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Abstract

Hierarchical Reinforcement Learning (HRL) approaches have shown successful
results in solving a large variety of complex, structured, long-horizon problems.
Nevertheless, a full theoretical understanding of this empirical evidence is currently
missing. In the context of the option framework, previous works have conceived
provably efficient algorithms for the case in which the options are fixed and the
high-level policy selecting among options only has to be learned. However, the
fully realistic scenario in which both the high-level and the low-level policies are
learned is surprisingly disregarded from a theoretical perspective. This work makes
a step towards the understanding of this latter scenario. Focusing on the finite-
horizon problem, in this paper, we propose a novel meta-algorithm that alternates
between two regret minimization algorithms instanced at different (high and low)
temporal abstractions. At the higher level, we look at the problem as a Semi-
Markov Decision Process (SMDP), keeping the low-level policies fixed, while at
a lower level, we learn the inner option policies by keeping the high-level policy
fixed. Then, we specialize the results for a specific choice of algorithms, where we
propose a novel provably efficient algorithm for the finite-horizon SMDPs, and we
use a state-of-the-art regret minimizer for the options learning. We compare the
bounds derived with those of state-of-the-art regret minimization algorithms for
non-hierarchical finite-horizon problems. The comparison allows us to characterize
the class of problems in which a hierarchical approach is provably preferable, even
when a set of pre-trained options is not given.

1 Introduction

Hierarchical Reinforcement Learning [HRL, 20] is a framework in the class of Reinforcement
Learning [RL 24] methods that has shown successful results in recent years thanks to its ability
to deal with complex, long-horizon, and structured problems [26, 4, 18, 12]. In a large variety of
real-world scenarios, a complex task can be decomposed as a concatenation of different sub-tasks
that are often solved as a whole to learn the optimal policy. Nevertheless, in several cases, these
sub-tasks are not fully coupled, and solving them separately leads to (near)optimal solutions. In these
circumstances, a hierarchical RL approach could deliver significant benefits w.r.t. the application of
flat RL algorithms, thanks to its ability to properly exploit the structure of the environment.
16th European Workshop on Reinforcement Learning (EWRL 2023).



A common example in the HRL literature [6] is the taxi problem, in which an autonomous agent
controls a taxi that has to bring a passenger from a starting point to a destination location. This
problem clearly embodies three different tasks: (i) driving, (ii) picking up the passenger, and (iii)
dropping off the passenger when the destination is reached. HRL power resides in the explicit
exploitation of this inner structure, subdividing the problem into a set of sub-tasks, individually
solvable with their own optimal policies, which are then linked sequentially, one after the other. For
instance, in the taxi example, the agent would separately learn (i) how to drive, (ii) how to optimally
pick the passenger up, and (iii) how to drop her down. Then, it would choose the right sequence of
sub-tasks to solve the entire problem. This approach naturally reduces each problem’s complexity,
being the agent focused on a single objective only, without being affected by other secondary goals.
When the problem complexity further increases, HRL deals with it by constructing a hierarchy of
sub-tasks depending on their abstraction. In this way, a sub-task could have, in turn, other sub-tasks
as action space for its own policy. The root corresponds to the original problem, which has been
simplified, becoming the problem of choosing which sub-task to execute first. Then, a sub-task, in
turn, could be composed of other more specific sub-tasks, and this structure to follow down to the
leaves. Finally, the leaves are the point where the actual state transaction is induced by the so-called
primitive actions (i.e., actions of the original flat MDP on top of which the hierarchy is constructed).
It is essential to specify that once a sub-task is selected, the control passes from that level policy to
the one below, and this happens for every level. The controller returns to a certain policy only after
completing every task below. This introduces the concept of temporal abstraction [22], and for what
concerns the high-level policy, the action persists for a specific time, resulting in an actual reduction
of the original planning horizon.

Recent works have attempted to analyze the theoretical benefits that motivate the great successes
of HRL in practice [14, 8, 9, 27, 1]. For simplicity, most of them focus on problems organized in
two-level hierarchies, where the high-level policy has control over a set of pre-trained options [22]
(i.e., a particular formalization of temporally extended actions or sub-tasks), and the options’ policies
control the actual interaction with the environment throughout the primitive actions. The use of
this set of fixed options helps to reduce the complexity of particular classes of problems, where the
structure enforced by the options does not compromise optimality. For instance, in the finite-horizon
setting, the usage of the options for training significantly reduces the planning horizon by a value
dependent on the expected duration of the options composing the set. This translates into a more
efficient dependency on the planning horizon H , which is replaced by a term d ≪ H , the average
per-episode number of options played [1]. On the other hand, even if the same rationale does not
straightforwardly apply in average-reward problems, for their infinite-horizon nature, [8] and [9]
demonstrate advantages in terms of exploration efficiency. In fact, these works show that a set of
pre-trained options significantly improves the exploration of infinite-horizon problems, where, with
these policies, the agent is able to explore wider regions of the problem faster.

While this clearly motivates the performance improvements empirically experienced in several tasks,
it is still obscure when to prefer such approaches in situations where no pre-trained supportive policies
are available, and, thus, it is required to face the problem from scratch, solving both the high and the
low-level training. To the best of our knowledge, [1] provide a primary insight in this direction for
the first time. The authors propose a naïve approach for high-and-low-level learning in finite-horizon
problems and compare it with a state-of-the-art flat approach to characterize problems in which the
former outperforms the latter in complexity. To this end, the authors relax the assumption used by the
other approaches by analyzing scenarios in which the only requirement is that the problem presents
some structure, in the sense that it can be subdivided into a set of sub-goals, which characterize
different sub-tasks, but for which the only information available is the sub-tasks description. This
approach, even if in a preliminary manner, provides a first answer to the question above and addresses
a more realistic scenario. In fact, if a set of options with fixed policies is a demanding requirement,
problem structure discovery is a widely studied topic in the HRL literature [16, 17, 13].

Original Contributions The contributions of this paper can be summarized as follows:

• We propose a novel meta-algorithm, named High-Level/Low-level Meta-Learning (HLML), for
learning at both the high- and the low-levels by training independent of the regret minimizers
chosen for the two levels (Section 3).

• We derive a novel HRL regret minimization algorithm for solving finite-horizon SMDPs, Options-
UCBVI (O-UCBVI), that extends UCBVI [3], which is the state-of-the-art algorithm for FH-MDP,
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and that enjoys an upper bound on the regret of order Õ(H
√
SOKd), being d the average per-

episode number of played options (Section 4).
• We instantiate our meta-algorithm with Options-UCBVI for the high-level and UCBVI for the

low-level (i.e., the options learning) and provide regret guarantees in comparison with UCBVI
for solving the flat problem. This allows us to characterize specific classes of problems in which
the former provide better theoretical guarantees, answering the question “when to prefer HRL to
standard RL, when both high-level and low-level policies are unknown?” (Section 5).

The proofs of all the results presented in the main paper are reported in the Appendix.

2 Problem Formulation

In this section, we provide the necessary background that will be employed in the subsequent sections.

Finite-Horizon MDPs A Finite-Horizon Markov Decision Process [FH-MDP, 23] is a tuple M =
(S,A, rL, p,H), where S is the state space with caridnality S; A the action space with cardinality A;
rL : S ×A× [H] → [0, 1] is the reward function, which quantifies the quality rL(s, a, h) of action
a ∈ A in state s ∈ S at stage h ∈ [H]; p : S ×A×[H]×S → [0, 1] is the transition model, defining
the probability p(s′|s, a, h) of transitioning to state s′ ∈ S by taking action a ∈ A in state s ∈ S
at stage h ∈ [H]; and H ∈ N is the horizon. The behavior of an agent is modeled by a (low-level)
deterministic policy π : S × [H] → A that maps a state s ∈ S and a stage h ∈ [H] to a (low-level or
primitive) action π(s, h) ∈ A.

Finite-Horizon Semi-MDPs A Finite-Horizon Semi-Markov Decision Process [FH-SMDP, 1] is the
adaptation of Semi-Markov Decision Processes [5] to finite-horizon setting. An FH-SMDP is defined
as a tuple SM = (S,O, p, rH , H), where, as for FH-MDP, S is the state space, with cardinality
S, and H is the horizon. O is a set of temporally extended actions (high-level), with cardinality O.
p : S ×O × [H]× S × [H] → [0, 1] is the transition model, defining the probability p(s′, h′|s, o, h)
of transitioning to state s′ ∈ S , after (h− h′) time steps, h′ ∈ [H], when playing (high-level) action
o ∈ O, in state s ∈ S , and stage h ∈ [H]; rH : S ×O × [H] → [0, H] is the (high-level) cumulative
reward obtained rH(s, o, h), until the temporally extended (high-level) action o ∈ O terminates,
when selected in state s ∈ S, at stage h ∈ [H]. Naturally, from the fact that a (high-level) action
executes for a certain number of primitive (low-level) steps, the duration or holding time, τ(s, o, h),
defines the number of primitive steps taken in the environment while a temporally extended action
o ∈ O is executed. The behavior of an agent is modeled by a deterministic (high-level) policy
µ : S × [H] → O that maps a state and a stage h ∈ [H] to a (high-level) action µ(s, h) ∈ O.

Hierarchical Reinforcement Learning builds upon the theory of Semi-MDPs, characterizing the
concept of temporally extended action with fundamentally two frameworks [20]: sub-tasks [6] and
options [25]. For the sake of this paper, we focus on the options framework.

Options An option [25] is a temporally extended action characterized by three components o =
(Io, βo, πo). Io ⊆ S × [H] is the subset of states and stages pairs (s, h) ∈ S × [H] in which the
option can start, βo : S × [H] → [0, 1] defines the probability βo(s, h) that an option terminates in
state s ∈ S and stage h ∈ [H], and, πo : S × [H] → A is the deterministic policy executed once an
option is selected and until its termination.

Before proceeding, we introduce the following standard assumption.

Assumption 2.1 (Admissible options [9]). The set of options O is assumed admissible, i.e. ∀o ∈
O, s ∈ S, and h ∈ [H] : βo(s, h) > 0 =⇒ ∃o′ ∈ O : (s, h) ∈ Io′ .

The assumption is a minimal requirement for the problem to be well-defined, and it guarantees that
whenever an option o stops in a state s at stage h, there always exists another option o′ that can start
from the state-stage pair (s, h).

Average per-episode duration In the following analysis, we will refer to d [1] as the average
per-episode number of decisions taken in an episode of length H .

d =
1

K

K∑
k=1

∑
o∈O

∑
s∈S

∑
h∈[H]

dk(s, o, h) (1)
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where dk(s, o, h) is the number of times a temporally extended action (or option) o has been selected
in state s, in step h, in the episode k of interaction with the environment. This quantity is a random
variable, being dependent on the duration of the options, which is a random variable in turn.

Problem Formulation We are given a set of not pre-trained options O, i.e., for every option o ∈ O,
the initiation set Io, and the termination function βo are fixed, while the inner low-level policy πo

has to be learned. We seek to solve the problem of learning both the high-level policy µ (selecting
options in the FH-SMDP) and the low-level policies πo (inner to the options) for every o ∈ O:

(µ∗,π∗) ∈ argmax
µ,π

V µ
π (s1, 1), (2)

where π = (πo)o∈O are the low-level policies and µ is the high-level policy, s1 ∈ S is an initial state,
and V µ

π is the value function, defined for every (s, h) ∈ S × [H] as:

V µ
π (s, h) := E

(s′,h′)∼p(·|s,µ(s,h),h)

[
rH(s, µ(s, h), h) + V µ

π (s′, h′)
]
, (3)

rH(s, o, h) := E
s′′∼p(·|,s,πo(s,h),h)

[
rL(s, πo(s, h), h) + (1− βo(s′′, h+ 1))rH(s′′, o, h+ 1)

]
. (4)

We denote with V ∗
∗ (s1, 1) = V µ∗

π∗ (s1, 1).

Regret The regret [3, 28, 8, 1] of an algorithm A for the problem defined above is the cumulative
value difference over K episodes when playing the high-level policy µk and the low-level policies
πk at the episode k ∈ [K] := {1, . . . ,K} instead of the optimal ones:

Regret(A,K) :=

K∑
k=1

V ∗
∗ (s1, 1)− V µk

πk
(s1, 1)

Thus the goal of the algorithm is to play a sequence of policies µ0, . . . , µK , and π0, . . . ,πK , such
that Regret(A,K) is as small as possible.

3 Meta-Algorithm for High-and-Low-level Training

In this section, we introduce the first contribution of this work, consisting of a meta-algorithm,
High-Level/Low-Level Meta-Learning (HLML), that alternates between high- and low-level learning.

HLML presented in Algorithm 1, takes as input two regret minimizers AH and AL designed for
learning in the FH-SMDP (i.e., at a high level, learning µ∗) and in the FH-MDP (i.e., at a low
level, learning π∗), respectively. The meta-algorithm operates in N stages. In stage n ∈ [N ] :=
{1, . . . , N}, we run the high-level regret minimizer AH for KH

n episodes, keeping the low-level
policies πn−1 = (πo

n−1)o∈O fixed. Algorithm AH will output the high-level policy µn which is
chosen uniformly at random among the µn,1, . . . , µn,KH

n
played during its execution in the stage.

Then, the control moves to the low level, and we run the low-level regret minimizer AL for KL
n

episodes, keeping the high-level policy µn fixed. Algorithm AL will output the low-level policies
πn chosen uniformly at random among the ones πn,1, . . . ,πn,KL

n
played during its execution in

the stage. The meta-algorithm, then, moves to the next stage n+ 1, passing back the control to the
high level, and the process continues. The schedule of the number of episodes (KH

n ,KL
n )n∈[N ] must

satisfy that
∑N

n=1 K
H
n +KL

n = K.

The key feature of our meta-algorithm is that when the high-level algorithm AH is running in stage n
the low-level (inner-option) policies πn−1 are kept fixed. Therefore, AH is actually performing regret
minimization in an FH-SMDP, enjoying the corresponding regret guarantees, for converging to the
optimal high-level policy for the fixed options O. This allows us to solve the common non-stationarity
issues that arise when two learning processes are carried out in parallel. Clearly, such a high-level
policy will not necessarily be µ∗, since we are not guaranteed that the low-level policies πn−1 are
optimal for the corresponding options. This is the reason why the execution of AH is stopped after
KH

n episodes and, within the same stage n, we proceed running the low-level regret minimizer AL,
before continuing learning at the high-level. Similarly, in this phase, AL is acting on the flat MDP
with the goal of learning the inner policy πo

n for each of the options o ∈ O. This amounts to solving
for each option o ∈ O a single FH-MDP formalized as Mo = (So,Ao, p, ro, Ho) where So ⊆ S,
Ao ⊆ A, Ho ≤ H , meaning that each option operates on a restricted portion of the original problem
and for a specific fixed horizon Ho (induced by Io and βo). This time the high-level policy is kept
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Algorithm 1 High-Level/Low-level Meta-Learning (HLML)
1: Input: FH-SMDP regret minimizer AH , FH-MDP regret minimizer AL, episode schedules (KH

n ,KL
n )

N
n=1

2: Arbitrarily initialize µ0 and π0

3: for n = 1, . . . , N do
4: Run AH on the FH-SMDP for KH

n episodes playing the sequence of high-level policies µn,1, . . . , µn,KH
n

5: Fix the high-level policy µn = µn,X where X ∼ Uni([KH
n ])

6: Run AL on the FH-MDP for KL
n episodes playing the sequence of low-level policies πn,1, . . . ,πn,KL

n

7: Fix the low-level policies πn−1 = πn−1,Y with Y ∼ Uni([KL
n ])

8: end for
9: return (µN ,πN )

fixed, and consequently, its effect is enforcing a specific exploration that determines a particular
option visitation.

In principle, solving such FH-MDPs Mo can be as complex as solving the original problem M with
a flat approach. This is expected since the advantages of a hierarchical approach emerge when a
certain structure on the original problem is present. This is particularly evident if we think of the
convergence of the learning process of the low-level policies, which could potentially end up in a
different optimum than the one reached by a flat approach in that same portion of the problem because
the latter would have a complete scope over the whole problem. For this reason, a further assumption
over the structure of the problem is required, similar to the one presented in [1].

Assumption 3.1. For any optimal high-level policy µ∗, let Oµ∗ the set of options played by µ∗ and
for o ∈ Oµ∗ , let Π∗

o the set of optimal low-level policies form the joint optimization. Let Π#
o be the

set of optimal low-level policies from the local optimization (π#
o ∈ argmaxa∈AQ

∗,o(s, a)∀s ∈ So).
It holds

Π#
o ⊆ Π∗

o (5)

This assumption ensures that the optimal inner-option policies π∗
o , on a portion of the original MDP

Mo induced by an options o ∈ O, selected by the optimal SMDP policy µ∗, do not differ from
an optimal policy π∗ of the flat problem. This way, we can safely learn in the FH-MDPs Mo

knowing that the learned policy will be “a portion” of the optimal policy π∗ in the flat FH-MDP. This
assumption, seemingly demanding, is the first one, to the best of our knowledge, that attempts to
characterize a structural property of the FH-MDPs that is suitable for being addressed by means of a
hierarchical approach. Indeed, if Assumption ?? is violated, it means that the inner-option learning
deviates from the process of learning the optimal policy in the flat MDP, possibly preventing the
convergence to the optimal policy in the hierarchical architecture. An example of a scenario in which
this assumption is valid is the taxi problem described above. For instance, from a starting point A to
destination B, the optimal driving policy (i.e., the one solving the subtask (i)) does not differ if the
problem is considered a whole or a smaller one that includes just the neighborhood of the two points.

Theoretical Analysis As described above, in each stage n ∈ [N ], the learning process alternates
between the high- and the low-level learning problems, keeping the other fixed. This induces a bias in
both optimizations. To make this clear, we provide a convenient decomposition of the regret, which
highlights the contributions of the two phases of learning in each stage:

Regret(HLML,K) =

N∑
n=1

( KH
n∑

k=1

V ∗
∗ (s1, 1)− V

µn,k
πn−1(s1, 1)︸ ︷︷ ︸

Regret during high-level learning

+

KL
n∑

k=1

V ∗
∗ (s1, 1)− V µn

πn,k
(s1, 1)︸ ︷︷ ︸

Regret during low-level learning

)
, (6)

where µn,k and πn,k are the high-level policy and the low-level policies played by the corresponding
algorithms AH and AL at episode k of phase n. Unfortunately, the two terms in Equation (6) cannot
be directly bounded in terms of the properties of the regret minimization algorithms AH and AL.
This is because each of them, as explained above, will converge to the corresponding high/low-level
optimal policy, given that the other-level policy is fixed. Thus, further elaboration is needed to
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highlight the bias terms:
V ∗
∗ (s1, 1)− V

µn,k
πn−1(s1, 1)︸ ︷︷ ︸

Regret during high-level learning

= V ∗
∗ (s1, 1)− V ∗

πn−1
(s1, 1)︸ ︷︷ ︸

Bias of not playing π∗

+V ∗
πn−1

(s1, 1)− V
µn,k
πn−1(s1, 1)︸ ︷︷ ︸

Regret of AH

(7)

V ∗
∗ (s1, 1)− V µn

πn,k
(s1, 1)︸ ︷︷ ︸

Regret during low-level learning

= V ∗
∗ (s1, 1)− V µn

∗ (s1, 1)︸ ︷︷ ︸
Bias of not playing µ∗

+V µn
∗ (s1, 1)− V µn

πn,k
(s1, 1)︸ ︷︷ ︸

Regret of AL

, (8)

Thus, the regrets of the two phases (low- and high-level learning) are decomposed into a proper
regret term and a bias term, which accounts for the fact that the other level is kept fixed. The regret
terms can be easily managed by resorting to the properties of the regret minimizers AH and AL.
Concerning the bias terms, the high level corresponds to the value difference between playing the
current low-level policies πn−1 compared to playing the optimal ones π∗. Symmetrically, for the
low level, this bias translates into the value difference between playing the current high-level policy
µn compared to the optimal one µ∗. From a technical perspective, we decide to upper bound the
bias terms with the proper regret terms at the price of introducing a concentrability coefficient for
accounting of the distribution shift, as shown in the following result.
Lemma 3.2. Let us define the concentrability coefficients:

CH := max
n∈[N ]

inf
µ∗ optimal

max
(s,h)∈S×[H]

dµ
∗

s1,1
(s, h)

dµn

s1,1
(s, h)

, (9)

CL := max
n∈[N ]

max
o∈O

inf
π∗
o optimal

max
(s,h)∈Io

max
(s′,h′)∈So×[Ho]

d
π∗
o

s,h(s
′, h′)

d
πo
n−1

s,h (s′, h′)
. (10)

Then, it holds that:

V ∗
∗ (s1, 1)− V ∗

πn−1
(s1, 1)︸ ︷︷ ︸

Bias of not playing π∗

≤ CH
(
V µn
∗ (s1, 1)− V µn

πn−1
(s1, 1)︸ ︷︷ ︸

Regret of AL

)
, (11)

V ∗
∗ (s1, 1)− V µn

∗ (s1, 1)︸ ︷︷ ︸
Bias of not playing µ∗

≤ CL
(
V ∗
πn−1

(s1, 1)− V µn
πn−1

(s1, 1)︸ ︷︷ ︸
Regret of AH

)
. (12)

We are finally ready to state the main theoretical guarantees on the regret of our meta-algorithm.
To this end, we assume that the individual low- and high-level regret minimizers enjoy suitable
convergence properties, and, as a consequence, we derive the regret guarantees of the meta-algorithm.
Theorem 3.3. Let AH and AL be two regret minimizers that suffer regret bounded RH(K) and
RL(K) when run for K episodes. Then, under Assumption ??, Algorithm 1 when run with the
episode schedule (KH

n ,KL
n )

N
n=1 such that

∑N
n=1 K

L
n +KH

n = K, suffers regret bounded by:

Regret(HLML,K) ≤
N∑

n=1

(CH + 1)RL(KL
n ) + (CL + 1)RH(KH

n ). (13)

Some observations are in order. First, we relate the regret of the meta-algorithm in terms of the regret
suffered by the individual regret minimizers AH and AL. It is worth noting that, for the sake of
the analysis, we are assuming that whenever each algorithm starts running, all the data collected in
the previous stages are discarded in order to remove inconvenient dependencies among the stages.
Clearly, a practical version of the algorithm might save data (especially when learning at the low
level) to be reused to further improve the estimates. Second, we can now appreciate the role of
Assumption ??. Indeed, in order to be able to converge at a low level to the optimal inner-option
policies π∗ (as in Equation 2), it must happen that the low-level regret minimizer AL performs an
optimization that is compliant with what would have happened if solving the original flat MDP.
Finally, let us note that our result is instanced for a generic choice of the schedule (KH

n ,KL
n )

N
n=1.

In the subsequent section, we will show that, for specific choices of AL and AH , an exponential
schedule allows achieving desirable regret guarantees.

4 Options-UCBVI
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Algorithm 2 Options-UCBVI
1: Input: S,O, H , K
2: Initialize µ0 arbitrarily, Q1(s, o, h) = 0 for all (s, o, h) ∈ S×O× [H], L = log(5SOKH/δ),DH ← {}
3: for k = 1, . . . ,K do
4: Compute nk(s, o, h) =

∑
(x,y,z)∈DH 1{x = s, y = o, z = h}

5: Estimate P̂k(s
′, h′|s, o, h) = 1

max 1,nk(s,o,h)

∑
(x,y,z,w,u)∈DH 1{(x, y, z, w, u) = (s, o, h, s′, h′)}

6: Set Qk(s, o,H + 1) = 0 for all (s, o, h) ∈ S ×O × [H]
7: for h = H, . . . , 1 do
8: for (s, o) ∈ S ×O do
9: for h′ = h+ 1 . . . H + 1 do

10: Compute

bhk(s, o) =

√
8LVar(s′,h′)∼P̂k(·|s,o,h)[Ṽ

µk (s′, h′)]

nk(s, o, h)
+

14HL

3nk(s, o, h)

+

√√√√8
∑

(s′,h′)∈S×[H] P̂k(s′, h′|s, o, h)
[
min

(
1002H5S2OL2∑

o nk(s
′,o,h′)

)
, H2

]
nk(s, o, h)

Qk(s, o, h) = r(s, o, h) +
∑

(s′,h′)∈S×[H]

P̂k(s
′h′|s, o, h)Ṽ µk (s′, h′) + bhk(s, o)

Ṽ µk (s, h) = min

{
H − (h′ − 1),max

o∈O
Qk(s, o, h

′)

}
11: end for
12: end for
13: end for
14: µk(s, h) = argmaxo∈OQk(s, o, h)
15: s← s1
16: while h < H do
17: Play option o = µk(s, h), and observe (s′, h′)
18: Update DH ← DH ∪ {(s, o, h, s′, h′)}
19: s← s′, h← h′

20: end while
21: end for

The adaptation to the finite-horizon setting of SMDP has been recently presented by [1], yet no
provably efficient algorithm has been proposed. Therefore, in this section, we introduce a novel
approach, Options-UCBVI (O-UCBVI), which builds upon UCBVI [3], that exploits a set of
given options O to learn the optimal FH-SMDP policy µ∗. UCBVI is a model-based algorithm
that implements optimism in the face of uncertainty by adding a confidence exploration bonus on
the empirical Bellman operator. However, it is not directly applicable to FH-SMDPs. Indeed, in
FH-SMDP, contrary to FH-MDP, there is an additional stochasticity for the uncertain duration of
the temporally extended actions. Thus, it is not possible to directly apply the standard backward
induction present in both versions of UCBVI. Intuitively the number of steps for which the procedure
is repeated is unknown, or more precisely, is a random variable itself that depends on the duration of
the temporally extended actions (or options, for our case) played in one episode.

For this reason, we have to change the algorithm by introducing a variable called d ≤ H [1], which
is the average per-episode number of options that are selected in an episode of horizon H . This
element will play a significant role in the analysis. As shown by [1], resorting to the renewal
processes theory [21], it is possible to compute an upper bound when we have options with duration
τmin ≤ τ(s, o, h) ≤ τmax holding with probability at least 1− δ:

d ≤

√
32H(τmax − τmin) log(2/δ)

mino∈O E[τo]3
+

H

mino∈O E[τo]
.

This term is bounded by the ratio between the horizon H and the expected duration of the shorter
option composing the set, plus a confidence interval accounting for the stochasticity of the duration.

Up to this crucial change, the O-UCBVI follows the same philosophy as UCBVI-BF [3], as shown
in Algorithm 2. From a technical perspective, we modified the exploration bonus to deal with
the non-stationary transition models and the set of given options, with their temporally extended
nature. In particular, we focused on the version using the Bernstein-Freedman [7, 15] bonus in order
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to achieve tight regret guarantees. The key intuitions behind the analysis are to directly maintain
confidence intervals on the optimal value function and the use of Empirical-Bernstein [15] with a
correction bonus to guarantee that the empirical variance is an upper bound on the variance of the
true value function in the next state. We follow the same intuition in our analysis, and we end up
demonstrating the following regret guarantee.

Theorem 4.1. Let SM be an FH-SMDP with S states and O temporally extended actions (options),
known reward,1, bounded primitive reward rL(s, a, h) ∈ [0, 1]. The regret suffered by algorithm
Options-UCBVI in K episodes of horizon H is bounded, with probability 1− δ, by:2

Regret(O-UCBVI,K) ≤ Õ
(
H
√
SOKd+H3S2Od+H

√
Kd
)
, (14)

where d is the average per-episode number of options played during the execution of the algorithm.

For T ≥ H4S3Od this bound translates into a regret bound of Õ(H
√
SOKd). The differences with

the regret of UCBVI-FH, that scales with Õ(
√
HSAT ) (being T = KH), are the additional

√
H ,

coming from the non-stationarity of the transition model, and the d term, that results from the nature
of the problem solved, being an FH-SMDP and not an FH-MDP.3 This result also highlights the
performance improvement brought by the set of fixed options in the finite-horizon problems, as shown
in [1]. The regret scales with

√
Kd instead of

√
KH as in the flat version. Since d ≪ H , Options-

UCBVI suffers smaller regret than its flat counterpart when fixed options are given. Furthermore,
we can see that the result is a generalization of the flat case. Indeed, the upper bound is tight in
its dominating term also when considering O = A and d = H , i.e., running Options-UCBVI on
the flat MDP. Nevertheless, because of the fact that the inner-option policies πo are not learned,
Options-UCBVI only partially answers our original question.

5 High-and-Low-Level Provably Efficient Learning

We are now ready to provide a complete algorithm able to learn both the high-level and the low-
level policies in a provably efficient way. We instantiate our meta-algorithm HLML presented in
Section 3 with Options-UCBVI presented in Section 4 as the high-level regret minimizer AH and
an original version of UCBVI-FH as the low-level regret minimizer AL. In order to achieve tight
regret guarantees, we need to accurately select the schedule of the number of episodes KH

n and KL
n ,

namely, we duplicate the number of episodes when moving from one stage n to the next one n+ 1:

∀n ∈ [N ] : KH
n = KL

n = ⌊2n−1⌋ where N = ⌊log2(2K + 1)⌋. (15)
Given this schedule, we can prove the following regret bound.

Corollary 5.1. Let M = (S,A, p, r,H) be an FH-MDP and let O be a set of options to be learned
inducing the FH-MDPs Mo = (So,Ao, p, ro, Ho) for o ∈ O. The regret suffered by Algorithm 1
when instanced with AH=O-UCBVI and AL=UCBVI-FH, run with the episode schedule as in
Equation (15), and having where HO = maxo∈O Ho, is bounded with probability at least 1− δ by:

Regret(HLML,K) ≤ Õ

(
CL H

√
SOKd︸ ︷︷ ︸

High-level regret

+CH HO

√
SAHOK︸ ︷︷ ︸

Low-level regret

)
. (16)

This result, as expected, is composed of the sum of the regrets suffered by the regret minimizers
at the two levels, weighted by the concentrability coefficients CH and CL, coming from the direct
application of Theorem 3.3. While the first term is exactly the regret paid by Options-UCBVI , the
second is an upper bound of the total regret paid for the O options learning. In fact, in the analysis,
instead of considering O different UCBVI, one for each option, with KL

n /O episodes each, we
assume to have a single algorithm running in the worst problem, i.e., the one with the longest horizon

1The choice of assuming a known reward is for compliance with [3]. Nevertheless, learning the reward
function is known to be a negligible task compared to learning the transition model of the environment and,
consequently, will not alter the regret order.

2Õ neglects logarithmic terms.
3This additional

√
H term is well-known to be tight even in standard FH-MDPs when the transition model is

non-stationary. The non-stationarity of the transition model is unavoidable in the Semi-Markov setting due to
the different durations of the temporally extended actions.
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Ho, for the total amount of episodes KL
n . Besides, the dependency on the entire state and action

space is motivated by the estimated transition model that is kept common to all the options.

At this point, it is possible to properly characterize the class of problems more efficiently solvable
with this HRL approach instead of a flat one. We can do so by relating the regret of Equation (16),
with regret paid by UCBVI in the original MDP with non-stationary transitions 4. Let us consider a
particular case for which HO = αH , with 0 < α < 1, we can write:

CLH
√
SOKd+ CHHO

√
SAKHO

H
√
SAKH

= CL

√
Od

AH
+ CH

√
α3 (17)

Therefore, considering the r.h.s of Equation (17), the classes of problems for which this HRL approach
will suffer less regret than the flat approach are problems that guarantee to have this ratio smaller
than 1, and that has a structure compliant to Assumption ??. Under the assumption that the effect
of the concentrability coefficients is negligible, there is a clear advantage of using the hierarchical
approach when Od ≪ AH and, since d ≤ H by definition, for sure when O ≪ A, i.e., when the
number of options is smaller than the number of primitive actions. Of course, given the presence of
CL and CH , this advantage gets mitigated by the magnitude of these constants.

6 Related Works

There is a vast literature for provably efficient algorithms for FH-MDP. [19] proves the lower bound
for the regret in the FH-MDP setting, Ω(

√
HSAT ). Then, many works propose algorithms with

guarantees that nearly close the problem, i.e., with upper bounds of the same order as the lower bound
[28]. [3] definitively close the problem by proposing an innovative analysis of an algorithm for which
the upper bound, O(

√
HSAT ), matches the lower bound in all terms.

Nevertheless, only some works focused on theoretically understanding the benefits of hierarchical
reinforcement learning approaches, and most of them consider a known set of pre-trained policies.
In [8], the authors propose an adaptation of UCRL2 [2] for SMDPs. This work was the first to
theoretically compare options instead of primitive actions to learn in SMDPs. It provides both an
upper bound for the regret suffered by their algorithm and a lower bound for the general problem.
However, it focuses on the average reward setting to study how to possibly induce a more efficient
exploration when using a set of fixed options. Differently, we aim to analyze the advantages of using
options to reduce the sample complexity of the problem, resorting to the intuition that temporally
extended actions can intrinsically reduce the planning horizon in FH-SMDPs, and characterize
problems likely to benefit from using HRL even when no prior information about the problem is
known, up to its structure. [9] is an extension of this work, where the need for prior knowledge of
the distribution of cumulative reward and duration of each option is relaxed. However, the setting
is identical. Furthermore, [14] studies the convergence property of Fitted Value Iteration (FVI)
using temporally extended actions, showing that a longer options duration and pessimistic value
function estimates lead to faster convergence. [27] demonstrate how patterns and substructures in the
MDP provide benefits in terms of planning speed and statistical efficiency. They present a Bayesian
approach that exploits this information, analyzing how sub-structure similarities and sub-problems’
complexity contribute to the regret of their algorithm.

The closest approach in the literature is [1]. They propose to relax the assumption of having a
set of pre-trained options and try to characterize the problems solvable more efficiently with an
HRL approach, comparing their results with the finite-horizon version of UCRL2 [2, 10]. The
authors propose an Explore-Then-Commit approach [11] for finite horizon problems, which takes the
miss-specified options-set as input, then learns each option policy, and, after a defined number of
episodes, exploits the options to solve an FH-SMDP with a custom algorithm proposed by the authors,
inspired by UCRL2 [2]. They theoretically analyze the algorithm’s performance and provide an
upper bound on the regret suffered. Thus, they characterize the classes of problems more efficiently
solvable by HRL, comparing the regret with the flat version of UCRL2 for finite horizon problems
[10]. Nevertheless, this approach presents some limitations. First of all, due to its Explore-Then-
Commit nature, it suffers from a regret of the order of K2/3, which does not match the regret of the
state-of-the-art algorithm for standard RL. Furthermore, the algorithm proposed for the FH-SMDP

4While in general comparing upper bounds is potentially loose, we notice that both upper-bounds are derived
using similar techniques, and thus they would be “similarly” loose
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setting is not optimal in all the main terms composing the regret, and it is compared to FH-UCRL,
which in turn is suboptimal in

√
HS.

7 Conclusions

In this paper, we investigated the problem of learning the inner-option policies together with learning
the high-level policy in an HRL setting based on the options framework. We first provided a
novel meta-algorithm HLML based on the alternation between high- and low-level learning whose
theoretical guarantees depend on those of the individual regret minimizers employed at the two levels
under particular structural assumptions of the problem. This assumption represents the first attempt
to characterize the structure that an MDP should have to make a hierarchical RL approach provably
convenient compared to a flat one. Then, we develop Options-UCBVI, a novel provably efficient
algorithm for learning in finite-horizon SMDPs enjoying favorable regret guarantees, which become
nearly tight when applied to standard FH-MDPs. By combining Options-UCBVI and the standard
UCBVI-FH algorithm in the framework of our meta-algorithm, we succeeded in achieving sublinear
regret for learning at both (high and low) levels, also showing the advantages over the resolution of
the FH-MDP with a flat approach. One of the main limitations of the approach lies in the need for the
concentrability coefficients in the analysis of the meta-algorithm. Future works should investigate
further in this direction to understand whether this represents an artifact of our analysis, a limitation
of the algorithm, or an inherent challenge of the setting.
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A Proof of Theorem 3.3

In this section, we will provide detailed proof of Theorem 3.3. As described in the main paper, the
meta-algorithm alternates two regret minimizers AL,AH for N stages at two levels of temporal
abstractions of the problem. While learning on one level, the policies of the second are kept fixed for
all the episodes on the stage.

First of all, we introduce Lemma 3.2, which relates the regret paid by the regret minimizer of one
level with the bias introduced in the learning of the other level.

Lemma 3.2. Let us define the concentrability coefficients:

CH := max
n∈[N ]

inf
µ∗ optimal

max
(s,h)∈S×[H]

dµ
∗

s1,1
(s, h)

dµn

s1,1
(s, h)

, (9)

CL := max
n∈[N ]

max
o∈O

inf
π∗
o optimal

max
(s,h)∈Io

max
(s′,h′)∈So×[Ho]

d
π∗
o

s,h(s
′, h′)

d
πo
n−1

s,h (s′, h′)
. (10)

Then, it holds that:

V ∗
∗ (s1, 1)− V ∗

πn−1
(s1, 1)︸ ︷︷ ︸

Bias of not playing π∗

≤ CH
(
V µn
∗ (s1, 1)− V µn

πn−1
(s1, 1)︸ ︷︷ ︸

Regret of AL

)
, (11)

V ∗
∗ (s1, 1)− V µn

∗ (s1, 1)︸ ︷︷ ︸
Bias of not playing µ∗

≤ CL
(
V ∗
πn−1

(s1, 1)− V µn
πn−1

(s1, 1)︸ ︷︷ ︸
Regret of AH

)
. (12)

where µ∗ is the optimal high-level policy (SMDP), and π∗
o is the optimal policy of a single option o

(low-level optimal policy).

Proof. Let us write the bias of a level for the stage n ∈ [N ] as βn, respectively specialized as βH
n for

the high-level bias and βL
n for the low-level bias.

βH
n = V ∗

∗ (s1, 1)− V ∗
πn−1

(s1, 1)
a
= E

(s,h)∼dµ∗
s1,1

[
Rπ∗(s, h)−Rπn−1

(s, h)
]

b
= E

(s,h)∼dµn
s1,1

[
dµ

∗

s1,1
(s, h)

dµn

s1,1
(s, h)

(
Rπ∗(s, h)−Rπn−1(s, h)

)]
c
≤ max

n∈[N ]
inf

µ∗ optimal
max

(s,h)∈S×[H]

dµ
∗

s1,1
(s, h)

dµn

s1,1
(s, h)

(
V µn
∗ (s1, 1)− V µn

πn−1
(s1, 1))

)
d
≤ CH

(
V µn
∗ (s1, 1)− V µn

πn−1
(s1, 1)

)
(a) We can write the difference in value as the difference in return of the two option policies,

where Rπ∗ and Rπn−1
are respectively the return obtained by playing the optimal options

policies, and the return obtained by playing the options policies learned up to the previous
step, and the state-stage pairs (s, h) are sampled from the distribution of visit induced by
the policy µ∗.

(b) Using an importance-sampling argument, we can change the exploration policy by adding

the importance weighting term
dµ∗
s1,1(s,h)

dµn
s1,1(s,h)

(c) Substituting the expectation with the sup over the states and stages, the inf over the possible
optimal exploration policies, and maximizing for all possible n stages.

(d) Substituting the first term with the constant CH , defined above.

We will not consider the proof of the second inequality because it follows the same passages.
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The proof of theorem 3.3 directly follows from the previous lemma

Theorem 3.3. Let AH and AL be two regret minimizers that suffer regret bounded RH(K) and
RL(K) when run for K episodes. Then, under Assumption ??, Algorithm 1 when run with the
episode schedule (KH

n ,KL
n )

N
n=1 such that

∑N
n=1 K

L
n +KH

n = K, suffers regret bounded by:

Regret(HLML,K) ≤
N∑

n=1

(CH + 1)RL(KL
n ) + (CL + 1)RH(KH

n ). (13)

Proof. We can write the regret of the two-phase algorithm as a summation of the regret of the
high-level and the regret of the low-level as expressed by Equation (6) in the main paper.

Regret(HLML,K) =

N∑
n=1

( KH
n∑

k=1

(
V ∗
∗ (s1, 1)− V

µn,k
πn−1(s1, 1)

)
+

KL
n∑

k=1

(
V ∗
∗ (s1, 1)− V µn

πn,k
(s1, 1)

))

a
=

N∑
n=1

(
βH
n +RH(KH

n ) + βL
n +RL(KL

n )
)

b
≤

N∑
n=1

(
CHRL(KL

n−1) +RH(KH
n ) + CLRH(KH

n−1) +RL(KL
n )
)

c
≤

N∑
n=1

(CH + 1)RL(KL
n ) + (CL + 1)RH(KH

n ).

(a) We can decompose the two terms of the summation as shown in Equations (7) and (8), and
then for shortness, use βn to express the bias of the two levels at the nth stage, and R(Kn)
for the regret of the two regret minimizers, AL,AH , at the nth stage.

(b) By applying Lemma 3.2.

(c) Clearly the sum of n − 1 is smaller than the sum of n terms, thus we can upper bound
RL(KL

n−1) with RL(KL
n ), and the same for RH(KH

n−1).

And with the last step, we conclude the proof.

B Proof of the regret of Options-UCBVI

In this section, we will present the analysis of the upper bound on the regret paid by Options-UCBVI
. The analysis will adapt the one of UCBVI [3] to the FH-SMDP for non-stationary transition models.
For simplicity, we will write o = µk(s, h), and Pµk(s′, h′|s, h) = P (s′, h′|s, µk(s), h).

Theorem 4.1. Let SM be an FH-SMDP with S states and O temporally extended actions (options),
known reward,5, bounded primitive reward rL(s, a, h) ∈ [0, 1]. The regret suffered by algorithm
Options-UCBVI in K episodes of horizon H is bounded, with probability 1− δ, by:6

Regret(O-UCBVI,K) ≤ Õ
(
H
√
SOKd+H3S2Od+H

√
Kd
)
, (14)

where d is the average per-episode number of options played during the execution of the algorithm.

Proof. The Proof follows the same ideas as the proofs of UCBVI for the Bernstein-Freedman
exploration bonus. We can write the regret as:

Regret(K) ≤ R̃egret(K) ≤
K∑

Ṽ µk(s, 1)− V µk(s, 1) (18)

5The choice of assuming a known reward is for compliance with [3]. Nevertheless, learning the reward
function is known to be a negligible task compared to learning the transition model of the environment and,
consequently, will not alter the regret order.

6Õ neglects logarithmic terms.
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Where Ṽ µk(s, 1) is the optimistic value function, and V µk(s, 1), is the real value function considering
the policy learned at the kth step. Following the analysis of the original paper we can write the regret
in terms of the per step regret ∆̃hk(shk). Thus,

R̃egret(K) ≤
K∑
i=1

H∑
j=1

∆̃ij(sij) (19)

where the summation over H is composed of d terms, for the temporally extended transitions, where
d is a random variable describing the expected number of options played in one episode, refer to the
main paper for a more detailed explanation (Section 4).
Now let’s define properly the per step regret:

∆̃hk(sij) = Ṽ µk(shk, h)− V µk(shk, h)
a
= [P̂µk

hk Ṽ
µk(s′, h′)](shk) + bhk − [Pµk

h V µk(s′, h′)](shk) ± [Pµk Ṽ µk(s′, h′)](shk)

= [(P̂µk

hk − Pµk

h )Ṽ µk(s′, h′)](shk) + bhk + [Pµk

h (Ṽ µk(s′, h′)− V µk(s′, h′))](shk)

± [∆pV
∗(s′, h′)](shk)

= [(P̂µk

hk − Pµk

h )(Ṽ µk(s′, h′)− V ∗(s′, h′)](shk) + bhk + Pµk

h ∆̃h′,k(shk)

+ [(P̂µk

hk − Pµk

h )V ∗(s′, h′)](shk) ± ∆̃h′,k(s
′)

b
= chk + bhk + ehk + ϵhk + ∆̃h′,k(s

′)

(a) By applying the bellman operator considering known reward that simplifies, and where
Pµk

h = p(·, ·|sh, µk(sh), h), and P̂µk

hk = p̂(·, ·|shk, µk(shk), h), the estimated transition
model at episode k. By applying the bellman operator on the optimistic value function, the
bonus term bhk is added to the reward.

(b) By defining chk = [(P̂µk

hk − Pµk

h )(Ṽ µk(s′, h′) − V ∗(s′, h′)](shk), the correction term,
ehk = [(P̂µk

hk −Pµk

h )V ∗(s′, h′)](shk) the estimation error of the optimal value function, and
ϵhk a martingale difference, defined as ϵhk = Mt∆̃h′,k(s) = Pµk

h ∆̃h′,k(s) − ∆̃h′,k(s
′),

where Mt is defined as a martingale operator (refer to appendix B.3 of [3]).

Let us now bound each of these terms separately.

B.1 Bound of the correction term chk

In this subsection, we bound the correction term
chk = [(P̂µk

hk − Pµk

h )(Ṽ µk(s′, h′)− V ∗(s′, h′)](shk)
a
=
∑
s′∈S

∑
h′∈H

(P̂µk

k (s′, h′|shk, h)− Pµk(s′, h′|shk, h))(Ṽ µk(s′, h′)− V ∗(s′, h′))

b
≤
∑
s′∈S

∑
h′∈H

(
2

√
phk(s′)(1− phk(s′))L

nk(s, o, h)
+

4L

3nk(s, o, h)

)
∆̃h′k(s

′)

c
≤ 2

√
L
∑
s′∈S

∑
h′∈H

√
phk(s′)

nk(s, o, h)
∆̃h′k(s

′) +
4SH2L

3nk(s, o, h)

d
= 2

√
L

( ∑
(s′,h′)∈[(s′,h′)]typ

√
phk(s′)

nk(s, o, h)
∆̃h′k(s

′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)

nk(s, o, h)
∆̃h′k(s

′)

)
+

4SH2L

3nk(s, o, h)

14



e
= 2

√
L

( ∑
(s′,h′)∈[(s′,h′)]typ

Pµk(s′, h′|shk, h′)

√
1

phk(s′)nk(s, o, h)
∆̃h′k(s

′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)nk(s, o, h)

nk(s, o, h)2
∆̃h′k(s

′)

)
+

4SH2L

3nk(s, o, h)

f
= 2

√
L

(
ϵ̄hk +

√
1

phk(s′)nk(s, o, h)
I((s′, h′) ∈ [(s′h′)]typ)∆̃h′k(s

′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)nk(s, o, h)

nk(s, o, h)2
∆̃h′k(s

′)

)
+

4SH2L

3nk(s, o, h)

g
≤ 2

√
L

(
ϵ̄hk +

√
1

4LH2
∆̃h′k(s

′) +
SH2

√
4LH2

nk(s, o, h)

)
+

4SH2L

3nk(s, o, h)

≤ 2
√
Lϵ̄hk +

1

H
∆̃h′k(s

′) +
4SH3L

nk(s, o, h)
+

4SH2L

3nk(s, o, h)

(a) By considering, for brevity, Pµ(s′, h′|s, h) = P (s′, h′|s, µ(s), h), and summing over all
the possible next states and next stages.

(b) Where for the first term we substitute the difference of transition probabilities
with the relative confidence interval (refer to section B.4 on the appendix of [3]),∣∣P̂µk

k (s′, h′|shk, h) − Pµk(s′, h′|shk, h)
∣∣ ≤ 2

√
phk(s′)(1−phk(s′))L

nk(s,o,h)
+ 4L

3nk(s,o,h)
, where

phk(s
′) = Pµk(s′, h′|s, h). Then we can bound Ṽ µk(s′, h′) − V ∗(s′, h′) with ∆̃h′k(s

′)
because V ∗(s′, h′) ≥ V µk(s′, h′) (the true value function of the policy µk) by definition.

(c) Because (1− phk(s
′)) ≤ 1 and ∆̃h′k(s

′) ≤ H

(d) We divide the summation over all the possible next state-stage, in the summation over the
pairs contained in the typical pairs and the ones outside the set (the typical episodes are the
episodes in which we have smaller regret; refer to the appendix of [3]).

(e) We multiply the first term by phk(s
′)

phk(s′)
, and the second by nk(s,o,h)

nk(s,o,h)
.

(f) We sum and subtract
√

I((s′,h′)∈[(s′h′)]typ)
phk(s′)nk(s,o,h)

∆̃h′k(s
′) and apply the martingale opera-

tor M (see (b) in the previous proof). ϵ̄hk = Pµk

h

√
I((s′,h′)∈[(s′h′)]typ)

phk(s′)nk(s,o,h)
∆̃h′k(s

′) +√
I((s′,h′)∈[(s′h′)]typ)

phk(s′)nk(s,o,h)
∆̃h′k(s

′).

(g) For typical next state-stage pairs nk(s, o, h)P (s′, h′|s, o, h) ≥ 2H2L, where L is a loga-
rithmic term (We kept the same lower bound of [3]).

Now, before bounding the estimation error and the exploration bonus, let’s rewrite the regret as

R̃egret(K) =

K∑
i=1

∆̃1i(s1) =

K∑
i=1

H∑
j=1

∆̃ij(sij)

≤
(
1 +

1

H

)d

︸ ︷︷ ︸
≤e

K∑
i=1

H∑
j=1

(
bhk + ehk + ϵhk + 2

√
Lϵ̄hk +

4SH3L

nk(s, o, h)
+

4SH2L

3nk(s, o, h)

)

or otherwise omitting the last term which is dominated

R̃egret(K) ≤
K∑
i=1

H∑
j=1

(
bhk + ehk + ϵhk + 2

√
Lϵ̄hk +

4SH3L

nk(s, o, h)

)
(20)
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B.2 Bound of the estimation error ehk

Let’s consider just the typical episodes, the episodes for which the number of visits of state-option-
stage pairs is larger than the rest of the episodes.
K∑

k=1

H∑
h=1

ehk =

K∑
k=1

H∑
h=1

I(k ∈ [k]typ)([(P̂
µk

hk − Pµk

h )V ∗(s′, h′)](shk))

a
≤

K∑
k=1

H∑
h=1

I(k ∈ [k]typ)

(
2

√
V∗

hkL

nk(shk, o, h)
+

4HL

3nk(s, o, h)

)
b
≤ 2

√
L

√√√√ K∑
k=1

H∑
h=1

V∗
hk

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ)
1

nk(s, o, h)

+

K∑
k=1

H∑
h=1

I(k ∈ [k]typ)
4HL

3nk(s, o, h)

c
≤ 2

√
L
(√

KH2 +HdUK,1 +□
√
H5KL+ 4/3H3L

)(√
2SOdL

)
+ 4/3HSOdL2

d
≤ □LH

√
KSOd+□Ld

√
HSOUK,1

(a) Using Bernstein Inequality. V∗
hk = Var(s′,h′)∼Pµk (·|s,h)(V

∗(s′, h′)) (Remember the mean-
ing of Pµk )

(b) Using Cauchy-Schwartz inequality

(c) Summing and subtracting Vµk

hk = Var(s′,h′)∼Pµk (·|s,h)(V
µk(s′, h′)) the variance of the next

state-stage pair value function, inside the first square root, and then using Lemma D.2 and
D.3. For the second square root and the additional term, we just use a pigeon-hole argument
(Lemma D.1). We ignore the numerical constant represented as □.

(d) Because for typical episodes K ≥ H2L2S2Od and thus we consider only the dominant
terms.

B.3 Bound of the martingale differences ϵhk and ϵ̄hk

K∑
k=1

H∑
h=1

ϵhk ≤ H
√
dKL (21)

K∑
k=1

H∑
h=1

ϵ̄hk ≤
√
dK (22)

These results follow the same proofs of the original paper, thus considering the same event E to hold.
The only difference is that the summation over H is a summation of d elements, and thus, (H − h) is
at most d in this case for the effect of the temporally extended actions.

B.4 Second-order term

Let’s now see the upper bound on the second-order term, which will be useful for the upper bound on
the exploration bonus.
By applying the pigeon-hole principle (Lemma D.1).

K∑
k=1

H∑
h=1

4SH3L

nk(s, o, h)
≤ □H3S2OL2d (23)
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B.5 Bound of the exploration bonus bhk

Before bounding the sum, we need to define the exploration bonus. We will consider an adaptation
to temporally extended actions, and non-stationary transitions, of the same bonus presented in the
original paper of UCBVI [3]. However, to make the definition clearer, let us motivate the need for
this term.
Given that the optimistic value function Ṽ µk is an upper bound of the true value function V ∗, we can
not guarantee the same for the relative empirical variance. Hence, if the empirical variance of Ṽ µk is
an upper bound on the empirical variance of V ∗. Nonetheless, it is possible to prove that when the
two value functions are sufficiently close to each other, the same applies to their empirical variance.
Let’s resort to Lemma 2 of [3],

V̂∗
hk ≤ 2V̂hk + 2 Var

(s′,h′)∼P̂µk

(Ṽ (s′, h′)− V ∗(s′, h′)) ≤ 2V̂hk + 2P̂µk(Ṽ (s′, h′)− V ∗(s′, h′))2

where V̂∗
hk = Var(s′,h′)∼Pµk (·|s,h)(V

∗(s′, h′)) and V̂hk = Var(s′,h′)∼P̂
µk
k

(Ṽ µk(s, h)).
We need this term to be of the same order as the estimation error ehk, and thus we can say that

bhk ∼ [(P̂µk

hk − Pµk

h )V ∗(s′, h′)](shk) (24)
This time, however, we use the Empirical-Bernstein inequality [15] because we need the empirical
variance to appear.

bhk ≤
(
2

√
V̂∗

hkL

nk(s, o, h)
+

14HL

3nk(s, o, h)

)
(25)

By applying Lemma 2 to this equation and substituting V̂∗
hk we get the same form of bonus of [3].

bhk =

√
8LVar(s′,h′)∼P̂

µk
k (·|s,h)(Ṽ

µk(s′, h′)

nk(s, o, h)
+

14HL

3nk(s, o, h)
+

√
8
∑

s′,h′ P̂
µk

k (s′, h′|s, h)
[
min (b′h′k, H

2)
]

nk(s, o, h)

in which b′hk stands for the upper bound on the square root of the difference between the optimistic
value function in the next state-stage pair, and the optimal value function in the same next state-stage.

The last thing to do to properly define the bonus is express b′hk in our scenario. Let’s write

Ṽ (s′, h′)− V ∗(s′, h′) ≤
√
b′hk (26)

and consider that b′hk has to be appropriate to guarantee an adaptation of Lemma 16 of [3], in which
the second inequality applies if

√
N ′

hk(s) ≥ 2500H2S2AL2, which is the second order term for
standard UCBVI, given that N ′

hk(s) ≥ H2S2AL2 for good episodes. Therefore, in our scenario, we
need that √

b′hk

(∑
o

nk(s, o, h)

)
≥ □H4S2OL2 ≥ □H3S2OL2d (27)

where the r.h.s of the equation above is the second-order term in our case. Thus, considering that∑
o nk(s, o, h) ≤ K, and K ≥ H3L2S2O ≥ H2L2S2Od for typical episodes, we have:

b′hk =
1002H5S2L2O∑

o nk(s, o, h)
(28)

When considering the bound for the next state-stage pair b′h′k, we simply refer to the visit count of
the next state and next stage nk(s

′, o, h′). The numerical constant 1002 is derived analogously to [3].
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Let’s now analyze the summation of this term, considering, as for ehk, just the typical episodes.

K∑
k=1

H∑
h=1

bhk =

K∑
k=1

H∑
h=1

I(k ∈ [k]typ)

(√
8LVar(s′,h′)∼P̂

µk
k (·|s,h)(Ṽ

µk(s′, h′))

nk(s, o, h)
+

14HL

3nk(s, o, h)

)
︸ ︷︷ ︸

(ft)

+

K∑
k=1

H∑
h=1

I(k ∈ [k]typ)

√
8
∑

s′,h′ P̂
µk

k (s′, h′|s, h)
[
min (b′h′k, H

2)
]

nk(s, o, h)︸ ︷︷ ︸
(st)

We separately analyze the first two terms and then the last.
The analysis of (ft) follows the same concept as the analysis conducted for the estimation error ehk
where instead of using Lemma D.3 we use Lemma D.4

(ft)
a
≤

√
8L

(√
KH2 +□HdUK,1 +□H2Sd

√
KLO + 4/3H3L

)
(
√
SOdL) + 14/3HSOdL2

b
≤

√
8L

(√
KH2 +□HdUK,1

)
(
√
SOdL) + 14/3HSOdL2

≤ □LH
√
KSOd+□Ld

√
HSOUK,1

(a) As we said above, we follow the same concept of point (c) of the proof of the upper bound
of ehk. In this case, we use Lemma D.4 instead of Lemma D.3.

(b) Because for typical episodes K ≥ H2L2S2Od and thus we consider only the dominant
terms.

Regarding the second term (st) adapting the proofs of [3], we will focus only on the last term (k)(h),
which results in a term of the same order of the second-order term already analyzed, the other two
terms are upper bounded by the main terms.

(st)
a
≤

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ)b′h′k

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ)
1

nk(s, o, h)

b
≤

√
H5S2L2O

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ)
1

nk(s′, o, h′)

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ)
1

nk(s, o, h)

c
≤

√
H5S2L2O(

√
SOdL)2

= H2S2L2
√
O3Hd2

d
≤ H3S2L2Od

(a) Considering only the (k)(h) of the original proof and applying Cauchy-Schwartz inequality.

(b) By substituting b′hk in the equation.

(c) By applying two times Lemma D.1.

(d) If O ≤ H .

To conclude the summation of exploration bonuses
K∑

k=1

H∑
h=1

bhk ≤ □LH
√
KSOd+□Ld

√
HSOUK,1 +H3S2L2Od (29)

neglecting smaller order terms.
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B.6 Summing all the terms

Finally, we can combine all the terms analyzed separately back into Equation (20), and we will get:

R̃egret(K) ≤ □LH
√
KSOd+□Ld

√
HSOUK,1 +□H3S2L2Od+H

√
dKL

a
≤ □LH

√
KSOd+□HSL2Od2 +□H3S2L2Od+H

√
dKL

≤ □LH
√
KSOd+□H3S2L2Od+H

√
dKL

where (a) results by solving for UK,1, and this completes the proof, ignoring the numeric constants
replaced by □.

C Proof of Corollary 5.1

In this section, we will proof Corollary 5.1, which is the specialization of Theorem 3.3 using
Options-UCBVI as regret minimizer for the high-level problem, and UCBVI for the options learning.

Corollary 5.1. Let M = (S,A, p, r,H) be an FH-MDP and let O be a set of options to be learned
inducing the FH-MDPs Mo = (So,Ao, p, ro, Ho) for o ∈ O. The regret suffered by Algorithm 1
when instanced with AH=O-UCBVI and AL=UCBVI-FH, run with the episode schedule as in
Equation (15), and having where HO = maxo∈O Ho, is bounded with probability at least 1− δ by:

Regret(HLML,K) ≤ Õ

(
CL H

√
SOKd︸ ︷︷ ︸

High-level regret

+CH HO

√
SAHOK︸ ︷︷ ︸

Low-level regret

)
. (16)

Proof. For the option learning procedure, we instantiate a UCBVI algorithm for each sub-MDP Mo,
and we execute each method for KL

n /O episodes. For the sake of the analysis, the regret paid by
these O different learning procedures is upper bounded by the regret paid after the total amount of
episodes provided for the low-level learning, KL

n , in the worst possible instance of sub-MDP, the one
with the longest possible horizon HO = maxo∈O Ho. Moreover, the transition probability estimate is
shared across all the options that are estimating the true transition probability p of the original MDP.
Thus, we can consider a dependency on the entire state and action space. Therefore, by considering
just the dominant term of the two upper bounds of regret, we can write

RL
KL

n
= Regret-UCBVI ≤ Õ

(
HO

√
SAKL

nHO

)
RH

KH
n

= Regret-O-UCBVI ≤ Õ

(
H
√
SOKH

n d

)
Now by directly substituting these results in Theorem 3.3 and considering the scheduling proposed in
Equation (15), we can rewrite the regret of the meta-algorithm as:

Regret(HLML,K) ≤ Õ

(
N∑

n=1

(
(CH + 1)HO

√
SAHO2n + (CL + 1)H

√
SOd2n

))

= Õ

((
(CH + 1)HO

√
SAHO + (CL + 1)H

√
SOd

) N∑
n=1

√
2n

)

= Õ

((CH + 1)HO

√
SAHO + (CL + 1)H

√
SOd

)
2
√
2

N/2∑
n=0

2n


= Õ

((
(CH + 1)HO

√
SAHO + (CL + 1)H

√
SOd

)(
2
√
2(2N/2+1 − 1)

))
a∝ Õ

((
CHHO

√
SAHO + CLH

√
SOd

)
2(log2(K))/2

)
≤ Õ

((
CHHO

√
SAHO + CLH

√
SOd

)√
K
)
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Where all the passages follow algebraic operations, except for (a) in which we neglect all the
numerical constants and we consider that K = 2

∑N
n=1 2

n = 2N+2 − 2 and thus, N = log2(K).
The last passage concludes the proof.

D Useful Lemmas

Lemma D.1 (Pigeon-hole argument). Considering nk(s, o, h) the number of visits of the triple
(s, o, h) up to episode k, and [k]typ the typical episodes for which nk(s, o, h) is sufficiently large, the
following holds true:

K∑
k=1

I(k ∈ [k]typ)

H∑
h=1

1

nk(s, o, h)
≤ dSO ln(Kd) (30)

Proof.
K∑

k=1

I(k ∈ [k]typ)

H∑
h=1

1

nk(s, o, h)

a
≤

∑
(s,o)∈S×O

∑
h∈[d]

nK(s,o,h)∑
n=1

1

n

b
≤ dSO

Kd∑
n=1

1

n

c
≤ dSO ln(3Kd)

(a) Considering nk(s, o, h) for the whole state space and options space, and considering the
summation over H bounded by d elements, for the temporal extension of the actions.

(b) Considering that the maximum number of (s, o, h) visited until episode K is bounded by
Kd

(c) Considering the rate of divergence of the harmonic series
∑n

i=1
1
i ∼ ln(n)

The following lemmas are adaptations to SMDPs of Lemma 8, 9, and 10 of the paper of the UCBVI
paper [3]. We consider to have the same good event E and Ωk,h.

Lemma D.2. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑
i=1

H∑
j=h

Vµ
i,j′ ≤ KH2 + 2

√
H5KL+ 4d3/3L (31)

Proof. The proof follows the same passages of the proof of Lemma 8 in [3], where j′ is the next
stage after a temporally extended transition.

Lemma D.3. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑
i=1

H∑
j=h

(
V∗

i,j′ −Vµ
i,j′

)
≤ 2HdUk + 4H2

√
HKL+ 4d3/3L (32)

Proof. The proof follows the same passages of the proof of Lemma 9 in [3], where j′ is the next
stage after a temporally extended transition.
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Lemma D.4. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑
i=1

H∑
j=h

(
V̂i,j′ − Vµ

i,j′

)
≤ □HdUk,1 +□H2S□d2KLO (33)

Proof. The proof follows the same passages of the proof of Lemma 10 in [3], where j′ is the next
stage after a temporally extended transition. More precisely, what changes is the application of the
pigeon hole principle (Lemma D.1).
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