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Abstract
In this paper, linear multiplicative programs are approached with a branch-and-
bound scheme and a detailed computational study is provided. Several underes-
timation functions are analyzed and various partitioning criteria are presented. A 
particular class of linear multiplicative programs, useful to solve some applicative 
bilevel problems, is considered from a theoretical point of view to emphasize an 
efficient solution method. Detailed results of the computational study are provided 
to point out the performances provided by using various underestimation functions 
and partitioning criteria, thus improving some of the results of the current literature.

Keywords Linear multiplicative programs · Branch-and-bound · Global 
optimization · Nonconvex optimization · Bilevel problems

1 Introduction

In the literature, linear multiplicative programs have been widely studied due to their 
importance from both theoretical and applicative point of views. These problems, 
strictly related to quadratic programming and bilinear programming, are used in 
plant layout design, portfolio and financial optimization, VLSI chip design, robust 
optimization, network flows (see, e.g., Cambini and Martein 2009; Cambini and 
Sodini 2008; Cambini and Salvi 2010; Gupta 1995; Horst and Pardalos 1995; Horst 
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and Tuy 1996; Horst et al. 2001; Konno and Kuno 1992; McCarl et al. 1977; Mjelde 
1983; Ryoo and Sahinidis 2003; Tuy 2016 and references therein).

From the computational point of view, various approaches have been proposed. 
For instance, Wang et al. (2012) proposed a branch-and-bound algorithm for global 
minimization of a generalized linear multiplicative programming; Jiao et al. (2012) 
proposed a branch and bound algorithm based on the computation of subsequent 
solutions of the series of linear relaxation programming problems; in a very recent 
paper, Jiao et  al. (2023) proposed a branch-reduction-bound algorithm, based on 
outer space search and branch-and-bound framework.

A second field of literature develops methods based on an eigenvectors approach. 
The eigenvectors approach has been widely used despite actually it has some draw-
backs. It is well known that the eigen-decomposition of a quadratic function is an 
heavy task from both a computational and a numerical point of view and it does not 
care about the particular structure of linear multiplicative functions. For all these 
reasons, in the recent years, various papers have introduced new procedures devel-
oped without the use of eigen-decompositions (see, e.g., Shen et  al. 2020, 2022; 
Wang et al. 2012; Zhou et al. 2015).

In this paper, various underestimation functions to be used in the branch and 
bound procedure are introduced and discussed both with the eigenvectors approach 
and without it. Then, a full computational test is provided to highlight the best per-
forming functions.

In addition, a motivating example is presented in the last part of the paper. Spe-
cial structures of multiplicative problems, in facts, arise in several bilevel program-
ming problems of leader-follower type (see Dempe 2020, for example). Some under-
estimation functions introduced in the paper can be used to improve the algorithmic 
procedure adopted to tackle this class of problems.

The main contributions of this paper are:

• To describe a unified framework for dealing with linear multiplicative programs 
from both a theoretical and computational point of view;

• To propose various underestimation functions to be used in the branch and bound 
procedure: quadratic, linear, difference of two convex functions (D.C. functions), 
and eigenvectors based underestimation functions;

• To perform a detailed computational test that compares the different underesti-
mation functions under various partition methods to identify the most promising 
ones;

• To characterize a special case of multiplicative programs strictly related to 
bilevel optimization and to define the more appropriate underestimation function 
to solve them.

The paper is organized as follows. In Sect. 2, the main definitions and preliminary 
results are given. In addition, the criteria for the splitting process of the branch-
and-bound approach are analyzed. On this basis, Sect. 3 is devoted to the study of 
quadratic, eigenvectors based and linear underestimation functions. Then, in Sect. 4, 
the detailed results of a wide computational experience are provided and fully dis-
cussed, giving a detailed view of the computational aspects of the solution method 
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and improving some of the results of the current literature. Furthermore, Sect.  5 
points out the behavior of the proposed underestimation functions in a particular 
class of linear multiplicative programs very useful in applicative bilevel program-
ming. Finally, a section with the conclusions is given.

2  Definitions and preliminary results

The aim of this section is to define the problem and provide the main preliminary 
results which will allow the development of the paper. In this light, firstly the prob-
lem is defined and then the concept and properties of underestimation functions 
are given. On this basis, a detailed description of a branch-and-bound scheme to 
solve the problem is provided, in order to approach it in a unifying framework with 
respect to different underestimation functions and different splitting criteria. Finally, 
the quadratic form associated to a linear multiplicative function is recalled as well as 
the eigenvector-based decomposition of such a quadratic form.

2.1  Definition of the problem

From now on, ℝ will denote the set of real numbers while ℝ = ℝ ∪ {−∞,+∞} will 
be the affinely extended real number system.

Definition 1 Let P be the following minimization problem:

where S ⊆ ℝ
n is a nonempty polyhedron defined as

with Ain ∈ ℝ
m×n , bin ∈ ℝ

m , Aeq ∈ ℝ
r×n , beq ∈ ℝ

r , and lb, ub ∈ ℝ
n
 , while 

f ∶ ℝ
n
→ ℝ is a linear multiplicative function defined as

with ci, di ∈ ℝ
n , c0i, d0i ∈ ℝ for all i ∈ 1,… , p and a ∈ ℝ

n , a0 ∈ ℝ.

2.2  Underestimation functions

The use of suitable underestimation functions of f is needed to solve Problem P by 
means of a branch-and-bound approach.

P ∶ min
x∈S

f (x) .

S =
{
x ∈ ℝ

n ∶ Ainx≤bin, Aeqx = beq, lb≤x≤ub
}
,

f (x) =

p∑
i=1

(cT
i
x + c0i)(d

T
i
x + d0i) + aTx + a0 ,
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Definition 2 Let S ⊆ ℝ
n be nonempty. Let f ∶ S → ℝ and Φ ∶ S → ℝ . Then, Φ is an 

underestimation function of f if:

moreover, Er ∶ S → ℝ is the corresponding error function defined as 
Er(x) = f (x) − Φ(x).

The following useful properties hold.

Lemma 1 Let S ⊆ ℝ
n be nonempty. Let Φ1 ∶ S → ℝ and Φ2 ∶ S → ℝ be underesti-

mation functions of f ∶ S → ℝ , with Er1 ∶ S → ℝ and Er2 ∶ S → ℝ the correspond-
ing error functions. Then, the following properties hold: 

 (i) For al l  � ∈ [0, 1] ,  Φ�  def ined as  Φ�(x) = �Φ1(x) + (1 − �)Φ2(x) 
is an underestimation function of f, with error function defined as 
Er�(x) = �Er1(x) + (1 − �)Er2(x);

 (ii) Φ defined as Φ(x) = max
{
Φ1(x),Φ2(x)

}
 is an underestimation function of f, 

with error function defined as Er(x) = min
{
Er1(x),Er2(x)

}
.

Proof For any x ∈ S , it results:
(i) for any � ∈ [0, 1],

and

(ii) according to Definition 2, one has f (x) ≥ max
{
Φ1(x),Φ2(x)

}
 ; hence, it follows 

that

  ◻

The following further result will be used in the next subsection as an algorithmic 
stopping criterium.

Lemma 2 Let S ⊆ ℝ
n be nonempty. Let Φ ∶ S → ℝ be an underestimation function 

of f ∶ S → ℝ , with Er ∶ S → ℝ its error function. If x̄ ∈ argminS Φ and Er(x̄) = 0 , 
then x̄ ∈ argminS f .

Proof For all x ∈ S , it results:

f (x) ≥ Φ(x) ∀x ∈ S ;

Φ�(x) = �Φ1(x) + (1 − �)Φ2(x) ≤ �f (x) + (1 − �)f (x) = f (x)

Er�(x) = f (x) − (�Φ1(x) + (1 − �)Φ2(x))

= (�f (x) + (1 − �)f (x)) − (�Φ1(x) + (1 − �)Φ2(x))

= �Er1(x) + (1 − �)Er2(x) ;

Er(x) = f (x) −max
{
Φ1(x),Φ2(x)

}
= min

{
f (x) − Φ1(x), f (x) − Φ2(x)

}
.
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hence, the thesis follows.   ◻

Finally, it is worth noticing that some underestimation functions of f will be 
obtained by first rewriting f in D.C. form. Let us recall that a function f ∶ ℝ

n
→ ℝ is 

said to be in D.C. form if it is expressed as f (x) = q1(x) − q2(x) , with q1 ∶ ℝ
n
→ ℝ 

and q2 ∶ ℝ
n
→ ℝ convex functions (see, e.g., Cambini and Salvi 2009, 2010 and 

references therein).
In this light, the following result will be useful to deduce underestimation func-

tions of f in the case f is rewritten in D.C. quadratic form.

Lemma 3 Let [yL, yU] ⊂ ℝ with −∞ < yL < yU < +∞ : for all y ∈ [yL, yU] , it results

Then, for all y ∈ [yL, yU] , the error given by the use of −(yL + yU)y + yLyU instead of 
−y2 is

with 1
4
(yU − yL)2 the maximum error obtained at y = yL+yU

2
.

Proof For all y ∈ [yL, yU] , the error given by the use of −(yL + yU)y + yLyU instead 
of −y2 is:

Being

it yields (y − yL)(yU − y) =
1

4
(yU − yL)2 −

(
y −

yL+yU

2

)2

 and the thesis follows.   ◻

2.3  A branch‑and‑bound scheme

In order to solve Problem P by using a branch-and-bound approach (see, e.g., Bajaj 
and Faruque Hasan 2020; Cambini and Sodini 2005, 2008; Cambini and Salvi 2009, 
2010; Fampa et al. 2017; Gerard et al. 2017; Shen et al. 2020 and references therein), 
the following operative scheme will be considered:

• the feasible region will be iteratively partitioned in multidimensional rectangles,

f (x̄) = Φ(x̄) + Er(x̄) = Φ(x̄) ≤ Φ(x) ≤ f (x) ;

−y2 ≥ −(yL + yU)y + yLyU .

Er(y) = (y − yL)(yU − y) =
1

4
(yU − yL)2 −

(
y −

yL + yU

2

)2

,

Er(y) = (−y2) − (−(yL + yU)y + yLyU).

0 ≤ (y − yL)(yU − y) = −y2 + (yL + yU)y − yLyU and

− yLyU =
1

4
(yU − yL)2 −

1

4
(yL + yU)2
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• the function f will be “relaxed” over the single partitions by means of a convex 
underestimation function Φ,

• the convex “relaxed” subproblems will be solved
• the feasible solution having the smallest value of f will be maintained.

Specifically speaking, such a branch-and-bound approach will be implemented by 
means of:

• a Priority Queue (PQ) used to store the single partitions sorted with respect to the 
Lower Bound (LB) found minimizing the convex “relaxed” subproblems over the 
partitions;

• a feasible point Sol and a value UB corresponding, respectively, to the incumbent 
best feasible solution found and its image UB = f (Sol);

• a convex underestimation function Φ needed to solve the subproblems over the vari-
ous partitions.

The priority queue PQ is used to speed up the solution method (at the cost of memory 
usage of course) since the partition with smaller LB is always known and since it does 
not need of any periodic “pruning” process (in the “pruning” process of a branch-and-
bound scheme, the stored partitions having a LB not smaller than UB are cancelled 
since they cannot improve the incumbent best feasible solution).

The following commands are aimed to describe the way the priority queue PQ is 
managed:

• PQisempty();
• LB ∶= PQsmallest();
• PQadd(LB, partition, opt);
• [partition, opt] ∶= PQextract().

The command PQisempty tells whether the PQ is empty or not; the command PQs-
mallest provides the smallest LB of the partitions stored in the PQ; the command 
PQadd adds to the PQ a partition as well as the corresponding Optimal Solution (opt) 
and its optimal value LB = Φ(opt) obtained minimizing Φ over the partition itself. 
Clearly, PQ is such that smaller is the value of the LB, the higher the priority of the 
partition in the PQ will be. The last command PQextract removes from the PQ the par-
tition having the smallest LB and provides as the output all the data stored.

Remark 1 If the smallest LB is such that LB ≥ UB , then the partitions in the PQ are 
not able to improve the incumbent best feasible solution Sol and hence PQ can be 
emptied (being PQ a priority queue, the “pruning” process becomes just a final stop-
ping condition and it is no more periodic).

The following subprocedure “CheckPartition()” minimizes the underestimation 
function Φ over a given partition Π , improves the value of UB and stores the data in the 
PQ when the potential relative improvement is such that
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with

and relTol > 0 be a chosen tolerance. According to Remark 1, if LB ≥ UB then the 
partition is not added to the queue and discarded (“pruning”).

The overall solution branch-and-bound scheme is described by the procedure 
“Solve()”.

(1)Relimp(LB,UB) > relTol ,

Relimp(LB,UB) =
abs(UB − LB)

max{abs(UB), abs(LB)}

Subprocedure CheckPartition(inputs ∶ Π)

if not(isempty(S ∩ Π)) then

opt ∶= arg min
x∈S∩Π

Φ(x); LB ∶= Φ(opt);

if LB < UB then

val ∶= f (opt);

if val < UB then UB ∶= val, Sol ∶= opt end if;

if Relimp(LB,UB) > relTol then

PQadd(LB, partition, opt);

end if;

end if;

end if;

end subproc.

Procedure Solve(inputs ∶ P; outputs ∶ Opt,Val)

Let PQ ∶= �,UB ∶= +∞, Sol ∶= [];

Determine the smallest partition Π0 containing S;

CheckPartition(Π0);

while not(PQisempty()) and PQsmallest() < UBdo

[Π, opt] ∶= PQextract();

Choose the branching variable to be used in the splitting process;

Split partition Π accordingly to the chosen branching variable ∶ Π = Π1 ∪ Π2;

CheckPartition(Π1),CheckPartition(Π2);

end while;

Let Opt ∶= Sol,Val ∶= UB;

end proc.
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Firstly, variables PQ, UB and Sol are initialized and the starting smallest partition 
Π0 containing S is found and checked. Then, the iterative phase starts and continues 
up to either the PQ is emptied or the stored partitions cannot improve anymore UB 
(“pruning”). At each iteration, the partition with the smaller LB is extracted from 
the PQ, a branching variable is selected, and the partition split accordingly (multi-
way branching has been shown to provide poor results, see for example Gerard et al. 
2017). The two new partitions are then checked. Finally, at the end of the iterative 
process, outputs are set.

Remark 2 The value of UB is fundamental to improving the performance of the 
algorithm since it is used to discard the not useful partitions. For this reason, the 
feasible points found while looking for Π0 should be used to improve values UB and 
Sol.

Notice that the convergence of the proposed method has been widely dis-
cussed in the literature (see, e.g., Bajaj and Faruque Hasan 2020; Cambini and 
Salvi 2009, 2010; Fampa et  al. 2017; Gerard et  al. 2017; Shen et  al. 2020 and 
references therein). Specifically speaking, since the partitions will be split with 
respect to values not “close” to its boundaries (see Sect.  4), then the tolerance 
parameter relTol > 0 guarantees that condition (1) in subprocedure “CheckPar-
tition()” will become false after a sufficiently large number of iterations. The 
correctness of the method follows since just feasible solutions are evaluated to 
improve the incumbent best solution and since the whole feasible region is ana-
lyzed. This is known to be an NP-Hard problem and in the worst case many local 
but not global optimal solutions can be found.

Some further choices are finally needed to complete the description of the 
solution process:

• Which underestimation function Φ(x) should be used? tight underestimation 
functions improve the algorithm performance, moreover the underestimation 
function determines the set of branching variables;

• Which branching variable should be chosen to split the current partition?
• With respect to which value of the branching variable the current partition 

should be split?

Actually, another fundamental choice has been already made:

• At each iteration, the partition with the smaller LB is selected and analyzed.

This criterium is aimed to look for feasible solutions having small values, thus 
allowing to improve UB as much as possible and to increase as much as possible 
the number of partitions discarded by means of the stopping “pruning” condition.
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2.4  A raw approach

Problem P is a particular quadratic (usually indefinite) program since f(x) can be 
rewritten as:

with

Quadratic indefinite programs can be efficiently solved with a branch-and-bound 
approach by means of a suitable eigenvectors-based decomposition of the objective 
function (see, e.g., Cambini and Sodini 2005, 2008; Fampa et  al. 2017). Specifi-
cally speaking, since Q̂ is a symmetric matrix, there exists an orthonormal matrix 
U ∈ ℝ

n×n ( UUT = UTU = I ) and a diagonal matrix D ∈ ℝ
n×n such that Q̂ = UDUT . 

The diagonal elements of D are the eigenvalues �1,… , �n ∈ ℝ of Q̂ , while the 
orthonormal columns u1,… , un ∈ ℝ

n of U are the corresponding eigenvectors of Q̂ . 
As a consequence, it results:

Thus, by means of the sets of indices

and the vectors

the quadratic component of f can be rewritten as follows:

In this way, f can be expressed in the following D.C. form:

(2)f (x) =

p∑
i=1

(cT
i
x)(dT

i
x) + âTx + â0 = xTQ̂x + âTx + â0 ,

â ∶= a +

p∑
i=1

(cid0i + dic0i) ,

â0 ∶= a0 +

p∑
i=1

c0id0i ,

Q̂ ∶=
1

2

p∑
i=1

(
cid

T
i
+ dic

T
i

)
.

xTQ̂x =

n∑
i=1

𝜆i(u
T
i
x)2.

Λ+ =
{
i = 1,… , n ∶ 𝜆i > 0

}
, Λ− =

{
i = 1,… , n ∶ 𝜆i < 0

}

vi =
√� �i � ⋅ ui ∀i = 1,… , n ,

xTQ̂x =
∑
i∈Λ+

(vT
i
x)2 −

∑
i∈Λ−

(vT
i
x)2.
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The following branching variables are suggested by (3) for all i ∈ Λ−:

so that

Moreover, for all �L ∶= (�L
i
)i∈Λ− , �U ∶= (�U

i
)i∈Λ− ∈ ℝ

|Λ−| such that �L≤�U , the fol-
lowing rectangle is introduced:

Let � ∶= (�
i
)i∈Λ− and � ∶= (�i)i∈Λ− . With respect to branching variables � , rectan-

gle 
[
�,�

]
 is the smallest partition Π0 containing S. The following underestimation 

function can then be stated by means of (3).

Theorem  1 Let f ∶ ℝ
n
→ ℝ be expressed as in (3). Then, the following convex 

quadratic function is an underestimation function for f over S ∩
[
�L,�U

]
:

with 1
4

∑
i∈Λ−(�

U
i
− �L

i
)2 the maximum error for Er0(x) obtained at vT

i
x =

�L
i
+�U

i

2
 , 

i ∈ Λ−.

Proof Being �L
i
≤ vT

i
x ≤ �U

i
 for all x ∈ S ∩

[
�L,�U

]
 and for all i ∈ Λ− , from 

Lemma 3 it yields:

Hence, Φ0(x) follows trivially from (3). Moreover, it results:

  ◻

(3)f (x) =

(∑
i∈Λ+

(vT
i
x)2 + âTx + â0

)
−

(∑
i∈Λ−

(vT
i
x)2

)

�i = vT
i
x

�
i
= min

x∈S
vT
i
x and �i = max

x∈S
vT
i
x.

[
�L,�U

]
=
{
x ∈ ℝ

n ∶ �L
i
≤ vT

i
x ≤ �U

i
∀i ∈ Λ−

}
.

(u0)

⎧
⎪⎪⎨⎪⎪⎩

Φ0(x) =

��
i∈Λ+

(vT
i
x)2 + â

T
x + â0

�
+

�
i∈Λ−

�
𝜇L

i
𝜇U

i
− (𝜇L

i
+ 𝜇U

i
)vT

i
x
�
,

Er0(x) =
�
i∈Λ−

�
v
T

i
x − 𝜇L

i

��
𝜇U

i
− v

T

i
x
�
,

−(vT
i
x)2 ≥ −(�L

i
+ �U

i
)vT

i
x + �L

i
�U
i

Er0(x) =f (x) − Φ0(x)

=
∑
i∈Λ−

(
−(vT

i
x)2 + (�L

i
+ �U

i
)vT

i
x − �L

i
�U
i

)

=
∑
i∈Λ−

(
vT
i
x − �L

i

)(
�U
i
− vT

i
x
)



1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 11 of 32    38 

2.5  Splitting process

Assume to be in the iterative process and that the partition having the small-
est lower bound LB have been extracted from PQ by means of the command 
“ [Π, opt] ∶= PQextract() ”. It is now necessary to choose a branching variable in 
order to split the partition Π . Assume, for example, that underestimation (u0) is used 
(results are analogous for all underestimations functions which will be proposed in 
the next Section), so that Π =

[
�L,�U

]
 and:

with maximum error value 1
4

∑
i∈Λ−(�

U
i
− �L

i
)2 obtained at vT

i
x =

�L
i
+�U

i

2
 , i ∈ Λ− . Two 

criteria are generally used to determine the branching variable:

• The largest interval 
[
�L
i
,�U

i

]
 : this criterion is aimed to reduce as much as pos-

sible the error maximum value; on the other hand, it does not use the feasible 
point opt = argminx∈S∩Π Φ0(x)

 which may suggest where to look for the opti-
mal solution of the problem.

• The largest error addend 
(
vT
i
x − �L

i

)(
�U
i
− vT

i
x
)
 : this criterion is aimed to 

reduce as much as possible the error value at the point opt, hence tightening 
the underestimation as much as possible close to opt.

Once the branching variable is chosen, the question is how to split the cor-
responding interval 

[
�L
i
,�U

i

]
 , that is, how to determine the value �∗

i
 so that [

�L
i
,�U

i

]
=
[
�L
i
,�∗

i

]
∪
[
�∗
i
,�U

i

]
 . In this light, possible choices are:

• The medium point of the interval 
[
�L
i
,�U

i

]
 : the use of �M

i
=

�L
i
+�U

i

2
 is aimed to 

reduce as much as possible the error maximum value, again the feasible point 
opt is not used;

• The value �opt

i
= vT

i
opt : in this case the optimal solution of the underestima-

tion is used, but this value may be close to the boundaries �L
i
 and �U

i
 thus 

highly increasing the number of iterations needed to solve the problem and 
hence increasing the convergence time itself;

• A linear combination of �M
i

 and �opt

i
 : given a value � ∈ [0, 1] the point 

�∗
i
= ��

opt

i
+ (1 − �)�M

i
 could be used to take into account of both the error 

maximum value and the solution opt.

These criteria can be summarized and linked as follows:

• Blindly reduce as much as possible the error maximum value: choose the 
largest interval 

[
�L
i
,�U

i

]
 and split it in the middle with �M

i
 (see, e.g., Cambini 

and Sodini 2005; Shen et al. 2020);

Er0(x) =
∑
i∈Λ−

(
vT
i
x − �L

i

)(
�U
i
− vT

i
x
)
,
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• Use the “infos” given by opt: choose the largest error addend (
vT
i
x − �L

i

)(
�U
i
− vT

i
x
)
 and split it with respect to �∗

i
= ��

opt

i
+ (1 − �)�M

i
 (see, 

e.g., Cambini and Salvi 2009, 2010; Fampa et al. 2017).

The recent literature shows that the latter opportunity is the most perform-
ing one, and is the one that will be used in the computational test described in 
Sect. 4. Finally, notice that, by means of Lemma 2, the splitting process should 
be performed only if the largest error addend is grater than a suitable tolerance 
errTol > 0.

3  Specific underestimation functions

The eigenvectors-based approach described in Sect. 2.4 actually has some draw-
backs. First of all, the eigen-decomposition of a quadratic function is an heavy 
task from both a computational and a numerical point of view. Moreover, such 
an eigen-decomposition does not take into account of the particular structure of 
linear multiplicative functions. In this very light, in the recent literature various 
papers aimed to approach linear multiplicative problems without the use of eigen-
decompositions (see, e.g., Shen et al. 2020, 2022; Wang et al. 2012; Zhou et al. 
2015).

The aim of this section is to state some underestimation functions for f not 
using the eigenvectors of matrix Q̂ , in order to efficiently solve Problem P with-
out the computational and numerical troubles of eigenvectors computing.

3.1  Linear underestimation functions

In the recent literature (see Shen et al. 2020, for example) some linear underesti-
mation functions have been used to solve linear multiplicative problems by means 
of a branch-and-bound approach. Usually these underestimations are not tight, for 
this very reason in this subsection some further linear underestimations will be 
studied. Recalling that:

the following 2p branching variables can be considered:

so that

f (x) =

p∑
i=1

(cT
i
x)(dT

i
x) + âTx + â0,

�i = cT
i
x and �i = dT

i
x , i = 1,… , p

�
i
= min

x∈S
cT
i
x , �i = max

x∈S
cT
i
x and �

i
= min

x∈S
dT
i
x , �i = max

x∈S
dT
i
x .
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Moreover, for all �L ∶= (�L
i
)i=1,…,p , �U ∶= (�U

i
)i=1,…,p ∈ ℝ

p such that �L≤�U and for 
all �L ∶= (�L

i
)i=1,…,p , �U ∶= (�U

i
)i=1,…,p ∈ ℝ

p such that �L≤�U , the following rectan-
gles are introduced:

Let � ∶= (�
i
)i=1,…,p , � ∶= (�i)i=1,…,p , � ∶= (�

i
)i=1,…,p , and � ∶= (�i)i=1,…,p . With 

respect to branching variables � and � , rectangle 
[
�, �

]
∩
[
�, �

]
 is the smallest parti-

tion Π0 containing S.
The following linear underestimation functions can then be stated.

Theorem 2 Let f ∶ ℝ
n
→ ℝ be expressed as in (2). Then, the following linear func-

tions are underestimation functions for f over S ∩
[
�L, �U

]
∩
[
�L, �U

]
:

and

with 
∑p

i=1
(�U

i
− �L

i
)(�U

i
− �L

i
) the maximum error for Er1(x) and Er2(x) obtained at 

cT
i
x = �U

i
 , dT

i
x = �U

i
 , i = 1,… , p , and cT

i
x = �L

i
 , dT

i
x = �L

i
 , i = 1,… , p , respectively.

Proof For all i = 1,… , p , 
(
cT
i
x − �L

i

)
≥ 0 , 

(
dT
i
x − �L

i

)
≥ 0 , 

(
�U
i
− cT

i
x
)
≥ 0 and (

�U
i
− dT

i
x
)
≥ 0 , yield:

Hence, the thesis follows by means of simple calculations.   ◻

Remark 3 Notice that �L
i
cT
i
x + �L

i
dT
i
x − �L

i
�L
i
 and �U

i
cT
i
x + �U

i
dT
i
x − �U

i
�U
i

 are know 
as the McCormick lower envelopes for the bilinear function (cT

i
x)(dT

i
x) (McCormick 

[
�L, �U

]
=
{
x ∈ ℝ

n ∶ �L
i
≤ cT

i
x ≤ �U

i
∀i = 1,… , p

}
;[

�L, �U
]
=
{
x ∈ ℝ

n ∶ �L
i
≤ dT

i
x ≤ �U

i
∀i = 1,… , p

}
.

(u1)

⎧
⎪⎪⎨⎪⎪⎩

Φ1(x) =
�
âTx + â0

�
+

p�
i=1

�
𝛿L
i
cT
i
x + 𝜉L

i
dT
i
x − 𝜉L

i
𝛿L
i

�
,

Er1(x) =

p�
i=1

�
cT
i
x − 𝜉L

i

��
dT
i
x − 𝛿L

i

�
,

(u2)

⎧
⎪⎪⎨⎪⎪⎩

Φ2(x) =
�
âTx + â0

�
+

p�
i=1

�
𝛿U
i
cT
i
x + 𝜉U

i
dT
i
x − 𝜉U

i
𝛿U
i

�
,

Er2(x) =

p�
i=1

�
𝜉U
i
− cT

i
x
��
𝛿U
i
− dT

i
x
�
,

0 ≤
(
cT
i
x − �L

i

)(
dT
i
x − �L

i

)
= (cT

i
x)(dT

i
x) − �L

i
cT
i
x − �L

i
dT
i
x + �L

i
�L
i

⇒ (cT
i
x)(dT

i
x) ≥ �L

i
cT
i
x + �L

i
dT
i
x − �L

i
�L
i
,

0 ≤
(
�U
i
− cT

i
x
)(
�U
i
− dT

i
x
)
= (cT

i
x)(dT

i
x) − �U

i
cT
i
x − �U

i
dT
i
x + �U

i
�U
i

⇒ (cT
i
x)(dT

i
x) ≥ �U

i
cT
i
x + �U

i
dT
i
x − �U

i
�U
i
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1976). Notice also that in the case �L ≥ 0 and �L ≥ 0 , i = 1,… , p , linear underesti-
mations of the kind 

∑p

i=1
(cT

i
x)𝛿L

i
+ âTx + â0 or 

∑p

i=1
(dT

i
x)𝜉L

i
+ âTx + â0 have been 

used, and that these are far less tight than the one proposed in this subsection.

3.2  Quadratic underestimation functions

The aim of this subsection is to state underestimation functions of f, tighter than 
the linear ones, by properly rewriting f in D.C. form.

Theorem 3 Let f ∶ ℝ
n
→ ℝ be defined as in (2). Then, f can be rewritten in the fol-

lowing D.C. forms: 

 (i) f (x) =

(
1

2

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−

(
1

2

p∑
i=1

(
(cT

i
x)2 + (dT

i
x)2

))
;

 (ii) f (x) =

(
1

4

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−

(
1

4

p∑
i=1

(cT
i
x − dT

i
x)2

)
;

 (iii) f (x) =

(
1

2

p∑
i=1

(
(cT

i
x)2 + (dT

i
x)2

)
+ âTx + â0

)
−

(
1

2

p∑
i=1

(cT
i
x − dT

i
x)2

)
.

Proof Firstly, one get:

Then, by opportunely replacing each of them in (2), the thesis follows.   ◻

The following underestimation function can be stated by means of (i) of Theo-
rem 3 and the 2p branching variables described in the previous subsection.

Theorem  4 Let f ∶ ℝ
n
→ ℝ be expressed as in (i) of Theorem  3. Then, the fol-

lowing convex quadratic function is an underestimation function for f over 
S ∩

[
�L, �U

]
∩
[
�L, �U

]
:

⊳ (cT
i
x)(dT

i
x) =

1

2

(
2(cT

i
x)(dT

i
x) + (cT

i
x)2 + (dT

i
x)2 − (cT

i
x)2 − (dT

i
x)2

)

=
1

2

(
(cT

i
x + dT

i
x)2 − (cT

i
x)2 − (dT

i
x)2

)
;

⊳ (cT
i
x)(dT

i
x) =

1

4

(
2(cT

i
x)(dT

i
x) + (cT

i
x)2 + (dT

i
x)2 + 2(cT

i
x)(dT

i
x) − (cT

i
x)2 − (dT

i
x)2

)

=
1

4

(
(cT

i
x + dT

i
x)2 − (cT

i
x − dT

i
x)2

)
;

⊳ (cT
i
x)(dT

i
x) =

1

2

(
(cT

i
x)2 + (dT

i
x)2 + 2(cT

i
x)(dT

i
x) − (cT

i
x)2 − (dT

i
x)2

)

=
1

2

(
(cT

i
x)2 + (dT

i
x)2 − (cT

i
x − dT

i
x)2

)
.
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with 1
8

∑p

i=1
(�U

i
− �L

i
)2 +

1

8

∑p

i=1
(�U

i
− �L

i
)2 the maximum error for Er3(x) obtained at 

cT
i
x =

�L
i
+�U

i

2
 and dT

i
x =

�L
i
+�U

i

2
 , i = 1,… , p.

Proof Being �L
i
≤ cT

i
x ≤ �U

i
 and �L

i
≤ dT

i
x ≤ �U

i
 for all x ∈ S ∩

[
�L, �U

]
∩
[
�L, �U

]
 

and for all i = 1,… , p , from Lemma 3 it yields:

Hence, Φ3(x) follows trivially from (i) of Theorem 3. Moreover, it results:

  ◻

In similar way, for all i = 1,… , p , the following branching variables are sug-
gested by (ii) and (iii) of Theorem 3:

so that

Moreover, for all �L ∶= (�L
i
)i=1,…,p , �L ∶= (�L

i
)i=1,…,p ∈ ℝ

p such that �L≤�U , the 
following rectangle is introduced:

(u3)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φ3(x) =

�
1

2

p�
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

�

+
1

2

p∑
i=1

�
𝜉L
i
𝜉U
i
+ 𝛿L

i
𝛿U
i
− (𝜉L

i
+ 𝜉U

i
)cT

i
x − (𝛿L

i
+ 𝛿U

i
)dT

i
x
�
,

Er3(x) =
1

2

p�
i=1

�
(cT

i
x − 𝜉L

i
)(𝜉U

i
− cT

i
x) + (dT

i
x − 𝛿L

i
)(𝛿U

i
− dT

i
x)
�
,

−(cT
i
x)2 − (dT

i
x)2 ≥ −(�L

i
+ �U

i
)cT

i
x + �L

i
�U
i
− (�L

i
+ dU

i
)dT

i
x + �L

i
�U
i

Er3(x) =f (x) − Φ3(x)

=
1

2

p∑
i=1

(
2(cT

i
x)(dT

i
x) − (cT

i
x + dT

i
x)2 + (�L

i
+ �U

i
)cT

i
x

+(�L
i
+ �U

i
)dT

i
x − (�L

i
�U
i
+ �L

i
�U
i
)
)

=
1

2

p∑
i=1

(
−(cT

i
x)2 − (dT

i
x)2 + (�L

i
+ �U

i
)cT

i
x

+(�L
i
+ �U

i
)dT

i
x − (�L

i
�U
i
+ �L

i
�U
i
)
)

=
1

2

p∑
i=1

(
(cT

i
x − �L

i
)(�U

i
− cT

i
x) + (dT

i
x − �L

i
)(�U

i
− dT

i
x)
)

�i = (ci − di)
Tx

�
i
= min

x∈S
(ci − di)

Tx and �i = max
x∈S

(ci − di)
Tx

[
�L, �U

]
=
{
x ∈ ℝ

n ∶ �L
i
≤ (ci − di)

Tx ≤ �U
i

∀i = 1,… , p
}
.
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Let � ∶= (�
i
)i=1,…,p and � ∶= (�i)i=1,…,p . With respect to branching variables � , 

rectangle 
[
�, �

]
 is the smallest partition Π0 containing S. In this light, the following 

underestimation functions can be stated by means of (ii) and (iii) of Theorem 3.

Theorem  5 Let f ∶ ℝ
n
→ ℝ be expressed as in (ii) and i(ii) of Theorem  3. Then, 

the following convex quadratic functions are underestimation functions for f over 
S ∩

[
�L, �U

]
 , respectively:

and

with 1

16

∑p

i=1
(�U

i
− �L

i
)2 and 1

8

∑p

i=1
(�U

i
− �L

i
)2 the maximum error for Er4(x) and 

Er5(x) , respectively, obtained at (cT
i
x − dT

i
x) =

�L
i
+�U

i

2
 , i = 1,… , p.

Proof Being �L
i
≤ (cT

i
x − dT

i
x) ≤ �U

i
 for all x ∈ S ∩

[
�L, �U

]
 and for all i = 1,… , p , 

from Lemma 3 it yields:

Hence, Φ4(x) and Φ5(x) follow, respectively, from (ii) and (iii) of Theorem 3. Moreo-
ver, it results:

(u4)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φ4(x) =

�
1

4

p�
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

�

+
1

4

p∑
i=1

�
𝜎L
i
𝜎U
i
− (𝜎L

i
+ 𝜎U

i
)(cT

i
x − dT

i
x)
�
,

Er4(x) =
1

4

p�
i=1

�
(cT

i
x − dT

i
x) − 𝜎L

i

��
𝜎U
i
− (cT

i
x − dT

i
x)
�
,

(u5)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φ5(x) =

�
1

2

p�
i=1

�
(cT

i
x)2 + (dT

i
x)2

�
+ âTx + â0

�

+
1

2

p∑
i=1

�
𝜎L
i
𝜎U
i
− (𝜎L

i
+ 𝜎U

i
)(cT

i
x − dT

i
x)
�
,

Er5(x) =
1

2

p�
i=1

�
(cT

i
x − dT

i
x) − 𝜎L

i

��
𝜎U
i
− (cT

i
x − dT

i
x)
�
,

−(cT
i
x − dT

i
x)2 ≥ −(�L

i
+ �U

i
)(cT

i
x − dT

i
x) + �L

i
�U
i

Er4(x) =f (x) − Φ4(x)

=
1

4

p∑
i=1

(
4(cT

i
x)(dT

i
x) − (cT

i
x + dT

i
x)2 + (�L

i
+ �U

i
)(cT

i
x − dT

i
x) − �L

i
�U
i

)

=
1

4

p∑
i=1

(
−(cT

i
x − dT

i
x)2 + (�L

i
+ �U

i
)(cT

i
x − dT

i
x) − �L

i
�U
i

)

=
1

4

p∑
i=1

(
(cT

i
x − dT

i
x) − �L

i

)(
�U
i
− (cT

i
x − dT

i
x)
)
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and

  ◻

Remark 4 Notice that (u4) dominates (u5) since Er5(x) = 2 ⋅ Er4(x) . For this very rea-
son, (u5) has been given just for the sake of completeness and will no more be used 
in the rest of the paper.

3.3  Further hybrid underestimation functions

For the sake of completeness, some more underestimation functions of f will be studied 
by applying the eigendecomposition approach to the D.C. forms provided by (i) and (ii) 
of Theorem 3. Specifically speaking, each of them can be rewritten as follows: 

 (i) f (x) =

(
1

2

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−
(
xTQ1x

)
,

 (ii) f (x) =

(
1

4

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−
(
xTQ2x

)
,

with Q1 =
1

2

∑p

i=1
(cic

T
i
+ did

T
i
) and Q2 =

1

4

∑p

i=1
(ci − di)(ci − di)

T symmetric posi-
tive semidefinite matrices. Hence, there exist two orthonormal matrices Ũ, Û ∈ ℝ

n×n 
and two diagonal matrices D̃, D̂ ∈ ℝ

n×n such that Q1 = ŨD̃ŨT and Q2 = ÛD̂ÛT . The 
diagonal elements of D̃ are the nonnegative eigenvalues �̃�1,… , �̃�n ∈ ℝ of Q1 , while the 
orthonormal columns ũ1,… , ũn ∈ ℝ

n of Ũ are the corresponding eigenvectors of Q1 ; in 
similar way, the diagonal elements of D̂ are the nonnegative eigenvalues �̂�1,… , �̂�n ∈ ℝ 
of Q2 , while the orthonormal columns û1,… , ûn ∈ ℝ

n of Û are the corresponding 
eigenvectors of Q2 . As a consequence, since Q1 and Q2 have no negative eigenvalues, 
it results:

Er5(x) = f (x) − Φ5(x)

=
1

2

p∑
i=1

(
2(cT

i
x)(dT

i
x) − (cT

i
x)2 − (dT

i
x)2 + (�L

i
+ �U

i
)(cT

i
x − dT

i
x) − �L

i
�U
i

)

=
1

2

p∑
i=1

(
−(cT

i
x − dT

i
x)2 + (�L

i
+ �U

i
)(cT

i
x − dT

i
x) − �L

i
�U
i

)

=
1

2

p∑
i=1

(
(cT

i
x − dT

i
x) − �L

i

)(
�U
i
− (cT

i
x − dT

i
x)
)

xTQ1x =

n∑
i=1

�̃�i(ũ
T
i
x)2 =

∑
i∈Θ+

(ṽT
i
x)2 and xTQ2x =

n∑
i=1

�̂�i(û
T
i
x)2 =

∑
i∈Γ+

(v̂T
i
x)2
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with Θ+ =
{
i = 1,… , n ∶ �̃�i > 0

}
 , Γ+ =

{
i = 1,… , n ∶ �̂�i > 0

}
 , ṽi =

√
�̃�i ⋅ ũi 

for all i ∈ Θ+ , and v̂i =
√

�̂�i ⋅ ûi for all ∀i ∈ Γ+ . Hence, the following further D.C. 
forms hold:

In this light, the following branching variables are suggested by (4) and (5), 
respectively:

so that

For the sake of convenience, let � ∶= (�
i
)i∈Θ+ , � ∶= (�i)i∈Θ+ , � ∶= (�

i
)i∈Γ+ , and 

� ∶= (� i)i∈Γ+ . Moreover, for all �L ∶= (�L
i
)i∈Θ+ and �U ∶= (�U

i
)i∈Θ+ such that �L≤�U 

and for all �L ∶= (�L
i
)i∈Γ+ and �U ∶= (�U

i
)i∈Γ+ such that �L≤�U , the following rectan-

gles are introduced:

Rectangles 
[
�, �

]
 and 

[
� , �

]
 result to be the smallest partitions Π0 containing S with 

respect to branching variables � and � , respectively.

Theorem  6 Let f ∶ ℝ
n
→ ℝ be expressed as in (i) and (ii) of Theorem  3. Then, 

the following convex quadratic functions are underestimation functions for f over 
S ∩

[
�L, �U

]
 and S ∩

[
�L, �U

]
 , respectively:

and

(4)f (x) =

(
1

2

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−

(∑
i∈Θ+

(ṽT
i
x)2

)
;

(5)f (x) =

(
1

4

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−

(∑
i∈Γ+

(v̂T
i
x)2

)
.

𝜃i = ṽT
i
x , i ∈ Θ+ and 𝛾i = v̂T

i
x , i ∈ Γ+

𝜃
i
= min

x∈S
ṽT
i
x , 𝜃i = max

x∈S
ṽT
i
x and 𝛾

i
= min

x∈S
v̂T
i
x , 𝛾 i = max

x∈S
v̂T
i
x

[
𝜃L, 𝜃U

]
=
{
x ∈ ℝ

n ∶ 𝜃L
i
≤ ṽT

i
x ≤ 𝜃U
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with 1
4

∑
i∈Θ+(�

U
i
− �L

i
)2 and 1

4

∑
i∈Γ+(�

U
i
− �L

i
)2 the maximum errors for Er6(x) and 

Er7(x) , respectively, obtained at ṽT
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i

2
 , i ∈ Θ+ , and v̂T

i
x =
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i
+𝛾U

i

2
 , i ∈ Γ+.

Proof The thesis follows in the same lines of Theorems 4 and 5.   ◻

3.4  A particular case

In many applicative problems (see the forthcoming Sect. 5), the linear multiplicative 
objective function f ∶ ℝ

n
→ ℝ has the following particular structure:

where z ∈ ℝ
m , � ∶= (�i)i=1,…,p ∈ ℝ

p , g ∶= (gi)i=1,…,p ∈ ℝ
p , q(z, �, g) a linear or 

a convex quadratic term, and n ∶= m + 2p . In this light, it is worth studying the 
behavior of the underestimation functions proposed so far in the particular case of 
objective functions of type (6).

Theorem 7 Let f ∶ ℝ
n
→ ℝ be expressed as in (6). Then, the following underesti-

mation functions for f are stated: 

 (i) for � ∈ [�L, �U] and g ∈ [gL, gU] , it results 

 and Φ6(z, �, g) = Φ3(z, �, g);
 (ii) for (� − g) ∈ [�L, �U] , it results 
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 and Φ0(z, �, g) = Φ7(z, �, g) = Φ4(z, �, g).

Proof Firstly, from Theorem 3, it results: 

 Hence, the introduced Φ1 , Φ2 , Φ3 and Φ4 are underestimation functions for f due to 
Theorems 3, 4 and 5. As regards to Φ0 notice that:

In particular, 
[
0 1

1 0

]
 has eigenvalues � = 1 and � = −1 with corresponding 

eigenvectors (1, 1)T and (1,−1)T , respectively; hence, 
(
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T
)2

= (�i − gi)
2 . 

Instead, with respect to Φ6 , notice that:
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Remark 5 It is worth to underlay that (ii) of Theorem 7 results to be of great interest 
in the light of the computational results that will be presented in the next Section.

4  A computational experience

The solution method described and discussed in the previous sections has been 
implemented in a macOS 12.5.1 environment with an M1 Pro 10-core processor, 
MATLAB 2022a for coding and Gurobi 9.5.2 as solver for LP and QP problems. In 
this section, the results of some computational tests are presented, where the perfor-
mances are compared with respect to the various underestimation functions previ-
ously studied. In this light, various instances have been randomly generated by using 
the “randi()” MATLAB function (integer numbers generated with uniform distribu-
tion). The average times spent to solve the instances (obtained with the “tic” and 
“toc” MATLAB commands), as well as the average number of iterations in proce-
dure “Solve()” needed to solve them, are given as results of the computational tests. 
The used tolerance parameters are relTol = 2−35 and errTol = 2−20 . For the sake of 
simplicity, in the instances generation we fixed the values a0 = 0 and c0i, d0i = 0 
for all i ∈ 1,… , p , we considered no equality constraints Aeqx = beq and a number 
of inequality constraints m = 2n . Moreover, the two following cases are taken into 
account in the instances generation:

• A “general” case, where vectors a,  , ci and di have been randomly generated 
with components in the interval [−4, 4] , vectors lb and ub have been generated 
with components in the interval [−10, 10] , matrix Ain has been generated with 
components in the interval [−10, 10] , bin has been generated in order to guarantee 
a feasible region different from the box [lb, ub] and nonempty;

• A “nonnegative” case, where vectors ci and di have been randomly generated 
with components in the interval [0, 4], vector a has been generated with com-
ponents in the interval [−4, 4] , vectors lb and ub have been generated with com-
ponents in the interval [0, 15], matrix Ain has been generated with components 
in the interval [−10, 10] , bin has been generated in order to guarantee a feasible 
region different from the box [lb, ub] and nonempty.

Remark 6 The “nonnegative” case is aimed to study the behavior of the underes-
timation functions when both variables and branching variables are nonnegative, 
just like sometimes assumed in the literature (see, e.g., Zhou et al. 2015; Shen et al. 
2020) and thus covering as a particular case the applicative problems described in 
Sect. 4.
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4.1  A first comparison of all the underestimations

First of all, it is worth comparing all the introduced underestimation functions. 
The standard value � = 0.5 has been assumed for splitting all the underestimations. 
Starting from instances having n = 10 and p = 4 , the behaviors with p increased to 
p = 6 and with n increased to n = 20 are considered too. Moreover, both the “gen-
eral” and the “nonnegative” cases are taken into account. The average times and 
average iterations are given as results of this first computational test and are sum-
marized in the following tables. Six groups of instances (depending on n, p, and 
“general”/“nonnegative” cases) and 100 instances for each group are considered, 
with a grand total of 4200 problems solved.

The results provided in Tables 1 and 2 point out that:

• In the “general” case the linear underestimation functions provide very bad tight-
ness and hence very bad performance, while in the “nonnegative” case their per-
formance has the same order of magnitude of the other underestimations;

• Among the quadratic underestimation functions, u4 is always much better than 
u3;

• Among the hybrid underestimation functions, u7 is always much better than u6 
(this follows being u6 derived from u3 and being u7 derived from u4);

Table 1  Average number of iterations

General Nonneg

n = 10 p = 4 n = 10 p = 6 n = 20 p = 4 n = 10 p = 4 n = 10 p = 6 n = 20 p = 4

Eigen u0 84.3 147.8 120.0 39.2 47.6 43.9
Lin u1 2665.4 10998.0 8540.8 74.9 125.0 98.7

u2 2659.6 10838.0 8577.0 95.3 152.7 104.4
Quad u3 1448.3 5532.7 2455.2 86.7 143.8 106.9

u4 100.8 224.7 132.6 41.4 66.1 44.3
Hybrid u6 786.9 1656.3 2100.0 92.0 135.6 120.9

u7 95.9 206.0 132.9 41.2 62.9 43.8

Table 2  Average elapsed times (secs)

General Nonneg

n = 10 p = 4 n = 10 p = 6 n = 20 p = 4 n = 10 p = 4 n = 10 p = 6 n = 20 p = 4

Eigen u0 0.631 1.155 1.158 0.300 0.359 0.433
Lin u1 14.882 61.505 53.822 0.491 0.798 0.699

u2 14.556 59.219 51.405 0.603 0.957 0.732
Quad u3 11.926 44.801 26.117 0.800 1.451 1.194

u4 0.723 1.676 1.224 0.312 0.509 0.397
Hybrid u6 5.906 13.244 19.365 0.730 1.149 1.185

u7 0.694 1.515 1.206 0.324 0.503 0.442
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• The most performing underestimation functions are always u0 , u4 , u7;
• In the “nonnegative” case, the performance of the underestimation functions are 

always better than the “general” case: this is due to the tightness of underestima-
tion functions which results to be more effective in the “nonnegative” case than 
in the “general” one;

• Among the linear and quadratic underestimation functions, increasing the value 
of p affects the performances much more than increasing the number of variables 
n;

Table 3  Average number of iterations—“general” case—n = 25

u4 u0 u7

p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10

� = 0.0 195.9 1284.0 7056.1 176.4 1325.3 3811.7 193.3 1265.0 6463.1
� = 0.1 186.3 1247.8 6926.6 169.6 988.5 3720.7 187.4 1224.6 6415.9
� = 0.2 180.3 1200.8 6794.1 159.2 959.1 3666.5 177.6 1187.8 6338.3
� = 0.3 170.6 1178.9 6739.0 153.1 936.3 3684.3 169.9 1156.4 6347.2
� = 0.4 162.4 1147.6 6792.6 146.2 913.8 3714.3 163.0 1141.0 6441.1
� = 0.5 158.1 1132.0 6805.5 144.2 900.6 3802.1 157.6 1128.9 6600.1
� = 0.6 152.0 1127.9 7009.1 136.4 900.9 3978.9 151.6 1138.4 6905.1
� = 0.7 149.2 1143.3 7439.6 132.3 918.0 4291.4 149.3 1154.8 7439.3
� = 0.8 145.6 1191.2 8231.2 130.0 952.2 4832.1 146.5 1205.2 8329.9
� = 0.9 147.3 1311.6 10015.0 129.8 1067.0 5958.8 146.8 1315.1 10129.0
� = 1.0 172.7 2135.8 22489.0 155.0 1809.4 14413.0 174.47 2155.2 21709.0

Table 4  Average elapsed times (secs)—“general” case—n = 25

u4 u0 u7

p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10

� = 0.0 1.891 13.000 76.716 1.789 19.810 42.480 1.944 13.064 72.129
� = 0.1 1.774 12.363 73.816 1.711 10.197 40.752 1.861 12.534 70.455
� = 0.2 1.694 11.792 71.448 1.586 9.774 39.573 1.767 11.990 68.646
� = 0.3 1.600 11.495 70.162 1.547 9.440 39.193 1.683 11.537 67.658
� = 0.4 1.511 11.013 69.728 1.441 9.116 38.941 1.601 11.249 67.702
� = 0.5 1.465 10.756 68.820 1.420 8.864 39.232 1.533 11.014 68.282
� = 0.6 1.392 10.611 70.073 1.327 8.775 40.617 1.470 10.993 70.551
� = 0.7 1.352 10.646 73.276 1.283 8.853 43.236 1.429 11.051 74.986
� = 0.8 1.304 10.979 80.001 1.257 9.072 47.891 1.394 11.396 82.436
� = 0.9 1.306 11.976 95.771 1.238 10.066 58.283 1.383 12.330 99.103
� = 1.0 1.510 19.516 216.62 1.443 16.996 141.56 1.611 20.099 212.530
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• Performances follow the number of branching variables of the various underes-
timation functions; in this light, recall that u1 , u2 and u3 have 2p branching vari-
ables, u4 has p branching variables, while u0 , u6 and u7 have |Λ−| , |Θ+| and |Γ+| 
branching variables, respectively.

4.2  A deep comparison of u
0
 , u

4
 , u

7
—part 1

The previous subsection pointed out that the most performing underestimations 
are u0 , u4 and u7 (and recall that, in the particular case of Sect.  4, these under-
estimations coincide). The aim of this subsection is to focus on the behavior of 

Table 5  Average number of iterations—“nonnegative” case—n = 25

u4 u0 u7

p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10

� = 0.0 62.97 126.16 199.00 62.44 118.45 178.02 62.40 123.71 194.68
� = 0.1 59.59 122.47 184.76 58.08 111.75 168.91 58.39 118.66 182.34
� = 0.2 55.44 112.74 177.26 55.24 107.09 156.77 54.54 109.46 171.16
� = 0.3 52.71 107.44 167.05 51.96 99.74 146.06 51.43 103.20 159.63
� = 0.4 49.04 101.24 161.72 48.67 95.01 141.23 48.17 97.67 152.05
� = 0.5 46.01 96.71 154.76 45.4 89.56 136.96 45.01 91.14 145.47
� = 0.6 42.78 91.51 149.99 42.74 85.68 130.78 42.35 85.33 137.41
� = 0.7 39.86 86.94 152.11 39.89 82.71 129.86 39.14 81.44 135.08
� = 0.8 37.15 86.55 166.07 37.29 82.65 136.89 36.03 78.85 138.32
� = 0.9 35.12 96.53 246.28 35.26 92.62 175.11 34.15 83.54 170.98
� = 1.0 27.09 205.61 1425.20 26.24 191.41 1364.00 26.77 207.37 1461.30

Table 6  Average elapsed times (secs)—“nonnegative” case—n = 25

u4 u0 u7

p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10

� = 0.0 0.630 1.316 2.179 0.682 1.280 1.953 0.698 1.353 2.182
� = 0.1 0.591 1.264 1.997 0.640 1.213 1.855 0.654 1.298 2.041
� = 0.2 0.551 1.171 1.905 0.609 1.166 1.717 0.616 1.204 1.915
� = 0.3 0.523 1.107 1.789 0.576 1.088 1.603 0.583 1.140 1.783
� = 0.4 0.490 1.048 1.731 0.546 1.038 1.553 0.554 1.082 1.706
� = 0.5 0.462 0.998 1.649 0.515 0.982 1.506 0.522 1.009 1.629
� = 0.6 0.427 0.943 1.600 0.487 0.941 1.440 0.496 0.949 1.540
� = 0.7 0.400 0.896 1.614 0.459 0.908 1.430 0.464 0.910 1.513
� = 0.8 0.372 0.889 1.749 0.433 0.903 1.502 0.432 0.880 1.542
� = 0.9 0.352 0.981 2.561 0.413 0.999 1.893 0.415 0.924 1.873
� = 1.0 0.274 1.988 14.288 0.324 1.938 13.916 0.341 2.082 14.727
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these underestimations with respect to the parameter � used to split the partitions. 
Assuming a number of variables n = 25 , instances for p = 4 , p = 7 and p = 10 
are considered in both the “general” and the “nonnegative” cases. Values � from 
0 to 1 are tested. The average times and average iterations are given as results 
of this second computational test and are summarized in the following tables. 
Six groups of instances (depending on p, and “general”/“nonnegative” cases) and 
100 instances for each group are considered, with a grand total of 19800 prob-
lems solved. Numbers in bold emphasize the best results (lower values) in terms 
of iterations or computational time. Notice that, at the best of our knowledge, 
no detailed studies have been published regarding to the impact of the splitting 
parameter � in the behavior of the branch-and-bound method (for example, just 
� = 0.25 is used in Gerard et al. (2017) and just � = 0.8 is considered in Fampa 
et al. (2017)). Taking into account the results in Tables 3, 4, 5 and 6, it is worth 
noticing that:

• underestimation functions u4 and u7 have similar performances when p < n ; in 
this light, notice that u4 can be easily obtained while u7 needs some eigenvec-
tors to be computed; take into account also that in the case p > n underestima-
tion u7 has less branching variables than u4 and hence is more performing;

• u0 has the best performances, but needs some eigenvectors to be computed;
• the use of � = 1.0 should be avoided since provides bad performances;
• the greater is the value of p, the smaller is the value of � providing the best per-

formance; in this light, the parameters suggested in Fampa et al. (2017), Gerard 
et al. (2017) seem no useful;

• performances in the “nonnegative” case are much better than the ones in the 
“general” case (underestimations’ tightness results better in the “nonnegative” 
case than in the “general” one);

Table 7  Average number of iterations—“general” case—p = 10

u4 u0 u7

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

� = 0.0 819.8 1590.0 4966.4 39.0 163.8 1928.6 173.7 1009.6 4295.3
� = 0.1 763.6 1530.7 4851.3 35.9 155.9 1879.4 168.2 976.4 4259.1
� = 0.2 736.9 1466.3 4788.1 34.3 147.2 1832.6 165.2 933.6 4177.0
� = 0.3 723.6 1429.4 4722.3 31.8 141.5 1800.5 157.8 924.0 4153.3
� = 0.4 696.6 1420.4 4716.0 29.8 134.5 1776.0 145.2 892.6 4217.7
� = 0.5 687.4 1402.0 4742.1 28.0 128.8 1795.4 140.4 884.8 4319.0
� = 0.6 595.0 1419.9 4845.7 25.9 122.9 1849.4 132.0 883.2 4492.7
� = 0.7 677.1 1498.0 5083.6 24.2 119.7 1960.3 127.0 887.5 4831.2
� = 0.8 700.0 1607.1 5585.9 22.1 114.4 2172.7 119.0 947.5 5458.7
� = 0.9 776.0 1935.7 6859.3 19.8 114.7 2694.9 122.6 1134.4 6776.5
� = 1.0 5006.6 7799.6 17268.0 13.8 168.3 8285.1 186.8 5147.8 16163.0
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• performances decrease exponentially with respect to the number of branching 
variables (and, hence, with respect to p);

• as regards the particular class of problems described in Sect. 4, in which u0 , u4 
and u7 coincide, the best choice is to use u4 which needs no eigendecompositions.

4.3  A deep comparison of u
0
 , u

4
 , u

7
—part 2

The aim of this subsection is to focus on the behavior of underestimations u0 , u4 
and u7 with respect to the number of variables n. Assuming a parameter p = 10 , 
instances for n = 5 , n = 10 and n = 20 are considered in both the “general” and 

Table 8  Average elapsed times (secs)—“general” case—p = 10

u4 u0 u7

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

� = 0.0 7.921 15.244 55.109 0.306 1.379 21.819 1.429 9.686 48.158
� = 0.1 7.012 14.427 53.098 0.284 1.312 21.200 1.360 9.314 47.639
� = 0.2 6.506 13.763 52.290 0.267 1.234 20.556 1.276 8.796 46.289
� = 0.3 6.216 13.185 50.897 0.242 1.175 19.921 1.212 8.614 45.299
� = 0.4 5.779 12.906 50.196 0.226 1.105 19.336 1.093 8.187 45.416
� = 0.5 5.552 12.487 49.731 0.211 1.045 19.185 1.033 8.012 45.796
� = 0.6 4.654 12.430 50.110 0.197 0.989 19.419 0.956 7.814 46.850
� = 0.7 5.148 12.780 51.611 0.182 0.950 20.220 0.908 7.698 49.561
� = 0.8 5.150 13.460 55.645 0.168 0.894 22.051 0.842 8.047 55.044
� = 0.9 5.539 15.880 67.482 0.150 0.884 26.864 0.843 9.329 67.126
� = 1.0 31.390 60.871 167.870 0.103 1.222 80.116 1.161 39.250 154.790

Table 9  Average number of iterations—“nonnegative” case—p = 10

u4 u0 u7

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

� = 0.0 149.0 170.5 190.6 29.0 66.9 156.4 67.7 153.7 177.8
� = 0.1 136.5 160.3 179.6 26.9 63.1 148.1 63.3 143.3 166.6
� = 0.2 128.5 151.2 168.8 25.3 58.8 138.3 59.3 133.8 156.4
� = 0.3 118.3 144.3 158.9 23.7 54.8 131.4 54.9 124.6 145.9
� = 0.4 110.7 136.9 153.1 22.0 51.1 124.2 51.4 116.8 139.5
� = 0.5 102.4 127.1 147.8 20.2 47.8 116.6 47.7 109.3 131.1
� = 0.6 95.4 120.3 141.5 18.6 43.8 109.8 43.6 100.8 124.6
� = 0.7 87.1 113.4 140.4 17.0 40.2 105.9 39.7 93.2 118.2
� = 0.8 79.7 109.8 147.9 14.9 36.2 104.6 35.6 85.2 116.9
� = 0.9 73.9 117.6 198.7 12.6 32.2 117.4 30.4 79.4 135.8
� = 1.0 841.3 1177.7 1327.5 4.0 31.9 1201.2 30.2 1083.7 1346.6
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the “nonnegative” cases. Values � from 0 to 1 are tested. The average times and 
average iterations are given as results of this second computational test and are 
summarized in the following tables. Six groups of instances (depending on n, and 
“general”/“nonnegative” cases) and 100 instances for each group are considered, 
with a grand total of 19800 problems solved. Numbers in bold emphasize the best 
results (lower values) in terms of iterations or computational time. In other words, 
a detailed computational experience is provided to show the behavior of underes-
timations u0 , u4 and u7 in the cases n < p , n = p and n > p . The results provided in 
Tables 7, 8, 9 and 10 point out that:

• Underestimation u0 is the most performing one (but needs eigenvalues and eigen-
vectors to be computed);

• Comparing u4 and u7 (recall that u7 is derived from u4 by means of an eigen-
decomposition), performances are similar when n > p , u7 is better than u4 when 
n = p , while u7 outperforms u4 when n < p ; this behavior yields from the number 
of splitting variables which results to be smaller than or equal to min{n, p};

• Performances in the “nonnegative” case are much better than the ones in the 
“general” case;

• The higher is the value of n the smaller the value of � should be.

4.4  Overall comments

The main results of this computational experience are:

• u4 is the most performing underestimation function based on the structure of lin-
ear multiplicative functions thus avoiding the numerical troubles of eigenvectors 
computing;

Table 10  Average elapsed times (secs)—“nonnegative” case—p = 10

u4 u0 u7

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

� = 0.0 1.520 1.744 2.116 0.231 0.579 1.719 0.607 1.601 2.021
� = 0.1 1.369 1.624 1.968 0.213 0.546 1.622 0.567 1.483 1.892
� = 0.2 1.287 1.525 1.843 0.201 0.509 1.513 0.529 1.381 1.762
� = 0.3 1.182 1.435 1.733 0.191 0.476 1.436 0.490 1.278 1.653
� = 0.4 1.107 1.353 1.663 0.778 0.446 1.360 0.462 1.197 1.576
� = 0.5 1.008 1.254 1.604 0.165 0.419 1.280 0.424 1.112 1.482
� = 0.6 0.928 1.176 1.528 0.151 0.389 1.208 0.387 1.014 1.406
� = 0.7 0.843 1.097 1.511 0.140 0.359 1.158 0.355 0.940 1.330
� = 0.8 0.767 1.055 1.577 0.125 0.329 1.151 0.317 0.855 1.313
� = 0.9 0.692 1.102 2.095 0.109 0.295 1.276 0.272 0.783 1.506
� = 1.0 6.271 9.913 13.334 0.046 0.285 12.185 0.254 9.104 13.549
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• Linear underestimations, often used in the literature, are actually worse than 
quadratic underestimations;

• The parameter � has no value better than others, unlike the literature proposes;
• In the particular applicative case described in Sect. 4 u4 is the best choice and 

there is no need at all to use eigenvectors;
• The “nonnegative” case results to have better performances than the “general” 

one, and this deserves to be deepened on in future researches.

5  Toward applications to bilevel problems

In Sect. 3.4, a special linear multiplicative problem is considered in order to point out 
its behavior with respect to the underestimation functions previously introduced. At the 
same time, the study of this particular case is also motivated by the fact that the struc-
ture (6) is commonly present in several bilevel programming problems of leader-fol-
lower type (see, e.g., Dempe 2020 for a state of the art). Specifically speaking, leader-
follower type problems are hierarchical mathematical formulations with an upper and 
lower-level structure: the upper/leader-level is a suitable optimization problem partially 
constrained by a second (parametric) optimization problem as lower/follower-level.

In many real-world applications formulated as bilevel programming prob-
lems, the upper/leader-level objective function is defined as in (6), that is, 
f (z, �, g) =

∑p

i=1
�igi + q(z, �, g) . By using the notation introduced in Sect.  3.4, if 

� ∶= (�i)i=1,…,p ∈ ℝ
p represents the upper/leader variable (for instance, a vector of 

clearing prices), g ∶= (gi)i=1,…,p ∈ ℝ
p represents the lower/follower variable (for 

instance, a vector of certain quantities sold) and x ∶= (z, �) so that f (z, �, g) ≡ f (x, g) , 
then the standard form of the resulting optmistic bilevel programming problem is the 
following:

where

and

are the upper/leader and the lower/follower feasible sets, respectively. Under suit-
able assumptions (see, e.g., Dempe and Zemkoho 2012, 2013) and under opportune 
constraints qualification conditions (see, e.g., Aussel and Svensson 2019; Dempe 
2020), the optimistic bilevel programming problem (7) can be transformed into a 

(7)

min
x,g

f (x, g)

s.t.

{
x ∈ X

g ∈
{
g ∈ K(x) ∶ h(x, g) = ming̃∈K(x) h(x, g̃)

}
,

X ∶=
{
x ∈ ℝ

p+m ∶ �iu (x) ≤ 0 , iu = 1,… , ku
}

K(x) ∶=
{
g ∈ ℝ

p ∶ �il (x, g) ≤ 0 , il = 1,… , kl
}

∀x ∈ X
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single-level optimization problem1, that is, a Mathematical Program with Equilib-
rium Constraints (MPEC) in which the lower/follower problem is reformulated by 
using opportune Karush-Kuhn-Tucker (KKT) optimality conditions. Notice that, in 
this case, the lower-level KKT conditions result to be:

Then, the resulting KKT reformulation of the optimistic bilevel programming prob-
lem (7) is:

Remark 7 The KKT reformulation allows to transform the optimistic bilevel pro-
gramming problem (7) into a single-level program (9) at the cost of introducing the 
new variables � in the formulation of the problem. In addition, the presence of com-
plementarity constraints implies that the feasible region of the resulting problem is 
no more a polyhedron.

From a computational point of view, the linear multiplicative function f can be 
studied by using opportunely the results obtained in Sect. 3.

Moreover, the complementarity constraints of the lower/follower problem in the 
KKT reformulation merged with the upper/leader-level, can be managed in various 
ways:

• If the upper and lower level of (7) are linear multiplicative, then a classical pro-
cedure to solve bilevel programs is to consider a suitable penalization of �T�(x, g) 
that could be used to get a linear multiplicative single-level optimization problem 
(see Section 2.4.3 in Bard 1997, for example) at the cost of introducing the new 
penalty parameter in the formulation of the problem;

• An outer approximation branch-and-bound method based on a feasible region 
relaxation where some of the products �il�il (x, g) = 0 are omitted and some of the 
variables �il or �il (x, g) are fixed to zero;

• A quadratic indefinite penalty function M
∑kl

il=1
�il�il (x, g) , with M >> 0 great 

enough, to be added to the objective function (again, a branch-and-bound may 
deserve);

• Binary 0 − 1 variables and the so called big-M method (constraints �il�il (x, g) = 0 
substituted with �il ≤ �ilM and �il (x, g) ≤ (1 − �il)M , �il ∈ {0, 1} and M >> 0 

(8)
{

∇gh(x, g) + ∇g�(x, g)
T� = 0,

�≥0, −�(x, g)≥0, �T�(x, g) = 0.

(9)

min
x,g,�

f (x, g)

s.t.

{
x ∈ X

(g, �) ∈ KKT(x) ∶= {(g, �) ∶ conditions (8) are satisfied }

1 Classical requirements on the (parametric) lower/follower-level problem are the differentiability and 
convexity of h(x, ⋅) and the differentiability and linearity/convexity/generalized convexity of �

i
l

(x, ⋅) , for 
all i = 1,… , k

l
.
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great enough), a branch-and-bound approach may be needed to manage the 
binary variables.

Remark 8 Complementarity constraints can be directly managed by means of a 
branch and bound approach where various subproblems are solved. Moreover, fur-
ther approaches can be used in the case the available solvers are able to manage 
particular constraints. In this light, as �il ≥ 0 and −�il (x, g) ≥ 0 , then the following 
conditions (i)–(v) are equivalent: 

(i) �il�il (x, g) = 0;
(ii) 

(
�il + �il (x, g)

)2
=
(
�il − �il (x, g)

)2;
(iii) 

(
�il + �il (x, g)

)
=
|||�il − �il (x, g)

|||;
(iv) 

(
�il + �il (x, g)

)
= max

{
�il − �il (x, g);0

}
+max

{
�il (x, g) − �il ;0

}
;

(v) 
{
�il , �il (x, g)

}
 is a “SOS1” set of variables (Special Ordered Set of type 1, set of 

variables where at most one variable may be nonzero, all others being at 0).

As a consequence, solvers able to manage quadratic indefinite constraints, absolute 
value constraints, “max” constraints or SOS constraints could be useful too.

In the context of this class of problems, although opportune numerical 
experiments could be of great interest to provide a performance comparison with 
works on the topic available in the literature (see Kleinert and Schmidt 2021, for 
example), it is beyond the scope of this work. Anyway, future investigations will be 
in this direction in relation to the study of suitable real-world problems.

6  Conclusions

In this paper, an extended computational experience regarding linear multiplicative 
problems is provided and a unifying framework to approach such problems with a 
branch-and-bound method is fully described. In this light, several underestimation 
functions are studied and various partitioning criteria are compared. In particular, 
it has been shown that the quadratic underestimation function u4 has to be chosen 
to avoid eigenvectors-based approaches. As regards the splitting parameter � , as 
higher the number of branching variables (or the number of variables) as smaller 
the value of � should be. The proposed solution method results to be very efficient 
in the case of nonnegative variables and nonnegative branching variables. In this 
light, a particular case (useful in applications and in bilevel programming) has been 
theoretically studied in deep, pointing out also that u4 is the underestimation to be 
used. The results obtained within the proposed unifying framework provide detailed 
comparisons and improvements with respect to the current literature.
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