also installed thermocouples to monitor the temperature distribution within the 

module. The obtained data can then be used to characterize the battery module and cal-

culate the module voltage (which was around 42–58 V) with suitable accuracy. The aver-

age mean error of module voltage was 81 mV with respect to the predicted one, and the 

maximum absolute error was 361 mV. The tests were performed at the module level with-

out considering the PCS and the auxiliaries; therefore, the results cannot be used to predict 

the behavior of a BESS. On the other hand, they provide very suitable details about the 

differences between the cell and the module, making it easier to model the module. A 

more complete study has been carried out in [70] on a 48 V/200 Ah BESS. During the ex-

periments for measuring the efficiency, they took into account that the power absorbed by 

the auxiliaries should not be considered a useful power since it does not contribute to the 

requested service. Therefore, a comparison between the electrochemical and the whole 

system efficiency was made, and it was revealed that, based on the required service from 

the BESS, the actual efficiency of the system can be limited to 60%, while the electrochem-

ical efficiency is more than 90%. Furthermore, The authors in [71] declare that the total 

efficiency of the BESS can be calculated as the multiplication of battery (ηbat) and inverter 

efficiency for charge (ηinv.ch) and discharge (ηinv.dis). They evaluated a 10.6 kWh/6.4 

kW BESS efficiency through IEC-61427-2005 standard [72]once at 1 kW and once at in-

verter nominal power (4.6 kW) and it has been shown that the total efficiency of the system 

(i.e., ηbat* ηinv.ch* ηinv.dis) is different by around 2% at different powers (82.57% and 

84.86%, respectively). It is important to mention that the roundtrip efficiency of the battery 

was around 95%, which shows the importance of considering all the elements of the BESS 

in characterization tests. The IEC-61427-2005 standard discusses test procedures for stor-

age systems, focusing on the battery packs combined with photovoltaic panels. The test 

consists of cycles without rest between charge and discharge at 100% DOD (within the 

limits declared by the manufacturer). 

In [4], they declared that, for a 1 MWh BESS under limited operation (the operation 

of the BESS was limited by the grid control center), after two years, no significant degra-

dation in terms of capacity was observed apart from the initial capacity fades for the cells. 

The efficiency was calculated based on a 50% DOD cycle at half of the rated power without 

considering the temperature as a parameter. They obtained 85% as the efficiency of the 

total system, while they believe that by neglecting the losses at auxiliary systems, the 
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efficiency of the battery can reach more than 90%. Also, they discovered that while the 

efficiency of the battery will go higher at lower powers, in PCS, the trend is the opposite, 

and there is a decrease in the efficiency when you get away from the nominal power. From 

the author’s perspective, the most significant parameter that affects efficiency is power 

level. Therefore, the efficiency test that they did should be repeated at different powers. 

Such an approach has been performed in [63]. They proposed two characterization test 

procedures. First, measuring the SOC-OCV curve. The tests consist of complete discharge 

at the beginning and then, after a rest time, cycle at different C-rates to build the SOC-

OCV and capability curve. The two lowest C-rates were used to measure the SOC-OCV 

curve so it could be as close to the real curve as much as possible. Another test is for char-

acterizing the relationship between efficiency, SOC, and power. The test consists of charg-

ing (with 10 or 5% DOD) and discharging at constant power until reaching the initial SOC. 

Then, use a low (0.09 p.u.) power to reach the exact initial SOC. In this way, it is possible 

to measure efficiency for different working points of the BESS. They suggest that the pro-

cedure could be repeated at different time intervals in order to investigate the effect of 

aging on the BESS performance. 

The most completed set of tests for characterizing a 1 MWh BESS has been reported 

in [73]. First, they measure the rated energy after some preconditioning cycles. They rec-

ommend repeating the measuring 3 times and accepting the measured capacity if the error 

was below 2%. Then, by performing a test at different combinations of active power (P) 

and reactive power (Q) limitations of the inverter, the power accuracy can be measured. 

The capability curve was measured by 600 s pulses at rated power and 60 s overload 

pulses. In order to find the capability curve, both the temperatures of the battery and the 

PCS were measured and monitored. In the end, to measure the efficiency, first, the battery 

was stabilized at around 5 °C of battery steady-state temperature (which is around 40 °C) 

by some preconditioning cycles, then the efficiency was measured by three consecutive 

full cycles at rated power with 100% DOD. Monitoring the auxiliaries and DC/AC conver-

sion system can provide information for calculating the AC roundtrip efficiency. Also, in 

[74], capacity and resistance measurements were carried out on two storage systems (0.4 

MW and 1.2 MW). Since the storage was not current-controlled, a constant power HPPC 

test was introduced as in Figure 6 to measure the DC resistance of the BESS. Furthermore, 

the small signal AC resistance was measured by the EIS test at the module level. By com-

paring the two resistances, although they were different in terms of value, the same aging 

track was observed. In [75], in addition to measuring usable energy and efficiency with 

100% DOD at two different powers (rated power and C/5), they proposed response time 

and accuracy and a self-discharge test. They proposed to calculate the response time with 

three different power profiles based on active, reactive, and apparent power. For the self-

discharging test, they proposed to keep the BESS on standby for 5 days and record all 

information at the beginning, during, and end of this time. However, the method has lim-

itations: it only uses two powers, which does not allow the analysis of nonlinear behavior, 

and the tests are carried out at constant power, making it difficult to extend to non-con-

stant power conditions. Additionally, the method only determines the roundtrip effi-

ciency and not the “instantaneous” efficiency for minor cycles of variable shape, which is 

a normal operation of the storage system. Also, performing all the tests needs around 203 

h, which is a long time just to characterize the system. If the self-discharging test is ig-

nored, the total test time would be around 70 h, which is more acceptable. 
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Figure 6. Standard (left) and modified (right) HPPC test [74]. 

Table 1. Summary of tests for BESS characterizations. 

Ref. 
System Un-

der Test 
Tests Test Steps 

Outcome of the 

Test 
Strong Points Weak Points 

[74] 

1. 0.4 MW 

0.1 MWh 

(LiFePO4/C) 

2. 1.2 MW 

0.3 MWh 

(LMO2/Li4Ti

5O12) 

Capacity 

• Full charge the sys-

tem, then 30 min 

rest to stabilize 

• Discharge with 

maximum power 

until it reaches a 

predefined thresh-

old 

• Capacity 

fade vs. the 

total Ah 

throughput 

• Ability to meas-

ure both capac-

ity and power 

degradation in 

time, leading to 

an accurate 

model 

• Can track the 

differences in 

power degrada-

tion at module 

and BESS levels 

• EIS at the mod-

ule level needs a 

different mod-

ule, or a module 

should detach 

from the system  

• A long time (169 

days) was neces-

sary to perform 

the 6 tests 

DC re-

sistance  

• Power-controlled 

HPPC test 

• Perform at the sys-

tem level 

• Charge and dis-

charge at maximum 

power for 18 s 

• Perform at different 

SOC (30 min. rest 

before each pulse) 

• Build an 

equivalent 

circuit model 

of the mod-

ule 

• Calculate the 

power degra-

dation 

AC re-

sistance  

• EIS Measurement 

• Perform at the 

module level, @ 

90% SOC in the 10 

kHz–0.01 Hz range 

[4] 

1 MW 

580 MWh  

(Li-ion) 

Efficiency  

• Using symmetrical 

cycle  

• Cycle @ 50% DOD 

• Constant power @ 

half the rated 

power 

• Obtain effi-

ciency at a 

specific 

power 

• By repeating 

at different 

powers, the 

total effi-

ciency vs. 

power curve 

can be ob-

tained 

• The obtained ef-

ficiency includes 

losses in all the 

systems (e.g., 

HVAC, PCS, 

etc.) 

• The focus is 

more on the per-

formance and 

not on the char-

acterization. No 

aging infor-

mation is availa-

ble 
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[73] 

1 MW 

1 MWh 

(LTO) 

Rated  

energy 

• Preconditioning 

with some cycles  

• Cycle three times 

according to manu-

facturer’s power 

profile  

• Three discharge en-

ergy should have 

less than 2% devia-

tion (otherwise, re-

peat the test) 

• The real en-

ergy can be 

obtained 

with a suita-

ble reliability 

• The data pro-

vided in the pa-

per can be decu-

pled into battery 

and PCS 

• The characteri-

zation of the 

BESS is com-

plete and pro-

vides a variety 

of information 

• The tests take 

into account the 

temperature of 

PCS and battery, 

which is ignored 

in most studies 

• Although the ac-

curacy of the 

rated energy 

measurement 

procedure is 

quite high, it 

needs devoting 

much time just 

to measure the 

capacity 

• The temperature 

of the battery or 

PCS may not be 

available in all 

cases 

Power 

accuracy 

• Perform at inverter 

P and Q limitations 

• Measuring P and Q 

at the PCS to find 

power accuracy 

• The accuracy 

of the system 

(i.e., differ-

ence between 

the setpoint 

and the 

measured P 

and Q) 

Capability 

curve 

• 600 s rated power 

test 

• 60 s overload 

power test 

• Temperature of the 

battery and PCS 

should be moni-

tored 

• The capabil-

ity curve ob-

tained de-

pends on the 

battery and 

PCS temper-

ature limita-

tions 

Efficiency  

• Preconditioning to 

stabilize the battery 

temperature 

around 5 °C of 

steady-state tem-

perature 

• Three consecutive 

full cycles at 100% 

DOD @ rated 

power 

• Calculating 

net and gross 

efficiency us-

ing the meas-

ured power 

• Measuring 

the auxiliary 

power con-

sumptions 

using meters 

installed at 

the point of 

common 

coupling 

[71] 

6.4 kW 

10.6 kWh  

(NMC) 

Efficiency 

• Cycle at constant 

power without rest 

@ around C/8 and @ 

DOD 100% 

• Repeat all the pro-

cedures at the in-

verter’s nominal 

power 

• Efficiency at 

the capacity 

declared by 

manufac-

turer 

• The effi-

ciency of the 

inverter can 

be calculated 

using the 

• Possible to cal-

culate the effi-

ciency of the in-

verter and elec-

trochemical bat-

tery separately 

• Using measure-

ments that are 

available mostly 

at all BESSs 

• No power or 

any other char-

acterization took 

place 

• The 100% SOC 

was defined at 

nominal capac-

ity declared by 

manufacturer. 

The real 
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instant val-

ues of in-

verter power, 

and battery 

charge and 

discharge 

power 

• The low C-rates 

used will de-

crease the other 

factors’ effects 

on the perfor-

mance 

capacity was not 

measured 

[70] 

48 V 

200 Ah 

(FZSoNick) 

Efficiency 

• Measuring effi-

ciency based on the 

residential power 

profiles 

• The SOC should be 

restored at the end 

of the cycle with a 

low (0.05) C-rate in 

order not to affect 

the performance 

• The initial SOC was 

set to 60% 

• The effi-

ciency for 

different 

types of 

power pro-

files consid-

ering the 

auxiliary as 

consumed 

power 

• Suitable for 

measuring effi-

ciency with dif-

ferent profiles 

and situations 

since it is not 

complicated 

• Although all 

electrical varia-

bles were meas-

ured, only the 

efficiency was 

investigated 

[63] 

570 kWh 

250 kW 

)NMC( 

SOC-OCV 

and capa-

bility curve 

• Cycles at different 

C-rates 

• Steps: CCCV dis-

charging, CC 

charging, CC dis-

charging, CV dis-

charging 

• The voltage should 

be measured at 4 

points after each 

step, always after a 

settling period 

• SOC-OCV 

curve based 

on the low C-

rates 

• The power 

capability 

curve for 

charge–dis-

charge 

• A well-detailed 

test step with 

low computa-

tional effort suit-

able for aging 

models 

• Suitable for em-

pirical aging 

models 

• Needs a long 

time  

• The temperature 

has been consid-

ered constant 

• The tests pro-

vide details 

about the BESS 

as a black box. 

No parameter 

(chemical or 

electrical) can be 

obtained for the 

BESS Efficiency 

• Three different ini-

tial SOC 

• Charge and dis-

charge with differ-

ent C-rates @ 10% 

DOD 

• The battery should 

reach the initial 

SOC after discharge 

• Efficiency at 

three differ-

ent SOC lev-

els and dif-

ferent pow-

ers 

[19] 

822 MWh 

500 kW 

(NMC) 

Efficiency  

• Cycles @ different 

powers 

• Initial SOC:10%  

• @ 80% DOD ( They 

are  limited to this 

number by manu-

facturer; therefore, 

it can be said that 

the experiments 

consist of full cycles 

within the system 

• Efficiency at 

different 

power rates 

and auxiliary 

power profile 

• Within the ex-

periment, they 

also measured 

the auxiliaries 

and provided a 

usage profile for 

them 

• The experiment 

has been re-

peated over 

three years to 

• The experiment 

has been only 

performed for a 

constant DOD, 

which may not 

be the general 

case for real us-

age of BESS 

• Only four power 

points have 

been used for 
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limits. (i.e., it can be 

considered with in-

itial SOC: 0% and @ 

100% DOD) 

observe the ef-

fect of aging 

• The experiment 

is not compli-

cated and is 

straightforward 

to implement 

the first year, 

which can intro-

duce inaccura-

cies in the model 

• The auxiliaries 

profile has been 

categorized into 

day and night 

without consid-

ering the differ-

ence in the tem-

perature in dif-

ferent seasons 

[75] 
100 kWh 

100 kW 

Usable en-

ergy and ef-

ficiency 

• Four cycles (the last 

three for calculat-

ing roundtrip effi-

ciency)  

• 1 h rest between 

charge and dis-

charge @ nominal 

power (or C/5) until 

the limits, then us-

ing maximum 

available power  

• @ 100% DOD 

• Efficiency 

calculation 

based on the 

total energy 

of three cy-

cles 

• Usable en-

ergy of the 

battery 

• Repeated at 

two different 

powers 

• Reliable tests for 

tracking the 

health of the 

BESS in terms of 

capacity and ef-

ficiency 

• All the tests in-

cluded some 

rest phases, so 

all the parame-

ters were calcu-

lated at steady 

state 

• Each set of tests 

takes 203 h; 

without self-dis-

charge, it takes 

70 h 

• The power capa-

bility was not 

calculated 

• Battery OCV 

and SOC table 

assumed 

known, which is 

not the case in 

most cases 

• The temperature 

was assumed 

constant with-

out any control 

and just by do-

ing the test in 

spring or fall 

Response 

time and 

accuracy 

• Calculate at three 

different active, re-

active, and appar-

ent power profiles 

• Initial SOC @ 50% 

• 20 s rest before each 

profile 

• Accuracy of 

the system 

(i.e., the dif-

ference be-

tween the 

setpoint of 

the power 

and the 

measured 

one) for dif-

ferent power 

profiles 

Standby 

losses due 

to battery 

self-dis-

charge 

• Initial SOC @ 50%  

• BMS off and rest for 

12 h 

• BMS on and record 

voltages 

• Rest for 5 days and 

then record infor-

mation again 

• The amount 

of self-dis-

charge when 

the battery is 

on standby 

4.2.2. Alternative Methods 

To overcome the lack of information regarding the tests in BESSs, there are other ap-

proaches in the literature. Some studies perform tests at the single-cell level with the in-

tention of using the model in BESSs. For example, in [76], based on analyzing the current 

and temperature along with the distribution of pulses and SOC events of a 1 MW/250 kWh 
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BESS, they proposed that the usage of a BESS in the field can be explained by 5 parameters: 

pulse duration, pulses C-rate, SOC swing range, SOC swing range ramp rate, and temper-

ature. Then, based on these data in [77], an experiment was designed to investigate the 

impact of these parameters on the aging of a cell. They assume that for each parameter, at 

least 3 points should be investigated, leading to 243 (35) experiments in total. To make the 

experiment more feasible, a computer-generated optimal custom design reduced the ex-

periments to 21 and then to 16. Two parameters were fixed (pulse duration and SOC swing 

ramp rate), while the others were varied based on usage analysis. The data points have 

been shown in Figure 7. Then, from the obtained results, an exponential curve as a func-

tion of the number of equivalent full SOC swings, temperature, and C-rate was fitted. Us-

ing the average values of the field data, the total degradation of BESSs after three years 

was estimated at 5%, while the real degradation was around 7%. Then, to move to a better 

prediction, the idea was to sum the degradation of cells based on each SOC event. Since 

the voltage and current of each cell were not available, all the cells of a module were as-

sumed to be identical; thus, the calculation could be carried out using the module’s infor-

mation. The total degradation was carried on based on the hottest and coolest module 

temperatures. The limit of this method is that all the cell-to-cell variations have been ne-

glected. Also, since the model needs temperature, by assuming an average or coolest or 

hottest temperature, the variation in the capacity fade of modules after 10 years can be 

from 15% to 30%, which is a high tolerance. Moreover, from the experiments and field 

data, no model could be obtained for the calendar aging. 

In a more general way in [78], in order to evaluate the performance of batteries as 

storage systems, the cells cycled using a typical BESS profile. Although many parameters 

of the BESS are missing in this test (i.e., PCS, BMS, etc.), this test can help to verify which 

chemistry can be more useful for use in a BESS structure. They propose a six-step test to 

evaluate the performance of batteries as energy storage systems. The six steps can be sum-

marized as this. Evaluate the cell’s specific power (W/kg) and specific energy (Wh/kg) by 

identifying and weighing them, calculate battery capacity with CCCV cycles at different 

C-rates, calculate impedance using DC pulse method, calculate roundtrip efficiency with 

high current charge and discharge and identify the Peukert constant using constant power 

charging, again calculate the roundtrip 

efficiency with fast charge and discharge at standard current, and the last test is to 

evaluate the performance of the battery using typical BESS network load profiles. The bat-

tery testing procedure is comprehensive and thoroughly evaluates battery efficiency un-

der various operating conditions. However, implementing the different types of required 

tests may not always be easy, and the accuracy of the results may vary depending on the 

length of current pulses and working frequencies. In contrast, using data from the lab is 

not always the best option. Lab data are limited because of the time available for testing 

and the number of tests that can be carried out. Additionally, there are certain differences 

between the data from the lab and the data from the field. Firstly, lab tests often assume 

accelerated and extreme situations that are different from real-world usage. Secondly, the 

field data have low cost since there would be no need to cycle any battery intentionally. 

Third, there is always the possibility of missing a factor in the lab [18]. Therefore, an alter-

native is to directly use the data from the field to predict and build an aging model. 
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Figure 7. Parameters usage and their selected data points [77]. 

Such an approach has been implemented in [79]. First, the aging features from the 

field data were obtained. Then, some unmeasured points were recovered (the SOH was 

only measured at 0, 50%, and 100%). Then, the model that was built from the lab data was 

updated with the field data. The main disadvantage of this method is that the proposal is 

mainly for electrical vehicle batteries. In the EV industry, since the number of deployed 

batteries is by far more than the number of BESSs, it is easier to obtain a big and sustaina-

ble database for model verification. On the other hand, in BESSs, not only the number of 

them is lower, but also each of them belongs to different companies that do not share their 

data and information publicly. Therefore, it is more complicated to expand this procedure 

to the BESS. To cover that, a recent study has used only the field data of a 500 kWh BESS 

and some data provided by the manufacturer to build a semi-empirical model for BESS 

aging. First, using the Rainflow algorithm on the SOC timeseries, the stress factors (DOD, 

average SOC, duration of cycles, number of full equivalent cycles) were extracted. Then, 

using the manufacturer’s experimental data on the BESS, a model can be defined. The 

disadvantage of this method is that most of the BESS producers do not share such infor-

mation with the clients [19]. 

4.2.3. Comparison 

Table 1 compiles various tests documented in the literature. Diverse tests have been 

proposed across different papers. Notably, the efficiency test and the rated energy test 

have been the most frequently repeated among these. Consequently, Table 2 presents a 

comparative analysis of the methodologies used in these two tests. It is worth noting that 

the remaining tests have been exclusively conducted in individual papers, making it im-

practical to draw comparisons among their respective approaches. 

Table 2. Comparison of test approaches. 

Test Ref. Comments Similarities 

Efficiency test 
[4,19,63,70–

72,74] 

• [4]: The easiest to perform in a short time. 

• [73]: Only test that considers preconditioning according 

to temperature. 

• [71]: Measure at low power, which is different than 

most of the proposed tests. Also, measure the inverter 

nominal power, which can also provide information 

about the inverter accuracy performance. 

• [70]: Only test that uses a power profile instead of a con-

stant power during charge and discharge. 

• [63]: The most completed test so far since they measure 

at different C-rates and initial SOCs. The only test that 

is used rests in the test but requires much time. 

• The tests have been 

performed at differ-

ent DODs, but in all 

of them, it was fixed. 

• None of the tests 

have explored the ef-

fect of temperature 

on efficiency. 
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• [63,70]: Only tests that try to use accurate SOCs for the 

initial and ending of the charge. 

• [19,63]: Only tests that measure at different powers. 

Rated energy [72–74] 

• [73]: The only test that does not indicate any rest be-

tween charge and discharge. 

• [74]: Propose using a predefined threshold instead of 

minimum and maximum SOCs. 

• Not a very popular 

test in the literature.  

• Repetition of the test 

is an important fac-

tor. 

For papers evaluating both the performance of electrochemical cells and PCS, a com-

parison of BESS efficiency models has been conducted. To properly evaluate the different 

models, performances (i.e., efficiency) have been reported as a function of SOC and power 

rate (P-rate), as proposed in [63]. Only four papers from Table 1 have been used since only 

their data were completely declared and were available for comparison. The results, de-

picted in Figure 8, clearly demonstrate how different models yield different levels of ac-

curacy. In [63], the efficiency correctly varies with P-rate and SOC. In [19], the efficiency 

is merely a parameter, while in [74], a constant efficiency model is proposed, sampling it 

only at the nominal power [73] and potentially also at a low power setpoint. It is important 

to note that the efficiency maps reported in Figure 8 are associated with different BESS 

configurations. Therefore, a direct comparison between them is not feasible. The objective 

of this comparison is to identify the scenarios where each model proposed in the literature 

is likely to be accurate or not. 

 

Figure 8. Efficiency comparison. 

As previously discussed, the model presented in [63] aims to capture efficiency vari-

ations related to both P-rate and SOC. Furthermore, the efficiency is evaluated through 

small charge–discharge cycles around various operating points, i.e., by adopting partial 

charge–discharge cycles. The data provided in the paper reveal a significant efficiency 

change at a low P-rate, while the impact of SOC is minor (only noticeable when a high P-

rate is demanded at low SOC). 

The model proposed in [19] does not consider the impact of SOC. Moreover, only full 

charge–discharge cycles are employed to evaluate the efficiency. The final model results 

in smoother efficiency curves, but it is worth noting that significant efficiency changes are 

detected (as previously mentioned, the efficiency deteriorates at low SOC). 

The approach proposed in [73] relies on a constant efficiency model based on a single 

charge–discharge cycle at nominal power (depicted by a purple line in Figure 8). Such an 

approach may be considered adequate for medium-high P-rates, but its accuracy is 
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insufficient for small power setpoints. Finally, the model proposed in [75] attempts to 

overcome this limitation by testing the BESS at the nominal power and at a low P-rate. 

Unfortunately, the protocol proposed does not utilize a small enough P-rate, compromis-

ing the accuracy. 

In comparing the different models, it is evident that higher nominal capacity and 

power of the tested BESS lead to higher sampled efficiencies. This highlights the signifi-

cant scaling factor affecting the overall efficiency. A summary of all 4 approaches has been 

provided in Table 3. It is worth noting that this is the approach declared by the authors. 

The real experiment that results from the data in Figure 8 can be obtained using not exactly 

these approaches. (e.g., in [19], although they declared 11 power setpoints for the experi-

ment, the results have been obtained with only 4 power setpoints) 

A more detailed analysis would require an extensive laboratory campaign using a 

real-life BESS, testing the same BESS under different protocols/models and ultimately 

providing a quantitative comparison of each model’s accuracy. 

Furthermore, specific protocols and tests would be necessary to evaluate BESS aging. 

A clear research gap in the literature has been identified in this area. 

Table 3. Summary of compared approaches for calculating efficiency. 

Ref. Chemistry 

Capacity 

(kWh)/Power 

(kW) 

Approach/Model Specifications 

Initial 

SOC (%) 
DOD (%) 

Total Meas-

ured Points 

Power Setpoints 

(Psetpoint/Pnominal) (p.u) 

Estimated 

Time 

(min) 

Repetition 

[63] NMC 570/250 10, 45, 80 10 21 
0.05, 0.09, 0.18, 0.36, 

0.54, 0.72, 0.90 
2856 No 

[19] NMC 822/500 10 80 11 
0.1, 0.15, 0.2, 0.3, 0.4, 

0.6, 0.7, 0.8, 0.9, 1 
5721 No 

[73] LTO 1000/1000 0 100 1 1 180 3 times 

[74] -- 100/100 0 100 2 0.2, 1 720 3 times 

4.3. Solutions 

While there has not been a dedicated model designed exclusively for addressing 

BESS aging up to today, there have been various suggestions to solve this issue in various 

domains. It is important to acknowledge that the aging of a BESS is an unavoidable reality. 

Consequently, finding a solution in this field typically involves determining how to man-

age a BESS, accounting for aging during the design phase, or incorporating aging consid-

erations into the optimization process. In the following, some example of each method has 

been provided. 

Benefiting from the aging model in control systems is an important field since it can 

increase the performance and reliability of the control system as the BESS age and physical 

properties of the system change. In [80], they proposed three different scenarios where, in 

each of them, the aging model has been considered differently. For example, in one of the 

scenarios, they suggest controlling the different batteries of the BESS according to their 

SOH. It is notable that the degradation model adopted had been developed for a single 

cell. Their results showed that the profit gain from the system is in conflict with the life-

time of the system. Moreover, in [81], they showed that not only did using an aging cost 

function affect the performance of the BESS, but they also proved that using a linearized 

calendar and cycle aging model can increase the lifetime profit by around 25% compared 

to the model that only considers energy throughput for the aging. Once more, this proves 

that using a more complicated model can provide more realistic and better answers, but 

it always carries the barrier of heavy calculations. 

In energy management systems (EMC), which are in charge of controlling the BESS, 

the aging models can play a crucial role. Implementing these models in EMCs can not 

only decrease the aging of the BESS but also, in some situations, increase the stability and 
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prevent some faults. For example, in [82], they leverage an aging model to craft a P-control 

strategy for the energy management system. This involved selecting an ECM model for 

the battery and implementing a logic to adjust circuit parameters based on cell aging and 

SOC. The findings indicate that integrating such an aging model into the energy manage-

ment system provides enhanced control over the grid and ensures a more stable profile. 

This aspect carries notable significance, particularly as the BESS undergoes aging, causing 

a gradual reduction in its power capacity. This reduction could potentially lead to issues 

related to undervoltage within the system. A similar approach has been proposed in [83] 

for islanded grids. Their analysis proves that even on a small and islanded grid, it is im-

portant to benefit from the aging models. The presence of the aging model will affect the 

usage of other generation units. 

All the proposals mentioned aimed to reduce and minimize the degradation of the 

BESS. It is crucial to emphasize that all these studies relied on models developed from 

tests conducted on individual cells. As discussed throughout this article, the inaccuracies 

in these aging models can be magnified when they are applied to larger systems and be-

come pivotal decision-making factors. This challenge can be considered the most signifi-

cant hurdle and research gap within this field. 

In spite of the numerous challenges detailed within this article, the significance of 

electrochemical cells has consistently driven research efforts toward the exploration of 

novel models and theories. The augmentation of sensor technology within these cells 

promises to yield richer, high-precision data, thereby enabling the development of more 

precise models for BESSs based on cell-level data. This expanded dataset holds the poten-

tial to bolster the efficacy of AI algorithms, rendering them more robust and dependable 

in the prediction and estimation of SOH for BESSs. 

Furthermore, an increase in the deployment of BESSs leads to a wealth of data, in-

cluding genuine aging patterns, which can be harnessed to refine estimation models. This 

facilitates rigorous characterization and aging tests by companies and mitigates concerns 

regarding profit loss during extended testing periods. In line with this trajectory, the pos-

sibility emerges to design more intricate tests that demand additional time and equip-

ment. Nonetheless, these investments promise to yield outcomes of superior accuracy, 

further enhancing the industry’s overall benefit and asset management. 

5. Conclusions 

In this paper, different test protocols for modeling the BESS aging were reviewed. 

Some protocols used randomly generated profiles, such as the NASA procedure, while 

others tried to plan a test protocol for testing each feature separately, along with using 

some data analysis techniques, such as IC or IV, to extract features and build an aging 

model. On the other hand, as discussed in the literature, the number of available tests on 

large or utility-scale BESSs is limited. Additionally, it has been discussed that because of 

different subjects, it is often hard and not possible to expand the test protocols from the 

cell level to the storage level. It has been shown that one of the ways to counter this prob-

lem is by using the characterization test at different time intervals. This approach is ex-

pensive and also needs a long time to gather data. Therefore, another approach was to use 

the data gathered from single-cell laboratories but with tests that were designed with the 

purpose of using batteries in an energy storage system. Also, a review of models that try 

to use the field data for building the aging model has been carried out. Studies have 

demonstrated the potential of combining field data with laboratory data, acknowledging 

that the latter is often deemed more accurate. However, it is important to recognize that 

certain real-world data may be overshadowed due to the controlled and idealized nature 

of laboratory environments. Also, it has been shown that gathering and using BESS field 

data can be a harder task than in the EV industry since the number of EVs is far greater 

than BESSs, which leads to more limited data in the hands of each company. 



Energies 2023, 16, 6887 22 of 26 
 

 

Author Contributions: Conceptualization, M.P. and M.M.; methodology, M.P., M.M. and L.P.; soft-

ware, M.P.; validation, M.P., M.M. and L.P.; formal analysis, M.P. and M.M.; investigation, M.P.; 

resources, M.P.; data curation, M.P. and M.M; writing—original draft preparation, M.P.; writing—

review and editing, M.M., L.P., G.R., S.C., J.E.M., F.B., G.G. and S.M.; visualization, M.P.; supervi-

sion, M.M. and L.P.; project administration, M.M., L.P. and J.E.M.; funding acquisition, M.M. and 

J.E.M. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by ENI within the B3M project. 

Data Availability Statement:  No new data were created or analyzed in this study. Data sharing is 

not applicable to this article. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

AI artificial intelligence 

ALSTM attention-based long short-term memory 

BESSs battery energy storage systems 

BMS battery management system 

CC constant current 

CCCV constant current-constant voltage 

CPE constant phase element 

C-rates charge/discharge rate 

CV constant voltage 

DC-IR dc internal resistance 

DOD depth of discharge 

DV derivative voltage 

ECM equivalent circuit model 

EIS electrochemical impedance spectroscopy 

EOL end of life 

EV electric vehicle 

FEC full equivalent cycles 

GPR Gaussian process regression 

HPPC hybrid pulse power characterization 

HVAC heating ventilation air conditioning 

IC incremental capacity 

ICA incremental capacity analysis 

IV integrated voltage 

MEM minimal electrochemical model 

MOSFET metal-oxide-semiconductor field-effect transistor 

NASA national aeronautics and space administration 

NN neural network 

OCV open circuit voltage 

P active power 

PCS power conversion system 

P-rate power rate 

Q reactive power 

RUL remaining useful life 

SEI solid electrolyte interphase 

SOC state of charge 

SOH state of health 

TL transfer learning 

UKF unscented Kalman filter 
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