
Towards High-Level Synthesis of Quantum Circuits
Chao Lu

Dept. of Electrial &
Computer Engineering

University of Texas at Dallas
Richardson, TX, USA

cxl200053@utdallas.edu

Christian Pilato
Dipartimento di Elettronica,

Informazione e Bioingegneria
Politecnico di Milano

Milan, Italy
christian.pilato@polimi.it

Kanad Basu
Dept. of Electrial &

Computer Engineering
University of Texas at Dallas

Richardson, TX, USA
kxb190012@utdallas.edu

Abstract—In recent years, there has been a proliferation
of quantum algorithms, primarily due to their exponential
speedup over their classical counterparts. Quantum algorithms
find applications in various domains, including machine learn-
ing, molecular simulation, and cryptography. However, exten-
sive knowledge of linear algebra and quantum mechanics are
required to program a quantum computer, which might not
be feasible for traditional software programmers. Moreover,
current quantum programming paradigm is difficult to scale and
integrate quantum circuits to achieve complex functionality. To
this end, in this paper, we introduce QHLS, a quantum high-level
synthesis (HLS) framework. To the best of our knowledge, this
is the first HLS framework for quantum circuits. The proposed
QHLS allows quantum programmers to start with high-level
behavioral descriptions (e.g., C, C++) and automatically generate
the corresponding quantum circuit; thus, reducing the complexity
of programming a quantum computer. Our experimental results
demonstrate the success of QHLS in translating high-level be-
havioral software programs containing arithmetic, logical, and
conditional statements.
Index Terms—High-level synthesis (HLS), Quantum Circuits.

I. INTRODUCTION

Quantum Computing can expedite the performance of sev-
eral computational tasks compared to classical CMOS-based
computers. Specifically, quantum entanglement and superpo-
sition empower a quantum computer to compute more effi-
ciently than a classical computer. There has been a plethora
of research that explores the quantum advantages by devel-
oping new algorithms that have exponential speed-up over
their classical counterparts [1]. For example, Shor’s algorithm
demonstrated that a quantum computer could factorize large
numbers in polynomial time, which could potentially break
current encryption standards [2], [3]. Various scientific ap-
proaches, including superconducting, trapped ion, quantum
annealing, and photonics can generate quantum entanglement
and superposition efficiently [4]–[7].

Many quantum computing platforms, including Qiskit, Cirq,
and Tket, are integrated as Python libraries that generate quan-
tum circuits at quantum-gate-level [8]–[10]. These platforms
utilize many grammars and suit different quantum comput-
ing systems. However, implementing high-level programming
logic in a quantum computer requires additional knowledge of
quantum mechanics and linear algebra to furnish an efficient
quantum circuit. Acquiring this knowledge might not be
feasible for traditional software programmers. The problem

This work is supported by the National Science Foundation (OMA-
2228725). (Corresponding Author: Chao Lu, Email: Chao.Lu@utdallas.edu).

exacerbates when designing complex quantum circuits. Thus,
it is imperative to develop a framework that can reduce the
complexity of programming a quantum computer. To this
end, we propose an approach based on high-level synthesis
concepts for quantum computers.

High-Level Synthesis (HLS) is widely applied in CMOS-
based hardware design processes to translate a behavioral
specification into the corresponding Register-Transfer-Level
(RTL) description that implements such behavior. HLS tools
usually accept C/C++ code as the input. Such descriptions
include multiple behavioral instructions, including arithmetic-
logical operations, conditional statements, and loops that are
eventually translated into their RTL counterparts [11]. Many
commercial or academic HLS frameworks, including Vivado
HLS, Stratus HLS, Bambu, and HDL Coder, use C/C++ and
Matlab to generate the RTL code [12], [13]. HLS improves
the efficiency of hardware design and reduces the complexity
of designing sophisticated hardware.

In this paper, for the first time, we introduce the Quantum
HLS (QHLS) framework that generates quantum circuits from
high-level software languages like C. To the best of our
knowledge, currently, there are no HLS framework to generate
quantum circuits from high-level behavioral languages. The
proposed QHLS framework will aid designers, starting from a
high-level description, in generating a quantum circuit design
without expert knowledge of quantum mechanics.

In our framework, we modified the flow for designing a
quantum circuit. To begin with, we take a high-level behavioral
code as input. Next, we use a Python framework that parses
this behavioral description. The QHLS framework generates
a file in the Open Quantum Assembly (OpenQASM) lan-
guage that describes the quantum circuit at the gate level.
This OpenQASM description is compatible with all current
quantum programming tools. A designer can use a quantum
programming platform like Qiskit to execute the computation
with the generated circuit. To this end, our major contributions:

• We proposed a Quantum High-Level Synthesis (QHLS)
framework, which translates behavioral programming lan-
guage to a corresponding quantum circuit.

• We proposed quantum circuit primitives to emulate arith-
metic circuits in Section III-A, logic operations in Sec-
tion III-B, conditional statements in Section III-C, and
loops in Section III-D in the QHLS framework.

• We evaluated our proposed QHLS flow on small high-
level benchmark programs, used by traditional HLS

1



frameworks [13]. Since real quantum computers only
contain limited noisy qubits [14], and classical computers
cannot simulate quantum circuits efficiently, while being
limited by the number of qubits, we utilized tailored
benchmark programs that can be simulated on a noise-
free quantum simulator to evaluate our QHLS framework.
We also estimated the quantum resources required for
these benchmark programs, as shown in Section IV.

The rest of this paper is organized as follows. Section II pro-
vides background on quantum computing, including the intro-
duction of qubits and quantum gates, along with a discussion
of programming issues. Section III explains the methodology
for designing the proposed QHLS flow. Section IV presents
our experimental results. Finally, Section V concludes the
paper with possible future research directions.

II. BACKGROUND AND MOTIVATION

In this section, we will introduce quantum circuits and the
motivation for developing QHLS.

A. Quantum Circuit

A quantum circuit comprises quantum bits (qubits) and
quantum gates. In contrast to a classical bit, the qubit can
form a superposition state, and it is usually expressed as a
bra-ket form, written as |⟩. A qubit in a superposition state can

be expressed as |a⟩, where a = α |0⟩ + β |1⟩ =

[
α
β

]
, where

α2 + β2 = 1. The state space of a single qubit can be in any
form from 0 to 1, and it is geometrically represented using
a Bloch Sphere, as shown in Figure 1. The x-y plane of the
Bloch Sphere represents real states, and the z-axis represents
the imaginary part. While representing the state of a single
qubit, the basis states are referred to as the opposite points on
Bloch Sphere, as seen in Figure 1.

Fig. 1: Bloch Sphere Single Qubit Visualisation.

Quantum entanglement is a quantum mechanical phe-
nomenon whereby a state change in one qubit instantaneously
changes the state of others in an anticipated fashion. A pair
of qubits are connected by entangling them together. They
correspond to each other such that if the measurement value
of one is known, the state of another qubit is determined
by the state of the measured qubit. Quantum computers
utilize such phenomena as two-qubit gates like CX gate to
perform computation. Based on the specification of quantum
superposition and entanglement, two qubits can generate 4
parameters, e.g. |ab⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩,

where α2 + β2 + γ2 + δ2 = 1. Therefore, the parameters
scale exponentially with a linear increase of qubits, known as
Hilbert Space [15]. Such specifications can speed up specific
tasks over classical algorithms exponentially [3].

When designing quantum circuits, each quantum gate can
be expressed as a matrix form, and the computation of the
quantum circuits is expressed as a matrix multiplication. A
tensor product is required for multiple qubits in the quan-
tum circuits. However, the quantum gates can perform logic
operations similar to CMOS-based classical computers. For
instance, a Pauli-X gate flips the phase of the qubits from |0⟩
to |1⟩ or from |1⟩ to |0⟩. The Control-X gate (CX gate) utilizes
a control and a target bit. It flips the target bit if the control
bit is |1⟩. The Toffoli gate (CCX gate) contains two control
bits and a target bit. The CCX gate flips the target bit when
both control bits are one. A SWAP gate swaps the states of two
qubits, so the information on those two qubits is interchanged.

When measuring a quantum circuit, the phase of the qubits
will collapse into “0” or “1” depending on the phase of the
measured qubits. Multiple measurements are required for the
quantum circuit to estimate the original qubit phase. When a

qubit in phase
[
α
β

]
is measured, the probability of obtaining

zero is α2 and one is β2, such that α2 + β2 = 1.
B. Programming Quantum Circuits and High-Level Synthesis

Quantum computing is promising due to its exponential
computing power with a linear increase in the number of
qubits. Researchers have proposed several quantum circuits
to perform integer arithmetic calculations [16]–[20]. Current
quantum programming languages only facilitate gate-level pro-
gramming. Most quantum programming platforms, including
Qiskit, Cirq, and Tket [8]–[10], require the direct design of
qubits and quantum gates to achieve a certain function. When
using these programming tools, the program includes the
number of qubits required by the quantum circuit initialization.
Next, the program uses the quantum gates to generate the
circuits. However, gate-level programming is inefficient for
generating complex quantum circuits. Moreover, it requires
designers to have expert knowledge of quantum mechanics and
linear algebra. To address this issue, we propose QHLS, which
takes inspiration from the improvements to the CMOS-based
hardware design steps achieved by raising the abstraction level
to high-level synthesis.

High-Level Synthesis (HLS) is a popular Electronic Design
Automation (EDA) technique that automates the generation
of RTL code from high-level software descriptions (e.g.,
C, C++, etc.) [21]. It facilitates hardware design since the
same software code can be used to generate multiple RTL
descriptions [22]. HLS has been utilized in several application
domains, including computer vision, machine learning, and
hardware security [23], [24]. It is mainly composed of three
phases: compilation of the input program, creation of the
micro-architecture, and generation of the Hardware Descrip-
tion Language (HDL) description ready for logic synthesis.

In this work, we aim to raise the programming abstraction
level and use software language elements like arithmetic and

2



High-Level 

Optimizing

Quantum
Circuit

Scheduling

Qubit
Resource 

Claiming

QHLS framework

Quantum
Arithmetic

Quantum
Conditinal
Statement

Quantum Logic
Operation

Original 

C Code 

OpenQASM
Code

Fig. 2: Overall QHLS Workflow.

logical operations, conditional statements, and loops for gen-
erating quantum circuits, akin to HLS. Despite the popularity
of HLS frameworks [12], [13], the development of such a
framework for quantum circuits is still missing. Our proposed
QHLS addresses this issue by enabling direct synthesis from
the behavioral coding language to a quantum circuit without
requiring additional knowledge from the designer.

III. PROPOSED QHLS

We aim to develop a design framework that utilizes high-
level behavioral software languages to generate complicated
quantum circuits, like in HLS. Our QHLS framework can
lower the barrier and hence, increase the efficiency of program-
ming on a quantum computer. It utilizes existing high-level
programming languages to automatically design the gate-level
quantum circuit corresponding to the input specifications to
perform the computation on a quantum computer.

Figure 2 shows the proposed QHLS framework. First, It
parses the input C code to determine the induction vari-
ables and unrolls the iteration loops when possible. This
step corresponds to the classic front-end phase in traditional
HLS frameworks. Next, we claim the qubits requirement and
assemble the quantum gates to achieve specific functions. This
phase corresponds to the HLS engine. Finally, the QHLS will
generate an OpenQASM file that describes the corresponding
quantum circuits (backend phase). The generated OpenQASM
file defines the details of qubits and quantum gates design and
is compatible with most of the existing quantum programming
platforms like Qiskit, Cirq, and Tket. The QHLS does not per-
form any logic and layout synthesis on the quantum circuits,
since these steps can be performed easily by current quantum
computing platforms.

In this section, we describe several quantum circuit prim-
itives for traditional high-level computations, including arith-
metic, logical and conditional statements to be used in our
proposed QHLS flow.

A. Quantum Arithmetic Circuits

First, we focus on quantum arithmetic operations. To this
end, we developed the following quantum circuits: quantum
adder, quantum subtractor, quantum multiplier, and quantum
divider (see Figure 3). The proposed QHLS utilizes existing

(a) Quantum Adder. (b) Quantum Subtractor.

(c) Quantum Multiplier. (d) Quantum Divider.

Fig. 3: Quantum arithmetic blocks.

high-level descriptions to generate these quantum circuits to
perform arithmetic computations on a quantum computer [16]–
[18]. The quantum adder and subtractor utilize two binary
numbers as input, and the generated output replaces one of the
input registers. The quantum integer multiplier and quantum
division circuits utilize two input numbers and reserve the
qubits for the multiplication product and division quotient,
respectively. Since some arithmetic operations replace the
output with some input registers, CX gates are required to
copy the information that will be replaced by the new qubits,
so that the information can be utilized for other operations.

B. Logic Operation

In contrast to classical computers, quantum computers uti-
lize quantum logic gates that are different from classical
logic gates. Although simple logical operations, including
“logic AND” and “logic OR” are not available on a quan-
tum computer, they can still be implemented by combining
several quantum gates to realize logical operations. Figure 4
demonstrates two versions of logic operations of “logic AND”
and “logic OR” using quantum circuit elements.

(a) Quantum logic operation
with result appended on a
new register.

(b) Quantum logic operation
with result that replaces one
input register.

Fig. 4: Quantum logic operation equivalence.
C. Conditional Statement

One of the most important logical operations for high-level
programming is the conditional statement. Conditional state-
ments enable different computations upon the evaluation of a
condition. To this end, we utilize the quantum entanglement
phenomenon for representing conditional statements in QHLS.
The control bit enables different computations of the target
quantum gate, thus, performing an if-then operation, as shown
in Figure 5a. Furthermore, QHLS also designs the quantum

3



comparators utilizing the quantum subtractor, described in
Section III-A. For conditional statements, we have multiple
scenarios, including a == b, a ̸= b, a < b, a > b, a ≥ b,
and a ≤ b, where some cases could be merged together. In
this section, first, we demonstrate two important situations,
namely, a == b, and a > b. The others can be derived from
these scenarios, as explained later.

For the simplest scenario, if a == b, the function can be
achieved using the MCX gate, as shown in Figure 5b. First, the
input a is encoded as a binary state. Next, the original register
encodes b again at the same register. After the encoding, the
register value should be all 1s if the two variables are equal.
The MCX gate is applied to the original register, and the
comparison results are furnished to an ancilla qubit to perform
further computation.

For scenarios like a > b, a different representation is
necessary, so that the quantum circuit can compare the two
values. The design of a relevant quantum comparator is shown
in Figure 5c. In this case, we use a quantum subtractor to
achieve such functionality. The quantum subtractor utilizes
one′s complement code to perform the computation. In this
case, we perform the subtraction of the two inputs, i.e., a− b.
If a > b, the Most Significant Bit (MSB) of the result should
be 0; if a < b, the result should be negative, which means the
MSB is 1. A quantum circuit that performs such an operation
is shown in Figure 5d.

If we want to perform the computation when a < b,
the quantum circuit will compare a and b first and project
the result to the target bit. Next, a controlled-U gate is
appended to the target bit of the quantum circuit to perform
the computation. For cases like a ≥ b, the computation can
be executed by calculating a < b and projecting the result
to the target bit. An X gate can be appended to the target
bit to flip the state to compute “a is not less than b”. The
rest of the circuit remains unchanged. Next, we will introduce
several other quantum circuits to demonstrate various types of
conditional statements used in behavioral descriptions.

1) If-else statement: In this section, we introduce quantum
circuits that can perform the if-else statement, which is also
compatible with the comparator. In this scenario, a qubit is
required to perform the if statement computation. The qubit for
the if statement switches between 0 and 1 to disable or enable
the computation of the target function blocks. The quantum
circuit, for the high-level code “If a > b: then Operation
U 0; else: Operation U 1”, is demonstrated in Figure 5e.

2) If-elif-else statement: The if-elif-else statement contains
two conditional branches, which are “if statement” and “else
if (elif) statement”. Since one “if” qubit can only control one
conditional statement, another qubit is utilized to help with the
computation on the second conditional statement. The if-elif-
else statement with the comparator integrated is demonstrated
in Figure 5f. As the figure shows, there are two comparators
and three qubits for the conditional statements. To simplify the
computation of the else statement, another qubit is utilized.

(a) Control-U Gate. (b) Quantum conditional statement circuit.

(c) Quantum Comparator based on the quantum subtractor.

(d) An if statement with
a 2-bit comparator.

(e) Conditional statement including
if and else statements.

(f) Conditional statements including if, else if, and else statements.

Fig. 5: Quantum conditional statement variants.

D. Iteration Loops

Since the states of qubits are unknown until they are
measured, the quantum circuits containing a loop must be
measured to decide whether the program should finish the
loop. However, such an operation is inefficient because each
iteration of the loop involves the measurement of the quantum
circuit, which requires communication between the quantum
processor and the classical processor. To this end, for the
original C code, first, we will perform high-level optimiza-
tions to analyze the induction variables and unroll the loops.
Next, the loop count will be translated to a quantum circuit
representation to perform the computation so that the quantum
circuit does not require measurement for each iteration.

E. Qubit Resource Determination

To automatically generate the quantum circuits using QHLS,
a critical process is the qubit resource determination, which
enables the program to arrange the quantum gates in the

4



u n s i g n e d s h o r t i c r c 1 ( u n s i g n e d s h o r t c rc ,
u n s i g n e d c h a r onech )
{

i n t i ;
u n s i g n e d s h o r t ans =( c r c ˆ onech << 8 ) ;

f o r ( i =0 ; i <8; i ++) {
i f ( ans & 0 x8000 )

ans = ( ans << 1) ˆ 4129 ;
e l s e

ans <<= 1 ;
}
r e t u r n ans ;

}
Fig. 6: The behavioral benchmark code “icrc.c”.

quantum circuit. For our proposed QHLS, three scenarios
are required to determine new qubits. The first one is input
variables. The second situation is during the calculation for
each multiplication and division operation. For a multiplication
circuit, the product of the multiplication operation requires
empty qubits to store the product. The division circuit also
requires empty qubits to store the quotient. The third situation
involves logical operations, including conditional statement
computation. Thus, the amount of qubit requirement for a
particular high-level program can be obtained by counting the
number of inputs and operations executed.

F. Example

Our proposed QHLS facilitates the design of quantum
circuits corresponding to logical operations, arithmetic calcu-
lations, and conditional statements on a quantum computer.
By combining these three types of circuits, we can generate
a fairly large amount of quantum circuits to achieve various
complex functionalities. In this section, we will demonstrate
an example quantum circuit design using the proposed QHLS
framework. Figure 6 shows a small benchmark program, called
ICRC, written in C language.

First, the QHLS analyzes the original code by unrolling the
loops. In this case, the loop is iterated eight times. The induc-
tion variable “i” is removed after determining the number of
iterations. Next, the variable “ans” is computed using “logical
XOR” and bit shifting operations. The bit shifting operation
can be implemented using quantum SWAP gates. The QHLS
resets the first 7 bits, and it swaps the first bit with the 8-th
bit, the second bit with the 9-th bit, and so on until all bits are
swapped. The quantum circuit to obtain the variable “ans” is
shown in Figure 7a.

Next, for the if statement, we will use the proposed quantum
if-else circuit, described in Section III-C1. For the logic
operation “ans & 0x8000”, bitwise AND operation between
ans and 0x8000 is utilized. Since only one bit is important
to the result (only one bit in 0x8000 is one), while the
other bits are zeros, we only need one AND operator for
the computation. Such optimization reduces the quantum gate
overhead drastically. Figure 7b shows the generated quantum
circuit. For the generated circuit, it requires registers for all
input variables, one bit for the if statement, and 32 bits for
the “logic XOR” operations. After the computation is finished,

(a) Quantum circuit to obtain
variable “ans”

(b) Quantum circuit for the loop
of icrc.c code.

Fig. 7: Quantum ICRC circuit.
the circuit only needs to measure the qubits corresponding to
the variable “ans” to obtain the desired output.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, we evaluate the proposed QHLS using
simple HLS benchmark algorithms involving arithmetic and
logical operations. These benchmarks have been used in tradi-
tional HLS frameworks like Bambu [13]. We constructed the
following three benchmark programs applying QHLS: ARF,
GSM NORM and GSM DIV (i.e., two subfunctions of the
GSM benchmark), and ICRC. These high-level behavioral
codes are utilized to evaluate the capability of QHLS and
the resource requirement on a quantum computer. QHLS is
the first HLS framework for quantum circuits, so comparison
with prior research is impossible. However, we expect future
researchers to build on the proposed QHLS and improve
performance and efficiency.

It is difficult for a classical computer to simulate complex
operations on a quantum computer. Indeed, the maximum
number of qubits available for the Qiskit library is 32 qubits,
while the ordinary integer representation requires 32 bits to
express a single number. Hence, although our benchmarks are
small for HLS, they are already too large for a quantum sim-
ulator. Thus, we reduce the bit length to 4 and simplify some
parameters to simulate our benchmark programs. Quantum X
gates are used for qubit initialization to a binary number.

B. Results

Our experimental results are presented in Table I. The first
column of the table denotes the benchmark program name,
the next six columns furnish the program statistics, and the
last four columns present the resource requirements in terms
of qubits and quantum gates. It should be noted that although
our simulations were performed using four qubits integer size
due to resource constraints, the values in this table correspond
to the actual resource requirement when operated on 32-qubit
data. The first column of the table provides the program
name; the next six columns represent the program statistics,
and the last four columns present the quantum resource
requirement. For the ARF program, 11 addition operations and
17 multiplication operations are required for the computation.
16 × 32 = 512 qubits are required to initialize the 16 input
variables. Moreover, 17 multiplication operations require extra
qubits to store the product. Thus, the total qubits requirement
for ARF is 512 + 17 × 32 = 1056 qubits. Furthermore, each
quantum adder requires 166 CX gates and 62 CCX gates for
32-bit inputs, while the quantum multiplier requires 710 CX
gates and 991 CCX gates to execute the program.

5



TABLE I: Statistics of benchmark programs and quantum circuit resource estimation.

Benchmark Program Statistics Quantum Resource Requirements

Variables Loops Iteration Count If Statements Arithmetic Operations Logic Operations Qubits X CX CCX SWAP

ARF 16 0 N/A 0 28 0 1056 0 13896 17529 0
GSM NORM 11 0 N/A 5 5 7 484 175 857 534 48

GSM DIV 8 1 15 16 30 46 272 960 7470 5642 930
ICRC 4 1 8 8 0 26 104 8 0 272 248

For GSM, we simulated two subfunctions: GSM NORM and
GSM DIV. For GSM NORM, there is one input variable “a”
(used seven times), an integer -1073741824, four hexadecimal
numbers 0xff000000, 0xff00, 0xFF, and 0xffff0000, and other
integers 7, 15, 23, and 8, and four if statements. Thus, the
quantum circuit requires 15×32 = 480 qubits to initialize the
variables. The four if statements require 32 CCX gates and 4
qubits for the conditional operations. Furthermore, they require
128 X gates and 2× 127 = 254 CCX gates and 1 CX gate to
perform the logical computation. For the value initialization,
logical operation, and calculation, we need 43 X gates, 760
CX gates, 248 CCX gates, and 48 SWAP gates to generate
the quantum circuit, as shown in Table I. For GSM DIV,
QHLS performs a high-level optimization to pre-determine the
number of loop iterations and unroll the loop accordingly. Two
variable inputs require 32 bits each, and two longword format
inputs require 64 bits each. One more internal variable, “div”
requires 32 bits initialization. For each loop, the circuit needs
two sets of bit shifting operations, one if statement with a
comparator, a subtractor, and an adder. Thus, for GSM DIV,
the quantum circuit requires 7470 CX gates, 5642 CCX gates,
and 930 SWAP gates to finish the computation.

For ICRC, the general design is demonstrated in Figure 7.
The circuit applies XOR logic operations for the variable
“crc” and “onech” and projects the result on the variable
“ans”. Next, it performs a bit-shifter function block, composed
of SWAP gates, to generate the variable “ans”. Each bit
requires two CX gates and one CCX gate to perform a “logic
XOR” operation. The loop includes one logic operation, two
sets of “controlled-SWAP” operations, one CCX operation,
one X gate, and a reset gate to reset the if statement. All the
statements are iterated eight times, which requires a total of 8
X gates, 32 CX gates, 272 CCX gates, 248 SWAP gates and
8 reset gates to finish the computation.

V. CONCLUSION

In this paper, we introduced a first Quantum High-level
Synthesis (QHLS) framework that automatically translates
high-level behavioral languages into quantum circuits, thus,
reducing the onus of quantum computing. We proposed several
quantum arithmetic/logical operations and conditional state-
ment circuits, corresponding to software language constructs.
We evaluated our framework on benchmark programs written
in C. Our proposed QHLS framework was evaluated on HLS
benchmark programs on a quantum simulator. Due to the lim-
itation of qubits and noise levels on current quantum hardware
and the inefficiency of classical computers to simulate large,
complex quantum circuits, we limited our analysis to small
circuits. In the future, we aim to further improve upon the

proposed QHLS. For instance, we performed an analysis on
the induction variable for unrolling the loop, which compli-
cates the programming of the quantum circuit in the case of
unbounded loops. Moreover, our current version of QHLS only
supports integer operations. For our next step, we intend to
develop provisions for floating-point operations. Furthermore,
we plan on improving the efficiency of the proposed QHLS by
using the entangled state of qubits to maximize the quantum
advantage.

REFERENCES

[1] F. Arute et al., “Quantum Supremacy using a Programmable Supercon-
ducting Processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019.

[2] V. Bhatia et al., “An efficient quantum computing technique for cracking
rsa using shor’s algorithm,” in 2020 IEEE 5th ICCCA, pp. 89–94.

[3] T. Monz et al., “Realization of a Scalable Shor Algorithm,” Science,
vol. 351, no. 6277, pp. 1068–1070, 2016.

[4] J. M. Pino et al., “Demonstration of the qccd trapped-ion quantum
computer architecture,” arXiv preprint arXiv:2003.01293, 2020.

[5] P. Jurcevic et al., “Demonstration of quantum volume 64 on a supercon-
ducting quantum computing system,” Quantum Science and Technology,
vol. 6, no. 2, p. 025020, 2021.

[6] R. D. Somma et al., “Quantum speedup by quantum annealing,” Physical
review letters, vol. 109, no. 5, p. 050501, 2012.

[7] S. Takeda et al., “Toward large-scale fault-tolerant universal photonic
quantum computing,” APL Photonics, vol. 4, no. 6, p. 060902, 2019.

[8] A. Cross, “The ibm q experience and qiskit open-source quantum
computing software,” in APS March meeting abstracts, 2018.

[9] V. Omole et al., “Cirq: A python framework for creating, editing, and
invoking quantum circuits,” 2020.

[10] S. Sivarajah et al., “t— ket¿: a retargetable compiler for nisq devices,”
Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2020.

[11] C. Lu, U. Banerjee, and K. Basu, “Design and analysis of a scalable
and efficient quantum circuit for lwe matrix arithmetic,” in 2022 IEEE
ICCD. IEEE, 2022, pp. 109–116.

[12] D. Pursley et al., “High-level low-power system design optimization,”
in 2017 VLSI-DAT. IEEE, 2017, pp. 1–4.

[13] F. Ferrandi et al., “Bambu: an open-source research framework for the
high-level synthesis of complex applications,” in 2021 IEEE/ACM DAC.

[14] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[15] M. A. Nielsen et al., Quantum Computation and Quantum Information.
Cambridge University Press, 2010.

[16] H. Thapliyal, “Mapping of subtractor and adder-subtractor circuits on
reversible quantum gates,” in TCS. Springer, 2016, pp. 10–34.

[17] E. Muñoz-Coreas et al., “Quantum circuit design of a t-count optimized
integer multiplier,” IEEE TC, vol. 68, no. 5, pp. 729–739, 2018.

[18] H. Thapliyal et al., “Quantum circuit designs of integer division opti-
mizing t-count and t-depth,” IEEE TETC, pp. 1045–1056, 2019.

[19] A. Pavlidis et al., “Fast quantum modular exponentiation architecture for
shor’s factorization algorithm,” arXiv preprint arXiv:1207.0511, 2012.

[20] C. Lu et al., “Design and logic synthesis of a scalable, efficient quantum
number theoretic transform,” in ACM/IEEE ISLPED, 2022, pp. 1–6.

[21] R. Nane et al., “A survey and evaluation of fpga high-level synthesis
tools,” IEEE TCAD, vol. 35, no. 10, pp. 1591–1604, 2015.

[22] X. Ma et al., “The application of wi-fi rtls in automatic warehouse
management system,” in 2011 ICAL. IEEE, 2011, pp. 64–69.

[23] C. Pilato et al., “High-level synthesis of benevolent trojans,” in IEEE
DATE, 2019, pp. 1124–1129.

[24] F. Winterstein et al., “High-level synthesis of dynamic data structures:
A case study using vivado hls,” in IEEE FPT, 2013, pp. 362–365.

6


