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SUMMARY
Objective. To achieve instance segmentation of upper aerodigestive tract (UADT) neo-
plasms using a deep learning (DL) algorithm, and to identify differences in its diagnostic 
performance in three different sites: larynx/hypopharynx, oral cavity and oropharynx.
Methods. A total of 1034 endoscopic images from 323 patients were examined under nar-
row band imaging (NBI). The Mask R-CNN algorithm was used for the analysis. The data-
set split was: 935 training, 48 validation and 51 testing images. Dice Similarity Coefficient 
(Dsc) was the main outcome measure.
Results. Instance segmentation was effective in 76.5% of images. The mean Dsc was 
0.90  ±  0.05. The algorithm correctly predicted 77.8%, 86.7% and 55.5% of lesions in 
the larynx/hypopharynx, oral cavity, and oropharynx, respectively. The mean Dsc was 
0.90 ± 0.05 for the larynx/hypopharynx, 0.60 ± 0.26 for the oral cavity, and 0.81 ± 0.30 for 
the oropharynx. The analysis showed inferior diagnostic results in the oral cavity compared 
with the larynx/hypopharynx (p < 0.001). 
Conclusions. The study confirms the feasibility of instance segmentation of UADT using 
DL algorithms and shows inferior diagnostic results in the oral cavity compared with other 
anatomic areas.

KEY WORDS: artificial intelligence, instance segmentation, deep learning, videomics

RIASSUNTO
Obiettivo. Valutare l’instance segmentation utilizzando un algoritmo di intelligenza artifi-
ciale (IA) nei tumori delle vie aerodigestive superiori. Si è poi confrontata la performance 
diagnostica in tre diversi siti anatomici: laringe/ipofaringe, cavo orale e orofaringe.
Metodi. Sono state analizzate 1034 immagini NBI di 323 pazienti. Lo studio si è avvalso 
dell’algoritmo Mask-R-CNN. Il dataset è stato suddiviso in 935 immagini per il training, 
48 per la validazione e 51 per il testing. Il principale outcome misurato è stato il Dice 
Similarity Coefficient (Dsc). 
Risultati. L’algoritmo ha identificato le lesioni nel 76.5% delle immagini. Il valore totale 
del Dsc è stato 0,90 ± 0,05. Considerando le diverse sottosedi, sono state segmentate il 
77,8% delle lesioni laringo-ipofaringee, l’86,7% delle orali e il 55,5% delle orofaringee. Il 
Dsc per le tre sottosedi è stato 0,90 ± 0,05, 0,60 ± 0,26 e 0,81 ± 0,30 rispettivamente per 
laringe/ipofaringe, cavo orale e orofaringe. L’analisi ha dimostrato risultati migliori per la 
laringe/ipofaringe e l’orofaringe rispetto a quelli del cavo orale (p < 0,001).
Conclusioni. Questo studio dimostra la fattibilità dell’instance segmentation nelle vie ae-
rodigestive superiori utilizzando un algoritmo di IA, mostrando risultati inferiori nel cavo 
orale rispetto alle altre sottosedi.
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Introduction
The application of computer vision techniques in diagnos-
tic videoendoscopies (i.e. Videomics) 1,2 is a promising re-
search field that is currently showing a fast rate of growth 
in many medical specialties. The recent refinement of deep 
learning (DL) algorithms for image processing and their 
application in the medical field opened novel possibilities 
in the management of endoscopic exams that, in the past, 
had only subjective value. In particular, videoendoscopy is 
a key component in the management of upper aerodiges-
tive tract (UADT) tumours, influencing their entire diag-
nostic process, treatment and follow-up 3. Notwithstanding, 
it remains a operator-dependent and time-consuming pro-
cedure, which is substantially limited by the variables of 
human experience and perception. This is especially true 
when endoscopy is applied in conjunction with optical bi-
opsy techniques such as Narrow Band Imaging (NBI) 4, re-
quiring even more specialised training and adding a further 
layer of complexity and subjectivity. Finally, no easily clas-
sifiable and structured data can be drawn from these exami-
nations, significantly limiting their integration with other 
technologies (e.g., cross sectional imaging, ultrasound, 
genomic markers, and so on). This is also highlighted by 
initial attempts to standardise endoscopic evaluation and 
improve implementation of new analytic techniques 5. 
Our study aimed to explore the potential of a novel DL 
algorithm, Mask R-CNN  6, in the diagnostic approach to 
UADT squamous cell carcinoma (SCC). The primary goal 
was to detect and classify neoplastic lesions and, at the 
same time, precisely define their margins, a task overall 
defined as “instance segmentation”. In fact, Mask R-CNN 
provides a flexible and general framework for object in-
stance segmentation that can also be potentially applied to 
medical images. This approach combines elements from 
the tasks of object detection (where the goal is to local-
ise the lesion using a bounding box), object classification 7 
(where the purpose is to classify each pixel into a set of 
categories – e.g., tumour vs. normal mucosa), and semantic 
segmentation (where the aim is to automatically delineate 
the lesion’s margins). Finally, we included in our analysis 
three different areas of the UADT (oral cavity, oropharynx, 
larynx/hypopharynx) in order to identify potential site-re-
lated differences in the diagnostic capability of this DL al-
gorithm, an information that is still lacking in the current 
literature. In fact, studies assessing the value of artificial 
intelligence in endoscopy are generally focused on a single 
site and are difficult to generalise in the context of UADT 
SCC, which can arise from a wide variety of anatomical 
structures, as well as epithelial and mucosal types.

Materials and methods
A retrospective study was performed including videoen-
doscopies performed between September 2009 and January 
2021 in patients treated at the Unit of Otorhinolaryngol-
ogy – Head and Neck Surgery, University of Brescia, Italy 
for SCC of the UADT. A total of 7,567 videoendoscopies 
were collected from a dedicated archive. All recordings 
were anonymised and associated with the corresponding 
histopathologic report. 
The study primary endpoint was the definition of the di-
agnostic accuracy (in terms of Dice Similarity Coefficient 
[Dsc]) of the Mask R-CNN algorithm when applied to NBI 
UADT videoendoscopic frames. The secondary endpoint 
was the comparison of the algorithm’s Dsc in the three dif-
ferent anatomical areas herein considered.
Inclusion criteria were as follows:
• primary or recurrent SCC of the UADT (distinguished 

between those occurring in the oral cavity, oropharynx, 
and larynx/hypopharynx);

• NBI evaluation with adequate quality (without pooling 
of saliva, blood spots, swallowing reflex, coughing or 
other technical issues);

• available histological examination obtained at the time 
of videoendoscopy or subsequent surgery.

All patients were examined both under white light (WL) 
and NBI through transnasal videolaryngoscopy (HD Vid-
eo Rhino-laryngoscope Olympus ENF-VH, ENF-VQ, or 
ENF-V2, Olympus Medical System Corporation, Tokyo, 
Japan) or through transoral endoscopy by 0° rigid telescope 
coupled to an Evis Exera II HD camera connected to an 
Evis Exera II CLV-180B/III CV-190 light source (Olympus 
Medical Systems Corporation, Tokyo, Japan). Endoscopic 
videos were selected independently by two otolaryngolo-
gists with extensive experience (at least 4 years) in endo-
scopic assessment of UADT lesions by NBI and indepen-
dently reviewed by an adjunctive expert. Images were then 
manually quality-controlled, with exclusion of those that 
were blurred, obscured by blood or secretions, or without 
adequate NBI evaluation.

Image processing
Three representative frames per video were selected for 
every lesion and saved in jpeg format. The most representa-
tive NBI videoframe was chosen and subsequent frames at 
0.3 second time intervals were then automatically selected. 
Frame annotation was performed manually using the La-
belMe application  8. Annotations consisted of a variable 
number of key points marking the lesion margins in the 
videoendoscopic frame taking into account positive NBI 
patterns. The resulting masks were then saved in json for-
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mat and stored in a dedicated folder. Two clinical experts 
concomitantly annotated the images and a further review 
was performed by a senior staff member. When an agree-
ment regarding lesion margins was not reached, the frame 
was excluded from the analysis.
After this selection process, a total of 1034 endoscopic 
images were obtained. Three different sub-datasets were 
generated according to the lesion primary site: oral cavity, 
oropharynx, and larynx/hypopharynx. In this way, the total 
frames analysed were 653 for the larynx/hypopharynx, 246 
for the oral cavity, and 135 for the oropharynx. 

Dataset
The dataset included 1034 images from 323 patients. For 
algorithm training and testing the dataset was split over pa-
tients and balancing the three classes into three sets: 935 
images from 290 subjects for training, 48 images from 16 
subjects for validation, and 51 images from 17 subjects for 
testing. All images were resized to the same dimension of 
480 x 640 pixels. 

DL analysis
In this work, Mask R-CNN 9 was used to segment the tu-
mour in endoscopic frames. This convolutional neural 
network (CNN) consists of backbone, Region Proposal 
Network (RPN), and three heads for classification, bound-
ing-box regression and segmentation (Fig. 1).
As backbone, we used the ResNet50 10 combined with the 
Feature Pyramid Network (FPN) 11 to extract features from 

the input frame at multiple scales. Starting from the features 
computed with the backbone, the RPN identifies candidate 
regions containing the tumour. For each of the proposed 
regions, the final bounding box containing the tumour and 
the tumour segmentation are obtained from the three heads. 
To cope with the relatively limited size of the dataset, we 
used the weights computed on the COCO dataset 12 to ini-
tialise the layers of Mask R-CNN. To reduce the risk of 
overfitting, we performed on-the-fly data augmentation 
during training by applying: random brightness changes in 
the range (0.5, 1.1), random contrast changes in the range 
(0.8, 3) and random rotation in the range (-20, 20).
The model was trained for 100 epochs, using the Stochas-
tic Gradient Descent (SGD) as optimiser with an initial 
learning rate of 0.001 and momentum of 0.9. We used a 
loss which is the combination of different contributions: 

 

where  is the loss in the classification head,  is 
the loss in bounding-box regression head,  is the 
classification loss in the RPN,  is the localisation 

loss in the RPN, and  is the loss in segmentation 
head. The loss equations can be found in the original Mask 
R-CNN paper 9.

Performance metrics and statistical analysis
As a primary endpoint the segmentation performance was 
evaluated using the Dsc, which is a statistical validation 

Figure 1. Schematic representation of the proposed architecture. The Mask R‑CNN is made of a backbone (composed by a ResNet50 and a feature pyramid 
network), a region proposal network (RPN), ROIAlign, and three heads, for classification, bounding‑box regression, and segmentation.



A. Paderno et al.

286

metric based on the spatial overlap between the predicted   

( ) and ground-truth ( ) segmentation:

Dsc can assume values in a range from 0, indicating no 
overlap, to 1, indicating complete overlap.
Furthermore, outcomes were also evaluated using the fol-
lowing spatial overlap-based metrics:
Pixel accuracy (Acc) represents the percent of pixels in the 
image which are correctly classified. 

It is defined as:  

where TP, TN, FP, FN denote the true positives, true nega-
tives, false positives and false negatives, respectively. 
Recall (Rec), also known as Sensitivity or True Posi-
tive Rate, defines the portion of positive pixels in the 
ground-truth which are also identified as positive in the 
predicted segmentation. 

It is defined as: 

Specificity (Spec), or True Negative Rate, measures the por-
tion of negative pixels (background) in the ground-truth that 
are also identified as negative in the predicted segmentation. 

It is defined as: 

Precision (Prec), or Positive Predictive Value, measures 
how accurate the predictions are, i.e. the percentage of cor-
rect predictions. 

It is defined as: 

F1-score is a balance between precision and recall, also 
known as harmonic mean. 

It is defined as: 

Intersection over Union (IoU), also referred to as Jaccard in-
dex, represents the area of overlap between the predicted seg-
mentation and the ground truth divided by the area of union 
between the predicted segmentation and the ground truth. 

It is defined as: 

Mean Average Precision (mAP), which represents the aver-
age of the area under the Recall-Precision curve, was also 
computed.
Outcomes were compared between the different subsites 
analysed using non-parametric statistics. 

The Kruskal-Wallis H-test was used for the overall compar-
ison and the Mann-Whitney U rank test for pair compari-
sons. Statistical analysis was performed using Jupiter Note-
book 6.4.5 with pandas 1.4.1 and ScyPy 1.8.0 libraries.

Results
Overall performance
The total number of images used for the test set was 51. 
The algorithm demonstrated the ability to correctly predict 
39 of 51 images (76.5%). The average Dsc score was 0.79 
(range, 0.26-0.97; standard deviation (SD), 0.22). Overall 
and site-specific performance metrics are summarised in 
Table I and Figure 2. Samples of the segmentation results 
are presented in Figure 3. 

Laryngeal/hypopharyngeal lesions
The total number of laryngeal and hypopharyngeal lesions 
in the test set were 27 (52.9% of the test dataset). Out of 
that number, our algorithm correctly predicted 21 lesions 
(77.8%). The mean Dsc score was 0.90  ±  0.05, the first 
quartile was 0.90 and the third quartile 0.94 (Tab. I).

Oral lesions
The oral lesions comprised in the test set were 15 (29.4% of 
the total). The algorithm performed a correct prediction in 
13 cases (86.7%). The mean Dsc score was 0.60 ± 0.26, the 
first quartile was 0.34 and the third quartile 0.84 (Tab. I).

Oropharyngeal lesions
In the test set, the oropharyngeal lesions were 9 of 51 imag-
es (17.6%). The algorithm predicted 5 images (55.5%). The 
mean value of Dsc score was 0.81 ± 0.30, the first quartile 
was 0.92 and the third quartile 0.95 (Tab. I).

Comparison between three different UADT sites
Results for each site are summarised in Table I. The overall 
diagnostic performance, defined by the Dsc score, was sig-
nificantly different between the different sites (p = 0.002). 
Pairwise analysis showed that the difference was related to 
significantly inferior results in the oral cavity when com-
pared with larynx/hypopharynx (p < 0.001).
Diagnostic results proved to be significantly correlated 
with the site analysed also considering other performance 
metrics: accuracy (p < 0.001), specificity (p = 0.02), IoU 
(p = 0.002), and F1 score (p = 0.002). As above, this differ-
ence is related to inferior results in the oral cavity vs larynx/
hypopharynx. However, when considering accuracy, it is 
also possible to evidence a significant difference between 
oral cavity and oropharynx (p = 0.03).
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Discussion

In this study, we evaluated for the first time the specific 
task of instance segmentation in clinical endoscopy for 
head and neck SCC. The analysis included three sites of the 
UADT to allow comparison of the algorithm’s diagnostic 
performance in different anatomical areas. The algorithm 

was able to identify and segment the lesion in 76.5% of 

cases, and showed remarkable diagnostic accuracy, espe-

cially in consideration of the complex task to be performed. 

Interestingly, results were significantly inferior in the oral 

cavity, where all outcome measures underperformed when 

compared with larynx/hypopharynx and, in some cases 

Figure 2. Box plots detailing the diagnostic accuracy of the algorithm in different sites according to various metrics. (A) Dice similarity coefficient (Dsc); (B) Ac‑
curacy; (C) Specificity; (D) Precision; (E) Recall; (F) Intersection over Union (IoU); (G) F1 score.

Table I. Summary of the diagnostic performance according to different metrics.

Mean value (SD) Overall Larynx/hypopharynx Oral cavity Oropharynx

Dsc 0.79 ± 0.23 0.90 ± 0.05 0.60± 0.26 0.80 ± 0.30

Accuracy 0.91 ± 0.12 0.98 ± 0.01 0.79 ± 0.13 0.92 ± 0.14

Specificity 0.93 ± 0.12 0.98 ± 0.01 0.86 ± 0.16 0.92 ± 0.15

Precision 0.85 ± 0.24 0.94 ± 0.06 0.73 ± 0.32 0.79 ± 0.36

Recall 0.86 ± 0.22 0.91 ± 0.08 0.73 ± 0.33 0.95 ± 0.04

IoU 0.73 ± 0.27 0.87 ± 0.09 0.49 ± 0.30 0.76 ± 0.14

F1 score 0.80 ± 0.23 0.92 ± 0.05 0.61 ± 0.27 0.81 ± 0.31
Dsc: Dice similarity coefficient; IoU: Intersection over Union; SD: standard deviation.



A. Paderno et al.

288

Figure 3. Visual samples of the segmentation results. From left to right: raw endoscopic frames, ground truth annotation, and predictions obtained with the 
proposed method. 
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(i.e., accuracy), oropharynx. This is in line with what pre-
viously observed by Piazza and coworkers 13 when applying 
bioendoscopic tools such as NBI. This result is possibly 
related to the wide array of epithelial subtypes observed 
in the oral cavity, adjunctive limits specifically correlated 
with oral examination (e.g., presence of light artifacts), and 
confounding factors (e.g., tongue blade, teeth, or dentures) 
that the ML software must learn to take into account.
Instance segmentation represents the ultimate step in video 
analysis since it allows at the same time detection, clas-
sification, and segmentation of multiple elements in each 
single frame, which is possible thanks to the integration 
of different analytic components in the same general algo-
rithm. This approach is particularly suited to the context 
of UADT endoscopy since different alterations (e.g., con-
comitant inflammatory or benign lesions) can be frequently 
encountered in the field of view together with the target 
lesion, and due to the fact that patients with head and neck 
SCC can develop distinct islands of neoplastic or dysplastic 
mucosa (i.e., field of cancerisation) that might involve vari-
ous portions of the videoframe, even without continuity.
In general, recent CNN-based methods have demonstrat-
ed remarkable results in segmentation of the UADT and 
proved to be well-suited for such a complex task. Laves 
et al. 14 first demonstrated that a weighted average ensem-
ble network of UNet and ErfNet were the best suited for 
laryngeal segmentation of intra-operative images under di-
rect laryngoscopy, with a mean IoU of 84.7%. However, 
different authors subsequently strived toward development 
of diagnostic algorithms that could be applied in real time 
in office-based and intra-operative endoscopy. Paderno 
et al. 15 explored the use of fully CNNs for real-time seg-
mentation of SCC in the oral cavity and oropharynx. In this 
work, different architectures were compared detailing their 
diagnostic performance and inference time, demonstrating 
the possibility to achieve real-time segmentation. In ac-
cordance with previous findings in literature, the present 
study confirms that the oral cavity may have inferior diag-
nostic results due to the high variability of subsites when 
compared with other areas of the UADT (i.e., oropharynx, 
larynx, and hypopharynx). When dealing with normal la-
ryngeal anatomy, Fehling et al. 16 explored the possibility to 
achieve a fully automated segmentation of the glottic area 
using a CNN in high-speed laryngeal videos. The algorithm 
obtained a Dsc over 0.85 for all subsites analysed. Finally, 
Li et al. 17 proposed a method to segment nasopharyngeal 
malignancies in endoscopic images based on DL, reach-
ing an accuracy of 88.0%. However, progressive advances 
in automatic segmentation of the UADT can be observed 
thanks to a recent article by Azam et al. 2, in which Seg-
MENT, a novel CNN-based segmentation model, outper-

formed previously published results on the external valida-
tion cohorts. The model was initially trained on WL and 
NBI endoscopic frames of laryngeal SCC, but also showed 
to be effective in the segmentation of independent frames 
of oral and oropharyngeal cancer. The authors stated that 
the model demonstrated potential for improved detection of 
early tumours, more precise biopsies and better selection of 
resection margins.
In general, results of automatic segmentation are infe-
rior to those obtained in more straightforward tasks such 
as frame classification 18-20 or lesion detection 21,22 since a 
more in-depth conceptual model of UADT lesions is re-
quired to allow accurate definition of margins. However, 
semantic segmentation is a key objective when striving to-
wards more complex tasks involving computer vision and 
human-machine interaction. In fact, other than providing 
a purely diagnostic tool, a comprehensive understanding 
of all UADT alterations and suspicious lesions may grant 
significant aid in intra-operative management. This is even 
more true when considering instance segmentation, which 
epitomises in itself all the needs and requirements of the 
visual examination of endoscopic images, allowing a full 
automatic understanding of complex endoscopic scenarios, 
even those involving more than one lesion and/or more than 
one pathology.
Potential issues have been addressed to limit biases related 
to the analysis technique:
• patients (and their related frames) in the training, valida-

tion, and test sets have been distinguished into separated 
groups to avoid overfitting;

• frames were annotated and reviewed by 3 experts to lim-
it subjective errors;

• frame selection and data augmentation were performed 
to reduce the impact of artifacts or technical biases.

However, intrinsic limits should be acknowledged. In par-
ticular, the gold standard over which the algorithm has 
been trained (i.e., the “ground truth”) is represented by an 
expert opinion of the tumor margins and not by the histo-
pathological definition per se. In fact, as of today, it is not 
technically possible to provide a direct in situ, in vivo mor-
phologic correlation between endoscopic images and their 
histopathological specimen.
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