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Abstract
In some production processes, the effort associated with a certain activity for its execution
can vary over time. In this case, the amount of work per time unit devoted to each activity,
so as its duration, is not univocally determined. This kind of problem can be represented
by an activity project network with the so-called feeding precedence relations, and activity
variable execution intensity. In this paper, we propose a forward recursion algorithm able to
find the earliest start and finish times of each activity, in O(m log n) time, with n andm being
the number of activities and the number of precedence relations, respectively. In particular,
this requires the calculation of the (optimal) execution intensity profile, for each activity, that
warrants the earliest start schedule and the minimum completion time of the project.

Keywords Feeding precedence relations · Minimum makespan · Earliest start schedule ·
Forward recursion

1 Introduction

Feeding precedence relations are a special type of precedence constraints firstly introduced
by Kis et al. (2004) and Kis (2006), and used to model project management applications (like
make-to-order manufacturing) in which it is not possible to calculate the exact durations of
the activities of a project.
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Feeding precedences require the so called variable activity execution intensity paradigm
(see, e.g., Kis (2005)), for which the amount of work done to process each activity varies
over time.

Clearly, this is not the case of traditional finish-to-start precedence relations, and Gen-
eralized Precedence Relations (GPRs, see, e.g., Bartusch et al. (1988); Elmaghraby and
Kamburowski (1992)), where the amount of work done is assumed to be constant over time
due to the complete information on the activity durations.

Feeding precedence relations dealt with in this paper are inspired by previous works of
Alfieri et al. (2011), and Bianco and Caramia (2011, 2012). They are of four types:

• Start-to-%Completed (S%C(gi j )) precedence between two activities (i, j). This prece-
dence imposes that the processed fraction of successor activity j of i can be greater than
given portion gi j , with 0 ≤ gi j < 1, only if the execution of i has already started.

• Finish-to-%Completed (F%C(gi j )) precedence between two activities (i, j). This prece-
dence imposes that the processed fraction of successor activity j of i can be greater than
given portion gi j , with 0 ≤ gi j < 1, only if the execution of i has already completed.

• %Completed-to-Start (%C(qi j )S) precedence between two activities (i, j). This prece-
dence imposes that successor activity j of i can be started only if i has been processed
for at least a fractional amount qi j , with 0 < qi j ≤ 1.

• %Completed-to-Finish (%C(qi j )F) precedence between two activities (i, j). This prece-
dence imposes that successor activity j of i can be completed only if i has been processed
for at least a fractional amount qi j , with 0 < qi j ≤ 1.

These precedence relations generalize the Start-to-Start (SS), Finish-to-Start (FS) and
Finish-to-Finish (FF) precedence relations (of minimum type). In fact, SS is equivalent to
S%C(0), FS is equivalent to %C(1)S and F%C(0), and FF is equivalent to %C(1)F .

Furthermore and for completeness, we also directly consider Start-to-Finish (SFi j ) prece-
dence relation. This precedence imposes that successor activity j of i can be completed
only if the execution of i has already started. In fact, unfortunately, this constraint cannot be
represented by any of the above feeding precedences.

Valls et al. (2009) and, successively, Quintanilla et al. (2012) introduce a more general
type of precedence relations, useful for representing technological constraints expressed in
terms of (percentage) work content, called work GPRs to distinguish them from the classical
(time) GPRs. In particular, Quintanilla et al. show that feeding precedence relations are
strictly included in work GPRs of minimum type. Indeed, when activity preemption is not
allowed, as considered in our paper, we show that work GPRs can be mapped into feeding
precedence relations, and, hence, the results provided in our paper are also valid for work
GPRs of minimum type, as well as for the classical (time) GPRs.

Let V = {1, . . . , n} be the set of n (real) activities to be carried out without preemption
and let A = S%C ∪ %CS ∪ F%C ∪ %CF ∪ SF be the set of precedence relations between
(ordered) pairs of activities, where S%C,%CS, F%C,%CF , and SF are the subsets of
precedences of each specific type.

The set of activities and the set of precedence relations can be represented by an activity-
on-node acyclic project network N = (V , A), given that precedence relations respect the
transitive property. An example is shown in Fig. 1 : for example, the feeding precedence
relation related to arc (1, 2) states that the processed percentage of activity 2 can be greater
than 60% only if activity 1 has already started. More in general, numbers in parentheses are
the fractions of work execution associated with each constraint.

In this paper, given a project network with feeding precedences (without resource con-
straints) we aim at finding the execution intensity profiles πi (i.e., the fractions of work done
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Fig. 1 Example of a project
network with feeding precedence
relations

Fig. 2 A problem instance where executing activities at the maximum intensity (or at the minimum intensity)
does not lead to the minimum project length

in the time slots of the planning horizon) of each activity i ∈ V that warrant the minimum
completion time (or duration) of the project, i.e., the minimum project makespan C∗

max.
In our problem definition, we have two assigned parameters, say ai and āi , with 0 < ai ≤

āi ≤ 1, associated with each activity i ∈ V , which represent its minimum and maximum
execution intensities, respectively, in each time slot in which the activity is executed (except
for the last execution time slot if the remaining fraction of work to be done is less than ai ).
Theminimum execution intensity ai > 0 forces activity i to be executed without preemption,
while the maximum execution intensity ai ≤ 1 fixes the maximum fraction of work of i that
can be executed in each time slot, assuming that, in general, the work of an activity cannot
be done in a single time slot due to limited availability of resources (not explicitly taken into
account in this paper). Given the execution intensity profile πi of activity i , the number of
execution time slots of i represents its duration di (πi ).

We note that finding the optimal solution to our problem is not straightforward, since
adopting the solution where all the activities are executed at their maximum intensity (or
at their minimum intensity) does not lead, in general, to a minimum project duration. An
example of this occurrence happens for the instance depicted in Fig. 2, where the execution
intensity of activity 2 ranges in [0.1, 0.2], while activities 1 and 3 have a fixed execution
intensity equal to 0.2 and 1/7, respectively. In fact, we show (see Sect. 3) that the minimum
project makespan is equal to 7, while forcing activity 2 to be executed at its maximum
(minimum) intensity, i.e., assuming a2 = ā2 = 0.2 (a2 = ā2 = 0.1), gives a project duration
equal to 8 (10).

Notwithstanding the aim of minimizing the project makespan, in this paper, we show that
the solution guaranteeing the activities i ∈ V to start at their earliest start time (ESi ) and to
finish at their earliest finish time (EFi ) returns also the minimum project length. Therefore,
we also aim to determine the execution intensity profiles πi , ∀i ∈ V , allowing i to start at
ESi and to finish at EFi .

In particular, in doing so, we pose the primary goal of finding a specific project network
representation associated with feeding precedence relations and generalizing the network
standardization introduced by Bartusch et al. (1988) for GPRs. Next, with this generalized
standard representation, we generalize the forward recursion to (i) compute the activity
earliest start and earliest finish times and (ii) identify the critical (longest) paths. The proposed

123



Annals of Operations Research

forward recursion algorithm runs in O(m log n) time, with n and m being the number of
activities and the number of precedence relations, respectively.

To the best of our knowledge, this task has not been carried out for project networks
with feeding precedence relations. In fact, the literature presents several results on project
networks with finish-to-start precedence relations with zero time lags, and with the more
general case of GPRs (see, e.g., Bartusch et al. 1988; Bianco et al. 2022; Elmaghraby and
Kamburowski 1992; Kelley 1963), but no attempt has been made to define a network model
for feeding precedences with which a temporal analysis can be conducted to detect (i) the
earliest and latest start schedule of the activities and (ii) the critical path(s) of the project.

The remainder of the paper is organized as follows. In Sect. 2, we present the project
network standardization. In Sect. 3, we prove how to find the activity execution intensity
profiles that allow to construct the earliest start schedule. We give the description of the
forward recursion algorithm, along with the discussion of a few examples. In Sect. 4, we
compare feeding precedences with work GPRs. Finally, in Sect. 5, we draw conclusions.
Furthermore, supplementary material is given in a supplement document; in particular, a
MIP mathematical formulation of our problem is provided, which we used to verify the
optimality of the solution obtained by the proposed forward recursion algorithm on the
analyzed examples.

2 Project network standardization

In addition to the n real activities, we consider two dummy activities 0 and n + 1, repre-
senting the project beginning and completion, respectively. Therefore, we also add feeding
precedences S%C(0)0i (equivalent to precedence SS0i ) between activity 0 and activity i , and
feeding precedences %C(1)Si,n+1 (equivalent to precedence FSi,n+1) between activity i and
activity n + 1, for each i ∈ V .

Let N ′ = (V ′, A′) be the related augmented activity-on-nodes project network with
feeding (and SF) precedence relations, where V ′ = V ∪{0, n+1} is the set of nodes formed
by the set V of real activities and dummy activities 0, n + 1 corresponding to the source and
sink nodes of the project network, respectively, and A′ is thewhole set of precedence relations
among all the activities in V ′, i.e., A′ = A ∪ {S%C(0)0i : i ∈ V } ∪ {%C(1)Si,n+1 : i ∈ V }.

Generalizing the standardization of project network with GPRs (with minimum time lags)
given byBartusch et al. (1988), we standardize project network N ′, with feeding precedences,
into a (standardized) project network N ′

S with only Start-to-Start precedences with minimum
time lags. In particular, we substitute each (feeding) precedence relation (i, j) ∈ A′ with
the related SSmin

i j (�i j ) precedence relation, where �i j represents the minimum time lag that
has to be observed between the start times Si and S j of activities i and j , respectively, that
is: Si + �i j ≤ S j . The standardized network N ′

S has the same set of nodes V ′ and the same
set of arcs A′ of the original project network N ′, with time lag �i j representing the length
of arc (i, j), and it is therefore acyclic as the original project network. It is well known that
the length of the longest path in N ′

S from node 0 to node i represents the earliest start time
of i , and, hence, the length of the longest path from node 0 to node n + 1 is the minimum
project length. However, differently from the project network with GPRs where time lags �i j
can easily be derived from the given fixed activity durations, in our case (i.e., with feeding
precedences and activity variable execution intensities) their values depend on the specific
original feeding constraint among the ordered task couple (i, j) and on the execution intensity

123



Annals of Operations Research

profiles πi and π j of activities i and j , that, therefore, deeply affect the earliest start schedule
and the minimum project duration (length).

Let k−
j (gi j , π j ) be the number of time slots (calculated as nearest integer �·	 rounded

down) needed to complete the fraction gi j of work of activity j from its starting time, given
its intensity execution profile π j ; let k

+
i (qi j , πi ) be the number of time slots (calculated as

nearest integer 
·� rounded up) needed to complete the fraction qi j of work of activity i
from its starting time, given its intensity execution profile πi . Moreover, let di (πi ) be the
duration of i , i.e., the number of time slots (calculated as nearest integer rounded up) needed
to complete the whole work of activity i from its starting time, given its intensity execution
profile πi ; clearly we have: di (πi ) = k+

i (1, πi ). Denoted with Si and Fi the start and finish
times of activity i , respectively, it results:

• S%C(gi j )i j : according to this precedence we have Si ≤ S j + k−
j (gi j , π j ), since it is

required that at the time when the amount of work done for activity j is (strictly) greater
than gi j activity i has already been started; therefore,

S%C(gi j )i j ≡ SSmin
i j (�i j ),with �i j = −k−

j (gi j , π j );

• F%C(gi j )i j : according to this precedence we have Fi ≤ S j + k−
j (gi j , π j ), since it is

required that at the time when the amount of work done for activity j is (strictly) greater
than gi j activity i has already been finished; therefore,

F%C(gi j )i j ≡ SSmin
i j (�i j ),with �i j = di (πi ) − k−

j (gi j , π j );

• %C(qi j )Si j : according to this precedence we have Si + k+
i (qi j , πi ) ≤ S j , since it is

required that at the time when activity j is started the amount of work done for activity
i has to be at least equal to qi j ; therefore,

%C(qi j )Si j ≡ SSmin
i j (�i j ),with �i j = k+

i (qi j , πi );
• %C(qi j )Fi j : according to this precedence we have Si + k+

i (qi j , πi ) ≤ Fj , since it is
required that at the time when activity j is finished the amount of work done for activity
i has to be at least equal to qi j ; therefore,

%C(qi j )Fi j ≡ SSmin
i j (�i j ),with �i j = k+

i (qi j , πi ) − d j (π j ).

Figure3shows the effects of feeding precedence relations S%C(gi j )i j and F%C(gi j )i j ,
and the related time constraints depending also on profile π j of activity j . In particular,
according to the precedence relation S%C(gi j )i j (F%C(gi j )i j ), at most the white portion of
profile π j , where the amount gi j of work of activity j is done, can be completed before the
start (finish) of activity i .

Similarly, Fig. 4 shows the effects of feeding precedence relations %C(qi j )Si j and
%C(qi j )Fi j , and the related time constraints depending also on profile πi of activity i . In
particular, according to the precedence relation %C(qi j )Si j (%C(qi j )Fi j ), activity j cannot
start (finish) before the completion of the white portion of profile πi , where amount qi j of
work of activity i is done.

Since in addition we also consider precedence SFi j , meaning that we have Si ≤ Fj , we
recall for completeness of representation also the well known standardization for this type
of precedence:

SFi j ≡ SSmin
i j (�i j ),with �i j = −d j (π j ).
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Fig. 3 S%C(gi j )i j and F%C(gi j )i j feeding precedence constraints

Fig. 4 %C(qi j )Si j and %C(qi j )Fi j feeding precedence constraints

Therefore, in general, for each arc (i, j) ∈ A′ of the standardized project network N ′
S ,

we can consider the length �i j = �+
i j (πi ) − �−

i j (π j ), where both �+
i j (πi ) and �−

i j (π j ) are non
negative integers:

• �+
i j (πi ) is the contribution depending on the execution profile πi of the preceding activity

i , being �+
i j (πi ) = 0 if the precedence is SXi j (where X ∈ {%C, F}), and greater than 0,

otherwise: in particular, �+
i j (πi ) = k+

i (qi j , πi ) if the precedence relation is %C(qi j )Xi j

(where X ∈ {S, F}), and �+
i j (πi ) = di (πi ) if the precedence is F%C(gi j )i j ;

• �−
i j (π j ) is the contribution depending on the execution profile π j of the succeeding

activity j , being �−
i j (π j ) = 0 if the precedence is X%C(0)i j , with (where X ∈ {S, F}) or

%C(qi j )Si j , and greater or equal than 0 otherwise: in particular, �−
i j (π j ) = k−

j (gi j , π j )
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Fig. 5 The standardized network of the project network of Fig. 2

if the precedence relation is X%C(gi j )i j (where X ∈ {S, F}), and �−
i j (π j ) = d j (π j ) if

the precedence is XF (where X ∈ {S,%C}).

Clearly, the role of the additional set {S%C(0)0i : i ∈ V } of feeding precedence relations,
between dummy initial activity 0 and each real activity i ∈ V , is to assure that each activity i
cannot start before the start time of dummy activity 0 assumed to be equal to 0, i.e., S0 = 0.
In fact feeding precedence relation S%C(0)0i implies that the length of arc (0, i) of the
standardized project network N ′

S is �0i = 0, meaning that Si ≥ S0 + �0i = 0, and, then, the
earliest start time of activity i must be ESi ≥ 0.

Analogously, the role of the additional set {%C(1)Si,n+1 : i ∈ V } of feeding precedence
relations, between each real activity i ∈ V and dummy final activity n+1, is to assure that the
project makespan Cmax cannot be less than the finish time of any real activity. In fact feeding
precedence relation %C(1)Si,n+1 implies that the length of arc (i, n + 1) is �i,n+1 = di (πi ),
meaning that Cmax = Sn+1 ≥ Si + di (πi ), for each i ∈ V .

Figure5shows the standardized network of the project network of Fig. 2, along with the
arc lengths as a function of the execution intensity profile πi of each activity i ∈ V .

3 Earliest start schedule forward recursion algorithm

It is well known that the earliest starting time of activity i is equal to the length of the longest
path from node 0 to node i in the standardized network N ′

S , and, hence, that the minimum
project makespan C∗

max is equal to the length of the longest path from node 0 to node n + 1.
If the arc lengths were given, or could be simply computed as in the case of GPRs and
fixed activity durations, the above quantities could be computed by the well known forward
recursion algorithm that in O(|A′|) time determines the longest paths from node 0 to the
other nodes of N ′

S .
On the contrary, in the case of activities with variable execution intensity and with feeding

precedence relations, determining the activity earliest start schedule is not equally simple,
because arc lengths are not given. In fact, in our case, we do not know in advance the values of
the activity durations or, more in general, the amount of time (number of time slots) needed to
complete a given fraction of the work of a given activity. In fact, this amount of time depends
on the activity execution intensity profile, which is not specified in advance because activities
have in general variable execution intensities. Therefore, the forward recursion algorithm for
finding the earliest start schedule should be properly adapted and, hence, generalized, so as
to determine also the optimal profile π∗

i of each activity i ∈ V .
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According to the definitions of maximum and minimum execution intensity we have that
0 < ai ≤ āi ≤ 1, for any real activity i ∈ V .

If ai = āi , there is a unique feasible execution profileπi for activity i inwhich i is executed
at (let us say) maximum intensity āi for � 1

āi
	 consecutive time slots for a total amount of

work � 1
āi

	āi , followed by an additional time slot if the remaining fraction 1−� 1
āi

	āi of work
is greater than 0. Since this feasible profile is unique it is clearly also optimal (and denoted
as π∗

i ) with respect to the earliest start schedule, and hence the minimization of the project
length.

On the contrary, in the non trivial case where ai < āi , we have an unlimited number of
feasible execution intensity profiles for activity i , and in general executing i at its maximum
intensity āi does not assure the minimization of the project makespan, and not even if i is
executed at its minimum intensity ai , as already highlighted in Sect. 1.

Example 1 Referring to the standardized network N ′
S shown in Fig. 5 of the project network

of Fig. 2, we have �12 = d1(π1) − k−
2 (0.6, π2), where d1(π1) = 5, since a1 = ā1 = 0.2.

Moreover, we have �23 = −k−
3 ( 17 , π3) = −1, and d3(π3) = 7, since a3 = ā3 = 1

7 .
It is clear that starting activity 2 at the earliest time, i.e., at time 0, requires the length of

path (0, 1, 2) being not greater than 0, that is, k−
2 (0.6, π2) ≥ d1(π1) = 5. Therefore profile

π2 cannot be always at maximum intensity ā2 = 0.2, otherwise k−
2 (0.6, π2) would be equal

to 3, meaning that activity 2 could not start earlier than time 2 and, in addition, the longest
path from node 0 to node 4 would be (0, 1, 2, 3, 4) of length 0 + 2 − 1 + 7 = 8. Therefore,
project makespan Cmax would be equal to 8.

On the contrary, if we execute activity 2 at its minimum intensity a2 = 0.1, k−
2 (0.6, π2)

would be equal to 6.With this choice, activity 2 can start at time 0, but its duration d2(π2)will
be equal to 10. This will imply that the longest path from node 0 to node 4 will be (0, 2, 4)
of length 0 + 10 = 10, and, hence, Cmax = 10.

A better choice would be executing activity 2 initially at themaximum intensity ā2 for the
largest number of time slots α2 ≥ 0 and for a total amount z2 = α2 ā2 ≤ g12 = 0.6 of work
of the activity, followed by β2 ≥ 0 time slots, where the amount y2 = β2 a2 = g12 − z2 ≥ 0
of work is executed at the minimum intensity a2, such that α2 + β2 = k−

2 (0.6, π2) ≥ 5. This
choice will in particular imply that the latter inequality is satisfied at the equality, i.e., α2+β2

get the minimum possible value equal to 5, while the amount of work done during these 5
time slots is equal to g12 = 0.6, because z2 + y2 = α2 ā2 + β2 a2 = g12.

Note that, in this way, it is guaranteed that activity 2 can start at its earliest start time,
whichever is the structure of the remaining section of the activity execution intensity profile.
In particular, we can execute the remaining fraction of work 1 − (z2 + y2) of the activity at
the maximum possible intensity.

This choice would be indeed overall optimal, because it would also guarantee that
�+
24(π2) = k+

2 (1, π2) = d2(π2) is minimized, assuring that the activity can end at its earliest
finish time.

This optimal profile π∗
2 of activity 2 can be regarded as composed by 2 blocks, as shown in

Fig. 6. In the first one, whose structure depends on the feeding constraint F%C(g12)12, with
g12 = 0.6, activity 2 is executed at the maximum intensity ā2 = 0.2 during the first α∗

2 = 1
time slots, for the total fraction z∗2 = α∗

2 ā2 = 0.2 of work, followed by β∗
2 = 4 time slots,

where the total fraction y∗
2 = β∗

2 a2 = 0.4 of work, exactly equal to g12 − z∗2, is executed at
theminimum intensity a2 = 0.1. That is, α∗

2 ā2+β∗
2 a2 = g12. Finally, the remaining amount

of work 1 − g12 = 0.4 is done in the second block at the maximum intensity occupying 2
final time slots.
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Fig. 6 The optimal execution
intensity profile π∗

2 of activity 2
of the project network of Fig. 2

With this choice, k−
2 (0.6, π∗

2 ) = 5, and, hence, �12 = 0; in addition, �24 = d2(π∗
2 ) = 7

(being the minimum possible value, while assuring that the activity could start at its earliest
start time), and the project makespan, equal to the length of longest path (0, 1, 2, 4), has the
minimum value equal to C∗

max = 7. Note that also paths (0, 2, 4) and (0, 3, 4) are both of
length 7 and, hence, they are other longest paths. The optimality of the solution is confirmed
by the optimal solution returned by a commercial solver for the MIP formulation given in
Appendix D of the supplemental document.

Example 2 In order to generalize the previous example, let us assume that the minimum
intensity of activity 2 is slightly smaller: for example, let us assume that a2 = 0.09.

In this case, the first block of the optimal profile of activity 2 cannot be simply subdivided
in two sub-blocks, where in the first one the activity is executed at the maximum intensity
and in the last second at theminimum intensity. This is because, differently from the previous
case, for a2 = 0.09, if α2 = 1 and β2 = 4, then the total amount of work of activity 2 done
in these α2 + β2 = 5 time slots will be α2 ā2 + β2 a2 = 0.56 < g12 = 0.6. With this
choice for the first 5 time slots of profile π2, we still have k−(0.6, π2) = α2 + β2 = 5, and
hence activity 2 can still start at time 0. However, the remaining work to be done after this
block of 5 time slots would be 1 − 0.56 = 0.44, that if executed at the maximum intensity,
would require 3 additional time slots. Therefore, the activity duration would be equal to 8,
and, hence, Cmax = 8.

We would be able to reduce the duration of activity 2, if we could anticipate a sufficiently
amount of the remaining work that would be done after the first 5 time slots, while assuring
that k−

2 (g12, π2) = 5. In our case, this means anticipating the amount 0.04 of work before
the end of the first block, in order to execute exactly the fraction g12 = 0.6 of work during
the first 5 time slots of the activity execution profile.

This suggests to correct the structure of the first block of 5 time slots, assuming that
the activity could be executed at intermediate intensity w2, with a2 ≤ w2 < ā2, in the
first γ2 ≥ 1 time slots after the first sub-block. Therefore, we assume that this block is
composed by three sub-blocks of α2, γ2, and β2 time slots, where the activity is executed
at maximum, intermediate, and minimum intensity, respectively. The role of the second sub-
block at intermediate intensity is to allow the total amount of work done in the block, i.e.,
α2 ā2 + γ2 w2 + β2 a2, to reach exactly the maximum possible value (equal to g12 = 0.6),
so as α2 + γ2 + β2 = k−

2 (g12, π2) ≥ 5, and while maximizing α2 ā2 + γ2 w2.
It is not hard to verify that the first block of the optimal execution intensity profile π∗

2
of activity 2 will be composed by three sub-blocks, with the following structure: the first
sub-block contains α∗

2 = 1 time slot, where the amount z∗2 = 0.2 of work of activity 2 is
done atmaximum intensity ā2 = 0.2; the second sub-block contains γ ∗

2 = 1 time slot, where
the amount w∗

2 = 0.13 of work is done (at intermediate intensity w∗
2 = 0.13); finally, the
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Fig. 7 The optimal execution
intensity profile π∗

2 of activity 2
of the project network of Fig. 2,
assuming a2 = 0.09

third sub-block contains β∗
2 = 3 time slots, where the amount y∗

2 = g12 − (z∗2 + w∗
2) = 0.27

of the activity work is done at minimum intensity a2 = 0.09.
Finally, the remaining work 1− g12 = 0.4 is executed at the maximum possible intensity

in the second final block containing 2 time slots, where in the second last time slot activity
2 is executed at its maximum intensity ā2 = 0.2 and in the last one with intensity 0.15 < ā2
(see Fig. 7).

With this choice, k−
2 (g12, π∗

2 ) = 5, and, hence, �12 = 0; in addition, �24 = d2(π∗
2 ) = 7

(being the minimum possible value, while assuring the activity could start at its earliest start
time), and the projectmakespan, equal to the length of path (0, 1, 2, 4), has theminimumvalue
equal toC∗

max = 7. Also paths (0, 2, 4) and (0, 3, 4) are of length 7 and, hence, they are other
longest paths. The optimality of the solution is confirmed by the optimal solution returned
by a commercial solver for the MIP formulation given in Appendix D of the supplemental
document.

We note that,

Remark 1 The number of time slots of the second sub-block of the first block of the optimal
profile π∗

2 is exactly equal to 1 (i.e., γ ∗
2 = 1).

Finally, note that also the first block of the optimal profile valid for Example 1 can be
regarded as formed by three sub-blocks, where the first sub-block at the maximum intensity
remains of 1 time slot, the second sub-block of 1 time slot has intermediate intensityw2 = 0.1
(i.e, equal to the minimum intensity a2 in this case), and the third sub-block at the minimum
intensity has length 3 time slots.

Indeed, this is always the case, in general (see proof of Proposition 1). That is, for each
activity i , there is an optimal profile π∗

i subdivided in blocks, where any non-last block of
π∗
i is formed by three sub-blocks. In next subsection, we formalize the structure of such

a kind of execution intensity profile for a generic non-preemptive real activity i ∈ V , with
variable execution intensity, of a given project network N = (V , A)with feeding precedence
relations.

3.1 Themax-inter-min execution intensity profile

Let us introduce the following execution intensity profile for activity i ∈ V , where during the
period in which i is executed its execution intensity profile is subdivided into ri consecutive
non-empty blocks, each one composed by three sub-blocks (sections).

The three sub-blocks of block b ∈ {1, . . . , ri − 1} have the following sizes: the first one
is composed by αb

i ≥ 0 time slots in which activity i is executed at the maximum intensity
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āi , followed by the second one formed exactly by γ b
i = 1 time slot in which activity i is

executed at intermediate intensity wb
i , with ai ≤ wb

i < āi , and followed by the third sub-
block composed by βb

i ≥ 0 time slots in which activity i is executed at theminimum intensity
ai . In particular, let zbi = αb

i āi and ybi = βb
i ai be the (total) fraction of work of i executed

at the maximum and the minimum intensity, respectively in the first and third sub-blocks.
It has to be noted that αb

i and βb
i can be equal to 0: in these two cases the first and the third

sub-blocks are empty, i.e., zbi = 0, and ybi = 0, respectively. On the contrary, assuming that
the second sub-block is always not empty and formed by exactly one time slot (i.e., γ b

i = 1)
is not a restriction. In fact,

Proposition 1 The number of time slots of the second sub-block of block b < ri can be
assumed exactly equal to 1, i.e., γ b

i = 1.

Proof If block b is not the last one, then activity i is not completed at the maximum intensity
within this block, otherwise the block can be considered as part of the first sub-block of the
next block and, hence, block b would be totally empty. Therefore, block b contains at least
one time slot, where the amount of work done is less than āi , and none where the activity
execution intensity is less than ai . Since the amounts of work done in each time slot of block
b are arranged in non increasing order in order to keep the values of �+

i j (πi ) as small as
possible, in the last time slots of block b the activity is not done at the maximum intensity,
and the number of these time slots is greater than 0.

Therefore, without loss of generality, let us assume that in block b we have firstly α̃b
i ≥ 0

time slots where activity i is executed at maximum intensity āi , followed by γ̃ b
i +β̃b

i ≥ 1 time
slots, where the activity is executed with non increasing intensity order: γ̃ b

i is the number
of (consecutive) time slots where activity i is executed with intensity greater than ai and
less than āi , and β̃b

i is the number of (last) time slots of block b where activity i is executed
exactly at minimum intensity ai .

If γ̃ b
i > 1, we could rearrange the work done in these γ̃ b

i time slots by anticipating at
most the amount of work done in the first ones. Accordingly, we would not change the total
number of time slots of block b, that therefore would not increase the values of �+

i j (πi ).
Therefore, this profile of block b would not be worse (and possibly would by better) than
the given one. Note that, with this rearrangement, in the first γ̃ ′b

i ≥ 0 time slots of the given
γ̃ b
i > 1 time slots the activity would by done at maximum intensity, followed by 0 ≤ γ̃ ′′b

i ≤ 1
time slots where the activity is done with intensity less than āi and greater than ai , and by
other γ̃ ′′′b

i ≥ 0 time slots where it is done at minimum intensity. Hence, block b would be
composed by α̃b

i + γ̃ ′b
i ≥ 0 time slots at maximum intensity āi , followed by 0 ≤ γ̃ ′′b

i ≤ 1
time slots where the activity is done at intensity less than āi and greater than ai , and followed
by β̃b

i + γ̃ ′′′b
i ≥ 0 time slots at minimum intensity ai .

Therefore, without loss of generality, we can assume that 0 ≤ γ̃ b
i ≤ 1. Accordingly,

we can consider the first sub-block of block b formed by αb
i = α̃b

i ≥ 0 time slots at
maximum intensity, and the second block formed anyway by a single time slot (i.e., γ b

i = 1)
at intermediate intensity wb

i , with ai ≤ wb
i < āi . The third sub-block at minimum intensity

has βb
i = β̃b

i ≥ 0 time slots, if γ̃ b
i = 1, and βb

i = β̃b
i − 1 ≥ 0, otherwise. ��

Finally, in the last block, i.e., block ri , the remaining amount ofworkμ
ri
i = 1−∑ri−1

b=1 (zbi +
wb
i + ybi ) of activity i is done at the maximum possible intensity. That is, in the first α

r1
i =

�μ
ri
i
āi

	 ≥ 0 time slots of the block, activity i is executed at its maximum intensity āi for a
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Fig. 8 A max-inter-min execution intensity profile π E
i for an activity i

total amount zrii = α
ri
i āi of work. At most one single time slot follows, where the remaining

amount w
ri
i = μ

ri
i − zrii < āi of work is done, if w

ri
i > 0. For the sake of uniformity, also

last block ri can be seen as structured in three sub-blocks, where activity i is executed at
maximum, intermediate, and minimum intensities, respectively. However, in this case, not
only the first block could be empty (i.e., when α

ri
i = 0), but also the second sub-block (i.e.,

γ
ri
i = 0 if w

ri
i = 0, and γ

ri
i = 1 otherwise), while the third sub-blocks is always empty (i.e.,

β
ri
i = 0), because yrii = μ

ri
i − (zrii + yrii ) = 0. However, αri

i + γ
ri
i +β

ri
i ≥ 1, because block

ri cannot be empty, as well as the others.

Definition 1 We refer to such an execution intensity profile as max-inter-min profile and we
denote it with π E

i because, as shown next, there exists an execution profile of this type that
allows to execute activity i at its earliest start and finish times, and hence also to minimize
the project makespan if the same is done for all the activities.

Figure8 shows an example ofmax-inter-min execution intensity profile π E
i for an activity

i . The profile is sub-divided in ri blocks. Looking at block b < ri in the figure, the section
with dark grey bars is the first sub-block of αb

i ≥ 0 time slots, whose total area is zbi = αb
i āi ,

corresponding to the amount of work done in these αb
i time slots at the maximum intensity

āi . The single light gray bar corresponds to the second sub-block of γ b
i = 1 time slot and its

area wb
i , with ai ≤ wb

i < āi is the amount of work of activity i done in this unique time slot.
Finally, the white section of block b identifies the third sub-block of βb

i time slots, where
activity i is done at minimum intensity. Block ri is an exception since its third sub-block is
always empty (βri

i = 0), and the remaining amount of work done in the last time slot can be
less than the minimum intensity.

If the intensity of activity i is fixed, i.e, ai = āi , the activity has a unique feasible (and
hence optimal) execution profile π∗

i , in which it is executed at (let us say maximum) speed
āi for α̃i = � 1

āi
	 > 0 consecutive time slots for a total amount z̃i = α̃i āi of work, followed

by an additional time slot where the remaining fraction of work w̃i = 1 − z̃i < ai = āi is
done, if w̃i > 0. Clearly and without loss of generality, we can also regard this profile as a
max-inter-min profile π E

i containing a single block, i.e., ri = 1, where the first sub-block
contains α1

i = α̃i > 0 time slots in which the amount z1i = z̃i of work of activity i is done
at its maximum intensity, the second sub-block contains a single time slot (i.e., γ 1

i = 1) if
w1
i = w̃i > 0, otherwise is empty (i.e., γ 1

i = 0), and the third sub-block is empty (i.e.,
β1
i = 0, and y1i = 0).
In the next subsection, we show that there is a specific max-inter-min execution profile

π E
i for each activity i being optimal with respect to the earliest start (and finish) schedule
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and guaranteeing the minimization of project length, given an optimal execution profile for
each preceding activity.

In particular, we will show how to calculate the structure of π E
i for the non trivial case

with 0 < ai < āi ≤ 1, and prove that the number ri of blocks of π E
i is 1 ≤ ri ≤ ∣

∣�−
X%C (i)

∣
∣+

min
[
1,

∣
∣�−

XF (i)
∣
∣
]+1, where

∣
∣�−

X%C (i)
∣
∣ is the cardinality of the subset of its incoming feeding

predecences (h, i) ∈ X%C (where X ∈ {S, F}), and ∣
∣�−

XF (i)
∣
∣ is the cardinality of the subset

of its incoming feeding predecences (h, i) ∈ XF (where X ∈ {S,%C}). For example, for the
project network of Fig. 1,

∣
∣�−

X%C (5)
∣
∣ = 0 and

∣
∣�−

XF (5)
∣
∣ = 1, i.e., r5 ≤ 2;

∣
∣�−

X%C (7)
∣
∣ = 2

and
∣
∣�−

XF (7)
∣
∣ = 0, i.e., r7 ≤ 3.

3.2 Determining the optimal earliest start and finish execution profile

If activity i ∈ V has fixed intensity, that is ai = āi , we already observed that i has a unique
(optimal) execution intensity profile, i.e., a profile π E

i with a single block (ri = 1) and the
following sizes for its three sub-blocks:

• The first sub-block contains α1
i = � 1

āi
	 > 0 time slots in which a (total) amount z1i =

α1
i āi > 0 of work of i is done at the maximum speed āi ;

• The second sub-block contains a single time slot (i.e., γ 1
i = 1), containing the residual

work w1
i = 1 − z1i < āi of i if w1

i > 0; otherwise, it is empty (γ 1
i = 0);

• The third sub-block is empty (y1i = 0 and, hence, β1
i = 0).

Now, let us assume that activity i ∈ V has variable execution intensity (0 < ai < āi ≤ 1).
Since i is at least preceded by dummy activity 0 (that conventionally has ESi = 0) with
precedence S%C(0)0i , in the standardized network N ′

S arc (0, i) ∈ A′ has length �0i = 0
and ESi ≥ 0.

If there is no real activity h (directly) preceding activity i , we have ESi = ES0 + �0i = 0
and since �0i = 0 does not depend on the execution intensity profile πi of i , we can execute
the latter activity at its maximum possible intensity to complete it at its earliest finish time,
and to allow succeeding activities to start as soon as possible. This (optimal) execution of i
corresponds again to profile π E

i with a single block (ri = 1) with sizes of its three sub-blocks
defined described when ai = āi .

Now, let us suppose that activity i has variable execution intensity, and at least one real
predecessor activity. Moreover, let us assume that for each (real) activity h ∈ V (directly)
preceding i (i.e., such that (h, i) ∈ A), ESh ≥ 0 is known and given, as well as the optimal
execution intensity profile π∗

h that allows h to start at its ESh and guarantees, for each
outgoing arc (h, k) ∈ �+(h) from h, that �+

hk(π
∗
h ) assumes the minimum value, among the

profiles allowing h to start at its earliest start time.
In particular, we will prove (see Theorem 10) that, with such a profile π∗

h , the length of the
longest path from 0 to h in the standardized network N ′

S plus the positive contribution �+
hk of

the length of arc (h, k) is minimized and equal to ESh + �+
hk(π

∗
h ). This implies also that, for

any succeeding activity k, there is an execution profile that, together with the profiles of the
preceding activities, allows activity k to start at its earliest start time.Moreover, it also assures
that activity h is finished at its earliest finish time EFh = ESh+�+

h,n+1(π
∗
h ) = ESh+dh(π∗

h ).
Therefore, in the following, we call such a profile π∗

i of activity i optimal, since it allows
to start activity i at its earliest starting time ESi , and guarantees that for each outgoing arc
(i, j) ∈ �+(i) of node i , �+

i j (π
∗
i ) assumes the minimum value, among the execution intensity

profiles of i that allow the activity to start at time ESi .
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Let us denote with πmin
i the execution intensity profile of activity i in which i is entirely

executed at its minimum intensity ai (with the exception of the last time slot if the resid-
ual amount of work to do in this time slot is less than ai ). Executing i with profile πmin

i
guarantees that the value of �−

hi (πi ) is maximized, for each incoming arc (h, i) in node i in
N ′
S . Therefore, executing i with profile πmin

i , assures that i will start at its earliest start time
ESi = max[0,maxh:(h,i)∈A{ESh + �+

hi (π
∗
h ) − �−

hi (π
min
i )}].

It is simple to evaluate �−
hi (π

min
i ) = maxπi {�−

hi (πi )}, according to the type of the
precedence relation between activities h and i : �−

hi (π
min
i ) = k−

i (ghi , πmin
i ) = � ghi

ai
	, if

(h, i) ∈ X%C (with X ∈ {S, F}); �−
hi (π

min
i ) = di (πmin

i ) = 
 1
ai

�, if (h, i) ∈ XF (with

X ∈ {S,%C}); and �−
hi (π

min
i ) = 0, if (h, i) ∈ %CS. Therefore, we can suppose that the

value of ESi is known in advance.
We remark that despite the above result, profile πmin

i is not necessarily optimal, because
it does not assure the minimization of the project makespan (as mentioned in Sect. 1). In the
following, we assume that i is executed according to a profile of type π E

i , and we will prove
that there is an optimal profile of this type.

Let us introduce the following notations. Given block b ∈ {1, . . . , ri } of π E
i , let χb

i =
∑b−1

p=1(z
p
i + w

p
i + y pi ) < 1 be the amount of work of i already processed in the first b − 1

blocks of profile π E
i , and let μb

i = 1− χb
i > 0 be the residual amount of work to be done in

the successive blocks.
Moreover, for each incoming arc (h, i) in node i of N ′

S , we have that �
−
hi (π

E
i ) = �̂b−hi (π E

i )+
�̃b−hi (π E

i ) + �̄b−hi (π E
i ), where �̂b−hi (π E

i ) is the fraction (number of time slots) of �−
hi (π

E
i ) due

to the first b − 1 blocks of π E
i , �̃b−hi (π E

i ) is the fraction due to block b, and �̄b−hi (π E
i ) is the

fraction due to the other ri − b blocks following b in profile π E
i .

Similarly, for each outgoing arc (i, j) from i , we have �+
i j (π

E
i ) = �̂b+i j (π E

i )+ �̃b+i j (π E
i )+

�̄b+i j (π E
i ), where �̂b+i j (π E

i ) is the fraction (number of time slots) of �+
i j (π

E
i ) due to the first

b − 1 blocks of π E
i , �̃b+i j (π E

i ) is the fraction due to block b, and �̄b+i j (π E
i ) is the fraction due

to the other ri − b blocks following b in profile π E
i .

In addition, considering the longest path from 0 to i traversing arc (h, i), whose length is
ESh + �hi , let δbhi = ESh + �+

hi (π
∗
h ) − �̂b−hi (π E

i ) be the fraction of ESh + �hi that does not
depend on block b and on the remaining blocks of profile π E

i .
Finally, for each incoming precedence (h, i) of i of type X%C(ghi ) (where X ∈ {S, F}),

let g̃bhi = max[0, ghi − χb
i ] be the additional fraction of work of i that at most can be done,

after the first b− 1 blocks of profile π E
i , before the start (end) of activity h assuming X = S

(X = F).

3.2.1 The case with a single directly preceding real activity

The above notations have been introduced for the description of the more general case with
multiple real activities directly preceding activity i . However, for ease of presentation, let
us start by assuming that there is only one (real) activity h ∈ V directly preceding i , with
precedence (h, i) ∈ A.

Let us consider the first block of profile π E
i , that is, b = 1. Therefore, if precedence (h, i)

is of type X%C(gi j ), then gbhi = ghi , because b = 1.
Clearly, we assume that μb

i > 0. We have the following two cases:

(i): (h, i) ∈ %CS or (h, i) ∈ X%C (where X ∈ {S, F});
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(ii): (h, i) ∈ XF (where X ∈ {S,%C}).
Let us consider case (i). We have to examine two sub-cases:

(ia): (h, i) ∈ %CS, or (h, i) ∈ X%C with δbhi − � g̃bhi
āi

	 ≤ ESi ;

(ib): (h, i) belongs to X%C with δbhi − � g̃bhi
āi

	 > ESi .

If (ia) occurs, we have the following result.

Proposition 2 If there is only one (real) activity h ∈ V (immediately) preceding activity i

such that (h, i) ∈ %CS, or (h, i) ∈ X%C with δbhi −� g̃bhi
āi

	 ≤ ESi , then an optimal execution

intensity profile π∗
i for i is a max-inter-min profile π E

i , having block ri = b = 1 with the

following structure π
E,ri
i :

• The first sub-block contains α
ri
i = �μ

ri
i
āi

	 ≥ 0 time slots in which a (total) amount

zrii = α
ri
i āi ≥ 0 of work of i is done at the maximum intensity āi ;

• The second sub-block contains a single time slot (i.e., γ ri
i = 1), where the residual work

w
ri
i = μ

ri
i − zrii < āi of i is done, if w

ri
i > 0, otherwise it is empty (i.e., γ ri

i = 0);
• The third sub-block is empty: yrii = 0 (and, hence, βri

i = 0).

Proof Let us suppose that i is executed with profile π E
i , and let us consider block b = 1.

If (h, i) ∈ %CS, then �−
hi (πi ) = 0, for any execution intensity profile πi of i . Therefore,

we have δbhi ≤ ESi , because the optimal profile π∗
h of preceding activity h assures that

ESh + �+
hi (π

∗
h ) − �−

hi (π
min
i ) ≤ ESi , and, in our case, �−

hi (π
min
i ) = 0.

If (h, i) ∈ X%C with δbhi − � g̃bhi
āi

	 ≤ ESi , then, for any profile of the remaining section

of profile π E
i after the first b − 1 blocks (that in our case are not present because we assume

b = 1), we have that ESh + �hi = δbhi − (�̃b−hi (π E
i ) + �̄b−hi (π E

i )) ≤ δbhi − � g̃bhi
āi

	 ≤ ESi ,

because �̃b−hi (πi ) + �̄b−hi (π E
i ) ≥ � g̃bhi

āi
	, since � g̃bhi

āi
	 would be the value of the left hand side of

the last inequality, if the remaining amount μb
i of work to do after the first b − 1 block (in

our case μb
i = 1, because b = 1) were done at the maximum possible intensity.

Therefore, both if (h, i) ∈ %CS and if (h, i) ∈ X%C with δbhi − � g̃bhi
āi

	 ≤ ESi , we can

execute the whole remaining amountμb
i of work at the maximum possible intensity, ensuring

that ESh + �hi ≤ ESi . Therefore, block b can be the last one (i.e., ri = b = 1) and with
structure π

E,ri
i .

Moreover, with this choice, it is also assured that the lengths �+
i j (π

E
i ) = �̂

ri+
i j (π E

i ) +
�̃
ri+
i j (π E

i ) of all the outgoing arcs (i, j) ∈ �+(i) from i are minimized (where, in particular,

�̂
ri+
i j (π E

i ) = 0, since ri = 1).

In conclusion, this proves that profile π E
i , having block ri = b = 1 of structure π

E,ri
i , is

the optimal profile for activity i , under the assumptions of the proposition. ��

Now, let us suppose that case (ib) occurs. Without loss of generality, we can assume that
g̃bhi ≥ ai .

Since (h, i) ∈ X%C with δbhi −� g̃bhi
āi

	 > ESi , differently from case (ia), we cannot execute

the remaining work μb
i of activity i at the maximum possible intensity, otherwise the activity
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cannot start at its earliest start time ESi . In fact, we would have ESh + �hi = δbhi − � g̃bhi
āi

	 >

ESi .
This means that block b cannot be of type π

E,ri
i , and, hence, it cannot be the last block of

profile π E
i , i.e., b < ri .

Therefore, without loss of generality, we assume that the length (number of time slots) of
block b is equal to (αb

i + 1+ βb
i ), with non-negative integers αb

i and βb
i possibly equal to 0,

being respectively the number of time slots of the first and third sub-blocks of block b, and
with the second sub-block having exactly γ b

i = 1 time slot where the amount of work wb
i is

done, with ai ≤ wb
i < āi , according to Proposition 1.

In addition, since the aim is also to execute the maximum amount of the work of activity
i in block b, so as to execute the work of i as early as possible, we assume that the amount
of work done in block b is equal to g̃bhi ≥ ai , which is the maximum possible amount if we
want that activity i can start at time ESi .

With the above choice, �̃b−hi (π E
i ) = (αb

i + 1+ βb
i ), and �̄b−hi (π E

i ) = 0. Therefore, the size
of block b must ensure that ESh + �hi = δbhi − (αb

i + 1 + βb
i ) ≤ ESi .

Finally, the amount of work g̃bhi should be done by anticipating at most the amount of
work done in block b, in order to minimize the value of �̃b+i j (π E

i ), for each outgoing arc
(i, j) ∈ �+(i) of node i . This can be achieved by choosing the minimum value for integer
βb
i ≥ 0.
Therefore, let us consider amax-inter-min profile π E

i where the three sub-blocks of block
b have the following sizes:

• γ b
i = 1 is the length of the second sub-block,

• αb
i ≥ 0 and βb

i ≥ 0 are integers representing the number of time slots of the first and
third sub-blocks, respectively, such that:

δbhi − (αb
i + 1 + βb

i ) ≤ ESi , (1)

αb
i āi + wb

i + βb
i ai = g̃bhi , (2)

ai ≤ wb
i < āi , (3)

and βb
i is minimized.

The amounts of work done in the three sub-blocks are zbi = αb
i āi , wb

i , and ybi = βb
i ai ,

respectively.
Let us denote with π

E,b
i the structure of the b-th block, with b < ri , of the max-inter-min

profile π E
i , with the above settings, according to case (ib). It results that:

Proposition 3 If there is only one (real) activity h ∈ V (immediately) preceding activity i

such that (h, i) ∈ X%C, with δbhi − � g̃bhi
āi

	 > ESi , then an optimal execution intensity profile

π∗
i for i is a max-inter-min profile π E

i , having block b = 1 < ri with structure π
E,b
i .

Proof Let us suppose that activity i is executed with profile π E
i , and let us consider block

b = 1. We have already shown that the remaining workμb
i of activity i cannot be executed at

the maximum possible intensity, otherwise, the activity cannot start at its earliest start time.
Therefore, let us assume that the structure of block b of profile π E

i is of type π
E,b
i .

Constraint (3) forces the second sub-block of block b to be non-empty and composed by
a single time slot (i.e., γ b

i = 1), according to Proposition 1.
From the definition of δbhi , we have that ESh + �hi = δbhi − (�̃b−hi (π E

i ) + �̄b−hi (π E
i )).

Therefore, by Inequality (1) and by Eq. (2), it follows that ESh + �hi ≤ ESi . In fact, by Eq.
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(2) it results �̃b−hi (π E
i ) = (αb

i + 1+ βb
i ). Moreover, since g̃b+1

hi = 0, it results �̄b−hi (π E
i ) = 0,

independently of the structure of the successive blocks of π E
i . Hence, with block b of type

π
E,b
i , it is guaranteed that activity i can start at time ESi .
Moreover, choosing the minimum integer value for βb

i ≥ 0, such that Constraints (1)–(3)
are fulfilled (with αb

i ≥ 0 and integer) allows us to maximize the fraction of work done on
block b at the maximum intensity while guaranteeing that activity i can start at time ESi .
Therefore, the structure π

E,b
i also warrants that, for each outgoing arc (i, j) ∈ �+(i) from

node i , the fraction �̃b+i j (π E
i ) of �+

i j (π
E
i ) is minimized.

This implies that the value �+
i j (π

E
i ) = �̂b+i j (π E

i ) + �̃b+i j (π E
i ) + �̄b+i j (π E

i ) is minimized,

since �̂b+i j (π E
i ) = 0, if b = 1, and �̄b+i j (π E

i ) assumes the minimum value, since in block b+1

it will be possible to execute the remaining amountμb+1
i > 0 of work at maximum intensity,

since g̃b+1
hi will be equal to 0.

In conclusion, this proves that profile π E
i , having block b = 1 < ri of structure π

E,b
i , is

the optimal profile for activity i , under the assumptions of the proposition.
��

According to Eq. (2), the whole amount of g̃bi j is covered in block b. Hence, when we will

consider next block b+1 we will have g̃b+1
i j = 0, meaning that, for block b+1, we will be in

case (ia) for precedence (h, i) ∈ X%C , sincewewill have δb+1
hi = δbhi −(αb

i +1+βb
i ) ≤ ESi ,

according to Inequality (1). Therefore, ri = b+1.Note that such a block always exists because
g̃b+1
hi < μb+1

i , since ghi < 1.
For case (ib), let us show how to find the optimal numbers α∗b

i , γ ∗b
i , and β∗b

i , of time slots
of the three sub-blocks of block b, respectively, that minimize β

q
i , while fulfilling Constraints

(1)–(3), with integers αb
i ≥ 0 and βb

i ≥ 0.

Theorem 4 For case (ib), block b < ri of max-inter-min execution profile π E
i of activity i ,

whose structure is π
E,b
i , has three sub-blocks with the following optimal profiles:

• First sub-block contains α∗b
i =

⌊
g̃bhi−(δbhi−ESi )ai

āi−ai

⌋
≥ 0 time slots, where a total amount

z∗bi = α∗b
i āi ≥ 0 of work of i is done;

• Second sub-block contains γ ∗b
i = 1 time slot, where a total amount of work w∗b

i of work
of i is done, with ai ≤ w∗b

i = g̃bhi − (δbhi − ESi )ai − α∗b
i (āi − ai ) + ai < āi ;

• Third sub-block contains β∗b
i = δbhi −ESi −α∗b

i −1 ≥ 0 time slots, where a total amount
y∗b
i = β∗b

i ai ≥ 0 of work of i is done.

Proof From Eq. (2), we have

βb
i ai = g̃bhi − αb

i āi − wb
i . (4)

Multiplying both sides of Inequality (1) by ai and rearranging the resulting inequality, we
have

αb
i ai + ai + βb

i ai ≥ (δbhi − ESi )ai . (5)

Therefore, substituting Eq. (4) into Inequality (5) and rearranging the obtained inequality,
we have

αb
i (āi − ai ) + wb

i ≤ ai + g̃bhi − (δbhi − ESi )ai . (6)
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It is clear that minimizing βb
i , while satisfying that Constraints (1)–(3), corresponds to max-

imizing the left hand side of Inequality (6), with αb
i integer and with 0 ≤ αb

i ≤ � g̃bhi
āi

	, while
fulfilling Constraint (3).

From Inequalities (3) and (6), it results

αb
i (āi − ai ) ≤ g̃bhi − (δbhi − ESi )ai . (7)

We note that the above inequality is well posed, because from Inequalities (1)–(3) it follows
that its right hand side is non negative. Moreover, we note that (āi − ai ) > 0. Let, therefore,

α′b
i = g̃bhi − (δbhi − ESi )ai

āi − ai
≥ 0. (8)

According to Eq. (8), α′b
i is the maximum value that can be chosen for αb

i , if we remove the
integer restriction on it, while assuming wb

i = ai .
Let us show that the valueα∗b

i = �α′b
i 	 is the searchedmaximum integer value for (integer)

αb
i ≥ 0, that, together with the optimal value w∗b

i of wb
i that can be derived from the former,

maximize the left hand side of Inequality (6), while fulfilling Constraint (3).
If α′b

i is an integer and, hence, α∗b
i = α′b

i , this value is clearly the maximum searched
value for (integer) αb

i ≥ 0. Moreover, from Inequalities (6) and (3) it results w∗b
i = ai ,

that together with α∗b
i maximize the left hand side of Inequalities (6), being satisfied at the

equality.
If, oppositely, α∗b

i < α′b
i , we assign the value w∗b

i to variable wb
i so as to maximize its

value, that is, forcing Constraint (6) binding. We can show that in this way the value w∗b
i is

feasible with respect to Constraint (3). In fact, assigning the value to variable wb
i that satisfy

Inequality (6) at the equality, that is, letting

w∗b
i = g̃bhi − (δbhi − ESi )ai − α∗b

i (āi − ai ) + ai ≥ 0, (9)

it is easy to verify that w∗b
i ≥ ai , given Inequality (7). Moreover, since α∗b

i + 1 > α′b
i , from

Eq. (8) we have

(āi − ai ) > g̃bhi − (δbhi − ESi )ai − α∗b
i (āi − ai ), (10)

which, by Eq. (9), implies w∗b
i < āi .

It is clear, therefore, that considering the above (optimal) values α∗b
i andw∗b

i for variables
αb
i andwb

i , respectively, makes Constraint (1) binding. Then, it follows that the optimal value
of βb

i is β∗b
i = δbhi − ESi − α∗b

i − 1. It is clear that value β∗b
i is integer and it easy to verify

that it is non-negative.
Summarizing, for case (ib), the amounts of work of activity i done in the three sub-blocks

of block b are z∗bi = α∗b
i āi , w∗b

i calculated according to Eq. (9), and y∗b
i = β∗b

i ai . ��

Let us consider case (ii): (h, i) ∈ XF (where X ∈ {S,%C}). Also in this case we have to
consider two alternative sub-cases:

(iia): δbhi − 
μb
i

āi
� ≤ ESi ;

(iib): δbhi − 
μb
i

āi
� > ESi .

Let us suppose that case (iia) occurs. For this case, analogously to case (ia), next we prove
that the optimal profile is executing activity i at the maximum possible execution intensity,
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that is, with a max-inter-min profile π E
i with a single block, i.e., ri = b = 1, with the same

structure introduced for case (ia) and denoted as π
E,ri
i (see Proposition 2).

Proposition 5 If there is only one (real) activity h ∈ V (immediately) preceding activity i

such that (h, i) ∈ XF, with δbhi − 
μb
i

āi
� ≤ ESi , then an optimal execution intensity profile

π∗
i for i is a max-inter-min profile π E

i , having block ri = b = 1 with structure π
E,ri
i .

Proof Let us suppose that activity i is executed with profile π E
i , and let us consider block

b = 1.

If (h, i) ∈ XF with δbhi −
μb
i

āi
� ≤ ESi , we are free to execute the whole remaining amount

μb
i of work at the maximum possible intensity, ensuring that ESh +�hi = δbhi −
μb

i
āi

� ≤ ESi .

Therefore block b can be the last one, i.e., ri = b = 1, and with structure π
E,ri
i .

Moreover, with this choice it is also assured that the lengths �+
i j (π

E
i ) = �̂

ri+
i j (π E

i ) +
�̃
ri+
i j (π E

i ) of all the outgoing arcs (i, j) ∈ �+(i) of node i are minimized (where in particular

�̂
ri+
i j (π E

i ) = 0, since ri = 1).

In conclusion, this proves that profile π E
i , having block ri = b = 1 of structure π

E,ri
i , is

the optimal profile for activity i , under the assumptions of the proposition.
��

Now, let us suppose that case (iib) occurs. In this case, δbhi − 
μb
i

āi
� > ESi , and, hence,

differently from case (iia), we cannot execute the remaining amount of work μb
i of activity i

at the maximum possible intensity, otherwise the activity cannot start at its earliest start time

ESi . In fact, we would have ESh + �hi = δbhi − 
μb
i

āi
� > ESi .

This means that block b cannot be of type π
E,ri
i , and, hence, it cannot be the last block of

profile π E
i , i.e., b < ri .

Therefore, without loss of generality, we assume that the length (number of time slots) of
block b is equal to (αb

i + 1+ βb
i ), with non-negative integers αb

i and βb
i possibly equal to 0,

being respectively the number of time slots of the first and third sub-blocks of block b, and
with the second sub-block having exactly γ b

i = 1 time slot where the amount of work wb
i is

done, with ai ≤ wb
i < āi , according to Proposition 1.

In addition, since the aim is also to execute the maximum amount of the work of activity
i in block b, so as to execute the work of i as early as possible, we assume that the amount of
work done in block b is equal μb

i − ε > 0, with ε > 0 being a sufficiently small remaining
amount of work of i that can be done in exactly one time slot after the end of block b, because
b < ri .

With the above choice, �̃b−hi (π E
i ) = (αb

i + 1+ βb
i ), and �̄b−hi (π E

i ) = 1. Therefore, the size
of block b must ensure that ESh + �hi = δbhi − (αb

i + 1 + βb
i ) − 1 ≤ ESi , if we want that

activity i can start at its earliest start time.
Finally, the amount of work μb

i − ε should be done by anticipating at most the amount
of work done in block b, in order to minimize the value of �̃b+i j (π E

i ), for each outgoing arc
(i, j) ∈ �+(i) of node i . This can be achieved by choosing the minimum value for integer
βb
i ≥ 0.
Therefore, in case (iib), let us consider a max-inter-min profile π E

i where the three sub-
blocks of block b have the following sizes:

• γ b
i = 1 is the length of the second sub-block;
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• αb
i ≥ 0 and βb

i ≥ 0 are integers representing the number of time slots of the first and
third sub-blocks, respectively, such that:

αb
i + 1 + βb

i ≥ δbhi − ESi − 1, (11)

αb
i āi + wb

i + βb
i ai = μb

i − ε, (12)

ai ≤ wb
i < āi , (13)

with ε being a sufficiently small positive value, and βb
i is minimized.

The amounts of work done in the three sub-blocks are zbi = αb
i āi , wb

i , and ybi = βb
i ai ,

respectively.
Let us denote with π

E,b′
i the structure of the b-th block, with b < ri , of themax-inter-min

profile π E
i , with the above settings, according to case (iib). It results that:

Proposition 6 If there is only one (real) activity h ∈ V (immediately) preceding activity i

such that (h, i) ∈ XF, with δbhi − 
μb
i

āi
� > ESi , then an optimal execution intensity profile

π∗
i for i is a max-inter-min profile π E

i , having block b = 1 < ri with structure π
E,b′
i .

Proof Let us suppose that activity i is executed with profile π E
i , and let us consider block

b = 1. We have already shown that the remaining workμb
i of activity i cannot be executed at

the maximum possible intensity, otherwise the activity cannot start at its earliest start time.
Therefore, let us assume that the structure of block b of profile π E

i is of type π
E,b′
i .

Constraint (13) forces the second sub-block of block b to be non-empty and composed by
a single time slot (i.e., γ b

i = 1), according to Proposition 1.
From the definition of δbhi , we have that ESh + �hi = δbhi − (�̃b−hi (π E

i ) + �̄b−hi (π E
i )).

Therefore, from Inequality (11) and Eq. (12), it follows that ESh + �hi ≤ ESi . In fact,
from Eq.s (12) it results �̃b−hi (π E

i ) = (αb
i + 1 + βb

i ). Moreover, since μb+1
i = ε > 0 and

sufficiently small, it results �̄b−hi (π E
i ) = 1, because the remaining amount of work μb+1

i can

be done within 1 time slot. Hence, with block b of type π
E,b′
i , it is assured that activity i can

start at time ESi .
Moreover, choosing the minimum integer value for βb

i ≥ 0, such that Constraints (11)–
(13) are fulfilled (and with αb

i ≥ 0 and integer) allows to maximize the fraction of work done
on block b at the maximum intensity, while assuring that activity i can start at time ESi .

Therefore, the structure π
E,b′
i also assures that, for each outgoing arc (i, j) ∈ �+(i) of node

i , the fraction �̃b+i j (π E
i ) of �+

i j (π
E
i ) is minimized, assuming the remaining work to be done

in block b + 1 being equal to μb+1
i = ε > 0, with ε > 0 and sufficiently small.

This implies that the value �+
i j (π

E
i ) = �̂b+i j (π E

i )+�̃b+i j (π E
i )+�̄b+i j (π E

i ) is minimized, since

�̂b+i j (π E
i ) = 0, if b = 1, and �̄b+i j (π E

i ) ≤ 1 assumes the minimum value, with μb+1
i = ε > 0

sufficiently small.
In conclusion, this proves that profile π E

i , having block b = 1 < ri of structure π
E,b
i , is

the optimal profile for activity i , under the assumptions of the proposition.
��

At the end of block b, the amount μb+1
i = ε > 0 of work of activity i will remain to

do. Therefore, for block b + 1, case (iia) will occur for precedence (h, i) ∈ XF , because

δb+1
hi −

⌈
μb+1
i
āi

⌉
= δb+1

hi − 1 ≤ ESi , since ε > 0 and sufficiently small, and δb+1
hi =

δbhi − (αb
i + 1 + βb

i ) ≤ ESi − 1, according to Inequality (11). Therefore, ri = b + 1.
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For case (iib), following the same proof of Theorem 4, we can show that the optimal
numbers α∗b

i , γ ∗b
i , and β∗b

i , of time slots of the three sub-blocks of block b, respectively, that
minimize β

q
i , while fulfilling Constraints (11)–(13), with integers αb

i ≥ 0 and βb
i ≥ 0, are

as follows.

Theorem 7 For case (iib), block b < ri of max-inter-min execution profile π E
i of activity i ,

whose structure is π
E,b′
i , has three sub-blocks with the following optimal profiles:

• First sub-block contains α∗b
i =

⌊
μb
i −ε−(δbhi−ESi−1)ai

āi−ai

⌋
≥ 0 time slots, where a total

amount z∗bi = α∗b
i āi ≥ 0 of work of i is done;

• Second sub-block contains γ ∗b
i = 1 time slot, where a total amount w∗b

i of work of i is
done, with ai ≤ w∗b

i = μb
i − ε − (δbhi − ESi − 1)ai − α∗b

i (āi − ai ) + ai < āi ;
• Third sub-block contains β∗b

i = δbhi −ESi −α∗b
i −2 ≥ 0 time slots, where a total amount

y∗b
i = β∗b

i ai ≥ 0 of work of i is done,

where ε > 0 is a given sufficiently small real value.

Weclose this subsection showing the calculation of the optimal execution intensity profiles
for the activities of Example 2, where case (ib) occurs. Another small example where case
(iib) happens, and the details for the calculation of a sufficiently small value for ε > 0 are
given in Appendix A of the supplemental document.

Let us reconsider Example 2, corresponding to the project network of Fig. 2 and its
standardized network N ′

S shown in Fig. 5, and assuming that a2 = 0.09.
Activities 1 and 3 have a unique execution intensity profile, being therefore also optimal

(namely, profiles π∗
1 , π∗

3 , resp.), since for both these two activities the minimum and the
maximum intensities have the same value. In particular, for activities i = 1, 3, profile π∗

i can
be regarded as of type π E

i with one block (i.e., ri = 1), where the first sub-block contains
α1
i = � 1

āi
	 ≥ 0 time slots (i.e., α1

1 = � 1
ā1

	 = 5 and α1
3 = � 1

ā3
	 = 7), in which the amount

z1i = α1
i āi ≥ 0 of work of i is done at (maximum) intensity āi . Since, for both the two

activities, the whole amount of work is done in the first sub-block (i.e., z1i = α1
i āi = 1), the

second and third sub-blocks are empty.

According to the determined optimal profileπ∗
1 = π E

1 , the activity duration is d1(π∗
1 ) = 5.

Since activity 1 has no real precedence activity, we have ES1 = 0 and, hence, EF1 =
ES1 + d1(π∗

1 ) = 5. Moreover, �+
12(π

∗
1 ) = d1(π∗

1 ) = 5, since arc (1, 2) models feeding
precedence F%C(0.6)12, and �+

14(π
∗
1 ) = k+(1.0, π∗

1 ) = d1(π∗
1 ) = 5, since arc (1, 4)

models feeding precedence %C(1.0)S14.
As for activity 2, first of all we calculate ES2 = max[0, ES1 + (�+

12(π
∗
1 )−�−

12(π
min
2 ))] =

max[0, ES1 + (d1(π∗
1 ) − k−(0.6, πmin

2 ))] = max[0, 0 + (5 − � 0.6
0.09	)] = 0.

Since the minimum and maximum execution intensities of activity 2 are different and the
latter has activity 1 as a real preceding activity, the determination of π∗

2 is not trivial and
depends on incoming feeding precedence F%C(g12)12 of activity 2 with respect to activity
1, with g12 = 0.6.

Let us find the optimal profile π∗
2 , calculated as profile π E

2 , guaranteeing that the activity
can start at time ES2 = 0 and minimizing the positive contribution �+

2 j (π2) of the length �2 j

of the outgoing arcs (2, j) ∈ �+(2) of node 2 in the standardized network N ′
S .

Let us calculate the structure of block b = 1 ofπ E
2 . Clearly, the fraction of work of activity

2 already done before the start of block 1 is χ1
2 = 0, and, hence, μ1

2 = 1 − χ1
2 = 1 is the

fraction of work not yet done.
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We calculate δ112 = ES1 + �+
12(π

∗
1 ) − �̂1−12 (π E

2 ) = 5, where ES1 = 0, �+
12(π

∗
1 ) = 5, and

�̂1−12 (π E
2 ) = 0 because b = 1.

Since feeding precedence (1, 2) is of type X%C with g̃112 = max[0, g12 −χ1
2 ] = 0.6, and

δ112 − � g̃112
ā2

	 = 2 > ES2 = 0, case (ib) occurs. According to Theorem 4, we calculate the
structure of block b = 1:

• α1
2 =

⌊
g̃112−(δ112−ES2)a2

ā2−a2

⌋
=

⌊
0.6−(5−0)0.09

0.2−0.09

⌋
= 1, and z12 = α1

2 ā2 = 0.2;

• γ 1
2 = 1, and w1

2 = g̃112 − (δ112 − ES2)a2 − α1
2(ā2 − a2) + a2 = 0.6 − (5 − 0)0.09 −

1(0.2 − 0.09) + 0.09 = 0.13;
• β1

2 = δ112 − ES2 − α1
2 − 1 = 5 − 0 − 1 − 1 = 3, and y12 = β1

2 a2 = 0.27.

In conclusion, at the end of block 1 of profile π E
2 , the fraction of work of activity 2 already

completed is χ2
2 = (z12 + w1

2 + y12 ) = 0.6, and μ2
2 = 1 − χ2

2 = 0.4 is the fraction of work
still to be done in next block b + 1 = 2, since μ2

2 > 0.
Let us, therefore, continue the determination of profile π E

2 , by calculating the structure of
block b = 2 of π E

2 .
We calculate δ212 = ES1 + �+

12(π
∗
1 ) − �̂2−12 (π E

2 ) = 0, where ES1 = 0, �+
12(π

∗
1 ) = 5, and

�̂2−12 (π E
2 ) = 5 is the fraction of �−

12(π
E
2 ) due to the previous blocks of π E

2 .
The whole amount of g̃112 has been covered in block 1, meaning that for block 2 we have

g̃212 = max[0, g12 − χ2
2 ] = 0.

Since feeding precedence (1, 2) is of type X%C and δ212 − � g̃212
ā2

	 = 0 ≤ ES2 = 0, case

(ia) occurs. Therefore, according to Proposition 2, block 2 is the last block of profile π E
2 , i.e.,

r2 = 2, and has structure π
E,r2=2
2 , that is:

• α2
2 =

⌊
μ2
2

ā2

⌋
=

⌊
0.4
0.2

⌋
= 2, and z22 = α2

2 ā2 = 0.4;

• γ 2
2 = 0, since w2

2 = μ2
2 − z22 = 0.4 − 0.4 = 0;

• β2
2 = 0, since y22 = 0.

In conclusion, at the end of block 2 of profileπ E
2 , thewholework of activity 2 is completed.

According to the determined optimal profileπ∗
2 = π E

2 , the activity duration is d2(π∗
2 ) = 7.

Therefore, EF2 = ES2 + d2(π∗
2 ) = 7. Moreover, �−

12(π
∗
2 ) = k−(0.6, π∗

2 ) = 5, since arc
(1, 2)models feeding precedence F%C(0.6)12. Finally, for the outgoing arcs (2, j) ∈ �+(2)
of node 2 in the standardized network N ′

S , we have: �+
23(π

∗
2 ) = 0, since arc (2, 3) models

feeding precedence S%C(1/7)23; finally, �+
24(π

∗
2 ) = k+(1, π∗

2 ) = d2(π∗
2 ) = 7, since arc

(2, 4) models feeding precedence %C(1)S24.
Finally, for activity 3, first of all we calculate ES3 = max[0, ES2 + (�+

23(π
∗
2 ) −

�−
23(π

min
3 ))] = max[0, ES2 + (0 − k−(1/7, πmin

3 ))] = max[0, 0 + (0 − � 1/7
1/7	)] = 0.

According to the determined optimal profileπ∗
3 = π E

3 , the activity duration is d3(π∗
3 ) = 7.

Therefore, EF3 = ES3 + d3(π∗
3 ) = 7. Moreover, �−

23(π
∗
3 ) = k−(1/7, π∗

3 ) = 1, since arc
(2, 3) models feeding precedence S%C(1/7)23, and �+

34(π
∗
3 ) = d3(π∗

3 ) = 7, since arc (3, 4)
models feeding precedence %C(1)S34.

In conclusion, �01 = �02 = �03 = 0, �12 = �+
12(π

∗
1 )−�−

12(π
∗
2 ) = d1(π∗

1 )−k−(0.6, π∗
2 ) =

5 − 5 = 0, �14 = �+
14(π

∗
1 ) = d1(π∗

1 ) = 5, �23 = −�−
23(π

∗
3 ) = −k−

3 (1/7, π∗
3 ) = −1,

�24 = �+
24(π

∗
2 ) = d2(π∗

2 ) = 7, and �34 = �+
34(π

∗
3 ) = d3(π∗

3 ) = 7. Therefore, path (0, 1, 2, 4)
and path (0, 3, 4) are the longest paths from node 0 to node 4 in the standardized network
of Fig. 5, with length equal to C∗

max = 7. The optimality of the solution is confirmed by the
optimal solution returned by a commercial solver for theMIP formulation given in Appendix
D of the supplemental document.
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3.2.2 The case with multiple directly preceding real activities

All the above propositions and theorems can be generalized to the case where real activity
i ∈ V has multiple directly preceding real activities, assuming that, when we are calculating
the structure of block b of execution intensity profileπ E

i of i , what follows nextwas iteratively
already applied for the calculation of the structure of each one of the previous blocks p =
1, . . . , b − 1.

Let us denote with π
E(b−1,min)
i , the execution intensity profile of activity i , in which the

activity is executed at the minimum intensity after the first b − 1 blocks of profile π E
i .

We assume that the first b − 1 blocks of π E
i were optimally determined, assuring, in

particular, that profile π
E(b−1,min)
i allows activity i to start at its earliest start time, that is,

δbhi − (�−
hi (π

E(b−1,min)
i ) − �̂b−hi (π

E(b−1,min)
i )) ≤ ESi , for each arc (h, i) ∈ �−(i).

We note that this is certainly true if b = 1. In this case, it results δ1hi − (�−
hi (π

E(0,min)
i ) −

�̂1−hi (π
E(0,min)
i )) ≤ ESi , because �̂1−hi (π

E(0,min)
i ) = 0, π

E(0,min)
i ≡ πmin

i , and ESi was
determined in advance by initially assuming profile πmin

i for activity i . Theorem 8 assures
that this happens also for 2 ≤ b < ri , and legitimates the above assumption.

Considering block b of π E
i , let �̃b−

X%C (i) = {(h, i) ∈ �X%C (i) : δbhi − � g̃bhi
āi

	 ≥ ESi } and
�̃b−
XF (i) = {(h, i) ∈ �−

XF (i) : δbhi − 
μb
i

āi
� > ESi } be the subsets of incoming direct feeding

precedences (h, i) of activity i (incoming arcs (h, i) of node i in the standardized network
N ′
S), for which case (ib) and case (iib) occur, respectively. Clearly, for all that precedences,

activity h is real.
According to the above propositions and theorems, we calculate the fractions of work

that should be done in the three sub-blocks of block b, for each feeding precedence (h, i) ∈
�̃b−
X%C (i)∪ �̃b−

XF (i), as if activity h were the unique real activity directly preceding activity i .
Since, in general, these triples of values differ among the direct incoming feeding precedences
(h, i) of activity i , we denote them as triples (zbhi , w

b
hi , y

b
hi ). Contrarily, for all the other

incoming direct feeding precedences (h, i) ∈ �−(i)\(�̃b−
X%C (i) ∪ �̃b−

XF (i)) (i.e., for which

cases (ia) or (iia) occur), we know that zbhi = �μb
i

āi
	, wb

hi = μb
i − �μb

i
āi

	, and ybhi = 0.

Therefore, if �̃b−
X%C (i)∪�̃b−

XF (i) = ∅ (i.e, when all the direct incoming feeding precedences

(h, i) of activity i belong to case (ia) or case (iia)), we can simply let zbi = �μb
i

āi
	, wb

i =
μb
i − �μb

i
āi

	, and ybi = 0; then, αb
i = zbi /āi (since zbi is a multiple of āi ), γ b

i equal to 1 if

wb
i > 0 and 0 otherwise (since wb

i < āi ), and βb
i = 0. Clearly, this choice is optimal for

block b and guarantees that activity i can start at time ESi , according to Propositions 2 and
5. Moreover, since χb

i = 1, block b is the last block of π E
i , that is, ri = b. Note, in fact, that

the structure of this last block is π
E,ri
i .

Let us consider now the case in which block b < ri , because there exists at least one
feeding precedence (h, i) of activity i belonging to case (ib) or case (iib), that is,

∣
∣�̃b−

X%C (i)
∣
∣+

∣
∣�̃b−

XF (i)
∣
∣ ≥ 1.

Let (hb, i) ∈ �−(i) be the incoming direct precedence of i , such that (zb
hbi

+ wb
hbi

) ≤
(zbhi +wb

hi ) for any (h, i) ∈ �−(i), and such that yb
hbi

≤ ybh′i for any arc (h′, i) ∈ �−(i) with

zbh′i + wb
h′i = zb

hbi
+ wb

hbi
.

Clearly, (hb, i) ∈ �̃b−
X%C (i) ∪ �̃b−

XF (i), and, hence, ai ≤ wb
hbi

< āi , and then γ b
hbi

= 1,

according to Proposition 1. In fact, if this were not the case, we would have zb
hbi

+wb
hbi

= μb
i ,
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which is the maximum possible value, meaning that �̃b−
X%C (i) ∪ �̃b−

XF (i) = ∅, and, hence, b
would be equal to ri , contrarily to the initial hypothesis.

Let the actual amounts of work of activity i done in the three sub-blocks of b be equal to
the related amounts calculated for precedence (hb, i). That is, zbi = zb

hbi
, wb

i = wb
hbi

, and

ybi = yb
hbi

. Therefore, the number of time slots of the first sub-block is αb
i = zbi /āi , since z

b
i

is a multiple of āi , the second sub-block contains exactly 1 time slot (i.e., γ b
i = γ b

hbi
= 1),

and, finally, the number of time slots of the third sub-block of block b is βb
i = ybi /ai , since

ybi is a multiple of ai .
With the above choice for the structure of block b < ri , it is guaranteed that activity

i can start at time ESi , at least by executing at the minimum intensity the remaining work
1−χb

i > 0 still to be done after block b, that is, by executing activity i with profile π
E(b,min)
i .

In fact, we can prove that:

Theorem 8 Executing activity i with profile π
E(b,min)
i , with the structure of block b < ri

assumed equal to that calculated for direct incoming feeding precedence (hb, i), assures that
i can start at time ESi .

Proof For each incoming arc (h, i) of node i , with h �= 0, let us denote with π
E(b,(h,i))
i the

(optimal) max-inter-min execution intensity profile of activity i with the structure of block b
computed as if (real) activity h were the unique direct predecessor of i . Accordingly, block
b will be the last block of π

E(b,(h,i))
i if precedence (h, i) ∈ �−(i)\(�̃b−

X%C (i)∪ �̃b−
XF (i)) (i.e.,

for which cases (ia) or (iia) occur), otherwise (i.e, when for precedence (h, i) cases (ib) or
(iib) occur) block b will be the second last block of π

E(b,(h,i))
i and in the last block b+ 1 the

remaining amount μb+1
i > 0 of work of i will be done at the maximum possible intensity.

Accordingly, profiles π
E(b,(h,i))
i and π

E(b,min)
i are the same up to the end of the last time

slot of blockb−1. Therefore, δbhi has the samevalue for both these twoprofiles.Comparing the
remaining sections of these two profiles, we have that in each time slot from the end of block
b−1until the last time slot of profileπ

E(b,(h,i))
i , the execution intensity of i in profileπ

E(b,min)
i

is not greater than that in profile π
E(b,(h,i))
i , because zbi +wb

i ≤ zbhi +wb
hi , and from the end of

block b of π E(b,min)
i onward, activity i is executed at the minimum intensity according to this

profile. Therefore, �̃b−hi (π
E(b,min)
i ) + �̄b−hi (π

E(b,min)
i ) ≥ �̃b−hi (π

E(b,(h,i))
i ) + �̄b−hi (π

E(b,(h,i))
i ).

Since the structure of block b of profileπ
E(b,(h,i))
i guarantees that δbhi −(�̃b−hi (π

E(b,(h,i))
i )+

�̄b−hi (π
E(b,(h,i))
i )) ≤ ESi , we have that δbhi−(�̃b−hi (π

E(b,min)
i )+�̄b−hi (π

E(b,min)
i )) ≤ ESi . Since

this is true for each precedence (h, i) ∈ �−(i), it follows that executing activity i with profile
π
E(b,min)
i would guarantee that i can start at time ESi . ��
If feeding precedence (hb, i) ∈ �̃b−

X%C (i) (i.e., for which case (ib) occurs), then after
executing the fraction g̃b

hbi
of work of activity i in block b of profile π E

i , we will clearly have

g̃b+1
hbi

= 0. Hence, �̄b−
hb,i

(π E
i ) = 0, whichever the structures of remaining blocks b+1, . . . , ri

of π E
i are.
If feeding precedence (hb, i) ∈ �̃b−

XF (i) (i.e., for which case (iib) occurs), then after the
execution of blockb ofπ E

i , it will remain a (sufficiently small) residual amountμb+1
i = ε > 0

of work to do after block b, meaning that b + 1 = ri , that is, block b + 1 is the last one of
profile π E

i .
Finally, if

∣
∣�̃b−

X%C (i)
∣
∣ + ∣

∣�̃b−
XF (i)

∣
∣ = 0 (i.e., for all incoming direct precedence (h, i) of

activity i , cases (ia) or (iia) occur) block b is the last one of profile π E
i , i.e., b = ri .
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This proves the following result.

Theorem 9 The number ri of blocks of profile π E
i is not greater than

∣
∣�−

X%C (i)
∣
∣ +

min
[
1,

∣
∣�−

XF (i)
∣
∣
] + 1.

Applying iteratively the result of Theorem 8, for each block b = 1, . . . , ri − 1 of profile
π E
i , and considering last block ri with structure π

E,ri
i guarantee that i can start at its earliest

start time ESi , if i is executed according to profile π E
i .

In addition, profile π E
i also guarantees that, for all outgoing arcs (i, j) ∈ �+(i) of node

i in the standardized network N ′
S , �+

i j (π
E
i ) has the minimum value, among the values of

�+
i j (πi ) obtained for any execution profiles πi of i that allow the activity to start at time ESi .

Next, we show that this implies that profile π E
i also allows activity i to finish at its earliest

finish time EFi , and makes it possible to start the successive activities of i at their earliest
start time. In this regard, profile π E

i can be therefore considered as an optimal profile π∗
i for

activity i .

Theorem 10 Let π∗
i be an execution intensity profile of activity i , such that the activity can

start at time ESi , and, for each outgoing arc (i, j) ∈ �+(i) of node i in N ′
S, it holds that

�+
i j (π

∗
i ) ≤ �+

i j (π
0
i ), for any profile π0

i allowing activity i to start at time ESi . For each arc

(i, j) ∈ �+(i), it follows that:

ESi + �+
i j (π

∗
i ) ≤ ESi + λ + �+

i j (π
λ
i ),

for any feasible profileπλ
i of activity i , for which the activity cannot start before time ESi +λ,

with λ ≥ 0 and integer.

Proof We note that execution intensity profile π E
i respects the hypothesis of the theorem.

Therefore, we assume π∗
i = π E

i .
Profile π E

i dominates any other profile π0
i , since ESi + �+

i j (π
E
i ) ≤ ESi + �+

i j (π
0
i ), for

any outgoing arc (i, j) ∈ �+(i) of node i . Let us show that profile π E
i also dominates any

other profiles πλ
i , for which the activity cannot start before time ESi + λ, with λ > 0 and

integer, i.e., that there is no profile πλ
i , such that ESi + �+

i j (π
E
i ) > ESi + λ + �+

i j (π
λ
i ), for

any outgoing arc (i, j) ∈ �+(i) of node i . In particular, let us show that the above inequality
is not true with respect to the (best) profile π∗λ

i , for which �+
i j (π

∗λ
i ) has the minimum value

among profile πλ
i .

Indeed, profile π∗λ
i can be obtained from π E

i , reducing by λ the number of time slots
of block b = 1, while maintaining the amount of work done in this block and minimizing
the amount of work done at the minimum execution intensity. This could be achieved by
anticipating the work done in the last λ ≤ βb

i time slots of the third sub-block of block b, as
early as possible within the block.

Since βb
i ≥ λ > 0, block b is not the last block of profile π E

i (i.e., b < ri ). Therefore,
block b is composed by the first sub-block of αb

i ≥ 0 time slots where activity i is executed
at the maximum intensity āi , followed by the second sub-block of γ b

i = 1 time slot where
the activity is executed with intensity wb

i , with ai ≤ wb
i < āi , and completed with the third

sub-block of βb
i > 1 time slots where the activity is executed at the minimum intensity ai .

In addition, to anticipate the fraction of work λ ai it is required that (āi − wb
i ) + (βb

i −
λ)(āi − ai ) ≥ λ ai , where (āi − wb

i ) is the amount of additional work that could be done
in the single time slot of the second sub-block, and analogously (βb

i − λ)(āi − ai ) is the
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amount of additional work that could be done in the first βb
i − λ time slots of the third sub-

block. Therefore, the reduction of the length of block b by λ time slots can be done only if

λ ≤ � āi−wb
i +(āi−ai )β

b
i

āi
	.

Assuming that it were possible to reduce by λ the length of block b = 1, for block b = 2
this cannot be done. In fact, if ri = 2 the block length is not reducible a priori. Otherwise,
since the value of δ2hi will be increased by λ, for any incoming precedence (h, i) of activity
i , i.e., by the same amount of time we have assumed to delay the starting time of i , then the
(optimal) size of this block b = 2 will remain unchanged. Clearly, the same reasoning also
applies to the other blocks, if any.

In any case, if the reduction by λ of the length of block b = 1 could be done, this could
not imply a reduction greater than λ for the value of �+

i j , for any (i, j) ∈ �+(i). In fact, for

any precedence (i, j) ∈ S%C , �+
i j (πi ) = 0 for any feasible profile πi . In the other cases, i.e.,

(i, j) ∈ %C(qi j )X ∪ F%C , the value of �+
i j (πi ) = k+(qi j , πi ) depends also by qi j (with

qi j = 1, if (i, j) ∈ F%C , since k+(qi j = 1, πi ) = di (πi )). Therefore, denoting with z1i
and w1

i the amount of work done in the first and second sub-block of block 1 of profile π E
i ,

respectively, for qi j ≤ z1i + w1
i , we have �+

i j (π
∗λ
i ) = �+

i j (π
E
i ), otherwise, for qi j > z1i + w1

i ,

it can be shown that �+
i j (π

∗λ
i ) ≥ �+

i j (π
E
i ) − λ.

In conclusion, profile π E
i dominates all other profiles πλ

i , for any λ ≥ 0.
��

Clearly, profile π∗
i of Theorem 10 is optimal, because it allows activity i to start at time

ESi , and, in addition, assures that ESi + �+
i j (π

∗
i ) has the minimum possible value. In fact,

the latter guarantees that also succeeding activities j of i might start at their earliest start
time. Since this is in particular valid with respect to the succeeding dummy activity n + 1, it
follows that, ESi + �+

i,n+1(π
∗
i ) = ESi + di (π∗

i ) is minimum, and, hence, equal to EFi .

Since profile π E
i fulfills the hypothesis of Theorem 10, this proves that

Theorem 11 The max-inter-min execution profile π E
i with the structures of its blocks b =

1, . . . , ri defined above allows to start activity i at its earliest start time ESi and to finish
it at its earliest finish time EFi , assuming that the execution profiles of its (immediate)
predecessors guarantee the same for the preceding activities. Therefore such an execution
profile π E

i for activity i is optimal for the earliest start (and finish) schedule.

As a corollary, we have that

Corollary 1 Executing each activity i ∈ V with the (optimal)max-inter-min execution profile
π E
i , and starting the activities at the earliest times, assures the minimization of the project

makespan.

3.3 The forward recursion algorithm

Assuming the activities being indexed according to a topological order of the nodes of the
acyclic standardized network N ′

S , applying, in an iterative fashion for each node i ∈ V of
N ′
S , the calculation of the optimalmax-inter-min execution profile π E

i , according to Sect. 3.2,
allows to determine the optimal activity execution intensity profiles, the activity earliest start
and finish times, and the minimum project makespan. This procedure generalizes the forward
recursion algorithm of the critical path method and its extension for the project network with
GPRs, with minimum time lags.
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It is worth to notice that the optimal activity execution profiles and the related earliest start
(and finish) schedule can be computed in polynomial time. In fact, for each block b of profile
π E
i of activity i , the calculation of the sizes zbi , w

b
i , y

b
i of the three sub-blocks of b requires

the calculation of zbhi , w
b
hi , y

b
hi , for each incoming feeding precedence (arc) (h, i) ∈ �−(i) of

i , in order to find the precedence (hb, i) for which yb
hbi

is equal to the minimum value of ybhi ,

among those calculated for the incoming precedences (h, i) of i for which the value zbhi +wb
hi

is minimum. Since the number of blocks ri ≤ ∣
∣�−(i)

∣
∣+1, the total number of times in which

the above three calculations should be done is not greater than
∑

i∈V
∣
∣�−(i)

∣
∣(

∣
∣�−(i)

∣
∣ + 1),

that is, O(
∣
∣A′∣∣2) times. Since the values of zbhi , w

b
hi , y

b
hi , related to precedence (h, i), can be

computed in constant time, it follows that our forward recursion runs in O(
∣
∣A

∣
∣2) time.

The pseudocode of the proposed Forward recursion algorithm is listed in Algorithm 1.
If we were able to determine in constant time the incoming feeding precedence (hb, i) ∈

�̃b−
X%C (i) ∪ �̃b−

XF (i) of activity i , that fixes the sizes of the three sub-blocks of block b < ri ,
we would be able to find in O(

∣
∣�−(i)

∣
∣)) time the (optimal) profile π E

i and the value of
ESi of activity i , along with the length �hi of each incoming arc (h, i) ∈ �−(i), and length
�i,n+1 = di (π E

i ).
Indeed, we show in Appendix B of the supplemental document that this is possible, if we

initially sort the incoming precedences (h, i) ∈ �−(i) of i in lexicographic non-decreasing
order of the values of couples [(z1hi + w1

hi ), y
1
hi ], and we find the (optimal) profile π E

i of
activity i , using the information provided by that ordering. Since this sorting can be done in
O(|�−(i)| log|�−(i)|) time, the total time required to findπ E

i will be O(|�−(i)| log|�−(i)|).
Hence, the whole algorithm will run in O(|A| log|N |) time.

Since the set of feeding precedence relations, alongwith precedence SF , include theGPRs,
our algorithm is therefore able to find the optimal activity durations d∗

i and the earliest start
(and finish) schedule for the non-preemptive unconstrained project scheduling problem with
GPRs, with minimum time lags, and variable activity durations dmin

i ≤ di ≤ dmax
i , where

dmin
i = 
 1

āi
� and dmax

i = 
 1
ai

�. However, in this case, the algorithm runs in O(
∣
∣A

∣
∣) time,

because it can be shown that ri ≤ 2, since the incoming precedence of activity i are only
of type X%C(0) (since XS ≡ X%C(0)) or of type XF , with X ∈ {S,%C(1)} (since
FF ≡ %C(1)F).

3.3.1 A complete example

Let us consider as a complete example the project network shown in Fig. 1, and assume that
for all the activities i ∈ V \{6} the minimum andmaximum execution intensities are ai = 0.1
and āi = 0.2, respectively, while for activity 6 they are a6 = 0.08 and ā6 = 0.2.

Table 1 summarizes the output of the Forward recursion algorithm (the detail of the
calculations made by the algorithm is given in Appendix C of the supplemental document).
Column one lists the numbering of the real activities. Columns two and three list the values
of ESi and EFi , respectively, of each activity i ∈ V . Column four lists the number ri of
blocks of the optimalmax-inter-min profile π E

i of each activity i , and the last groups of three
columns list the values (αb

i ; zbi ), (γ b
i ;wb

i ), (β
b
i ; ybi ), detailing the structure of each block

b = 1, . . . , ri of profile π E
i of activity i : number of time slots and amount of work done, for

each one of the three sub-blocks of block b.
Table 2shows the results of the optimal solution returned by a commercial solver for the

MIP formulation given in Appendix D of the supplemental document. Column one lists the
numbering of the real activities. Columns two and three list the values of ESi and EFi ,
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Algorithm 1 Forward recursion
1: for i = 1 to n do
2: Set ESi := max[0,maxh∈V :(h,i)∈A{ESh + �+

hi (π
E
h ) − �−

hi (π
min
i )}]

3: Set b := 1, and μb
i := 1

4: while μb
i > 0 do

5: Set αbi := �μb
i

āi
	, zbi := αbi āi , and wb

i := μb
i − zbi

6: if wb
i > 0 then set γ b

i := 1 else set γ b
i := 0

7: Set βb
i := 0, and ybi := 0

8: if āi > ai then
9: for each h ∈ V : (h, i) ∈ �−(i) do
10: Set last-block := true
11: Set δbhi := ESh + �+

hi (π
∗
h ) − �̂b−hi (π E

i )

12: if (h, i) ∈ X%C then
13: Set g̃bhi := max[0, ghi − (1 − μb

i )]
14: if δbhi − � g̃

b
hi
āi

	 > ESi then

15: Compute αbhi , z
b
hi , w

b
hi , β

b
hi , and ybhi , according to Th. 4

16: Set last-block := false
17: end if

18: else if (h, i) ∈ XF and δbhi − 
μb
i

āi
� > ESi then

19: Compute αbhi , z
b
hi , w

b
hi , β

b
hi , and ybhi according to Th. 7

20: Set last-block := false
21: end if
22: if last-block = false then
23: if (zbhi + wb

hi < zbi + wb
i ) or

24: (zbhi + wb
hi = zbi + wb

i and ybhi < ybi ) then

25: Set αbi := αbhi , z
b
i := αbi ā

b
i

26: Set γ b
i := 1, wb

i := wb
hi

27: Set βb
i := βb

hi , y
b
i := ybhi

28: end if
29: end if
30: end for
31: end if
32: Set μb+1

i := μb
i − (zbi + wb

i + ybi )

33: Set b := b + 1
34: end while
35: Set ri := b − 1
36: Set π E

i be the optimal profile of activity i with ri blocks determined so far

37: Set EFi := ESi + di (π
E
i )

38: end for
39: Set C∗

max := maxi∈V {EFi }

respectively, of each activity i ∈ V . The minimum makespan C∗
max = maxi∈V {EF∗

i } = 8.
The other columns show, for each activity i , the optimal execution intensity profile π∗

i , listing
in each row i the total amount of work x∗

i t done for activity i within the first t time slots of
the planning horizon, with 1 ≤ t ≤ C∗

max = 8.
From the optimal profiles showed in Table 1, it is not hard to retrieve the optimal values x∗

i t
of the variables xit of the MIP formulation, swowed in Table 2, as well as the values for the
earliest start and finish time. Therefore, the optimal solution of the MIP formulation given
in Appendix D of the supplemental document confirms the the optimal solution obtained by
the proposed Forward recursion algorithm.
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Table 1 The (optimal) solution returned by the Forward recursion algorithm for the project network of Fig. 1,
with ai = 0.1 and āi = 0.2, with the exception of activity i = 6 for which a6 = 0.08 and ā6 = 0.2

i ESi EFi ri (αbi ; zbi ), (γ b
i ; wb

i ), (βb
i ; ybi )

b = 1 b = 2

1 0 5 1 (5; 1.00), (0; 0.00), (0; 0.00)

2 0 5 1 (5; 1.00), (0; 0.00), (0; 0.00)

3 0 5 1 (5; 1.00), (0; 0.00), (0; 0.00)

4 3 8 1 (5; 1.00), (0; 0.00), (0; 0.00)

5 0 5 1 (5; 1.00), (0; 0.00), (0; 0.00)

6 0 7 2 (1; 0.20), (1; 0.16), (3; 0.24) (2; 0.40), (0; 0.00), (0; 0.00)

7 1 8 2 (0; 0.00), (1; 0.10), (3; 0.30) (3; 0.60), (0; 0.00), (0; 0.00)

8 0 5 1 (5; 1.00), (0; 0.00), (0; 0.00)

Table 2 The MIP formulation optimal solution for the project network of Fig. 1, with ai = 0.1 and āi = 0.2,
with the exception of activity i = 6 for which a6 = 0.08 and ā6 = 0.2

i ESi EFi x∗
i t
t = 1 2 3 4 5 6 7 8

1 0 5 0.20 0.40 0.60 0.80 1.00 1.00 1.00 1.00

2 0 5 0.20 0.40 0.60 0.80 1.00 1.00 1.00 1.00

3 0 5 0.20 0.40 0.60 0.80 1.00 1.00 1.00 1.00

4 3 8 0.00 0.00 0.00 0.20 0.40 0.60 0.80 1.00

5 0 5 0.20 0.40 0.60 0.80 1.00 1.00 1.00 1.00

6 0 7 0.20 0.36 0.44 0.52 0.60 0.80 1.00 1.00

7 1 8 0.00 0.10 0.20 0.30 0.40 0.60 0.80 1.00

8 0 5 0.20 0.40 0.60 0.80 1.00 1.00 1.00 1.00

Finally, Table 3 shows the values of length �i j of the arcs (i, j) of the standardized
network N ′

S , according to the optimal activity execution intensity profiles determined by the
algorithm. Therefore, (0, 3, 7, 9) and (0, 1, 4, 9) are the longest (critical) paths from source
node 0 to sink node 9 in the standardized network N ′

S , with length equal to C∗
max = 8.

4 Feeding precedence relations vs work GPRs

In addition to the previous four types of feeding precedence relations, we can consider a
fifth one of type %C(qi j )%C(gi j ) between two activities (i, j), meaning that the processed
fraction of successor activity j of activity i can be greater than 0 ≤ gi j < 1 only if i has
been processed for at least a fractional amount 0 < qi j ≤ 1.

Feeding precedence %C(qi j )%C(gi j ), between ordered activity couple (i, j), includes
those of types %C(qi j )S (when gi j = 0) and F%C(gi j ) (when qi j = 1).

We note, that it is not necessary to modify the project network N and the related stan-
dardized network N ′

S to represent also this fifth feeding precedence relation. In fact, for the
feeding precedence %C(qi j )%C(gi j )i j we have Si + k+

i (qi j , πi ) ≤ S j + k−
j (gi j , π j ), since

at the time when the amount of work done for activity j is (strictly) greater than gi j the
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Table 3 The values of the length
�i j of the arcs (i, j) of the
standardized network N ′

S ,
derived from the activity optimal
profiles calculated by the
Forward recursion algorithm

�i j j
i 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 .

1 . −3 −1 3 . . . . 5

2 . . . . −1 . . . 5

3 . . . . . 0 1 . 5

4 . . . . . . −6 . 5

5 . . . . . . . −3 5

6 . . . . . . . −4 7

7 . . . . . . . −1 7

8 . . . . . . . . 5

amount of work done for activity i has to be at least equal to qi j . Hence,

%C(qi j )%C(gi j )i j ≡ SSmin
i j (�i j ),with �i j = k+

i (qi j , πi ) − k−
j (gi j , π j ).

Moreover, we note that the results of Sect. 3.2, for the calculation of the optimal execution
intensity profile π∗

i of activity i , depend only on the values of �−
hi (πi ) of the incoming arcs

(h, i) of node i , while the values of �+
hi (π

∗
h ) are assumed known and given. Therefore, the

results of Sect. 3.2, and, hence, the proposed Forward recursion algorithm, for finding the
optimal execution intensity profiles of the activities and the related earliest start (and finish)
schedule, continue to be valid.

Valls et al. (2009) and, successively, Quintanilla et al. (2012) introduce a more general
type of precedence relations, for representing technological constraints expressed in terms
of (percentage) work content, that Quintanilla et al. call work GPRs. Referring, without loss
of generality, to the subclass of work GPRs of minimum type, like the ones considered in
our work, precedence constraints of this type are the following:

• (SSmin
i j , pi , p j , w): the initial percentage 0 ≤ p j ≤ 100 of activity j can be completed

only if the initial percentage 0 ≤ pi ≤ 100 of activity i has been completed;
• (SFmin

i j , pi , p j , w): the process of the final percentage 0 ≤ p j ≤ 100 of activity j can
be started only if the initial percentage 0 ≤ pi ≤ 100 of activity i has been completed;

• (FSmin
i j , pi , p j , w): the initial percentage 0 ≤ p j ≤ 100 of activity j can be completed

only if the process of the final percentage 0 ≤ pi ≤ 100 of activity i has been started;
• (FFmin

i j , pi , p j , w): the process of the final percentage 0 ≤ p j ≤ 100 of activity j can
be started only if process of the final percentage 0 ≤ pi ≤ 100 of activity i has been
started.

The above work GPRs generalizes our feeding constraints, in the general case. However,
when activity preemption is not allowed, as assumed in our paper, all the work GPRs can
be represented with the feeding precedences we consider (including the (time) GPR of type
SF), together with the generalized feeding precedence of type %C%C , that we define.

In fact, in the non-preemptive case, any type of work GPRs can be converted into any
other type of work GPRs (as well as for time GPRs). In particular, if activity preemption is
not allowed, it easy to prove that:

(SSmin
i j , pi , p j , w) ≡ (SFmin

i j , pi , 100 − p j , w),

(FSmin
i j , pi , p j , w) ≡ (SFmin

i j , 100 − pi , 100 − p j , w),
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(FFmin
i j , pi , p j , w) ≡ (SFmin

i j , 100 − pi , p j , w).

Moreover, it is simple to show that:

(SFmin
i j , 0, p j > 0, w) ≡ S%C(gi j = 1 − p j/100)i j ,

(SFmin
i j , 100, p j > 0, w) ≡ F%C(gi j = 1 − p j/100)i j ;

(SFmin
i j , pi > 0, 0, w) ≡ %C(qi j = pi/100)Fi j ,

(SFmin
i j , pi > 0, 100, w) ≡ %C(qi j = pi/100)Si j ,

that:

(SFmin
i j , 0, 0, w) ≡ SFi j ,

and finally that:

(SFmin
i j , pi > 0, p j > 0, w) ≡ %C(qi j = pi/100)%C(gi j = 1 − p j/100)i j .

In conclusion, the results of Sect. 3, and hence the proposed Forward recursion algorithm
for the earliest start (and finish) schedule for a project network of non-preemptive activities
with feeding precedence relations, are also valid in case of work GPRs. Therefore, also for
this more general types of precedence relations we are able to find the (earliest start and
finish) activity execution intensity profiles and the related earliest start (and finish) schedule
in in O(|A| log|N |) time, for the non-preemptive resource unconstrained project scheduling
problem, and this schedule also minimizes the project makespan.

5 Conclusions

The goal of this paperwas twofold.On the one hand,we aimed at finding a specific project net-
work representation associated with feeding precedence relations. The latter representation
resulted in a generalization of the network standardization used in Generalized Precedence
Relationships. Next, exploiting the network so defined we generalized the forward recursion
for the calculation of (i) the earliest start times and of (ii) the earliest finish times of the
project activities, and (iii) the critical (longest) paths. The proposed forward recursion algo-
rithm was shown to run in O(m log n) time, with n and m being the number of activities and
the number of precedence relations, respectively. Future work will be devoted to defining the
backward recursion algorithm, as well as the calculation of the latest start and finish times
of the activities along with activity floats and criticality.
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