
Vol.:(0123456789)

Computational Management Science (2023) 20:38
https://doi.org/10.1007/s10287-023-00471-1

1 3

ORIGINAL PAPER

Solving linear multiplicative programs
via branch‑and‑bound: a computational experience

R. Cambini1 · R. Riccardi2 · D. Scopelliti2

Received: 6 November 2022 / Accepted: 10 August 2023
© The Author(s) 2023

Abstract
In this paper, linear multiplicative programs are approached with a branch-and-
bound scheme and a detailed computational study is provided. Several underes-
timation functions are analyzed and various partitioning criteria are presented. A
particular class of linear multiplicative programs, useful to solve some applicative
bilevel problems, is considered from a theoretical point of view to emphasize an
efficient solution method. Detailed results of the computational study are provided
to point out the performances provided by using various underestimation functions
and partitioning criteria, thus improving some of the results of the current literature.

Keywords Linear multiplicative programs · Branch-and-bound · Global
optimization · Nonconvex optimization · Bilevel problems

1 Introduction

In the literature, linear multiplicative programs have been widely studied due to their
importance from both theoretical and applicative point of views. These problems,
strictly related to quadratic programming and bilinear programming, are used in
plant layout design, portfolio and financial optimization, VLSI chip design, robust
optimization, network flows (see, e.g., Cambini and Martein 2009; Cambini and
Sodini 2008; Cambini and Salvi 2010; Gupta 1995; Horst and Pardalos 1995; Horst

 * R. Cambini
 riccardo.cambini@unipi.it

 R. Riccardi
 rossana.riccardi@unibs.it

 D. Scopelliti
 domenico.scopelliti@unibs.it

1 Dipartimento di Economia e Management, Università di Pisa, Via C. Ridolfi 10, 56124 Pisa,
Italy

2 Dipartimento di Economia e Management, Università degli Studi di Brescia, Via S. Faustino
74/b, 25122 Brescia, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-023-00471-1&domain=pdf

 R. Cambini et al.

1 3

 38 Page 2 of 32

and Tuy 1996; Horst et al. 2001; Konno and Kuno 1992; McCarl et al. 1977; Mjelde
1983; Ryoo and Sahinidis 2003; Tuy 2016 and references therein).

From the computational point of view, various approaches have been proposed.
For instance, Wang et al. (2012) proposed a branch-and-bound algorithm for global
minimization of a generalized linear multiplicative programming; Jiao et al. (2012)
proposed a branch and bound algorithm based on the computation of subsequent
solutions of the series of linear relaxation programming problems; in a very recent
paper, Jiao et al. (2023) proposed a branch-reduction-bound algorithm, based on
outer space search and branch-and-bound framework.

A second field of literature develops methods based on an eigenvectors approach.
The eigenvectors approach has been widely used despite actually it has some draw-
backs. It is well known that the eigen-decomposition of a quadratic function is an
heavy task from both a computational and a numerical point of view and it does not
care about the particular structure of linear multiplicative functions. For all these
reasons, in the recent years, various papers have introduced new procedures devel-
oped without the use of eigen-decompositions (see, e.g., Shen et al. 2020, 2022;
Wang et al. 2012; Zhou et al. 2015).

In this paper, various underestimation functions to be used in the branch and
bound procedure are introduced and discussed both with the eigenvectors approach
and without it. Then, a full computational test is provided to highlight the best per-
forming functions.

In addition, a motivating example is presented in the last part of the paper. Spe-
cial structures of multiplicative problems, in facts, arise in several bilevel program-
ming problems of leader-follower type (see Dempe 2020, for example). Some under-
estimation functions introduced in the paper can be used to improve the algorithmic
procedure adopted to tackle this class of problems.

The main contributions of this paper are:

• To describe a unified framework for dealing with linear multiplicative programs
from both a theoretical and computational point of view;

• To propose various underestimation functions to be used in the branch and bound
procedure: quadratic, linear, difference of two convex functions (D.C. functions),
and eigenvectors based underestimation functions;

• To perform a detailed computational test that compares the different underesti-
mation functions under various partition methods to identify the most promising
ones;

• To characterize a special case of multiplicative programs strictly related to
bilevel optimization and to define the more appropriate underestimation function
to solve them.

The paper is organized as follows. In Sect. 2, the main definitions and preliminary
results are given. In addition, the criteria for the splitting process of the branch-
and-bound approach are analyzed. On this basis, Sect. 3 is devoted to the study of
quadratic, eigenvectors based and linear underestimation functions. Then, in Sect. 4,
the detailed results of a wide computational experience are provided and fully dis-
cussed, giving a detailed view of the computational aspects of the solution method

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 3 of 32 38

and improving some of the results of the current literature. Furthermore, Sect. 5
points out the behavior of the proposed underestimation functions in a particular
class of linear multiplicative programs very useful in applicative bilevel program-
ming. Finally, a section with the conclusions is given.

2 Definitions and preliminary results

The aim of this section is to define the problem and provide the main preliminary
results which will allow the development of the paper. In this light, firstly the prob-
lem is defined and then the concept and properties of underestimation functions
are given. On this basis, a detailed description of a branch-and-bound scheme to
solve the problem is provided, in order to approach it in a unifying framework with
respect to different underestimation functions and different splitting criteria. Finally,
the quadratic form associated to a linear multiplicative function is recalled as well as
the eigenvector-based decomposition of such a quadratic form.

2.1 Definition of the problem

From now on, ℝ will denote the set of real numbers while ℝ = ℝ ∪ {−∞,+∞} will
be the affinely extended real number system.

Definition 1 Let P be the following minimization problem:

where S ⊆ ℝ
n is a nonempty polyhedron defined as

with Ain ∈ ℝ
m×n , bin ∈ ℝ

m , Aeq ∈ ℝ
r×n , beq ∈ ℝ

r , and lb, ub ∈ ℝ
n
 , while

f ∶ ℝ
n
→ ℝ is a linear multiplicative function defined as

with ci, di ∈ ℝ
n , c0i, d0i ∈ ℝ for all i ∈ 1,… , p and a ∈ ℝ

n , a0 ∈ ℝ.

2.2 Underestimation functions

The use of suitable underestimation functions of f is needed to solve Problem P by
means of a branch-and-bound approach.

P ∶ min
x∈S

f (x) .

S =
{
x ∈ ℝ

n ∶ Ainx≤bin, Aeqx = beq, lb≤x≤ub
}
,

f (x) =

p∑
i=1

(cT
i
x + c0i)(d

T
i
x + d0i) + aTx + a0 ,

 R. Cambini et al.

1 3

 38 Page 4 of 32

Definition 2 Let S ⊆ ℝ
n be nonempty. Let f ∶ S → ℝ and Φ ∶ S → ℝ . Then, Φ is an

underestimation function of f if:

moreover, Er ∶ S → ℝ is the corresponding error function defined as
Er(x) = f (x) − Φ(x).

The following useful properties hold.

Lemma 1 Let S ⊆ ℝ
n be nonempty. Let Φ1 ∶ S → ℝ and Φ2 ∶ S → ℝ be underesti-

mation functions of f ∶ S → ℝ , with Er1 ∶ S → ℝ and Er2 ∶ S → ℝ the correspond-
ing error functions. Then, the following properties hold:

 (i) For al l � ∈ [0, 1] , Φ� def ined as Φ�(x) = �Φ1(x) + (1 − �)Φ2(x)
is an underestimation function of f, with error function defined as
Er�(x) = �Er1(x) + (1 − �)Er2(x);

 (ii) Φ defined as Φ(x) = max
{
Φ1(x),Φ2(x)

}
 is an underestimation function of f,

with error function defined as Er(x) = min
{
Er1(x),Er2(x)

}
.

Proof For any x ∈ S , it results:
(i) for any � ∈ [0, 1],

and

(ii) according to Definition 2, one has f (x) ≥ max
{
Φ1(x),Φ2(x)

}
 ; hence, it follows

that

 ◻

The following further result will be used in the next subsection as an algorithmic
stopping criterium.

Lemma 2 Let S ⊆ ℝ
n be nonempty. Let Φ ∶ S → ℝ be an underestimation function

of f ∶ S → ℝ , with Er ∶ S → ℝ its error function. If x̄ ∈ argminS Φ and Er(x̄) = 0 ,
then x̄ ∈ argminS f .

Proof For all x ∈ S , it results:

f (x) ≥ Φ(x) ∀x ∈ S ;

Φ�(x) = �Φ1(x) + (1 − �)Φ2(x) ≤ �f (x) + (1 − �)f (x) = f (x)

Er�(x) = f (x) − (�Φ1(x) + (1 − �)Φ2(x))

= (�f (x) + (1 − �)f (x)) − (�Φ1(x) + (1 − �)Φ2(x))

= �Er1(x) + (1 − �)Er2(x) ;

Er(x) = f (x) −max
{
Φ1(x),Φ2(x)

}
= min

{
f (x) − Φ1(x), f (x) − Φ2(x)

}
.

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 5 of 32 38

hence, the thesis follows. ◻

Finally, it is worth noticing that some underestimation functions of f will be
obtained by first rewriting f in D.C. form. Let us recall that a function f ∶ ℝ

n
→ ℝ is

said to be in D.C. form if it is expressed as f (x) = q1(x) − q2(x) , with q1 ∶ ℝ
n
→ ℝ

and q2 ∶ ℝ
n
→ ℝ convex functions (see, e.g., Cambini and Salvi 2009, 2010 and

references therein).
In this light, the following result will be useful to deduce underestimation func-

tions of f in the case f is rewritten in D.C. quadratic form.

Lemma 3 Let [yL, yU] ⊂ ℝ with −∞ < yL < yU < +∞ : for all y ∈ [yL, yU] , it results

Then, for all y ∈ [yL, yU] , the error given by the use of −(yL + yU)y + yLyU instead of
−y2 is

with 1
4
(yU − yL)2 the maximum error obtained at y = yL+yU

2
.

Proof For all y ∈ [yL, yU] , the error given by the use of −(yL + yU)y + yLyU instead
of −y2 is:

Being

it yields (y − yL)(yU − y) =
1

4
(yU − yL)2 −

(
y −

yL+yU

2

)2

 and the thesis follows. ◻

2.3 A branch‑and‑bound scheme

In order to solve Problem P by using a branch-and-bound approach (see, e.g., Bajaj
and Faruque Hasan 2020; Cambini and Sodini 2005, 2008; Cambini and Salvi 2009,
2010; Fampa et al. 2017; Gerard et al. 2017; Shen et al. 2020 and references therein),
the following operative scheme will be considered:

• the feasible region will be iteratively partitioned in multidimensional rectangles,

f (x̄) = Φ(x̄) + Er(x̄) = Φ(x̄) ≤ Φ(x) ≤ f (x) ;

−y2 ≥ −(yL + yU)y + yLyU .

Er(y) = (y − yL)(yU − y) =
1

4
(yU − yL)2 −

(
y −

yL + yU

2

)2

,

Er(y) = (−y2) − (−(yL + yU)y + yLyU).

0 ≤ (y − yL)(yU − y) = −y2 + (yL + yU)y − yLyU and

− yLyU =
1

4
(yU − yL)2 −

1

4
(yL + yU)2

 R. Cambini et al.

1 3

 38 Page 6 of 32

• the function f will be “relaxed” over the single partitions by means of a convex
underestimation function Φ,

• the convex “relaxed” subproblems will be solved
• the feasible solution having the smallest value of f will be maintained.

Specifically speaking, such a branch-and-bound approach will be implemented by
means of:

• a Priority Queue (PQ) used to store the single partitions sorted with respect to the
Lower Bound (LB) found minimizing the convex “relaxed” subproblems over the
partitions;

• a feasible point Sol and a value UB corresponding, respectively, to the incumbent
best feasible solution found and its image UB = f (Sol);

• a convex underestimation function Φ needed to solve the subproblems over the vari-
ous partitions.

The priority queue PQ is used to speed up the solution method (at the cost of memory
usage of course) since the partition with smaller LB is always known and since it does
not need of any periodic “pruning” process (in the “pruning” process of a branch-and-
bound scheme, the stored partitions having a LB not smaller than UB are cancelled
since they cannot improve the incumbent best feasible solution).

The following commands are aimed to describe the way the priority queue PQ is
managed:

• PQisempty();
• LB ∶= PQsmallest();
• PQadd(LB, partition, opt);
• [partition, opt] ∶= PQextract().

The command PQisempty tells whether the PQ is empty or not; the command PQs-
mallest provides the smallest LB of the partitions stored in the PQ; the command
PQadd adds to the PQ a partition as well as the corresponding Optimal Solution (opt)
and its optimal value LB = Φ(opt) obtained minimizing Φ over the partition itself.
Clearly, PQ is such that smaller is the value of the LB, the higher the priority of the
partition in the PQ will be. The last command PQextract removes from the PQ the par-
tition having the smallest LB and provides as the output all the data stored.

Remark 1 If the smallest LB is such that LB ≥ UB , then the partitions in the PQ are
not able to improve the incumbent best feasible solution Sol and hence PQ can be
emptied (being PQ a priority queue, the “pruning” process becomes just a final stop-
ping condition and it is no more periodic).

The following subprocedure “CheckPartition()” minimizes the underestimation
function Φ over a given partition Π , improves the value of UB and stores the data in the
PQ when the potential relative improvement is such that

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 7 of 32 38

with

and relTol > 0 be a chosen tolerance. According to Remark 1, if LB ≥ UB then the
partition is not added to the queue and discarded (“pruning”).

The overall solution branch-and-bound scheme is described by the procedure
“Solve()”.

(1)Relimp(LB,UB) > relTol ,

Relimp(LB,UB) =
abs(UB − LB)

max{abs(UB), abs(LB)}

Subprocedure CheckPartition(inputs ∶ Π)

if not(isempty(S ∩ Π)) then

opt ∶= arg min
x∈S∩Π

Φ(x); LB ∶= Φ(opt);

if LB < UB then

val ∶= f (opt);

if val < UB then UB ∶= val, Sol ∶= opt end if;

if Relimp(LB,UB) > relTol then

PQadd(LB, partition, opt);

end if;

end if;

end if;

end subproc.

Procedure Solve(inputs ∶ P; outputs ∶ Opt,Val)

Let PQ ∶= �,UB ∶= +∞, Sol ∶= [];

Determine the smallest partition Π0 containing S;

CheckPartition(Π0);

while not(PQisempty()) and PQsmallest() < UBdo

[Π, opt] ∶= PQextract();

Choose the branching variable to be used in the splitting process;

Split partition Π accordingly to the chosen branching variable ∶ Π = Π1 ∪ Π2;

CheckPartition(Π1),CheckPartition(Π2);

end while;

Let Opt ∶= Sol,Val ∶= UB;

end proc.

 R. Cambini et al.

1 3

 38 Page 8 of 32

Firstly, variables PQ, UB and Sol are initialized and the starting smallest partition
Π0 containing S is found and checked. Then, the iterative phase starts and continues
up to either the PQ is emptied or the stored partitions cannot improve anymore UB
(“pruning”). At each iteration, the partition with the smaller LB is extracted from
the PQ, a branching variable is selected, and the partition split accordingly (multi-
way branching has been shown to provide poor results, see for example Gerard et al.
2017). The two new partitions are then checked. Finally, at the end of the iterative
process, outputs are set.

Remark 2 The value of UB is fundamental to improving the performance of the
algorithm since it is used to discard the not useful partitions. For this reason, the
feasible points found while looking for Π0 should be used to improve values UB and
Sol.

Notice that the convergence of the proposed method has been widely dis-
cussed in the literature (see, e.g., Bajaj and Faruque Hasan 2020; Cambini and
Salvi 2009, 2010; Fampa et al. 2017; Gerard et al. 2017; Shen et al. 2020 and
references therein). Specifically speaking, since the partitions will be split with
respect to values not “close” to its boundaries (see Sect. 4), then the tolerance
parameter relTol > 0 guarantees that condition (1) in subprocedure “CheckPar-
tition()” will become false after a sufficiently large number of iterations. The
correctness of the method follows since just feasible solutions are evaluated to
improve the incumbent best solution and since the whole feasible region is ana-
lyzed. This is known to be an NP-Hard problem and in the worst case many local
but not global optimal solutions can be found.

Some further choices are finally needed to complete the description of the
solution process:

• Which underestimation function Φ(x) should be used? tight underestimation
functions improve the algorithm performance, moreover the underestimation
function determines the set of branching variables;

• Which branching variable should be chosen to split the current partition?
• With respect to which value of the branching variable the current partition

should be split?

Actually, another fundamental choice has been already made:

• At each iteration, the partition with the smaller LB is selected and analyzed.

This criterium is aimed to look for feasible solutions having small values, thus
allowing to improve UB as much as possible and to increase as much as possible
the number of partitions discarded by means of the stopping “pruning” condition.

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 9 of 32 38

2.4 A raw approach

Problem P is a particular quadratic (usually indefinite) program since f(x) can be
rewritten as:

with

Quadratic indefinite programs can be efficiently solved with a branch-and-bound
approach by means of a suitable eigenvectors-based decomposition of the objective
function (see, e.g., Cambini and Sodini 2005, 2008; Fampa et al. 2017). Specifi-
cally speaking, since Q̂ is a symmetric matrix, there exists an orthonormal matrix
U ∈ ℝ

n×n (UUT = UTU = I) and a diagonal matrix D ∈ ℝ
n×n such that Q̂ = UDUT .

The diagonal elements of D are the eigenvalues �1,… , �n ∈ ℝ of Q̂ , while the
orthonormal columns u1,… , un ∈ ℝ

n of U are the corresponding eigenvectors of Q̂ .
As a consequence, it results:

Thus, by means of the sets of indices

and the vectors

the quadratic component of f can be rewritten as follows:

In this way, f can be expressed in the following D.C. form:

(2)f (x) =

p∑
i=1

(cT
i
x)(dT

i
x) + âTx + â0 = xTQ̂x + âTx + â0 ,

â ∶= a +

p∑
i=1

(cid0i + dic0i) ,

â0 ∶= a0 +

p∑
i=1

c0id0i ,

Q̂ ∶=
1

2

p∑
i=1

(
cid

T
i
+ dic

T
i

)
.

xTQ̂x =

n∑
i=1

𝜆i(u
T
i
x)2.

Λ+ =
{
i = 1,… , n ∶ 𝜆i > 0

}
, Λ− =

{
i = 1,… , n ∶ 𝜆i < 0

}

vi =
√� �i � ⋅ ui ∀i = 1,… , n ,

xTQ̂x =
∑
i∈Λ+

(vT
i
x)2 −

∑
i∈Λ−

(vT
i
x)2.

 R. Cambini et al.

1 3

 38 Page 10 of 32

The following branching variables are suggested by (3) for all i ∈ Λ−:

so that

Moreover, for all �L ∶= (�L
i
)i∈Λ− , �U ∶= (�U

i
)i∈Λ− ∈ ℝ

|Λ−| such that �L≤�U , the fol-
lowing rectangle is introduced:

Let � ∶= (�
i
)i∈Λ− and � ∶= (�i)i∈Λ− . With respect to branching variables � , rectan-

gle
[
�,�

]
 is the smallest partition Π0 containing S. The following underestimation

function can then be stated by means of (3).

Theorem 1 Let f ∶ ℝ
n
→ ℝ be expressed as in (3). Then, the following convex

quadratic function is an underestimation function for f over S ∩
[
�L,�U

]
:

with 1
4

∑
i∈Λ−(�

U
i
− �L

i
)2 the maximum error for Er0(x) obtained at vT

i
x =

�L
i
+�U

i

2
 ,

i ∈ Λ−.

Proof Being �L
i
≤ vT

i
x ≤ �U

i
 for all x ∈ S ∩

[
�L,�U

]
 and for all i ∈ Λ− , from

Lemma 3 it yields:

Hence, Φ0(x) follows trivially from (3). Moreover, it results:

 ◻

(3)f (x) =

(∑
i∈Λ+

(vT
i
x)2 + âTx + â0

)
−

(∑
i∈Λ−

(vT
i
x)2

)

�i = vT
i
x

�
i
= min

x∈S
vT
i
x and �i = max

x∈S
vT
i
x.

[
�L,�U

]
=
{
x ∈ ℝ

n ∶ �L
i
≤ vT

i
x ≤ �U

i
∀i ∈ Λ−

}
.

(u0)

⎧
⎪⎪⎨⎪⎪⎩

Φ0(x) =

��
i∈Λ+

(vT
i
x)2 + â

T
x + â0

�
+

�
i∈Λ−

�
𝜇L

i
𝜇U

i
− (𝜇L

i
+ 𝜇U

i
)vT

i
x
�
,

Er0(x) =
�
i∈Λ−

�
v
T

i
x − 𝜇L

i

��
𝜇U

i
− v

T

i
x
�
,

−(vT
i
x)2 ≥ −(�L

i
+ �U

i
)vT

i
x + �L

i
�U
i

Er0(x) =f (x) − Φ0(x)

=
∑
i∈Λ−

(
−(vT

i
x)2 + (�L

i
+ �U

i
)vT

i
x − �L

i
�U
i

)

=
∑
i∈Λ−

(
vT
i
x − �L

i

)(
�U
i
− vT

i
x
)

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 11 of 32 38

2.5 Splitting process

Assume to be in the iterative process and that the partition having the small-
est lower bound LB have been extracted from PQ by means of the command
“ [Π, opt] ∶= PQextract() ”. It is now necessary to choose a branching variable in
order to split the partition Π . Assume, for example, that underestimation (u0) is used
(results are analogous for all underestimations functions which will be proposed in
the next Section), so that Π =

[
�L,�U

]
 and:

with maximum error value 1
4

∑
i∈Λ−(�

U
i
− �L

i
)2 obtained at vT

i
x =

�L
i
+�U

i

2
 , i ∈ Λ− . Two

criteria are generally used to determine the branching variable:

• The largest interval
[
�L
i
,�U

i

]
 : this criterion is aimed to reduce as much as pos-

sible the error maximum value; on the other hand, it does not use the feasible
point opt = argminx∈S∩Π Φ0(x)

 which may suggest where to look for the opti-
mal solution of the problem.

• The largest error addend
(
vT
i
x − �L

i

)(
�U
i
− vT

i
x
)
 : this criterion is aimed to

reduce as much as possible the error value at the point opt, hence tightening
the underestimation as much as possible close to opt.

Once the branching variable is chosen, the question is how to split the cor-
responding interval

[
�L
i
,�U

i

]
 , that is, how to determine the value �∗

i
 so that [

�L
i
,�U

i

]
=
[
�L
i
,�∗

i

]
∪
[
�∗
i
,�U

i

]
 . In this light, possible choices are:

• The medium point of the interval
[
�L
i
,�U

i

]
 : the use of �M

i
=

�L
i
+�U

i

2
 is aimed to

reduce as much as possible the error maximum value, again the feasible point
opt is not used;

• The value �opt

i
= vT

i
opt : in this case the optimal solution of the underestima-

tion is used, but this value may be close to the boundaries �L
i
 and �U

i
 thus

highly increasing the number of iterations needed to solve the problem and
hence increasing the convergence time itself;

• A linear combination of �M
i

 and �opt

i
 : given a value � ∈ [0, 1] the point

�∗
i
= ��

opt

i
+ (1 − �)�M

i
 could be used to take into account of both the error

maximum value and the solution opt.

These criteria can be summarized and linked as follows:

• Blindly reduce as much as possible the error maximum value: choose the
largest interval

[
�L
i
,�U

i

]
 and split it in the middle with �M

i
 (see, e.g., Cambini

and Sodini 2005; Shen et al. 2020);

Er0(x) =
∑
i∈Λ−

(
vT
i
x − �L

i

)(
�U
i
− vT

i
x
)
,

 R. Cambini et al.

1 3

 38 Page 12 of 32

• Use the “infos” given by opt: choose the largest error addend (
vT
i
x − �L

i

)(
�U
i
− vT

i
x
)
 and split it with respect to �∗

i
= ��

opt

i
+ (1 − �)�M

i
 (see,

e.g., Cambini and Salvi 2009, 2010; Fampa et al. 2017).

The recent literature shows that the latter opportunity is the most perform-
ing one, and is the one that will be used in the computational test described in
Sect. 4. Finally, notice that, by means of Lemma 2, the splitting process should
be performed only if the largest error addend is grater than a suitable tolerance
errTol > 0.

3 Specific underestimation functions

The eigenvectors-based approach described in Sect. 2.4 actually has some draw-
backs. First of all, the eigen-decomposition of a quadratic function is an heavy
task from both a computational and a numerical point of view. Moreover, such
an eigen-decomposition does not take into account of the particular structure of
linear multiplicative functions. In this very light, in the recent literature various
papers aimed to approach linear multiplicative problems without the use of eigen-
decompositions (see, e.g., Shen et al. 2020, 2022; Wang et al. 2012; Zhou et al.
2015).

The aim of this section is to state some underestimation functions for f not
using the eigenvectors of matrix Q̂ , in order to efficiently solve Problem P with-
out the computational and numerical troubles of eigenvectors computing.

3.1 Linear underestimation functions

In the recent literature (see Shen et al. 2020, for example) some linear underesti-
mation functions have been used to solve linear multiplicative problems by means
of a branch-and-bound approach. Usually these underestimations are not tight, for
this very reason in this subsection some further linear underestimations will be
studied. Recalling that:

the following 2p branching variables can be considered:

so that

f (x) =

p∑
i=1

(cT
i
x)(dT

i
x) + âTx + â0,

�i = cT
i
x and �i = dT

i
x , i = 1,… , p

�
i
= min

x∈S
cT
i
x , �i = max

x∈S
cT
i
x and �

i
= min

x∈S
dT
i
x , �i = max

x∈S
dT
i
x .

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 13 of 32 38

Moreover, for all �L ∶= (�L
i
)i=1,…,p , �U ∶= (�U

i
)i=1,…,p ∈ ℝ

p such that �L≤�U and for
all �L ∶= (�L

i
)i=1,…,p , �U ∶= (�U

i
)i=1,…,p ∈ ℝ

p such that �L≤�U , the following rectan-
gles are introduced:

Let � ∶= (�
i
)i=1,…,p , � ∶= (�i)i=1,…,p , � ∶= (�

i
)i=1,…,p , and � ∶= (�i)i=1,…,p . With

respect to branching variables � and � , rectangle
[
�, �

]
∩
[
�, �

]
 is the smallest parti-

tion Π0 containing S.
The following linear underestimation functions can then be stated.

Theorem 2 Let f ∶ ℝ
n
→ ℝ be expressed as in (2). Then, the following linear func-

tions are underestimation functions for f over S ∩
[
�L, �U

]
∩
[
�L, �U

]
:

and

with
∑p

i=1
(�U

i
− �L

i
)(�U

i
− �L

i
) the maximum error for Er1(x) and Er2(x) obtained at

cT
i
x = �U

i
 , dT

i
x = �U

i
 , i = 1,… , p , and cT

i
x = �L

i
 , dT

i
x = �L

i
 , i = 1,… , p , respectively.

Proof For all i = 1,… , p ,
(
cT
i
x − �L

i

)
≥ 0 ,

(
dT
i
x − �L

i

)
≥ 0 ,

(
�U
i
− cT

i
x
)
≥ 0 and (

�U
i
− dT

i
x
)
≥ 0 , yield:

Hence, the thesis follows by means of simple calculations. ◻

Remark 3 Notice that �L
i
cT
i
x + �L

i
dT
i
x − �L

i
�L
i
 and �U

i
cT
i
x + �U

i
dT
i
x − �U

i
�U
i

 are know
as the McCormick lower envelopes for the bilinear function (cT

i
x)(dT

i
x) (McCormick

[
�L, �U

]
=
{
x ∈ ℝ

n ∶ �L
i
≤ cT

i
x ≤ �U

i
∀i = 1,… , p

}
;[

�L, �U
]
=
{
x ∈ ℝ

n ∶ �L
i
≤ dT

i
x ≤ �U

i
∀i = 1,… , p

}
.

(u1)

⎧
⎪⎪⎨⎪⎪⎩

Φ1(x) =
�
âTx + â0

�
+

p�
i=1

�
𝛿L
i
cT
i
x + 𝜉L

i
dT
i
x − 𝜉L

i
𝛿L
i

�
,

Er1(x) =

p�
i=1

�
cT
i
x − 𝜉L

i

��
dT
i
x − 𝛿L

i

�
,

(u2)

⎧
⎪⎪⎨⎪⎪⎩

Φ2(x) =
�
âTx + â0

�
+

p�
i=1

�
𝛿U
i
cT
i
x + 𝜉U

i
dT
i
x − 𝜉U

i
𝛿U
i

�
,

Er2(x) =

p�
i=1

�
𝜉U
i
− cT

i
x
��
𝛿U
i
− dT

i
x
�
,

0 ≤
(
cT
i
x − �L

i

)(
dT
i
x − �L

i

)
= (cT

i
x)(dT

i
x) − �L

i
cT
i
x − �L

i
dT
i
x + �L

i
�L
i

⇒ (cT
i
x)(dT

i
x) ≥ �L

i
cT
i
x + �L

i
dT
i
x − �L

i
�L
i
,

0 ≤
(
�U
i
− cT

i
x
)(
�U
i
− dT

i
x
)
= (cT

i
x)(dT

i
x) − �U

i
cT
i
x − �U

i
dT
i
x + �U

i
�U
i

⇒ (cT
i
x)(dT

i
x) ≥ �U

i
cT
i
x + �U

i
dT
i
x − �U

i
�U
i

 R. Cambini et al.

1 3

 38 Page 14 of 32

1976). Notice also that in the case �L ≥ 0 and �L ≥ 0 , i = 1,… , p , linear underesti-
mations of the kind

∑p

i=1
(cT

i
x)𝛿L

i
+ âTx + â0 or

∑p

i=1
(dT

i
x)𝜉L

i
+ âTx + â0 have been

used, and that these are far less tight than the one proposed in this subsection.

3.2 Quadratic underestimation functions

The aim of this subsection is to state underestimation functions of f, tighter than
the linear ones, by properly rewriting f in D.C. form.

Theorem 3 Let f ∶ ℝ
n
→ ℝ be defined as in (2). Then, f can be rewritten in the fol-

lowing D.C. forms:

 (i) f (x) =

(
1

2

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−

(
1

2

p∑
i=1

(
(cT

i
x)2 + (dT

i
x)2

))
;

 (ii) f (x) =

(
1

4

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−

(
1

4

p∑
i=1

(cT
i
x − dT

i
x)2

)
;

 (iii) f (x) =

(
1

2

p∑
i=1

(
(cT

i
x)2 + (dT

i
x)2

)
+ âTx + â0

)
−

(
1

2

p∑
i=1

(cT
i
x − dT

i
x)2

)
.

Proof Firstly, one get:

Then, by opportunely replacing each of them in (2), the thesis follows. ◻

The following underestimation function can be stated by means of (i) of Theo-
rem 3 and the 2p branching variables described in the previous subsection.

Theorem 4 Let f ∶ ℝ
n
→ ℝ be expressed as in (i) of Theorem 3. Then, the fol-

lowing convex quadratic function is an underestimation function for f over
S ∩

[
�L, �U

]
∩
[
�L, �U

]
:

⊳ (cT
i
x)(dT

i
x) =

1

2

(
2(cT

i
x)(dT

i
x) + (cT

i
x)2 + (dT

i
x)2 − (cT

i
x)2 − (dT

i
x)2

)

=
1

2

(
(cT

i
x + dT

i
x)2 − (cT

i
x)2 − (dT

i
x)2

)
;

⊳ (cT
i
x)(dT

i
x) =

1

4

(
2(cT

i
x)(dT

i
x) + (cT

i
x)2 + (dT

i
x)2 + 2(cT

i
x)(dT

i
x) − (cT

i
x)2 − (dT

i
x)2

)

=
1

4

(
(cT

i
x + dT

i
x)2 − (cT

i
x − dT

i
x)2

)
;

⊳ (cT
i
x)(dT

i
x) =

1

2

(
(cT

i
x)2 + (dT

i
x)2 + 2(cT

i
x)(dT

i
x) − (cT

i
x)2 − (dT

i
x)2

)

=
1

2

(
(cT

i
x)2 + (dT

i
x)2 − (cT

i
x − dT

i
x)2

)
.

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 15 of 32 38

with 1
8

∑p

i=1
(�U

i
− �L

i
)2 +

1

8

∑p

i=1
(�U

i
− �L

i
)2 the maximum error for Er3(x) obtained at

cT
i
x =

�L
i
+�U

i

2
 and dT

i
x =

�L
i
+�U

i

2
 , i = 1,… , p.

Proof Being �L
i
≤ cT

i
x ≤ �U

i
 and �L

i
≤ dT

i
x ≤ �U

i
 for all x ∈ S ∩

[
�L, �U

]
∩
[
�L, �U

]

and for all i = 1,… , p , from Lemma 3 it yields:

Hence, Φ3(x) follows trivially from (i) of Theorem 3. Moreover, it results:

 ◻

In similar way, for all i = 1,… , p , the following branching variables are sug-
gested by (ii) and (iii) of Theorem 3:

so that

Moreover, for all �L ∶= (�L
i
)i=1,…,p , �L ∶= (�L

i
)i=1,…,p ∈ ℝ

p such that �L≤�U , the
following rectangle is introduced:

(u3)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φ3(x) =

�
1

2

p�
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

�

+
1

2

p∑
i=1

�
𝜉L
i
𝜉U
i
+ 𝛿L

i
𝛿U
i
− (𝜉L

i
+ 𝜉U

i
)cT

i
x − (𝛿L

i
+ 𝛿U

i
)dT

i
x
�
,

Er3(x) =
1

2

p�
i=1

�
(cT

i
x − 𝜉L

i
)(𝜉U

i
− cT

i
x) + (dT

i
x − 𝛿L

i
)(𝛿U

i
− dT

i
x)
�
,

−(cT
i
x)2 − (dT

i
x)2 ≥ −(�L

i
+ �U

i
)cT

i
x + �L

i
�U
i
− (�L

i
+ dU

i
)dT

i
x + �L

i
�U
i

Er3(x) =f (x) − Φ3(x)

=
1

2

p∑
i=1

(
2(cT

i
x)(dT

i
x) − (cT

i
x + dT

i
x)2 + (�L

i
+ �U

i
)cT

i
x

+(�L
i
+ �U

i
)dT

i
x − (�L

i
�U
i
+ �L

i
�U
i
)
)

=
1

2

p∑
i=1

(
−(cT

i
x)2 − (dT

i
x)2 + (�L

i
+ �U

i
)cT

i
x

+(�L
i
+ �U

i
)dT

i
x − (�L

i
�U
i
+ �L

i
�U
i
)
)

=
1

2

p∑
i=1

(
(cT

i
x − �L

i
)(�U

i
− cT

i
x) + (dT

i
x − �L

i
)(�U

i
− dT

i
x)
)

�i = (ci − di)
Tx

�
i
= min

x∈S
(ci − di)

Tx and �i = max
x∈S

(ci − di)
Tx

[
�L, �U

]
=
{
x ∈ ℝ

n ∶ �L
i
≤ (ci − di)

Tx ≤ �U
i

∀i = 1,… , p
}
.

 R. Cambini et al.

1 3

 38 Page 16 of 32

Let � ∶= (�
i
)i=1,…,p and � ∶= (�i)i=1,…,p . With respect to branching variables � ,

rectangle
[
�, �

]
 is the smallest partition Π0 containing S. In this light, the following

underestimation functions can be stated by means of (ii) and (iii) of Theorem 3.

Theorem 5 Let f ∶ ℝ
n
→ ℝ be expressed as in (ii) and i(ii) of Theorem 3. Then,

the following convex quadratic functions are underestimation functions for f over
S ∩

[
�L, �U

]
 , respectively:

and

with 1

16

∑p

i=1
(�U

i
− �L

i
)2 and 1

8

∑p

i=1
(�U

i
− �L

i
)2 the maximum error for Er4(x) and

Er5(x) , respectively, obtained at (cT
i
x − dT

i
x) =

�L
i
+�U

i

2
 , i = 1,… , p.

Proof Being �L
i
≤ (cT

i
x − dT

i
x) ≤ �U

i
 for all x ∈ S ∩

[
�L, �U

]
 and for all i = 1,… , p ,

from Lemma 3 it yields:

Hence, Φ4(x) and Φ5(x) follow, respectively, from (ii) and (iii) of Theorem 3. Moreo-
ver, it results:

(u4)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φ4(x) =

�
1

4

p�
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

�

+
1

4

p∑
i=1

�
𝜎L
i
𝜎U
i
− (𝜎L

i
+ 𝜎U

i
)(cT

i
x − dT

i
x)
�
,

Er4(x) =
1

4

p�
i=1

�
(cT

i
x − dT

i
x) − 𝜎L

i

��
𝜎U
i
− (cT

i
x − dT

i
x)
�
,

(u5)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φ5(x) =

�
1

2

p�
i=1

�
(cT

i
x)2 + (dT

i
x)2

�
+ âTx + â0

�

+
1

2

p∑
i=1

�
𝜎L
i
𝜎U
i
− (𝜎L

i
+ 𝜎U

i
)(cT

i
x − dT

i
x)
�
,

Er5(x) =
1

2

p�
i=1

�
(cT

i
x − dT

i
x) − 𝜎L

i

��
𝜎U
i
− (cT

i
x − dT

i
x)
�
,

−(cT
i
x − dT

i
x)2 ≥ −(�L

i
+ �U

i
)(cT

i
x − dT

i
x) + �L

i
�U
i

Er4(x) =f (x) − Φ4(x)

=
1

4

p∑
i=1

(
4(cT

i
x)(dT

i
x) − (cT

i
x + dT

i
x)2 + (�L

i
+ �U

i
)(cT

i
x − dT

i
x) − �L

i
�U
i

)

=
1

4

p∑
i=1

(
−(cT

i
x − dT

i
x)2 + (�L

i
+ �U

i
)(cT

i
x − dT

i
x) − �L

i
�U
i

)

=
1

4

p∑
i=1

(
(cT

i
x − dT

i
x) − �L

i

)(
�U
i
− (cT

i
x − dT

i
x)
)

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 17 of 32 38

and

 ◻

Remark 4 Notice that (u4) dominates (u5) since Er5(x) = 2 ⋅ Er4(x) . For this very rea-
son, (u5) has been given just for the sake of completeness and will no more be used
in the rest of the paper.

3.3 Further hybrid underestimation functions

For the sake of completeness, some more underestimation functions of f will be studied
by applying the eigendecomposition approach to the D.C. forms provided by (i) and (ii)
of Theorem 3. Specifically speaking, each of them can be rewritten as follows:

 (i) f (x) =

(
1

2

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−
(
xTQ1x

)
,

 (ii) f (x) =

(
1

4

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−
(
xTQ2x

)
,

with Q1 =
1

2

∑p

i=1
(cic

T
i
+ did

T
i
) and Q2 =

1

4

∑p

i=1
(ci − di)(ci − di)

T symmetric posi-
tive semidefinite matrices. Hence, there exist two orthonormal matrices Ũ, Û ∈ ℝ

n×n
and two diagonal matrices D̃, D̂ ∈ ℝ

n×n such that Q1 = ŨD̃ŨT and Q2 = ÛD̂ÛT . The
diagonal elements of D̃ are the nonnegative eigenvalues �̃�1,… , �̃�n ∈ ℝ of Q1 , while the
orthonormal columns ũ1,… , ũn ∈ ℝ

n of Ũ are the corresponding eigenvectors of Q1 ; in
similar way, the diagonal elements of D̂ are the nonnegative eigenvalues �̂�1,… , �̂�n ∈ ℝ
of Q2 , while the orthonormal columns û1,… , ûn ∈ ℝ

n of Û are the corresponding
eigenvectors of Q2 . As a consequence, since Q1 and Q2 have no negative eigenvalues,
it results:

Er5(x) = f (x) − Φ5(x)

=
1

2

p∑
i=1

(
2(cT

i
x)(dT

i
x) − (cT

i
x)2 − (dT

i
x)2 + (�L

i
+ �U

i
)(cT

i
x − dT

i
x) − �L

i
�U
i

)

=
1

2

p∑
i=1

(
−(cT

i
x − dT

i
x)2 + (�L

i
+ �U

i
)(cT

i
x − dT

i
x) − �L

i
�U
i

)

=
1

2

p∑
i=1

(
(cT

i
x − dT

i
x) − �L

i

)(
�U
i
− (cT

i
x − dT

i
x)
)

xTQ1x =

n∑
i=1

�̃�i(ũ
T
i
x)2 =

∑
i∈Θ+

(ṽT
i
x)2 and xTQ2x =

n∑
i=1

�̂�i(û
T
i
x)2 =

∑
i∈Γ+

(v̂T
i
x)2

 R. Cambini et al.

1 3

 38 Page 18 of 32

with Θ+ =
{
i = 1,… , n ∶ �̃�i > 0

}
 , Γ+ =

{
i = 1,… , n ∶ �̂�i > 0

}
 , ṽi =

√
�̃�i ⋅ ũi

for all i ∈ Θ+ , and v̂i =
√

�̂�i ⋅ ûi for all ∀i ∈ Γ+ . Hence, the following further D.C.
forms hold:

In this light, the following branching variables are suggested by (4) and (5),
respectively:

so that

For the sake of convenience, let � ∶= (�
i
)i∈Θ+ , � ∶= (�i)i∈Θ+ , � ∶= (�

i
)i∈Γ+ , and

� ∶= (� i)i∈Γ+ . Moreover, for all �L ∶= (�L
i
)i∈Θ+ and �U ∶= (�U

i
)i∈Θ+ such that �L≤�U

and for all �L ∶= (�L
i
)i∈Γ+ and �U ∶= (�U

i
)i∈Γ+ such that �L≤�U , the following rectan-

gles are introduced:

Rectangles
[
�, �

]
 and

[
� , �

]
 result to be the smallest partitions Π0 containing S with

respect to branching variables � and � , respectively.

Theorem 6 Let f ∶ ℝ
n
→ ℝ be expressed as in (i) and (ii) of Theorem 3. Then,

the following convex quadratic functions are underestimation functions for f over
S ∩

[
�L, �U

]
 and S ∩

[
�L, �U

]
 , respectively:

and

(4)f (x) =

(
1

2

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−

(∑
i∈Θ+

(ṽT
i
x)2

)
;

(5)f (x) =

(
1

4

p∑
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

)
−

(∑
i∈Γ+

(v̂T
i
x)2

)
.

𝜃i = ṽT
i
x , i ∈ Θ+ and 𝛾i = v̂T

i
x , i ∈ Γ+

𝜃
i
= min

x∈S
ṽT
i
x , 𝜃i = max

x∈S
ṽT
i
x and 𝛾

i
= min

x∈S
v̂T
i
x , 𝛾 i = max

x∈S
v̂T
i
x

[
𝜃L, 𝜃U

]
=
{
x ∈ ℝ

n ∶ 𝜃L
i
≤ ṽT

i
x ≤ 𝜃U

i
∀i ∈ Θ+

}
;[

𝛾L, 𝛾U
]
=
{
x ∈ ℝ

n ∶ 𝛾L
i
≤ v̂T

i
x ≤ 𝛾U

i
∀i ∈ Γ+

}
.

(u6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φ6(x) =

�
1

2

p�
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

�

+
∑
i∈Θ+

�
𝜃L
i
𝜃U
i
− (𝜃L

i
+ 𝜃U

i
)ṽT

i
x
�
,

Er6(x) =
�
i∈Θ+

�
ṽT
i
x − 𝜃L

i

��
𝜃U
i
− ṽT

i
x
�
,

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 19 of 32 38

with 1
4

∑
i∈Θ+(�

U
i
− �L

i
)2 and 1

4

∑
i∈Γ+(�

U
i
− �L

i
)2 the maximum errors for Er6(x) and

Er7(x) , respectively, obtained at ṽT
i
x =

𝜃L
i
+𝜃U

i

2
 , i ∈ Θ+ , and v̂T

i
x =

𝛾L
i
+𝛾U

i

2
 , i ∈ Γ+.

Proof The thesis follows in the same lines of Theorems 4 and 5. ◻

3.4 A particular case

In many applicative problems (see the forthcoming Sect. 5), the linear multiplicative
objective function f ∶ ℝ

n
→ ℝ has the following particular structure:

where z ∈ ℝ
m , � ∶= (�i)i=1,…,p ∈ ℝ

p , g ∶= (gi)i=1,…,p ∈ ℝ
p , q(z, �, g) a linear or

a convex quadratic term, and n ∶= m + 2p . In this light, it is worth studying the
behavior of the underestimation functions proposed so far in the particular case of
objective functions of type (6).

Theorem 7 Let f ∶ ℝ
n
→ ℝ be expressed as in (6). Then, the following underesti-

mation functions for f are stated:

 (i) for � ∈ [�L, �U] and g ∈ [gL, gU] , it results

 and Φ6(z, �, g) = Φ3(z, �, g);
 (ii) for (� − g) ∈ [�L, �U] , it results

(u7)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φ7(x) =

�
1

4

p�
i=1

(cT
i
x + dT

i
x)2 + âTx + â0

�

+
∑
i∈Γ+

�
𝛾L
i
𝛾U
i
− (𝛾L

i
+ 𝛾U

i
)v̂T

i
x
�
,

Er7(x) =
�
i∈Γ+

�
v̂T
i
x − 𝛾L

i

��
𝛾U
i
− v̂T

i
x
�
,

(6)f (z, �, g) =

p∑
i=1

�igi + q(z, �, g),

Φ1(z, �, g) = q(z, �, g) +

p∑
i=1

(
gL
i
�i + �L

i
gi − �L

i
gL
i

)
,

Φ2(z, �, g) = q(z, �, g) +

p∑
i=1

(
gU
i
�i + �U

i
gi − �U

i
gU
i

)
,

Φ3(z, �, g) =

(
1

2

p∑
i=1

(�i + gi)
2 + q(z, �, g)

)

+
1

2

p∑
i=1

(
�L
i
�U
i
+ gL

i
gU
i
− (�L

i
+ �U

i
)�i − (gL

i
+ gU

i
)gi

)
,

 R. Cambini et al.

1 3

 38 Page 20 of 32

 and Φ0(z, �, g) = Φ7(z, �, g) = Φ4(z, �, g).

Proof Firstly, from Theorem 3, it results:

 Hence, the introduced Φ1 , Φ2 , Φ3 and Φ4 are underestimation functions for f due to
Theorems 3, 4 and 5. As regards to Φ0 notice that:

In particular,
[
0 1

1 0

]
 has eigenvalues � = 1 and � = −1 with corresponding

eigenvectors (1, 1)T and (1,−1)T , respectively; hence,
(
(1,−1)(�i, gi)

T
)2

= (�i − gi)
2 .

Instead, with respect to Φ6 , notice that:

Being that
[
1 0

0 1

]
 has eigenvalue � = 1 with algebraic multiplicity equal to 2 and

orthogonal eigenvectors (1, 0)T and (0, 1)T , then (
(1, 0)(�i, gi)

T
)2

+
(
(0, 1)(�i, gi)

T
)2

= �2
i
+ g2

i
 . Furthermore, relatively to Φ7 , notice

that:

In particular,
[

1 − 1

−1 1

]
 has eigenvalues � = 2 and � = 0 with corresponding eigen-

vectors (1,−1)T and (1, 1)T , respectively; hence,
(
(1,−1)(�i, gi)

T
)2

= (�i − gi)
2 . ◻

Φ4(z, �, g) =

(
1

4

p∑
i=1

(�i + gi)
2 + q(z, �, g)

)

+
1

4

p∑
i=1

(
�L
i
�U
i
− (�L

i
+ �U

i
)(�i − gi)

)

⊳ f (z, 𝛽, g) =

(
1

2

p∑
i=1

(𝛽i + gi)
2 + q(z, 𝛽, g)

)
−

(
1

2

p∑
i=1

(
𝛽2
i
+ g2

i

))
,

⊳ f (z, 𝛽, g) =

(
1

4

p∑
i=1

(𝛽i + gi)
2 + q(z, 𝛽, g)

)
−

(
1

4

p∑
i=1

(𝛽i − gi)
2

)

�igi =
1

2
(�i, gi)

[
0 1

1 0

](
�i
gi

)
.

�2
i
+ g2

i
= (�i, gi)

[
1 0

0 1

](
�i
gi

)
.

(�i − gi)
2 = (�i, gi)

[
1 − 1

−1 1

](
�i
gi

)
.

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 21 of 32 38

Remark 5 It is worth to underlay that (ii) of Theorem 7 results to be of great interest
in the light of the computational results that will be presented in the next Section.

4 A computational experience

The solution method described and discussed in the previous sections has been
implemented in a macOS 12.5.1 environment with an M1 Pro 10-core processor,
MATLAB 2022a for coding and Gurobi 9.5.2 as solver for LP and QP problems. In
this section, the results of some computational tests are presented, where the perfor-
mances are compared with respect to the various underestimation functions previ-
ously studied. In this light, various instances have been randomly generated by using
the “randi()” MATLAB function (integer numbers generated with uniform distribu-
tion). The average times spent to solve the instances (obtained with the “tic” and
“toc” MATLAB commands), as well as the average number of iterations in proce-
dure “Solve()” needed to solve them, are given as results of the computational tests.
The used tolerance parameters are relTol = 2−35 and errTol = 2−20 . For the sake of
simplicity, in the instances generation we fixed the values a0 = 0 and c0i, d0i = 0
for all i ∈ 1,… , p , we considered no equality constraints Aeqx = beq and a number
of inequality constraints m = 2n . Moreover, the two following cases are taken into
account in the instances generation:

• A “general” case, where vectors a, , ci and di have been randomly generated
with components in the interval [−4, 4] , vectors lb and ub have been generated
with components in the interval [−10, 10] , matrix Ain has been generated with
components in the interval [−10, 10] , bin has been generated in order to guarantee
a feasible region different from the box [lb, ub] and nonempty;

• A “nonnegative” case, where vectors ci and di have been randomly generated
with components in the interval [0, 4], vector a has been generated with com-
ponents in the interval [−4, 4] , vectors lb and ub have been generated with com-
ponents in the interval [0, 15], matrix Ain has been generated with components
in the interval [−10, 10] , bin has been generated in order to guarantee a feasible
region different from the box [lb, ub] and nonempty.

Remark 6 The “nonnegative” case is aimed to study the behavior of the underes-
timation functions when both variables and branching variables are nonnegative,
just like sometimes assumed in the literature (see, e.g., Zhou et al. 2015; Shen et al.
2020) and thus covering as a particular case the applicative problems described in
Sect. 4.

 R. Cambini et al.

1 3

 38 Page 22 of 32

4.1 A first comparison of all the underestimations

First of all, it is worth comparing all the introduced underestimation functions.
The standard value � = 0.5 has been assumed for splitting all the underestimations.
Starting from instances having n = 10 and p = 4 , the behaviors with p increased to
p = 6 and with n increased to n = 20 are considered too. Moreover, both the “gen-
eral” and the “nonnegative” cases are taken into account. The average times and
average iterations are given as results of this first computational test and are sum-
marized in the following tables. Six groups of instances (depending on n, p, and
“general”/“nonnegative” cases) and 100 instances for each group are considered,
with a grand total of 4200 problems solved.

The results provided in Tables 1 and 2 point out that:

• In the “general” case the linear underestimation functions provide very bad tight-
ness and hence very bad performance, while in the “nonnegative” case their per-
formance has the same order of magnitude of the other underestimations;

• Among the quadratic underestimation functions, u4 is always much better than
u3;

• Among the hybrid underestimation functions, u7 is always much better than u6
(this follows being u6 derived from u3 and being u7 derived from u4);

Table 1 Average number of iterations

General Nonneg

n = 10 p = 4 n = 10 p = 6 n = 20 p = 4 n = 10 p = 4 n = 10 p = 6 n = 20 p = 4

Eigen u0 84.3 147.8 120.0 39.2 47.6 43.9
Lin u1 2665.4 10998.0 8540.8 74.9 125.0 98.7

u2 2659.6 10838.0 8577.0 95.3 152.7 104.4
Quad u3 1448.3 5532.7 2455.2 86.7 143.8 106.9

u4 100.8 224.7 132.6 41.4 66.1 44.3
Hybrid u6 786.9 1656.3 2100.0 92.0 135.6 120.9

u7 95.9 206.0 132.9 41.2 62.9 43.8

Table 2 Average elapsed times (secs)

General Nonneg

n = 10 p = 4 n = 10 p = 6 n = 20 p = 4 n = 10 p = 4 n = 10 p = 6 n = 20 p = 4

Eigen u0 0.631 1.155 1.158 0.300 0.359 0.433
Lin u1 14.882 61.505 53.822 0.491 0.798 0.699

u2 14.556 59.219 51.405 0.603 0.957 0.732
Quad u3 11.926 44.801 26.117 0.800 1.451 1.194

u4 0.723 1.676 1.224 0.312 0.509 0.397
Hybrid u6 5.906 13.244 19.365 0.730 1.149 1.185

u7 0.694 1.515 1.206 0.324 0.503 0.442

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 23 of 32 38

• The most performing underestimation functions are always u0 , u4 , u7;
• In the “nonnegative” case, the performance of the underestimation functions are

always better than the “general” case: this is due to the tightness of underestima-
tion functions which results to be more effective in the “nonnegative” case than
in the “general” one;

• Among the linear and quadratic underestimation functions, increasing the value
of p affects the performances much more than increasing the number of variables
n;

Table 3 Average number of iterations—“general” case—n = 25

u4 u0 u7

p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10

� = 0.0 195.9 1284.0 7056.1 176.4 1325.3 3811.7 193.3 1265.0 6463.1
� = 0.1 186.3 1247.8 6926.6 169.6 988.5 3720.7 187.4 1224.6 6415.9
� = 0.2 180.3 1200.8 6794.1 159.2 959.1 3666.5 177.6 1187.8 6338.3
� = 0.3 170.6 1178.9 6739.0 153.1 936.3 3684.3 169.9 1156.4 6347.2
� = 0.4 162.4 1147.6 6792.6 146.2 913.8 3714.3 163.0 1141.0 6441.1
� = 0.5 158.1 1132.0 6805.5 144.2 900.6 3802.1 157.6 1128.9 6600.1
� = 0.6 152.0 1127.9 7009.1 136.4 900.9 3978.9 151.6 1138.4 6905.1
� = 0.7 149.2 1143.3 7439.6 132.3 918.0 4291.4 149.3 1154.8 7439.3
� = 0.8 145.6 1191.2 8231.2 130.0 952.2 4832.1 146.5 1205.2 8329.9
� = 0.9 147.3 1311.6 10015.0 129.8 1067.0 5958.8 146.8 1315.1 10129.0
� = 1.0 172.7 2135.8 22489.0 155.0 1809.4 14413.0 174.47 2155.2 21709.0

Table 4 Average elapsed times (secs)—“general” case—n = 25

u4 u0 u7

p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10

� = 0.0 1.891 13.000 76.716 1.789 19.810 42.480 1.944 13.064 72.129
� = 0.1 1.774 12.363 73.816 1.711 10.197 40.752 1.861 12.534 70.455
� = 0.2 1.694 11.792 71.448 1.586 9.774 39.573 1.767 11.990 68.646
� = 0.3 1.600 11.495 70.162 1.547 9.440 39.193 1.683 11.537 67.658
� = 0.4 1.511 11.013 69.728 1.441 9.116 38.941 1.601 11.249 67.702
� = 0.5 1.465 10.756 68.820 1.420 8.864 39.232 1.533 11.014 68.282
� = 0.6 1.392 10.611 70.073 1.327 8.775 40.617 1.470 10.993 70.551
� = 0.7 1.352 10.646 73.276 1.283 8.853 43.236 1.429 11.051 74.986
� = 0.8 1.304 10.979 80.001 1.257 9.072 47.891 1.394 11.396 82.436
� = 0.9 1.306 11.976 95.771 1.238 10.066 58.283 1.383 12.330 99.103
� = 1.0 1.510 19.516 216.62 1.443 16.996 141.56 1.611 20.099 212.530

 R. Cambini et al.

1 3

 38 Page 24 of 32

• Performances follow the number of branching variables of the various underes-
timation functions; in this light, recall that u1 , u2 and u3 have 2p branching vari-
ables, u4 has p branching variables, while u0 , u6 and u7 have |Λ−| , |Θ+| and |Γ+|
branching variables, respectively.

4.2 A deep comparison of u
0
 , u

4
 , u

7
—part 1

The previous subsection pointed out that the most performing underestimations
are u0 , u4 and u7 (and recall that, in the particular case of Sect. 4, these under-
estimations coincide). The aim of this subsection is to focus on the behavior of

Table 5 Average number of iterations—“nonnegative” case—n = 25

u4 u0 u7

p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10

� = 0.0 62.97 126.16 199.00 62.44 118.45 178.02 62.40 123.71 194.68
� = 0.1 59.59 122.47 184.76 58.08 111.75 168.91 58.39 118.66 182.34
� = 0.2 55.44 112.74 177.26 55.24 107.09 156.77 54.54 109.46 171.16
� = 0.3 52.71 107.44 167.05 51.96 99.74 146.06 51.43 103.20 159.63
� = 0.4 49.04 101.24 161.72 48.67 95.01 141.23 48.17 97.67 152.05
� = 0.5 46.01 96.71 154.76 45.4 89.56 136.96 45.01 91.14 145.47
� = 0.6 42.78 91.51 149.99 42.74 85.68 130.78 42.35 85.33 137.41
� = 0.7 39.86 86.94 152.11 39.89 82.71 129.86 39.14 81.44 135.08
� = 0.8 37.15 86.55 166.07 37.29 82.65 136.89 36.03 78.85 138.32
� = 0.9 35.12 96.53 246.28 35.26 92.62 175.11 34.15 83.54 170.98
� = 1.0 27.09 205.61 1425.20 26.24 191.41 1364.00 26.77 207.37 1461.30

Table 6 Average elapsed times (secs)—“nonnegative” case—n = 25

u4 u0 u7

p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10

� = 0.0 0.630 1.316 2.179 0.682 1.280 1.953 0.698 1.353 2.182
� = 0.1 0.591 1.264 1.997 0.640 1.213 1.855 0.654 1.298 2.041
� = 0.2 0.551 1.171 1.905 0.609 1.166 1.717 0.616 1.204 1.915
� = 0.3 0.523 1.107 1.789 0.576 1.088 1.603 0.583 1.140 1.783
� = 0.4 0.490 1.048 1.731 0.546 1.038 1.553 0.554 1.082 1.706
� = 0.5 0.462 0.998 1.649 0.515 0.982 1.506 0.522 1.009 1.629
� = 0.6 0.427 0.943 1.600 0.487 0.941 1.440 0.496 0.949 1.540
� = 0.7 0.400 0.896 1.614 0.459 0.908 1.430 0.464 0.910 1.513
� = 0.8 0.372 0.889 1.749 0.433 0.903 1.502 0.432 0.880 1.542
� = 0.9 0.352 0.981 2.561 0.413 0.999 1.893 0.415 0.924 1.873
� = 1.0 0.274 1.988 14.288 0.324 1.938 13.916 0.341 2.082 14.727

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 25 of 32 38

these underestimations with respect to the parameter � used to split the partitions.
Assuming a number of variables n = 25 , instances for p = 4 , p = 7 and p = 10
are considered in both the “general” and the “nonnegative” cases. Values � from
0 to 1 are tested. The average times and average iterations are given as results
of this second computational test and are summarized in the following tables.
Six groups of instances (depending on p, and “general”/“nonnegative” cases) and
100 instances for each group are considered, with a grand total of 19800 prob-
lems solved. Numbers in bold emphasize the best results (lower values) in terms
of iterations or computational time. Notice that, at the best of our knowledge,
no detailed studies have been published regarding to the impact of the splitting
parameter � in the behavior of the branch-and-bound method (for example, just
� = 0.25 is used in Gerard et al. (2017) and just � = 0.8 is considered in Fampa
et al. (2017)). Taking into account the results in Tables 3, 4, 5 and 6, it is worth
noticing that:

• underestimation functions u4 and u7 have similar performances when p < n ; in
this light, notice that u4 can be easily obtained while u7 needs some eigenvec-
tors to be computed; take into account also that in the case p > n underestima-
tion u7 has less branching variables than u4 and hence is more performing;

• u0 has the best performances, but needs some eigenvectors to be computed;
• the use of � = 1.0 should be avoided since provides bad performances;
• the greater is the value of p, the smaller is the value of � providing the best per-

formance; in this light, the parameters suggested in Fampa et al. (2017), Gerard
et al. (2017) seem no useful;

• performances in the “nonnegative” case are much better than the ones in the
“general” case (underestimations’ tightness results better in the “nonnegative”
case than in the “general” one);

Table 7 Average number of iterations—“general” case—p = 10

u4 u0 u7

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

� = 0.0 819.8 1590.0 4966.4 39.0 163.8 1928.6 173.7 1009.6 4295.3
� = 0.1 763.6 1530.7 4851.3 35.9 155.9 1879.4 168.2 976.4 4259.1
� = 0.2 736.9 1466.3 4788.1 34.3 147.2 1832.6 165.2 933.6 4177.0
� = 0.3 723.6 1429.4 4722.3 31.8 141.5 1800.5 157.8 924.0 4153.3
� = 0.4 696.6 1420.4 4716.0 29.8 134.5 1776.0 145.2 892.6 4217.7
� = 0.5 687.4 1402.0 4742.1 28.0 128.8 1795.4 140.4 884.8 4319.0
� = 0.6 595.0 1419.9 4845.7 25.9 122.9 1849.4 132.0 883.2 4492.7
� = 0.7 677.1 1498.0 5083.6 24.2 119.7 1960.3 127.0 887.5 4831.2
� = 0.8 700.0 1607.1 5585.9 22.1 114.4 2172.7 119.0 947.5 5458.7
� = 0.9 776.0 1935.7 6859.3 19.8 114.7 2694.9 122.6 1134.4 6776.5
� = 1.0 5006.6 7799.6 17268.0 13.8 168.3 8285.1 186.8 5147.8 16163.0

 R. Cambini et al.

1 3

 38 Page 26 of 32

• performances decrease exponentially with respect to the number of branching
variables (and, hence, with respect to p);

• as regards the particular class of problems described in Sect. 4, in which u0 , u4
and u7 coincide, the best choice is to use u4 which needs no eigendecompositions.

4.3 A deep comparison of u
0
 , u

4
 , u

7
—part 2

The aim of this subsection is to focus on the behavior of underestimations u0 , u4
and u7 with respect to the number of variables n. Assuming a parameter p = 10 ,
instances for n = 5 , n = 10 and n = 20 are considered in both the “general” and

Table 8 Average elapsed times (secs)—“general” case—p = 10

u4 u0 u7

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

� = 0.0 7.921 15.244 55.109 0.306 1.379 21.819 1.429 9.686 48.158
� = 0.1 7.012 14.427 53.098 0.284 1.312 21.200 1.360 9.314 47.639
� = 0.2 6.506 13.763 52.290 0.267 1.234 20.556 1.276 8.796 46.289
� = 0.3 6.216 13.185 50.897 0.242 1.175 19.921 1.212 8.614 45.299
� = 0.4 5.779 12.906 50.196 0.226 1.105 19.336 1.093 8.187 45.416
� = 0.5 5.552 12.487 49.731 0.211 1.045 19.185 1.033 8.012 45.796
� = 0.6 4.654 12.430 50.110 0.197 0.989 19.419 0.956 7.814 46.850
� = 0.7 5.148 12.780 51.611 0.182 0.950 20.220 0.908 7.698 49.561
� = 0.8 5.150 13.460 55.645 0.168 0.894 22.051 0.842 8.047 55.044
� = 0.9 5.539 15.880 67.482 0.150 0.884 26.864 0.843 9.329 67.126
� = 1.0 31.390 60.871 167.870 0.103 1.222 80.116 1.161 39.250 154.790

Table 9 Average number of iterations—“nonnegative” case—p = 10

u4 u0 u7

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

� = 0.0 149.0 170.5 190.6 29.0 66.9 156.4 67.7 153.7 177.8
� = 0.1 136.5 160.3 179.6 26.9 63.1 148.1 63.3 143.3 166.6
� = 0.2 128.5 151.2 168.8 25.3 58.8 138.3 59.3 133.8 156.4
� = 0.3 118.3 144.3 158.9 23.7 54.8 131.4 54.9 124.6 145.9
� = 0.4 110.7 136.9 153.1 22.0 51.1 124.2 51.4 116.8 139.5
� = 0.5 102.4 127.1 147.8 20.2 47.8 116.6 47.7 109.3 131.1
� = 0.6 95.4 120.3 141.5 18.6 43.8 109.8 43.6 100.8 124.6
� = 0.7 87.1 113.4 140.4 17.0 40.2 105.9 39.7 93.2 118.2
� = 0.8 79.7 109.8 147.9 14.9 36.2 104.6 35.6 85.2 116.9
� = 0.9 73.9 117.6 198.7 12.6 32.2 117.4 30.4 79.4 135.8
� = 1.0 841.3 1177.7 1327.5 4.0 31.9 1201.2 30.2 1083.7 1346.6

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 27 of 32 38

the “nonnegative” cases. Values � from 0 to 1 are tested. The average times and
average iterations are given as results of this second computational test and are
summarized in the following tables. Six groups of instances (depending on n, and
“general”/“nonnegative” cases) and 100 instances for each group are considered,
with a grand total of 19800 problems solved. Numbers in bold emphasize the best
results (lower values) in terms of iterations or computational time. In other words,
a detailed computational experience is provided to show the behavior of underes-
timations u0 , u4 and u7 in the cases n < p , n = p and n > p . The results provided in
Tables 7, 8, 9 and 10 point out that:

• Underestimation u0 is the most performing one (but needs eigenvalues and eigen-
vectors to be computed);

• Comparing u4 and u7 (recall that u7 is derived from u4 by means of an eigen-
decomposition), performances are similar when n > p , u7 is better than u4 when
n = p , while u7 outperforms u4 when n < p ; this behavior yields from the number
of splitting variables which results to be smaller than or equal to min{n, p};

• Performances in the “nonnegative” case are much better than the ones in the
“general” case;

• The higher is the value of n the smaller the value of � should be.

4.4 Overall comments

The main results of this computational experience are:

• u4 is the most performing underestimation function based on the structure of lin-
ear multiplicative functions thus avoiding the numerical troubles of eigenvectors
computing;

Table 10 Average elapsed times (secs)—“nonnegative” case—p = 10

u4 u0 u7

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

� = 0.0 1.520 1.744 2.116 0.231 0.579 1.719 0.607 1.601 2.021
� = 0.1 1.369 1.624 1.968 0.213 0.546 1.622 0.567 1.483 1.892
� = 0.2 1.287 1.525 1.843 0.201 0.509 1.513 0.529 1.381 1.762
� = 0.3 1.182 1.435 1.733 0.191 0.476 1.436 0.490 1.278 1.653
� = 0.4 1.107 1.353 1.663 0.778 0.446 1.360 0.462 1.197 1.576
� = 0.5 1.008 1.254 1.604 0.165 0.419 1.280 0.424 1.112 1.482
� = 0.6 0.928 1.176 1.528 0.151 0.389 1.208 0.387 1.014 1.406
� = 0.7 0.843 1.097 1.511 0.140 0.359 1.158 0.355 0.940 1.330
� = 0.8 0.767 1.055 1.577 0.125 0.329 1.151 0.317 0.855 1.313
� = 0.9 0.692 1.102 2.095 0.109 0.295 1.276 0.272 0.783 1.506
� = 1.0 6.271 9.913 13.334 0.046 0.285 12.185 0.254 9.104 13.549

 R. Cambini et al.

1 3

 38 Page 28 of 32

• Linear underestimations, often used in the literature, are actually worse than
quadratic underestimations;

• The parameter � has no value better than others, unlike the literature proposes;
• In the particular applicative case described in Sect. 4 u4 is the best choice and

there is no need at all to use eigenvectors;
• The “nonnegative” case results to have better performances than the “general”

one, and this deserves to be deepened on in future researches.

5 Toward applications to bilevel problems

In Sect. 3.4, a special linear multiplicative problem is considered in order to point out
its behavior with respect to the underestimation functions previously introduced. At the
same time, the study of this particular case is also motivated by the fact that the struc-
ture (6) is commonly present in several bilevel programming problems of leader-fol-
lower type (see, e.g., Dempe 2020 for a state of the art). Specifically speaking, leader-
follower type problems are hierarchical mathematical formulations with an upper and
lower-level structure: the upper/leader-level is a suitable optimization problem partially
constrained by a second (parametric) optimization problem as lower/follower-level.

In many real-world applications formulated as bilevel programming prob-
lems, the upper/leader-level objective function is defined as in (6), that is,
f (z, �, g) =

∑p

i=1
�igi + q(z, �, g) . By using the notation introduced in Sect. 3.4, if

� ∶= (�i)i=1,…,p ∈ ℝ
p represents the upper/leader variable (for instance, a vector of

clearing prices), g ∶= (gi)i=1,…,p ∈ ℝ
p represents the lower/follower variable (for

instance, a vector of certain quantities sold) and x ∶= (z, �) so that f (z, �, g) ≡ f (x, g) ,
then the standard form of the resulting optmistic bilevel programming problem is the
following:

where

and

are the upper/leader and the lower/follower feasible sets, respectively. Under suit-
able assumptions (see, e.g., Dempe and Zemkoho 2012, 2013) and under opportune
constraints qualification conditions (see, e.g., Aussel and Svensson 2019; Dempe
2020), the optimistic bilevel programming problem (7) can be transformed into a

(7)

min
x,g

f (x, g)

s.t.

{
x ∈ X

g ∈
{
g ∈ K(x) ∶ h(x, g) = ming̃∈K(x) h(x, g̃)

}
,

X ∶=
{
x ∈ ℝ

p+m ∶ �iu (x) ≤ 0 , iu = 1,… , ku
}

K(x) ∶=
{
g ∈ ℝ

p ∶ �il (x, g) ≤ 0 , il = 1,… , kl
}

∀x ∈ X

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 29 of 32 38

single-level optimization problem1, that is, a Mathematical Program with Equilib-
rium Constraints (MPEC) in which the lower/follower problem is reformulated by
using opportune Karush-Kuhn-Tucker (KKT) optimality conditions. Notice that, in
this case, the lower-level KKT conditions result to be:

Then, the resulting KKT reformulation of the optimistic bilevel programming prob-
lem (7) is:

Remark 7 The KKT reformulation allows to transform the optimistic bilevel pro-
gramming problem (7) into a single-level program (9) at the cost of introducing the
new variables � in the formulation of the problem. In addition, the presence of com-
plementarity constraints implies that the feasible region of the resulting problem is
no more a polyhedron.

From a computational point of view, the linear multiplicative function f can be
studied by using opportunely the results obtained in Sect. 3.

Moreover, the complementarity constraints of the lower/follower problem in the
KKT reformulation merged with the upper/leader-level, can be managed in various
ways:

• If the upper and lower level of (7) are linear multiplicative, then a classical pro-
cedure to solve bilevel programs is to consider a suitable penalization of �T�(x, g)
that could be used to get a linear multiplicative single-level optimization problem
(see Section 2.4.3 in Bard 1997, for example) at the cost of introducing the new
penalty parameter in the formulation of the problem;

• An outer approximation branch-and-bound method based on a feasible region
relaxation where some of the products �il�il (x, g) = 0 are omitted and some of the
variables �il or �il (x, g) are fixed to zero;

• A quadratic indefinite penalty function M
∑kl

il=1
�il�il (x, g) , with M >> 0 great

enough, to be added to the objective function (again, a branch-and-bound may
deserve);

• Binary 0 − 1 variables and the so called big-M method (constraints �il�il (x, g) = 0
substituted with �il ≤ �ilM and �il (x, g) ≤ (1 − �il)M , �il ∈ {0, 1} and M >> 0

(8)
{

∇gh(x, g) + ∇g�(x, g)
T� = 0,

�≥0, −�(x, g)≥0, �T�(x, g) = 0.

(9)

min
x,g,�

f (x, g)

s.t.

{
x ∈ X

(g, �) ∈ KKT(x) ∶= {(g, �) ∶ conditions (8) are satisfied }

1 Classical requirements on the (parametric) lower/follower-level problem are the differentiability and
convexity of h(x, ⋅) and the differentiability and linearity/convexity/generalized convexity of �

i
l

(x, ⋅) , for
all i = 1,… , k

l
.

 R. Cambini et al.

1 3

 38 Page 30 of 32

great enough), a branch-and-bound approach may be needed to manage the
binary variables.

Remark 8 Complementarity constraints can be directly managed by means of a
branch and bound approach where various subproblems are solved. Moreover, fur-
ther approaches can be used in the case the available solvers are able to manage
particular constraints. In this light, as �il ≥ 0 and −�il (x, g) ≥ 0 , then the following
conditions (i)–(v) are equivalent:

(i) �il�il (x, g) = 0;
(ii)

(
�il + �il (x, g)

)2
=
(
�il − �il (x, g)

)2;
(iii)

(
�il + �il (x, g)

)
=
|||�il − �il (x, g)

|||;
(iv)

(
�il + �il (x, g)

)
= max

{
�il − �il (x, g);0

}
+max

{
�il (x, g) − �il ;0

}
;

(v)
{
�il , �il (x, g)

}
 is a “SOS1” set of variables (Special Ordered Set of type 1, set of

variables where at most one variable may be nonzero, all others being at 0).

As a consequence, solvers able to manage quadratic indefinite constraints, absolute
value constraints, “max” constraints or SOS constraints could be useful too.

In the context of this class of problems, although opportune numerical
experiments could be of great interest to provide a performance comparison with
works on the topic available in the literature (see Kleinert and Schmidt 2021, for
example), it is beyond the scope of this work. Anyway, future investigations will be
in this direction in relation to the study of suitable real-world problems.

6 Conclusions

In this paper, an extended computational experience regarding linear multiplicative
problems is provided and a unifying framework to approach such problems with a
branch-and-bound method is fully described. In this light, several underestimation
functions are studied and various partitioning criteria are compared. In particular,
it has been shown that the quadratic underestimation function u4 has to be chosen
to avoid eigenvectors-based approaches. As regards the splitting parameter � , as
higher the number of branching variables (or the number of variables) as smaller
the value of � should be. The proposed solution method results to be very efficient
in the case of nonnegative variables and nonnegative branching variables. In this
light, a particular case (useful in applications and in bilevel programming) has been
theoretically studied in deep, pointing out also that u4 is the underestimation to be
used. The results obtained within the proposed unifying framework provide detailed
comparisons and improvements with respect to the current literature.

Acknowledgements Careful reviews by the anonymous referees are gratefully acknowledged.

1 3

Solving linear multiplicative programs via branch‑and‑bound:… Page 31 of 32 38

Funding Open access funding provided by Università di Pisa within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Aussel D, Svensson A (2019) Towards tractable constraint qualifications for parametric optimisation
problems and applications to generalised nash games. J Optim Theory Appl 182:404–416. https://
doi. org/ 10. 1007/ s10957- 019- 01529-4

Bajaj I, Faruque Hasan MM (2020) Global dynamic optimization using edge-concave underestimator. J
Glob Optim 77:487–512. https:// doi. org/ 10. 1007/ s10898- 020- 00883-2

Bard JF (1997) Practical bilevel optimization: algorithms and applications. Kluwer Academic Publishers,
Alphen aan den Rijn

Cambini A, Martein L (2009) Generalized convexity and optimization: theory and applications. Lecture
notes in economics and mathematical systems. Springer, Berlin

Cambini R, Sodini C (2005) Decomposition methods for solving nonconvex quadratic programs via
branch and bound. J Glob Optim 33:313–336. https:// doi. org/ 10. 1007/ s10898- 004- 6095-8

Cambini R, Sodini C (2008) A computational comparison of some branch and bound methods for indefi-
nite quadratic programs. Cent Eur J Oper 16:139–152. https:// doi. org/ 10. 1007/ s10100- 007- 0049-4

Cambini R, Salvi F (2009) A branch and reduce approach for solving a class of low rank d.c. programs. J
Comput Appl Math. 233:492–501. https:// doi. org/ 10. 1016/j. cam. 2009. 07. 053

Cambini R, Salvi F (2010) Solving a class of low rank d.c. programs via a branch and bound approach:
a computational experience. Oper Res Lett. 38:354–357. https:// doi. org/ 10. 1016/j. orl. 2010. 07. 008

Dempe S (2020) Bilevel optimization: theory, algorithms, applications and a bibliography. Springer,
Berlin

Dempe S, Zemkoho AB (2012) On the Karush–Kuhn–Tucker reformulation of the bilevel optimization
problem. Nonlinear Anal Theory Methods Appl 75:1202–1218. https:// doi. org/ 10. 1016/j. na. 2011.
05. 097

Dempe S, Zemkoho AB (2013) The bilevel programming problem: reformulations, constraint qualifi-
cations and optimality conditions. Math Program Ser A 138:447–473. https:// doi. org/ 10. 1007/
s10107- 011- 0508-5

Fampa M, Lee J, Melo W (2017) On global optimization with indefinite quadratics. EURO J Comput
Optim 5:309–337. https:// doi. org/ 10. 1007/ s13675- 016- 0079-6

Gerard D, Köppe M, Louveaux Q (2017) Guided dive for the spatial branch-and-bound. J Glob Optim
68:685–711. https:// doi. org/ 10. 1007/ s10898- 017- 0503-3

Gupta OK (1995) Applications of quadratic programming. J Inf Optim Sci 16:177–194. https:// doi. org/
10. 1080/ 02522 667. 1995. 10699 213

Horst R, Pardalos PM (1995) Handbook of global optimization, nonconvex optimization and its applica-
tions. Kluwer Academic Publishers, Dordrecht

Horst R, Tuy H (1996) Global optimization: deterministic approaches, 3rd edn. Springer, Berlin
Horst R, Pardalos PM, Thoai NV (2001) Introduction to global optimization, nonconvex optimization and

its applications, 2nd edn. Kluwer Academic Publishers, Dordrecht
Jiao H, Liu S, Chen Y (2012) Global optimization algorithm for a generalized linear multiplicative pro-

gramming. J Appl Math Comput 40:551–568
Jiao H, Wang W, Shang Y (2023) Outer space branch-reduction-bound algorithm for solving generalized

affine multiplicative problems. J Comput Appl Math 419:114784

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10957-019-01529-4
https://doi.org/10.1007/s10957-019-01529-4
https://doi.org/10.1007/s10898-020-00883-2
https://doi.org/10.1007/s10898-004-6095-8
https://doi.org/10.1007/s10100-007-0049-4
https://doi.org/10.1016/j.cam.2009.07.053
https://doi.org/10.1016/j.orl.2010.07.008
https://doi.org/10.1016/j.na.2011.05.097
https://doi.org/10.1016/j.na.2011.05.097
https://doi.org/10.1007/s10107-011-0508-5
https://doi.org/10.1007/s10107-011-0508-5
https://doi.org/10.1007/s13675-016-0079-6
https://doi.org/10.1007/s10898-017-0503-3
https://doi.org/10.1080/02522667.1995.10699213
https://doi.org/10.1080/02522667.1995.10699213

 R. Cambini et al.

1 3

 38 Page 32 of 32

Kleinert T, Schmidt M (2021) Computing feasible points of bilevel problems with a penalty alternating
direction method. INFORMS J Comput 33:198–215. https:// doi. org/ 10. 1287/ ijoc. 2019. 0945

Konno H, Kuno T (1992) Linear multiplicative programming. Math Program 56:51–64. https:// doi. org/
10. 1007/ BF015 80893

McCarl BA, Moskowitz H, Furtan H (1977) Quadratic programming applications. Omega 5:43–55.
https:// doi. org/ 10. 1016/ 0305- 0483(77) 90020-2

McCormick GP (1976) Computability of global solutions to factorable nonconvex solutions: Part I: con-
vex underestimating problems. Math Program 10:147–175. https:// doi. org/ 10. 1007/ BF015 80665

Mjelde KM (1983) Methods of the allocation of limited resources. Wiley, New York
Ryoo HS, Sahinidis NV (2003) Global optimization of multiplicative programs. J Glob Optim 26:387–

418. https:// doi. org/ 10. 1023/A: 10247 00901 538
Shen P, Wang K, Lu T (2020) Outer space branch and bound algorithm for solving linear multiplicative

programming problems. J Glob Optim 78:453–482. https:// doi. org/ 10. 1007/ s10898- 020- 00919-7
Shen P, Wang K, Lu T (2022) Global optimization algorithm for solving linear multiplicative program-

ming problems. Optimization 71:1421–1441. https:// doi. org/ 10. 1080/ 02331 934. 2020. 18126 03
Tuy H (2016) Convex analysis and global optimization, 2nd edn. Springer optimization and its applica-

tions. Springer, Berlin
Wang CF, Liu SY, Shen P (2012) Global minimization of a generalized linear multiplicative program-

ming. Appl Math Model 36:2446–2451. https:// doi. org/ 10. 1016/j. apm. 2011. 09. 002
Zhou XG, Cao BY, Wu K (2015) Global optimization method for linear multiplicative programming.

Acta Math Sin 31:325–334. https:// doi. org/ 10. 1007/ s10255- 015- 0456-6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1287/ijoc.2019.0945
https://doi.org/10.1007/BF01580893
https://doi.org/10.1007/BF01580893
https://doi.org/10.1016/0305-0483(77)90020-2
https://doi.org/10.1007/BF01580665
https://doi.org/10.1023/A:1024700901538
https://doi.org/10.1007/s10898-020-00919-7
https://doi.org/10.1080/02331934.2020.1812603
https://doi.org/10.1016/j.apm.2011.09.002
https://doi.org/10.1007/s10255-015-0456-6

	Solving linear multiplicative programs via branch-and-bound: a computational experience
	Abstract
	1 Introduction
	2 Definitions and preliminary results
	2.1 Definition of the problem
	2.2 Underestimation functions
	2.3 A branch-and-bound scheme
	2.4 A raw approach
	2.5 Splitting process

	3 Specific underestimation functions
	3.1 Linear underestimation functions
	3.2 Quadratic underestimation functions
	3.3 Further hybrid underestimation functions
	3.4 A particular case

	4 A computational experience
	4.1 A first comparison of all the underestimations
	4.2 A deep comparison of  ,  , —part 1
	4.3 A deep comparison of  ,  , —part 2
	4.4 Overall comments

	5 Toward applications to bilevel problems
	6 Conclusions
	Acknowledgements
	References

