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In the last years space technologies have made giant leaps, increasing the
feasibility of human exploration and colonization of other celestial bodies. The
Moon andMars have become appealing in these terms, but autonomy, adaptability
and high reliability are inevitably needed in long-termmissions. Furthermore, new
generation spacecraft will have to face challenges related to the degradation of
materials and the continuous exposure to the threats of space environment. Novel
materials and technologies must hence be developed to satisfy future missions
requirements. This paper aims at giving a clear and organic overview of the
describes the most significant innovations in the field of materials for space
applications, along with the related advantages and challenges. After
introducing the main environmental factors in space and their possible risks
and effects on materials, the authors proceed with the description of novel
materials for space applications, subdivided into polymers, metals,
semiconductors, composites, and mixtures. Innovations in manufacturing
techniques and in-situ resource utilization are also briefly presented before
moving to final considerations on the limitations and future challenges for
these innovative materials.
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1 Introduction

With today’s technological advances the dream of both manned and unmanned
exploration and colonization of other celestial bodies is becoming more and more
achievable. Two of the most appealing destinations are currently represented by the
Moon and Mars.

The exploration of the Moon is of paramount importance since it can prepare to
missions towards more distant celestial bodies. The establishment of a lunar base would
build the skills required for long-term missions to other planets, such as the creation of
essential supplies from in-situ resources. In addition to this, the Moon is still very interesting
from a scientific point of view (Freeman, 2023). On the other hand, the proximity and
similarity of Mars to the Earth makes it an inevitable target both for scientific exploration
and establishment of human settlements. Studies on its evolution and structure may
determine whether life exists or existed outside the Earth, and understanding its
geophysical processes could also unravel the mysteries of the evolution of other Solar
System planets (Why go to Mars? n.d.).

Colonization and exploration missions imply long term exposure of men and devices to
the hostile space environment, hence introducing strict requirements on the used
technologies. Future spacecraft will need a long lasting, active, extremely reliable,
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autonomous, and multifunctional structure, able to self-repair and
adapt to a wide range of conditions. Other aspects that should be
considered are related to mass, volume and power constraints and
trade-offs (Menon et al., 2007).

Since traditional design solutions are often unable to
adequately match the presented requirements, innovative
materials and structures are being developed. Most of them are
inspired by nature and actively try to reproduce behaviors that are
typical of biological systems. An example is given by robotic
probes characterized by adaptive pathfinding and soil penetration
strategies inspired by roots, having possible advantages of low
power consumption and autonomous decision-taking (Menon
et al., 2007). Other promising technologies are given by
polyimides (PIs), carbon nanotubes, graphene and ceramics.
Traditional PIs as Kapton are used in thermal blankets
(radiation insulation), while novel PI shape memory polymers
are being considered for space applications as flexible electronics,
deployable structures and batteries, solar sails and Sun shields
(Gouzman et al., 2019). Carbon nanotubes and graphene could be
used in composite propellant tanks, nanoelectronics, electric
propulsion systems and self-healing structures, while some
interesting ceramics applications are given by protective
coatings, high temperature thruster elements and self-healing
composites (Levchenko et al., 2018). In general, these materials
can be divided into organic and inorganic and different
considerations can be made on these two families. The first
class includes several polymers, which are fundamental in
space due to their high toughness and elasticity, good
insulation, and low weight. This last property is particularly
useful as it allows to reduce the overall mass of a space system,
hence decreasing the related mission costs. Nevertheless, the
biggest disadvantage of organic materials is that they
experience outgassing under vacuum and thermal cycling,
which leads to degradation and contamination of other
surfaces, as explained in more detail in section 2. On the other
hand, inorganic materials such as coatings, glasses and ceramics
typically do not produce contaminants from outgassing.

2 Challenges for the materials

The materials characterizing a space vehicle highly influence
its performance and lifetime, and must resist to the action of
space environment and protect crewmembers men and
instrumentation from its numerous threats (Levchenko et al.,
2018). Important aspects to be considered during their design
concern mechanical properties, weight, volatility, thermal
stability, chemical reactivity, and durability under specific
environmental conditions. Past studies show that the exposure
to space for long periods of time causes degradation of these
properties, including material aging by UV radiation and atomic
oxygen (Miller and Banks, 2010); a specific mission can therefore
be seriously compromised or fail if inadequate solutions are
adopted.

Depending on its characteristics and purpose, each mission can
face different challenges posed by space environment depend on the
type and purpose of the mission, but the main issues are typically
related to radiation, micrometeoroids and orbital debris (MMOD),

ultrahigh vacuum, and thermal solicitations are typically critical
factors (Pastore et al., 2020). On the other hand, while atomic
oxygen is very important in LEO environment, while it is essentially
irrelevant in lunar and Mars missions. In particular, the Moon has a
very weak atmosphere that can be virtually considered absent
(Earth’s Moon, 2019).

Radiation is very dangerous for both crewmembers and
electronics, and the absence of an atmosphere as a protection in
deep space requires the introduction of artificial shields. This
problem is also present on planets like Mars: on its surface, an
astronaut would receive radiation doses that are approximately
two and a half times those on the ISS (Mars Radiation
Environment, 2023).

Among radiations in space, the cosmic one is very energetic and
can cause severe damages and modifications to the DNA of
astronauts (The radiation showstopper for Mars exploration,
2019), along with degradation and mass loss of surface materials,
and damage to electronic components. Another contribution is
given by Solar electromagnetic radiation, mainly composed of
UV radiation, is also relevant as it which can break organic
chemical bonds. Its effects include and lead to energy loss,
creation of volatile fragments with mass loss, and reduction of
thermo-optical and mechanical properties (Grossman and
Gouzman, 2003).

In addition to the effects on the human body and electronics,
radiation may also compromise thermal protection surfaces and
devices. In general, external components as thermal blankets,
thermal control coatings and optical sensors are mostly affected
(Gouzman et al., 2019). It is hence necessary to find materials that
can totally or at least partially screen it; lithium, plastics and
magnets may be promising in these terms (Chen et al., 2016).

MMOD also pose a serious threat to the integrity of a spacecraft.
These objects can be either The term micrometeoroid indicates
small pieces of asteroids or comets, called micrometeoroids, or while
debris are artificial fragments coming from satellites, named debris.
Their characteristic average impact velocities can range from about
11 km/s to 72 km/s for the former, 1 km/s to 15 km/s for the latter
(Cwalina et al., 2015). Collision with bodies MMOD below 1 mm
can erode thermal surfaces, damage or contaminate optical devices
and external parts and puncture fuel lines; on the other hand,
fragments with sizes comparable to 1 cm can fatally damage or
even destroy the spacecraft (Aïssa et al., 2012). Furthermore, the
possible exposure of the damaged zone to UV, charged particles or
cyclic temperature variations can increase the damage rates and size
(Silverman, 1995), while new debris is also created by the impacts,
extending risks to future missions.

On the other hand, the main consequence of high vacuum is the
outgassing of material surfaces. Polymer-based components are the
most affected by this phenomenon, and the related effects are given
by contamination and corrosion of other surfaces and optical
devices, loss of dimensional stability and performance and
composition alteration (Pastore et al., 2020).

There are Other environmental effects to be taken into
consideration are, such as electrostatic discharges and thermal cycles
(Grossman and Gouzman, 2003). The first phenomenon is due to non-
homogeneous charging of spacecraft surfaces and components, while
thermal cycling indicates significant temperature fluctuations of the
spacecraft surface. These fluctuations can go from −120°C to 120°C in
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LEO and −150°C–150°C in geostationary orbit, and may modify the
material’s internal and bonding strength, eventually causing it to crack,
fall off and age (Chen et al., 2016).

Last but not least, atomic oxygen influences optical properties of
materials surfaces and can lead to cause damages related to erosion,
cracking and shortened service life (Wang et al., 2018). The oxygen

TABLE 1 Classes of innovative space materials.

Class Materials Functionality References

Polymers

Ionomers Self-healing Gordon et al. (2017), Haddad et al. (2018)
Impact shielding

Supramolecular
polymers

Self-healing Haddad et al. (2018), Pernigoni and Grande (2020)
Impact shielding

Poly-urea urethanes Self-healing Pernigoni et al. (2023)

Photoelastomer inks Self-healing Yu et al. (2019)
Actuators

Additive manufacturing
Impact shielding

Polymer foams Shape memory Santo (2016)
Deployable structures

Epoxy-based polymers Shape memory Jo et al. (2019)
Deployable structures

Polyimides Shape memory (Pater and Curto, 2007; Cano et al., 2015; Gouzman et al., 2019; Ishikawa et al., 2019;
Pavlenko et al., 2019)Deployable structures

Electronics
Energy storage

Radiation shielding
Sensing

UHMWPE Impact shielding Cha et al. (2020)
Radiation shielding

Biopolymers (spider silk) Inflatable structures (Bonino, 2003; Hardy and Scheibel, 2009; Naser and Chehab, 2018)
Structural applications

Metals and alloys

Stainless steels Self-healing (Yu et al., 2016; Levchenko et al., 2018)
Electronics

Titanium alloys Structural applications (Song et al., 2017; Levchenko et al., 2018)
Thermal protection

Semiconductors
Organohalide lead

perovskites
Power supply Yang et al. (2019)

Sensing

Composites

Ceramic matrix composites Impact shielding (Eswara Prasad et al., 2017; Levchenko et al., 2018; Naser and Chehab, 2018)
Inflatable structures

Structural applications
Thermal protection

Metal matrix composites High temperature structural
applications

Bochenek and Basista (2015)

Aerogel composites Thermal protection Rocha et al. (2019)

PI composites Radiation shielding (Gouzman et al., 2019; Kubota et al., 2019; Pavlenko et al., 2019)
Electronics

Energy storage
Sensing

Thermal protection

Carbon/battery Energy storage Grzesik et al. (2020)
Structural applications

Carbon/carbon Structural applications (Rawal et al., 1990; Krenkel and Berndt, 2005; Pater and Curto, 2007)

Polyethylene
nanocomposites

Radiation shielding Laurenzi et al. (2020)
Structural applications

Mixtures Dual Purpose Goop Self-healing Skolnik and Putnam (2020)
Impact shielding

Thermal protection
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atoms impact with the spacecraft surfaces, breaking the chemical
bonds of their materials and significantly modifying their
characteristics. Other Additional negative effects to be added to
the already cited ones are given by mass loss and degradation of
electrical, thermal, and mechanical properties (Bitetti et al., 2007).
Polymers and composites are particularly affected by these
phenomena. In any case, as already stated, atomic oxygen
becomes practically negligible when focusing on missions
towards the Moon and Mars. For this reason, this issue will not
be deepened in the here presented this review.

It is nevertheless important to point out that one aspect of the
environment of the Moon, Mars and other planets may be partially
positive for space structures: the reduced gravity with respect to
terrestrial conditions, which allows, for example, to A direct
consequence is given by the ability to withstand higher weights
(Naser and Chehab, 2018).

3 Innovation and advances in space
materials

Future space missions will require multifunctional materials, in
which the traditional concept of components with a single specific
purpose will be replaced by solutions in which characterized by
several different properties (e.g.,: excellent shielding and mechanical
characteristics) are embedded in a single material (Laurenzi et al.,
2020). This section introduces the main innovative space materials
in these terms, which can be divided into different categories,
depending on their characteristics and their main function, as
indicated in Table 1.

3.1 Polymers

According to their physicochemical properties and their
functionality, polymers can be divided into several subclasses.
Among them, self-healing polymers have lately become
increasingly interesting, since they could mitigate or even
completely solve damage issues imparted, for example, by
impacts with micrometeoroids and orbital debris (MMOD).
Subsequent catastrophic effects on spacecraft and structures as
habitats could hence be avoided, leading to higher levels of
protection and safety both for devices and human crew. This
would result in increased operational life and reliability, which
are fundamental for long term missions as the ones planned on
Mars and on the Moon.

Self-healing concepts are many and are not exclusive to
polymers, but they can all be related either to the intrinsic or the
extrinsic category. In the first case, the healing ability is embedded in
the material, usually thanks to reversibility of its chemical or
physical bonds, and healing can typically occur multiple times.
For what concerns extrinsic materials, on the other hand, a
healing agent is inserted into them, and repair of a damage
cannot be repeated. An example of this second category is given
by the space debris impact protection system presented in (Aïssa
et al., 2012), formed by different microcapsules containing a
monomer, carbon nanotubes and epoxy resin inserted in carbon
fibre reinforced polymeric layers. Nevertheless, one of the current

main issues of many self-healing materials is that no clear
information is available on their actual lifetime and operating
temperature range, and on the effects of space environment on
them. Furthermore, little is known about part of the mechanisms
that trigger the self-healing behavior (Chipara et al., 2006).

Remaining in the category of intrinsic self-healing polymers,
more promising than the extrinsic technologies, the properties and
suitability to space applications of ionomers and supramolecular
polymers have been investigated, among others, by NASA (e.g.,
efficiency of ionomers for ballistic impact protection) (Gordon et al.,
2017), but. Ionomers are thermoplastic polymers with usually up to
20% of ions in their composition. The presence of ionic groups leads
to improved mechanical properties of the polymer, such as
resistance to traction, impact, tear and abrasion. The reversible
nature of ionic bonds is also what makes these materials excellent at
self-healing (Ghosh, 2009). On the other hand, supramolecular
polymers are polymeric arrays of monomeric units connected
through reversible and highly directional secondary interactions,
which are the source of their self-repairing ability. Examples of these
bonds, referred to as non-covalent, are the Van der Waals
interaction, hydrogen bonding, π-π stacking, halogen bonding,
and host–guest interaction (van der Zwaag, 2007; Ghosh, 2009).
Despite providing the advantage of autonomous repair, high
concentrations of noncovalent bonds can lead to a decrease in
the material mechanical properties. Consequently, a proper trade-
off between healing and mechanical performance must be
considered.

A more recent and innovative research example is given by the
combination of materials as the EMAA ionomer and
supramolecular rubber Reverlink® with optical fibre sensors.
The main purpose is to ensure both protection against
hypervelocity ballistic impacts with small debris and structural
health monitoring of composite overwrapped pressure vessels
(COPVs) (Haddad et al., 2018). The result is a multilayer
protective wall that also includes impact resistant materials such
as Kevlar® and Nextel®. The damage recovery ability of Reverlink®

and the possibility of combining it with other materials in
multilayers were also presented in (Pernigoni and Grande,
2020; Pernigoni et al., 2023), which also introduced and
analyzed poly-urea urethanes (PUUs), another family of
intrinsic polymers. This study focused on the case study of a
space suit to assess the damage recovery performance of the
polymers before and after exposure to space radiation through
puncture tests. The related results showed the superior healing
ability of the PUUs when compared to Reverlink®, but a slight
performance decrease was also found after gamma irradiation,
requiring additional future analyses.

Due to the emergence of additive manufacturing and its appeal
to the space sector, a photoelastomer self-healing ink has recently
been developed for rapid printing of complex 3D shape structures
which can autonomously repair and show good response to cyclic
solicitations, excellent stability in the 25°C–165°C range and almost
complete preservation of their mechanical properties after rupture
and repair. This ink contains thiol and disulfide groups (Figure 1),
which respectively control the photocuring rate and the self-healing
performance (Yu et al., 2019). In addition, it overcomes the main
limit of self-healing polymers with hydrogen bonds, which is high
sensitivity to moisture (Li et al., 2016). All these aspects make this
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material and the related manufacturing technique very promising.
The most interesting applications are given by soft actuators,
structural composites mimicking natural nacre, and self-healing
electronics (Benight et al., 2013; Studart, 2016; Adam Bilodeau
and Kramer, 2017).

Shape memory polymers (SMPs), on the other hand, can
temporarily change their original shape and subsequently
restore it by dynamically responding to external stimuli such as
heat, electromagnetic or electrical fields, light, and chemical
vapors or liquids (Hu et al., 2012). In many cases the external
stimulus is given by a temperature gradient: the temperature at
which the material can get back to its permanent shape is called
switching temperature, and usually corresponds to either glass
transition or melting (Ranganatha Swamy et al., 2017). The shape
memory effect of SMPs is described with a dual-phase mechanism:
the nodes of macromolecule segments related to physical or
chemical crosslinks act as a permanent phase, while the
molecular chains form the reversible phase. To avoid undesired
triggering, the SMP glass transition temperature should be higher
than the ambient temperature (Gouzman et al., 2019). SMPs are
very appealing for space applications like self-deployable
mechanisms (Sokolowski et al., 2008), due to their lightness,
low cost, easy manufacturing, good biocompatibility and
recovery force, and the possibility to modify their mechanical
properties by changing their chemical structure and composition.
Some prominent examples are given by epoxy-based SMPs (Liu
et al., 2006) and SMP foams, which might be combined with self-
healing materials as well (John and Li, 2010).

SMP foams have been analyzed in different studies and are
particularly interesting due to the possibility of being significantly
compacted and achieving complete recovery after several shape
change cycles. Cold hibernated elastic memory (CHEM) foams
can be stored in compact state for up to 2 months, without losing
their shape memory properties, being thus suitable for space
deployable systems (Tey et al., 2001). Shape memory
composites (Santo et al., 2014), sandwich structures (e.g.,: SMP
foam core, carbon fiber sheets) (Santo and Quadrini, 2015) and
the integration of magnetic filler particles in SMP foams (thermal
activation of the foam through remote induction on the filler)

(Vialle et al., 2009) have also been proposed. Another innovative
solution is related to solid state foaming (Squeo and Quadrini,
2010): solid tablets made from uncured resin are heated and
produce a thermosetting foam. This technology could lead to
SMP materials with unprecedented functional properties, and
could also be combined with the recycle of waste epoxy
powders (Lucignano et al., 2011). Experiments onboard the ISS
(Santo et al., 2012) showed that reduced gravity does not
significantly affect the shape recovery ability, which may the
other hand be limited by differences in heat transfer and
temperature between the Earth and space. Auxetic foams were
also studied, showing the ability to switch to positive Poisson’s
ratios from solicitation through a given temperature profile
(Bianchi et al., 2010). A negative aspect of these materials is
given by their reduced mechanical stiffness and strength, due to
which it may be necessary to combine them with other materials,
such as in composites (Santo, 2016).

Epoxy-based SMPs show both good mechanical and shape
memory properties and can be applied in deployable space
structures as well. An example is given by the addition of flexible
epoxy resin DGEEBA-6 to a common resin, DGEBA, to obtain
enhanced toughness, modulus, tensile and impact strength,
elongation at break and shape memory properties. Enhances in
elongation are very important in space deployables since these
structures must be in folded configuration at launch. A study
found that some epoxy based SMPs applicable to these structures
had a full recovery time of about 80 s for temperatures 20°C above
their glass transition temperature. These materials can be inserted in
shape memory polymer composites in space structures. Other very
positive properties are good processability, chemical resistance and
thermomechanical properties (Jo et al., 2019).

The development of polyimide based SMPs for space
applications is currently of great interest, too, due to high and
low temperature resistance, chemical and radiation resistance,
outstanding mechanical properties, flexibility, and excellent
dielectric properties of polyimides. Along with deployable solar
sails and solar batteries, such applications include large-area
flexible electronics and Sun shields for the next-generation of
space telescopes (Gouzman et al., 2019).

FIGURE 1
Molecular structure of the photoelastomer self-healing ink. Adapted from (Yu et al., 2019) under the Creative Commons Attribution 4.0 International
License.
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Polyethylene has a high hydrogen content and is non-toxic,
recyclable, chemically stable, relatively cheap and light. If doped
with carbon nanotubes or graphene oxide nanoplatelets, it can
be used to develop multifunctional nanocomposites with
structural and radiation shielding functionality (Laurenzi
et al., 2020).

Ultra-high-molecular-weight polyethylene (UHMWPE) could
be used in radiation protection as well and could also substitute
Kevlar® in novel Whipple shield technologies (protection from
impacts, Figure 2). It surpasses Kevlar® in terms of strength-to-
weight ratio, modulus-to-weight ratio, and outgassing performance,
but is vulnerable to high vacuum and high temperatures related to
thermal cycles in space; as a consequence, mitigation of
outgassing is anyway required via surface treatment or sealing
(Cha et al., 2020).

Biopolymers are also gaining attention: for example, spider silk
is characterized by high strength-to-weight ratio, resilience and
durability, and superior performances with respect to other
classically used materials. With a tensile strength of
approximately 1 GPa, it is particularly interesting for structural
applications (concrete reinforcement, connection of metallic
structures, composites), but its harvesting is challenging. An
alternative may be given by the material obtained from
silkworms (Bonino, 2003; Hardy and Scheibel, 2009).

3.2 Metals and alloys

Stainless steel and titanium alloys are often used in space as well,
and electropulsing proved effective for localized self-healing of these
materials. Possible applications could be related to electronic circuits
and structural elements (Levchenko et al., 2018). Electropulsing led
to crack healing through formation of continuous fine
recrystallization regions in SUS304 stainless steel (Yu et al.,
2016), and it was able to trigger self-healing of a titanium alloy
thanks to material flow and atomic bonding resulting from localized
high temperature gradients and compressive stresses (Song et al.,
2017). In the second study, the redistribution of currents and the
creation of concentrated and diluted regions around themicrocracks
led to strong temperature gradients and high compressive stresses
causing the material to flow and close the cracks.

3.3 Semiconductors

Organohalide lead perovskites are a novel class of
semiconductors considered for applications in space and
characterized by low cost and ease of fabrication. Having a
power conversion efficiency of about 23.3% and a higher
stability when subjected to gamma-ray radiation, they may
replace silicon in space solar cells and could also be used in
radiation detectors. A very peculiar property of these materials is
the ability to recover the losses in power conversion efficiency,
related to burn-ins at the beginning of radiation exposure
(Figure 3). Nevertheless, a deeper analysis is required to
further understand the suitability, stability and performance of
these materials in space. (Yang et al., 2019).

3.4 Composites

Composite materials are characterized by high strength-to-
weight ratio, excellent dimensional stability, reduced outgassing,
low thermal expansion, and almost-zero thermal conductivity. All
these properties suggest that this class may respond to harsh
environmental solicitations way better than conventional
materials, and may be suitable as space construction materials
(Naser and Chehab, 2018).

Ceramic matrix composites could be used against extreme
thermal, mechanical and corrosion conditions, but they currently
have a low TRL, typically between 3 and 4, and research on them is
limited (Eswara Prasad et al., 2017). Self-healing ceramic composites
(Figure 4) might also be inserted in components requiring both
protection from very high temperatures and autonomous
restoration after damage (thrusters, hard coatings, circuits). An
example is given by the insertion of silicon carbide (SiC) healing
activation networks into alumina (Al2O3), which is hard, wear
resistant, cheap and readily available (Levchenko et al., 2018).

Metal matrix composites could be useful for thermal control and
seem to resist to most of harsh space conditions, but related raw
materials and fabrication processes may be very expensive, and there
are doubts about the possibility of long-term performances (the
effective operational life could be significantly limited by space
environmental solicitations) (Rawal, 2001).

FIGURE 2
Comparison between conventional and UHMWPE shielding system. Adapted with permission from (Cha et al., 2020), copyright Elsevier, license
number 5576551315879.
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A low thermal conductivity makes aerogel composites very
promising for thermal insulation purposes. Aerogels are
characterized by light weight and good outgassing properties
but are fragile and brittle; as a consequence, they typically need to
be combined with reinforcing materials as fibers to increase their
mechanical properties, and to potentially further decrease
thermal conductivity (Wu et al., 2014). The resulting
composites seem particularly suitable at low pressures and
cryogenic temperatures, thus being interesting for thermal
insulation on Mars (Wordsworth et al., 2019). Two examples
are given by quartz fiber reinforced silica aerogel (QTZ/ARG)
and polyethylene terephthalate-based fibers reinforced silica
aerogel (CDC/ARG) (Figure 5), which are hydrophobic and
inorganic and seem to perform better than classical multilayer
insulation (MLI) devices for pressures above 1 torr (Johnson
et al., 2010). Testing of these composites under simulated
Martian conditions showed that their insulation performances
are not significantly affected by the Martian environment, and
that the storage modulus increases after exposure to gamma-ray
radiation. The QTZ/ARG storage modulus is also increased by
thermal cycling, while an opposite condition is found for CDC/
ARG (Figure 6) (Rocha et al., 2019).

Polyimides can be used as matrices in a composite setup, too.
They are characterized by high glass transition temperature, high

strength and thermal, radiation and chemical stability (Qu et al.,
2017), but there is little information on their structural properties
(Naser and Chehab, 2018). An example is given by LaRC RP46, an
ultra-high temperature thermosetting polyimide possessing very high
thermo-oxidative stability and mechanical performances under high
temperature, and good resistance to moisture and corrosion. These
properties lead to reducedmaintenance and repair costs, as well as size
and weight saving (Pater and Curto, 2007).

It was recently demonstrated that addition of bismuth oxide
(Bi2O3) to polyimide composites enhances their physical and
mechanical characteristics, thermal stability and radiation protection.
In particular, the observed ability to shield gamma radiation in the
0.1–1MeV rangemakes these composites appealing for local protection
of electronics. Expensive radiation-resistant electronics could be indeed
replaced with commercial and industrial class ones, leading to
significantly reduced mission costs. (Pavlenko et al., 2019).

Carbon nanotubes (CNTs) and graphene can also be used as
additives in PI composites (Figure 7), having excellent mechanical
properties. Since carbon nanotubes are electrical conductors, they can
prevent electrostatic discharge issues that characterize spacecraft
electronics under space plasmas. This is particularly useful with
polyimides, which are electrical insulators (Gouzman et al., 2019).
Furthermore, CNTs are light and characterized by high elasticity
and thermal conductivity, and various studies seem to show

FIGURE 3
Recovery mechanism of perovskite after gamma-ray radiation. Adapted with permission from (Yang et al., 2019), copyright John Wiley and Sons,
license number 5574860940728.

FIGURE 4
Damage healing in ceramics. (A) TEM image of healed crack in alumina. (B) Self-healing of a TiO2 substrate supercapacitor. (C) Self-healing wires for
wearable electronics. (D) Self-healing of alumina. Adapted with permission from (Levchenko et al., 2018), copyright JohnWiley and Sons, license number
5574861235182.
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negligible effects of UV radiation on their performances (Ishikawa et al.,
2019). Anyway, currently used incorporation methods in polymeric
matrices often lead to degradation of CNT properties (Ma et al., 2010).

Graphene naturally has a 2D configuration, which can be
transformed into a 3D one. When inserted into polymers, it
improves their electrical and thermal properties. Possible applications
are stretchable electronics, energy storage, chemical and mechanical
sensing (Chen et al., 2011;Wang et al., 2013; Qin et al., 2015). Combined
with piezoelectric substances, graphene also acquires self-healing
properties and can be used for damage detection (Huang et al., 2013).

High-temperature polyimide (TriA-X resin) carbon fiber reinforced
plastic (CFRP) sandwich panels were also proposed in combination
with an ablator, as an alternative to currently used thermal protection
systems (TPS) exploited in capsules during atmospheric re-entry
(Figure 8). This project may be also interesting for planetary

missions. The main advantages of the proposed materials are related
to high thermal insulation and goodmechanical properties (retention of
flexural rigidity and shear strength) at temperatures up to 300 °C at
least. It was found that the composite can lead to a reduction of 37%–
44% the weight of traditionally used systems, since CFRP panels allow
to decrease the thickness of the ablator.Anovel ablator architecture was
also proposed, containing TriA-X polyimide and carbon fiber cloth
reinforcement. No delamination was observed, and the system
surpassed currently used solutions in terms of recession resistance.
(Kubota et al., 2019).

Carbon fiber can also be used in self-healing structures (Aïssa
et al., 2012), multifunctional structures (Wang et al., 2015), and
carbon composites (Krenkel and Berndt, 2005; Pater and Curto,
2007). An innovative carbon reinforced composite was developed by
substituting the commonly used resin matrices with active solid-

FIGURE 5
Digital microscope images of (A)QTZ/ARG and (B)CDC/ARG. Adapted with permission from (Rocha et al., 2019), copyright Elsevier, license number
5576560163154.

FIGURE 6
Effects of gamma radiation on storage (elastic) modulus. Adapted with permission from (Rocha et al., 2019), copyright Elsevier, license number
5576560163154.
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state battery materials having comparable mechanical properties,
then combined with carbon fibers; the aim was to obtain a system
lighter than traditional energy storage solutions, and with additional
structural functionality (Grzesik et al., 2020). However, the current
technology readiness level (TRL) of this technology is low, and no
effective proof of concept has been done so far, hence requiring
further development and characterization.

Carbon fiber reinforced graphite matrix composites were also
developed with the ability to significantly preserve their initial
strength (Rawal et al., 1990). They can be integrated, among the
others, into load bearing and habitat cladding systems. However,
research is currently limited, and cracking issues after exposure to
thermal cycles are present.

Inserting carbon nanotubes and graphene oxide nanoplatelets into
polyethylene-based nanocomposites could enhance the intrinsically
weak mechanical, thermal and electrical properties of polyethylene
(Adams et al., 2005). Nevertheless, their presence reduces the
proportion of hydrogen content, hence decreasing the radiation
shielding performance of polyethylene. Simulation of the action of
galactic cosmic rays and solar particle events on polyethylene
nanocomposites showed a strong dependence of the shielding
capability degradation on the radiation source, and that graphene
oxide (GO) is the most promising additive. Similarly to

polyethylene, GO nanoplatelets contain hydrogen, and they allow to
reach the best trade-off between enhanced thermo-electrical-
mechanical properties and preserved radiation shielding ability.
(Laurenzi et al., 2020). Nevertheless, the effective radiation
protection potential of these solutions is currently not fully
understood, hence requiring further studies (Cha et al., 2020).

3.5 Mixtures

A recently designed TPS was characterized by a self-healing
vascular architecture containing NASA Dual Purpose Goop (DPG),
a material made of silicone oil (carrier fluid with negligible
vaporization and outgassing in space), silicon carbide powder
(heat resistant component), and boric anhydride glass (Skolnik
and Putnam, 2020). Its characterization proved it to be a
promising candidate for self-healing thermal applications in space.

3.6 In situ materials utilization (ISRU)

Future exploration and colonization missions on the Moon and
Mars will require space structures and habitats characterized by low

FIGURE 7
Polyimide composites. (A) SEM image of the cross section of CNT-graphene oxide-PI nanocomposite. (B) TEM image of graphene-PI
nanocomposite. Adapted with permission from (Gouzman et al., 2019), copyright John Wiley and Sons, license number 5574870078470.

FIGURE 8
Comparison between existing TPS and the system proposed in (Kubota et al., 2019). Adapted with permission from (Kubota et al., 2019), copyright
Elsevier, license number 5576560384832.
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cost, high reliability, and autonomy from Earth (Menon et al., 2007).
Since traditional materials and technologies are typically unable to
satisfy these requirements, new design solutions are being proposed
(Levchenko et al., 2018). In this regard, the exploitation of in-situ
resources is very appealing, since it could significantly lower the cost
of space missions, especially for what concerns importing materials.
ISRU would lead to reduced or even absent dependence on Earth,
and improved financial sustainability. As an example, regolith could
be used to obtain materials and products with the most diverse
characteristics, through means as, for example, extraterrestrial 3D
printing (Yashar et al., 2019).

An interesting ISRU application is concrete production (Khitab
et al., 2016). Due to its resilience and durability, this is a very
promising material in the field of space constructions, but bringing
already built concrete structures would be practically impossible due
to excessive weight issues. As a consequence, in-situ processing
technologies are needed to make this material effectively usable in
space. In this context, different resources, concrete types, and
processing techniques are being studied. Substances as alumina,
calcium oxide and silicate, fromwhich concrete can be produced, are
contained in lunar rocks (Ryder and Norman, 1980; Morris et al.,
1983). A similar availability has been confirmed on Mars through
information from remote sensing (Pettengill, 1978). A serious issue
for classical concrete manufacturing, though, is the need of water
which, even if present on both Moon and Mars, may be hardly
accessible (Anand et al., 2012). To solve this problem, water
substitutes are being studied: an example is given by geopolymers,
that also have the advantage of providing radiation protection
(Montes et al., 2015). Sulfur concrete is also being considered, due
to the possibility of extracting sulfur from lunar and Martian soils.
This concrete has compressive strengths ranging from 20 to 63MPa
(Wan et al., 2016), but it is more permeable than common concretes
(Osio-Norgaard and Ferraro, 2016), and its strength can be affected by
thermal cycling and decrease up to 20% its initial value (Toutanji and
Grugel, 2008). In addition to this, it can experience significant mass
losses caused by exposure to vacuum (Grugel and Toutanji, 2008).

Metals and alloys could also be produced from in-situ resources
(mainly from regolith, once again). Aluminum and Magnesium are the
most interesting, since they have low density, good mechanical
properties and a low melting point which makes them easier to
process. Furthermore, their raw versions are present in higher
quantities with respect to other substances as iron and titanium.
Again, aluminum could be combined with lunar or Martian soil to
produce concrete, while magnesium may be very useful in terms of
radiation and impact shielding. The alloys related to these metals could
also be used to fabricate space structural components (Bochenek and
Basista, 2015). Elemental iron could also be obtained by processing
regolith and mixing it with bacteria, water and a growth medium, by
means of bioreactors (Lehner et al., 2019).

Lunar regolith may be also useful to produce radiation and
MMOD shields, and thermal control systems, since it possesses good
thermal insulation characteristics (Higgins and Benaroya, 2020).

Basalt is also widely available and accessible on lunar and Martian
soils and is appealing for 3D printing applications. Fibers can be
obtained through its extrusion, having double strength with respect
to steel, and one-third its weight. Continuous basalt fibers (CBFs) are
similar to fiberglass and carbon fibers, and demonstrate good corrosion
and heat resistance, and high tensile strength; they could hence be

exploited in constructions. Furthermore, plastics as high-density
polyethylene (HDPE) and polycarbonate could be produced on
Mars from locally available ethylene or methane. (Yashar et al., 2019).

Despite being very appealing, the ISRU approach is still quite
underdeveloped, even if some proposals of manufacturing methods
and machines have been presented (Naser and Chehab, 2018). As a
matter of fact, One of the main issues of ISRU is the current lack or
low TRL of the processing methods and tools needed to obtain the
final materials and products from the raw sources are currently
characterized by a very low TRL.

3.7 New manufacturing technologies

Materials and processes for space applications raise several
challenges, including low mass requirement, small production
series, challenging material procurement, very high performances,
and very high reliability. Additive manufacturing (AM) is probably
the most promising manufacturing technique: it allows to process
various materials (polymers, metals, ceramics, composites, tissues
and living cells, food for astronauts, etc.) and to obtain complex
geometries in a wide range of dimensions (from tens of microns to
meters), characterized by increased lightness and reduced waste of
resources. AM is well-suited for space applications also because it
can be adapted to very small series, provides performance
improvement, short lead time, and could be used for in situ
manufacturing (Gouzman et al., 2019).

The main problem of extraterrestrial AM is that its TRL is so low
that for the moment it is practically impossible to exploit it in situ. In
the next decades, though, it will be possible to observe the
development of this technology, up to the creation of habitats
and constructions. According to recent studies, in addition, it will
be also possible to exploit AM to obtain plastics from Martian
regolith and other substances as water, carbon dioxide, basalt and
ethylene (Yashar et al., 2019).

Other manufacturing techniques and tools have been proposed,
but they are essentially currently characterized by criticalities and
relatively low technological levels. Nevertheless, they could be very
promising in the future years. The most significant ones are listed
below.

• Solar and laser sintering (Balla et al., 2012; Meurisse et al.,
2018), in which a porous material is heated above its melting
point, with the aim of producing objects in a dry environment.
sunlight or lasers are used as energy sources.

• Microwave sintering (Agrawal, 2006), which exploits high
frequency microwaves to convert electromagnetic energy
into thermal energy, used to process ceramic materials and
metallic powders.

• Dry-Mix/Steam-Injection (DMSI) (Lin et al., 1996) and
Enhanced Dry-Mix/Steam-Injection (E-DMSI) (Wilhelm
and Curbach, 2014), for the manufacturing of concrete
products with good compressive strength by means of
exposure to high temperature vapors.

• Quench Module Insert (QMI) and Diffusion Module Insert
(DMI) (Carswell et al., 2003), which are ovens designed to
operate on metals and alloys in the 400°C–1600 °C
temperature range, under reduced gravity.
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4 Limitations, issues, and future
challenges

To be effectively considered usable in space systems, any new
material or structural solution should be able to ensure important
mass and cost savings and performance benefits at very low risk
(Rawal, 2018). Unfortunately, current systems are still slow and
immature for large scale exploration, and improvements in
construction materials are required to enable faster space
travel and larger payloads. Furthermore, little information is
present on the applicability to space of technologies as
additive printing, and thermomechanical properties of
structures and materials in vacuum have not been fully
explored yet (Naser and Chehab, 2018).

An additional strong limitation to the newly proposed
materials presented in this review is that no clear information
regarding the combined effects of space environment on them, as
well as on their actual operational life, is currently available. A
deeper knowledge of these aspects is fundamental to assess their
applicability of novel materials to the space mission’s
environment. In particular, the synergetic action of
mechanical damage with radiation and vacuum could lead to
the extension of damages and the increase of their propagation
rate, hence compromising the performance of materials
(Grossman and Gouzman, 2003).

Furthermore, radiation protection still represents a critical issue,
especially in manned missions, and the consequent degradation of
materials, in particular polymeric ones, must be further understood
and quantified. Focusing on galactic cosmic ray (GCR) and solar
particle event (SPE) radiation effects on, among the others, inflatable
habitats, difficulties are encountered in the evaluation of the actual
effects of these radiations and of suitability of polymers for space
applications, due to the uncertainties coming from attempts of
replicating GCR and SPE space radiation effects with particle
beams from terrestrial sources (Norbury et al., 2016). Ions in
space radiation are typically related to higher energy values than
conventional radiation forms, so even if fluxes in space may be
relatively low, damage may be more significant. As a consequence,
the dose threshold for polymeric materials above which catastrophic
damage is observed is not clearly established for space particle
radiations (Waller et al., 2020).

Taking self-healing materials as an example, the effect of
particle radiation representative of galactic cosmic rays (GCR)
and solar particle events (SPE) on their polymeric subclass is
unknown. In addition, self-healing concepts have been
demonstrated to work on ground, but there is no evidence of
their effectiveness in real space conditions and on how the self-
healing functionality will be maintained in time after exposure to
space environment. In particular, the effect of space radiation on
self-healing polymeric materials in extra-terrestrial applications
is not entirely clear, and healing efficiency over time as well as
functional behavior under wide temperature ranges need to be
explored. Furthermore, to this date, there is no self-healing
mechanism that satisfactorily combines proper physical and
mechanical properties and a substantial healing efficiency for
space applications.

As a solution to the presented issues, mathematical models and
simulations are necessary to estimate space suitability of a material,

alongside clear common protocols and guidelines for its
qualification. Some proposals have been made, for example, in
the field of polymers (Waller et al., 2020), and the already
present standards such as the NASA standard 6016B (NASA,
2020) can be used as a starting point to be improved and integrated.

5 Conclusion

Future space missions will require innovative smart materials
and related manufacturing techniques; in this review we
described some of the most promising solutions. Among them,
self-healing polymers can increase the autonomy, reliability, and
safety of space structures, but are currently characterized by a
limited knowledge of the effects of space on their lifetime and
performance, and the mechanisms triggering self-healing are not
fully understood yet. On the other hand, SMPs are light, cheap
and easy to manufacture, thus being appealing for self-deployable
mechanisms; nevertheless, some of them have limited mechanical
properties (e.g., SMP foams). Polyethylene and composites are
also interesting for multifunctional structures, space
construction materials and thermal insulation and protection.
Nevertheless, the former is characterized by vulnerability to high
temperature and high vacuum, while among the latter ceramic
composites have a low TRL, and metal composites have expensive
fabrication processes.

In general, all the presented solutions could improve spacecraft
mechanical integrity, autonomy, and lifetime, but need further
characterization and technological improvement before being
actually usable. Thus, in the next years it will be necessary to
promote new studies and continue research to fully understand and
exploit the here presented materials and manufacturing techniques.
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Nomenclature

AM Additive manufacturing

CBF Continuous basalt fiber

CDC/ARG Codiac reinforced silica aerogel

CFRP Carbon fiber reinforced plastic

CHEM Cold hibernated elastic memory

CNT Carbon nanotube

COPV Composite overwrapped pressure vessel

DGEBA Diglycidyl ether of bisphenol A

DGEEBA Diglycidyl ether of ethoxylated bisphenol A

DMI Diffusion module insert

DMSI Dry-Mix/Steam-injection

DPG Dual Purpose Goop

E-DMSI Enhanced Dry-Mix/Steam-injection

EMAA Ethylene-methacrylic acid

GCR Galactic cosmic rays

GO Graphene oxide

HDPE High-density polyethylene

ISRU In situ resource utilization

LEO Low Earth Orbit

MLI Multilayer insulation

MMOD Micrometeoroids and orbital debris

PI Polyimide

QMI Quench Module Insert

QTZ/ARG Quartz fiber reinforced silica aerogel

SMA Shape memory material

SMC Shape memory ceramic

SMP Shape memory polymer

SPE Solar particle event

TPS Thermal protection system

TRL Technology readiness level

UHMWPE Ultra-high-molecular-weight polyethylene
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