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Abstract
We formulate Aubry–Mather theory for Hamiltonians/Lagrangians defined on
graphs, study the structure of minimizing measures, and discuss the relation-
ship with weak KAM theory developed in Siconolfi and Sorrentino (2018 Anal.
PDE 1 171–211). Moreover, we describe how to transport and interpret these
results on networks.
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1. Introduction

Over the last years there has been an increasing interest in the study of the Hamilton–Jacobi
equation on graphs and networks, as well as on related questions. These problems, in fact,
besides having a great impact in the applications in various fields (for example to data trans-
mission, traffic management problems, etc. . .), involve a number of subtle theoretical issues
related to the intertwining between the local analysis of the problem and the global structure
of the network/graph.

The paper presents the first, as far as we know, systematic detailed account of Aubry–
Mather theory for Hamiltonians/Lagrangians defined on graphs recovering the whole theory
in this new context and relating it to weak KAM analysis carried out in [29] (see also [25]).

We consider a connected graph Γ = (V,E) with a finite set of vertices V and a finite set of
oriented edgesE among vertices. AHamiltonian onΓ is defined as a collection ofHamiltonians
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H(e, ·) : R→ R, indexed by edges e ∈ E, which are required, among other things, to be con-
vex and superlinear at infinity, so that a Lagrangian L(e, ·) can be defined through Fenchel
transform (see section 3 for more details). We stress that H(e, ·) and H( f, ·) are unrelated
whenever f 6=±e, with ±e denoting an edge and its opposite (in other words, Hamiltonians
and Lagrangians on geometrically distinct edges are independent one from the other).

As it is well-known, Aubry–Mather theory is a variational theory, inspired by the principle
of least action [20, 22, 27, 30], whose aim is to find, in suitable spaces, minimizers of the
Lagrangian action functional (possible with constraints); we refer the reader to [12,13] for
more details on its connection to the study of the Hamilton-Jacobi equation. The passage from
manifolds to graphs requires a specific adaptation of the main tools and techniques involved,
which is by no means straightforward and, we believe, would be of potential interest for other
problems and applications.

Understandably, the first step in our analysis is to define an action functional on each path
of Γ, namely each finite sequence of concatenated edges. This requires the notion of a dis-
crete Lagrangian (see (7)) and the one of parametrized paths, that is to say a velocity and
a corresponding time to go through any edge of the path (see definition 4.1). The notion of
admissible parametrization we introduce has a number of subtleties, especially in the case
where the velocity vanishes on some edge. We remark that the notion of parametrization is
somehow in duality with that of intrinsic length of a path, employed in the framework of weak
KAM theory and related to a choice of a sub-level of the Hamiltonian.

The second issue to be settled is to suitably define the tangent cone of Γ and probability
measures on it (see section 4.2).

Once this frame has been established, the main contributions in this article can be summar-
ized as follows:

• We introduce the notion of occupation measures (see definition 4.11), which can be thought
asmeasure representations of parametrized paths, and the one of closed probability measures
and their rotation vectors, by adapting the corresponding definitions given on manifolds (see
section 4.3). These are the measures involved in the minimization procedures in which we
are interested.
Significantly, we extend to our setting the density result, with respect to the first Wasserstein
topology, of closed occupation measures in the set of closed measures (see theorem 4.15).

• We prove the existence of minimizing measures—named after Mather—obtained as
minimizers of suitably constrained/modified variational problems (see theorem 5.3 and
section 5.2). We define the corresponding Mather sets as the union of the supports of these
minimizing measures (see (17) and (19)); these families of sets are parametrized, respect-
ively, over the first homology and cohomology groups of the graph.

• We define the minimal average actions (the so-called Mather’s α and β functions) (see (16)
and (18)), prove that they are in convex duality and use them to relate Mather sets/measures
corresponding to different homology and cohomology classes (proposition 5.8 and corollary
5.9).

• We thoroughly investigate structural properties of Mather measures; in particular, we prove
that Mather measures are convex combinations of Dirac deltas (theorem 6.1) and deduce that
they are convex combinations of occupation measures supported on parametrized circuits
(theorem 6.6).

• We prove the analogue of Mather’s graph theorem (proposition 6.2 and corollary 6.4).
• We introduce the notion of irreducible Mather’s measures (section 6.2), prove that they cor-
respond to occupation measures on parametrized circuits (proposition 6.8) and discuss for
which homology classes they do exist (proposition 6.11). In theorem 6.10, we describe the
set of Mather measures as a convex polytope generated by irreducible Mather measures.
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• We relate Mather’s α function to the critical value of certain Hamilton–Jacobi equation and
show that (irreducible) Mather measures are supported on circuits of vanishing intrinsic
length (theorem 8.1).

• We prove that the (projected) Mather sets are included in the corresponding Aubry sets
(see (30) and corollary 8.3) and use viscosity solutions and subsolutions to provide a more
explicit description of Mather’s graph theorem (theorem 8.5).

• In section 8.2we discuss some properties ofMathermeasures corresponding to theminimum
of Mather’s α-function.

• In appendix A we describe how to develop an Aubry–Mather theory on networks, and look
from the point of view of networks to the notions that we have introduced on graphs and the
corresponding results.

1.1. Final remarks and future directions

The investigation carried out in this paper and [29] is part of a more general project to prove
a homogenization result for Hamilton–Jacobi equations on networks, following the homo-
logical approach introduced in [11]. The development of an Aubry–Mather theory on graphs
allows determining the limit problem and proving the convergence result. Note that, even if the
approximated equations in the homogenization problem are posed on a network, the natural
setting where the approximation procedure should take place is the corresponding abstract
graph. See [14, 15] for different interesting models of partial homogenization on junctures,
mainly devoted to applications to traffic theory.

More generally, there is a broad interest in the recent literature on probability measures
supported on graphs/networks, see for instance [8, 23]. One of the goal being, for instance, to
extend mean field games models to graphs (see [1, 7, 16, 17]).

Passing to a related field, connections between Aubry–Mather theory and optimal transport
have been pointed out in different contexts by various authors, see [3–6] (see also [9] for an
application of Aubry-Mather theory to statistical mechanics). The outputs of the present paper
can be seen as a further step to explore these directions of research in the graph/network setting.

1.2. Organization of the article

The article is organized as follows.
In section 2 we provide a brief introduction to graph theory, in order to set the terminology

and introduce themain concepts that will be needed. In particular, we define the algebraic topo-
logical notions of chains, cochains, homology and cohomology of the graph, that are crucial
importance for the full implementation of the variational analysis.

In section 3 we give the notion of Hamiltonian on a graph and introduce the associated
Lagrangian which allows us to define the action functional to be minimized under appropriate
constraints.

In section 4 we provide the relaxed setting on which the variational analysis will occur.
Sections 5 and 6 are the core of the development of Aubry–Mather theory in the context of

graphs. We set, in analogy to the classical setting, a family of variational problems, show that
they admit global minimizers and discuss their significance and their structural properties.

After having recalled in section 7 the basic results of weak KAM theory from [29], in
section 8 we discuss the relation between Aubry–Mather theory and weak KAM theory on
graphs. As in the classical case, these two approaches turn out to be tightly intertwined, each
providing a different and interesting perspective on the other.

In appendix A we describe how to develop an Aubry–Mather theory on networks.
In appendix B we provide the proof of the density result of closed occupation measures.
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2. Prerequisites on graphs

2.1. Definition and terminology

A graph Γ = (V,E) is an ordered pair of disjoint non-empty sets V and E, which are called,
respectively, vertices and (directed) edges, plus two functions:

o : E−→ V

which associates to each edge its origin (initial vertex), and

− : E−→ E

e 7−→ −e,

which changes direction and is a fixed point free involution, namely

−e 6= e and − (−e) = e for any e ∈ E.

We define the terminal vertex of e as

t(e) := o(−e).

We further denote by |V|, |E|, the number of vertices and edges, respectively. For any vertex
x ∈ V, we denote by

Ex := {e ∈ E : o(e) = x}

the set of edges originating from x; this is sometimes called the star centred at x.
An orientation of Γ is a subset E+ of the edges satisfying

−E+ ∩E+ = ∅ and −E+ ∪E+ = E.

In other words, an orientation ofΓ consists of a choice of exactly one edge in each pair {e,−e}.
We define a path ξ := (e1, . . . ,eM) = (ei)Mi=1 as a finite sequence of concatenated edges in

E, namely t(ej) = o(ej+1) for any j = 1, . . . ,M− 1.
We define the length of a path as the number of its edges. We set o(ξ) := o(e1), t(ξ) :=

t(eM). We call a path closed, or a cycle, if o(ξ) = t(ξ).
Throughout the paper, we assume Γ to be

(G1) finite, namely with |E|, |V| finite,
(G2) connected, in the sense that any two vertices are linked by some path.

It follows from the connectedness assumption, that the functions o and t are surjective.
In order to ease the presentation, in the following we also assume that

(G3) Γ does not contain loops, namely o(e) 6= t(e) for any e ∈ E.

This assumption is not essential, but it allows us to avoid some technical details. We will
point out, throughout the article, the relevant parts that need to be modified in order include
the presence of loops (see remarks 6.7, 7.1, and 8.6).

We call simple a path without repetition of vertices, except possibly the initial and terminal
vertex, in other terms ξ = (ei)Mi=1 is simple if

t(ei) = t(ej) ⇒ i = j.
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Clearly, there are finitely many simple paths in a finite graph. We call circuit a simple closed
path. Given any edge e, we call equilibrium circuit (based on e) the path (e,−e).

2.2. Homology of a graph

Throughout the paper we will take homology and cohomology with coefficients inR. We refer
to [31, chapter 4] for a more detailed and general presentation.

We define the 0–chain group as the free Abelian group on the vertices with coefficients in
R. We denote it by C0(Γ,R). We have

C0(Γ,R)∼ R|V|.

Wedo the same operationwith edges, making the reversed edge−e coincidewith the oppos-
ite of e with respect to the group operation, and we obtain the 1–chain group, denoted by
C1(Γ,R). A basis is given by any orientation E+, in the sense that any element of the 1–chain
group can be uniquely expressed as a linear combination of elements in E+ with real coeffi-
cients. We consequently have

C1(Γ,R)∼ R|E|/2.

We define the boundary operator ∂ : C1(Γ,R)→ C0(Γ,R) by setting for any edge

∂e := t(e)− o(e)

and then extending it linearly; clearly, ∂ (−e) =−∂e.
The (first) Homology group of Γ with coefficients in R is defined by

H1(Γ,R) := Ker∂.

Some remarks:

• H1(Γ,R) is a subgroup of C1(Γ,R).
• H1(Γ,R) is a free Abelian group of finite rank. The (first) Betti number is defined to be the
rank of H1(Γ,R), it is an indicator of the topological complexity of the network.

• An element of H1(Γ,R) is called a 1–cycle. In particular a 1–chain
∑

e∈E+ aee is a 1–cycle
if and only if ∑

e∈E+, t(e)=x

ae =
∑

e∈E+,o(e)=x

ae for any x ∈ V; (1)

This can be considered as an analogue of Kirchhoff law for electric circuits.

Due to (1), we can associate to any closed path ξ = (ei)Mi=1 in Γ an element of H1(Γ,R) via

[ξ] :=
M∑
i=1

ei. (2)

We call [ξ] the homology class of ξ. The converse is also true: every element of H1(Γ,Z) can
be represented by a closed path (see [31, pp 40–41]).

Remark 2.1. The first Betti number of the graph Γ, i.e. rank of H1(Γ,R), can be also charac-
terized in a combinatorial way via the so-called cyclomatic number introduced by Kirchhoff.
In fact (see [31, formula (4.3)]), one can prove that it equals

1
2
|E| − |V|+ 1
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(or, more generally, it is equal to 1
2 |E| − |V|+ |C|, where C denotes the set of connected com-

ponents of the graph).

2.3. Cohomology of a graph

Let us introduce the dual entities of chains. The 0–cochain group, denoted by C0(Γ,R), is the
space of functions from V to R, and the 1–cochain group, denoted by C1(Γ,R), is the space
of functions η : E−→ R, satisfying the compatibility condition

η(−e) =−η(e) for any e ∈ E.

The algebraic structure of additive Abelian group is induced by the one in (R,+).
We introduce the differential or coboundary operator

d : C0(Γ,R)−→ C1(Γ,R)

which is defined in the following way: for every g ∈ C0(Γ,R), the 1–cochain dg is given via

dg(e) := g(t(e))− g(o(e)) for all e ∈ E;

it clearly satisfies the compatibility condition dg(−e) =−dg(e).
It is easy to check that d is a group homomorphism. Hence, the (first) Cohomology group

of Γ with coefficients in R can be defined as the quotient group

H1(Γ,R) := C1(Γ,R)/Imd.

One can show that there exists a canonical isomorphism

H1(Γ,R)' Hom(H1(Γ,R),R) .

2.4. Pairings between chains and cochains, homology and cohomology

Let us introduce a pairing between 0–chains and 0–cochains:

〈·, ·〉 : C0(Γ,R)×C0(Γ,R)−→ R(
g,
∑
x∈V

αxx

)
7−→

∑
x∈V

αxg(x).

Similarly, we can define the pairing between 1–chains and 1–cochains (we adopt the same
notation):

〈·, ·〉 : C1(Γ,R)×C1(Γ,R)−→ R(
η,
∑
e∈E

αee

)
7−→

∑
e∈E

αeη(e).

The above pairings allow us to relate differential and boundary operators. Let g ∈ C0(Γ,R)
and ζ =

∑
e∈Eαee ∈ C1(Γ,R); then we have:

〈dg, ζ〉=
∑
e∈E

αedg(e) =
∑
e∈E

αe (g(t(e))− g(o(e)))

=
∑
e∈E

αe〈g,∂e〉=

〈
g,
∑
e∈E

αee

〉
= 〈g,∂ζ〉. (3)
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In particular, this means that whenever ζ ∈ C1(Γ,R) is such that ∂ζ = 0, then 〈dg, ζ〉= 0
for all g ∈ C0(Γ,R). Hence, the above pairing descends to a well-defined pairing between
first homology and first cohomology groups, that we continue to denote 〈·, ·〉 : H1(Γ,R)×
H1(Γ,R)−→ R.

3. Hamiltonians and Lagrangians on graphs

3.1. Definitions and assumptions

We call a Hamiltonian on the graph Γ = (V,E) a family of functions

H(e, ·) : R→ R

labeled by the edges, such that

H(e,p) =H(−e,−p) for any e ∈ E,p ∈ R. (4)

We further require that, for any e ∈ E, H(e, ·) is

(H1) strictly convex and differentiable;
(H2) superlinear at ±∞, namely

lim
p→±∞

H(e,p)
|p|

=+∞.

This implies that there exists, for any e, a unique pe =−p−e global minimizer of both
H(e, ·) inR. We consider in what followsH(e, ·)mostly restricted to [pe,+∞), (resp.H(−e, ·)
restricted to [p−e,+∞)), which is strictly increasing in this domain of definition. We set

ae =H(e,pe) =H(−e,p−e) = a−e. (5)

We define σ(e, ·) as the inverse function of H(e, ·) in [pe,+∞). We have

σ(e, ·) : [ae,+∞)→ [pe,+∞) for any e ∈ E

and

σ(e,ae) =−σ(−e,ae) = pe =−p−e for any e. (6)

The properties summarized in the next statement are immediate.

Lemma 3.1. Let e ∈ E. The function a 7→ σ(e,a) from [ae,+∞) to R is continuous, differen-
tiable in (ae,+∞), and strictly increasing for any e. In addition, it is strictly concave and
satisfies

lim
a→+∞

σ(e,a)
a

= 0.

We define the Lagrangian L(e, ·) : R→ R as the convex conjugate of H(e, ·), namely

L(e,q) :=max
p∈R

(pq−H(e,p)) . (7)

Proposition 3.2. Let e ∈ E. The function q 7→ L(e,q) is strictly convex and superlinear as q
goes to ±∞. In addition

L(e,q) = L(−e,−q) for any q ∈ R. (8)
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This is a consequence of (H1)–(H2) and (4) (see, for instance, [26, theorem 26.6]).
In what follows, we mostly consider L(e, ·) restricted to [0,+∞). We have

L(e,q) = max
p⩾σ(e,ae)

(pq−H(e,p)) for q⩾ 0,

an equivalent formula is

L(e,q) =max
a⩾ae

(qσ(e,a)− a) for q⩾ 0, (9)

from which it follows that L(e,0) =−ae.
Given ω ∈ C1(Γ,R), we further consider the ω– modified Hamiltonian

Hω(e,p) :=H(e,p+ 〈ω,e〉),

which clearly still satisfies assumptions (H1), (H2). It is therefore invertible on the right of its
minimizer and the inverse is

σω(e,a) := σ(e,a)−〈ω,e〉. (10)

The corresponding ω–modified Lagrangian is given by

Lω(e,q) := L(e,q)−〈ω,qe〉.

Remark 3.3. Note that ae does not depend on ω, i.e. it is the same for Hω(e, ·). In fact by (6)
ae is characterized by the relation

σ(e,ae)+σ(−e,ae) = 0

and by (10)

σ(e,ae)+σ(−e,ae) = σω(e,ae)+σω(−e,ae) for any 1–cochain ω.

4. Probability measures on edges

4.1. Preamble: parametrized paths

The notion of parametrized path is central in the paper and it will be essential to define occu-
pation measures.

Intuitively speaking, a parametrized path is a path where it is assigned to any edge a non-
negative average speed and a time needed to go through it. The time is the inverse of the speed,
if the latter is positive, while it can be any possible positive number if the speed is zero. We
motivate this choice in section A.2 in the case where Γ is the abstract graph associated to a
network.

Definition 4.1. We say that ξ = (ei,qi,Ti)Mi=1 is a parametrized path if

(i) (ei)Mi=1 is a family of concatenated edges which is called the support of ξ;
(ii) the qi are non-negative numbers and

Ti =

{ 1
qi

if qi > 0
a positive constant if qi = 0;

we denote by Tξ :=
∑

i Ti the total time of the parametrization of ξ;
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(iii) if all the q ′
i s vanish then o(ξ) = t(ξ);

(iv) if qi = 0 and ei+1 6=−ei then qi+1 6= 0;
(v) if qi 6= 0, i> 1, then

o(ei) = t(ej) with j =max{k< i, qk 6= 0}.

We call a parametrized cycle, a parametrized path supported on a closed path (or cycle).
We call a parametrized circuit, a parametrized path supported on a circuit.

Remark 4.2. Intuitively, a parametrized path can be thought as a concatenation of triples
with non-zero average velocity, and pairs of triples (i.e. equilibrium circuits) of the form
{(e,0,T),(−e,0,S)} for some e ∈ E and T,S> 0. In particular, condition (iv) reads that there
cannot be consecutive equilibrium circuits corresponding to different edges.

Equilibrium circuits represent steady states, interpreted as floating with zero average speed
along an edge and its opposite. Therefore, if all speeds vanish (item (iii)) then initial and final
position must coincide. Items (iv), (v) further prescribe that an object possessing vanishing
speed on an edge e starts floating back and forth along e and −e, and exits the swinging state
from the same vertex it entered, only when the speed becomes positive.

Alternatively to the introduction of equilibrium circuits, one could consider the possibility
that a path stops at a vertex x for some time. If this is the case, one needs to specity a ‘cost
per time’ (or action) cx to pay for remaining still at a vertex x; the most natural candidate for
this values is cx :=mino(e)=xL(e,0), which makes—at least for our purposes—this point of
view equivalent to the one that we have adopted. Observe that in principle one could choose a
different value for cx, with the only requirement that cx ⩽mino(e)=xL(e,0); this object appears
in the literature with the name of flux limiter and becomes particularly relevant in the study
of the time-dependent Hamilton–Jacobi equation in order to deal with discontinuity interfaces
(which are 1-dimensional subspaces); see for instance [18, 28].

We deduce from the definition the following properties.

Proposition 4.3. Let ξ = (ei,qi,Ti)Mi=1 be a parametrized path.

(i) If some speed qi is non-vanishing, and i1, . . . , iK is the increasing sequence of indices
corresponding to edges with positive speed, then

ξ̄ := (eij ,qij ,Tij)
K
j=1

is still a parametrized path with all average velocities different from 0 and such that o(ξ̄) =
o(ξ), t(ξ̄) = t(ξ).

(ii) If a parametrized path has all average speeds equal to zero, then it is supported on an
edge and its opposite.

(iii) A parametrized circuit with some vanishing speed consists of an equilibrium circuit
{(e,0,T),(−e,0,S)} for some e ∈ E and T,S> 0.

4.2. Basic definitions

In this section we introduce a notion of tangent cone TΓ of Γ and define suitable sets of prob-
ability measures that we will use to build a version of Mather theory on graphs.

Definition 4.4. The tangent cone of Γ is defined as

TΓ := E×R+/∼,

where R+ := [0,+∞) and ∼ is the identification (e,0)∼ (−e,0).
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We denote each fibre by R+
e := {e}×R+.

We endow TΓ := E×R+ with a distance defined as:

d((e1,q1),(e2,q2)) :=

 q1 + q2 + 1 if e1 6=±e2
q1 + q2 if e1 =−e2
|q1 − q2| if e1 = e2.

This makes TΓ a Polish space. A set A is open in TΓ in the induced topology if and only if
A∩R+

e is open in the natural topology of R+ for any e. Accordingly, F is a Borelian set on
TΓ if and only if F∩R+

e is Borelian in R+
e for any edge e.

Definition 4.5. Given µ a Borel probability measure on TΓ, we define the support of µ as the
set

suppEµ= {e ∈ E | µ(R+
e )> 0}.

Proposition 4.6. Any Borel probability measure in TΓ can be decomposed as the convex com-
bination of Borel probability measures in each fibre, namely

µ(F) =
∑
e∈E

λeµe(F∩R+
e ) for any Borelian set F⊆ TΓ, (11)

where µe are Borel probability measures on R+
e and λe ⩾ 0 such that

∑
e∈Eλe = 1. In partic-

ular, suppEµ= {e ∈ E | λe 6= 0}.

Proof. We distinguish two cases, according to whether µ(e,0) = 0 or µ(e,0)> 0. In the first
case, we set λe := (µ(R+

e )): if λe = 0 (i.e. e 6∈ suppEµ), then the choice of µe is irrelevant;
otherwise we define µe as the restriction of µ on R+

e , normalized in order to be a probability
measure.

If µ(e,0)> 0, then µe is not uniquely determined since we have a degree of freedom in
sharing the contribute of µ(e,0) = µ(−e,0) between e and−e. For, we introduce two positive
constants me and m−e, such that me+m−e = 1, and denote by µ̂e the restriction of µ to R+

e \
{0}. Then, we define

µe :=
1

µ̂e(R+
e )+meµ(e,0)

µ̂e+me δ(e,0)

λe := µ̂e(R+
e )+meµ(e,0),

where δ(e,0) denotes Dirac delta at (e,0); analogously for −e.

Note that a Borel probability measure µ=
∑

e∈Eλeµe has finite first momentum if and only
such property holds for any µe, namelyˆ +∞

0
qdµe <+∞ for any e ∈ E.

We denote by P the family of Borel probability measures on TΓwith finite first momentum and
we endow it with the (first) Wasserstein distance (see, for example, [32]). The corresponding
convergence of measures can be expressed in duality with continuous functions F(e,q) on TΓ
possessing linear growth at infinity; namely, given a sequence {µn}n and µ in M

µn → µ ⇐⇒
ˆ
F(e,q)dµn →

ˆ
F(e,q)dµn

for any function F continuous in TΓ such that for any e ∈ E there exist ae,be ∈ R such that

∀e ∈ E ∃ae,be ∈ R : |F(e,q)|⩽ ae q+ be ∀q⩾ 0. (12)
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4.3. Closed probability measures on TΓ

Let us observe that for any ω ∈ C1(Γ,R), the function

(e,q) 7−→ 〈ω,qe〉
is continuous with linear growth on TΓ (see (12)). Given µ=

∑
eλeµe ∈ P, we consequently

define ˆ
ωdµ :=

∑
e∈E

λe

ˆ +∞

0
〈ω,qe〉dµe

=

〈
ω,
∑
e∈E

[
λe

ˆ +∞

0
qdµe

]
e

〉
. (13)

This associates to µ a 1–chain

ρ(µ) :=
∑
e∈E

[
λe

ˆ +∞

0
qdµe

]
e ∈ C1(Γ,R). (14)

Definition 4.7. We say that µ is a closed measure ifˆ
dfdµ= 0 for any f ∈ C0(Γ,R).

We set M := {µ ∈ P : µ is closed}

Remark 4.8. (i) Given µ ∈ P, we have for any g ∈ C0(Γ,R)ˆ
dgdµ= 〈dg,ρ(µ)〉,

hence

µ is closed ⇐⇒ ∂ρ(µ) = 0 ⇐⇒ ρ ∈ H1(Γ,R),

namely ρ(µ) is a 1–cycle. We call it rotation vector (or Schwartzman asymptotic cycle) of µ.
This should be compared with the corresponding classical definitions in Aubry–Mather theory
(see [10, 30]).
(ii) Given µ ∈M and ω ∈ C1(Γ,R), it follows from the definition of closed measure and (13)
that ˆ

ωdµ= 〈[ω],ρ(µ)〉,

i.e. it only depends on the cohomology class [ω] ∈ H1(Γ,R).

Proposition 4.9. The subsetM⊂ P is convex and closed in the Wasserstein topology.

Proof. The convexity property is obvious. Let µn be a sequence of closed probability measures
converging in the Wasserstein sense to µ. We consider g ∈ C0(Γ,R), then associating to dg the
continuous function on TΓwith linear growth (e,q) 7−→ 〈dg,qe〉 and taking into account (13),
we get ˆ

dgdµn →
ˆ

dgdµ.

This concludes the proof.

Let us define the map ρ :M−→ H1(Γ,R) that to any closed probability measure µ associ-
ates its rotation vector ρ(µ) (see remark 4.8 (i)). One proves the following properties.
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Proposition 4.10. The map ρ is continuous and affine (for convex combinations), i.e. for every
λ ∈ [0,1] and µ1,µ2 ∈M

ρ(λµ1 +(1−λ)µ2) = λρ(µ1)+ (1−λ)ρ(µ2).

In particular, it is surjective.

Proof. Let us first prove continuity. If µn → µ in M and ω is any element of C1(Γ,R) with
cohomology class c, then associating to ω the continuous function on TΓ with linear growth
(e,q) 7−→ 〈ω,qe〉 and taking into account (13), we have that if µn converges to µ in the
Wasserstein sense then

〈c,ρ(µn)〉=
ˆ

ωdµn −→
ˆ

ωdµ= 〈c,ρ(µ)〉.

Since c has been arbitrarily chosen in H1(Γ,R), ρ(µn)−→ρ(µ) as n→+∞, which proves
continuity.

The fact that the map ρ is affine (under convex combination) is an immediate consequence
of the definition of the rotation vector.

Finally, let us prove surjectivity. Let h ∈ H1(Γ,R) given by h=
∑N

i=1 ai ei, with ∂(h) =
0; we can assume that ai > 0 (otherwise we substitute ei with −ei). Then, it is sufficient to
consider the measure µ=

∑N
i=1

1
Nδ(ei,Nai), where δ(e,q) denotes Dirac delta at (e, q); µ is

closed since ∂(h) = 0 and one can use (14) to check that

ρ(µ) =
N∑
i=1

Nai
N
ei =

N∑
i=1

ai ei = h.

4.4. Occupation measures

Let us introduce the notion of occupation measure, which can be thought as a measure repres-
entation of a parametrized path.

Definition 4.11. Given a parametrized path ξ = (ei,qi,Ti)Mi=1, the associated occupation meas-
ure is defined as

µξ :=
1
Tξ

M∑
i=1

Ti δ(ei,qi), (15)

where Tξ =
∑M

i=1Ti and δ(e,q) denotes Dirac delta concentrated on the point (e, q).

Remark 4.12. (i) Taking into account that an edge e can be equal to ei for different values of
the index i, we see that an occupation measure restricted to any edge is the convex combination
of Dirac measures.

(ii) For any e ∈ E, δ(e,0) is a closed occupation measure corresponding to the equi-
librium circuit based on e with vanishing speed and any pair of positive numbers as time
parametrization.

Occupation measures are not necessarily closed. However, it is possible to characterize
closed ones.

Proposition 4.13. Let µξ be an occupation measure associated to a parametrized path ξ =
{(ei,qi,Ti)}Mi=1. Then, µξ is closed if and only if ξ is a parametrized cycle.
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Proof. Let g ∈ C0(Γ,R). Observe that for every e ∈ Eˆ
dgdδ(e,0) = 0

since we are integrating the function 〈dg,qe〉 with respect to δ(e,0). The statement is trivial if
all qi vanish (see proposition 4.3). Let us assume that some qi 6= 0; then, recalling definition
4.1 and proposition 4.3:ˆ

dgdµξ =
1
Tξ

M∑
i=1

Ti

ˆ
dgdδ(ei,qi) =

1
Tξ

∑
i|qi ̸=0

Ti 〈dg,qiei 〉

=
1
Tξ

∑
i|qi ̸=0

(g(t(ei))− g(o(ei))) =
1
Tξ

(g(t(ξ))− g(o(ξ))) .

Therefore, µξ is closed if and only if g(t(ξ)) = g(o(ξ)) for every g ∈ C0(Γ,R), which is equi-
valent to t(ξ) = o(ξ), i.e. ξ is a parametrized cycle.

Remark 4.14. Given a parametrized cycle ξ, we have (see (2) for the definition of [ξ])

ρ(µξ) =
1
Tξ

M∑
i=1

ei =
[ξ]

Tξ
.

We close this section with a density result. This theorem is well known for measures on the
tangent bundle of a manifold, a piece of folklore according to [3]. We will not use it in the rest
of the paper, however we include it for two reasons: firstly, it somehow validates our previous
definition of occupation measures, secondly because the proof, which follows the same lines
of [3, theorem 31], is simple and illuminating, and represents a nice application of weak KAM
theory on graphs to the analysis of closed probability measures.

Theorem 4.15. The set of closed occupation measures is dense inM.

The proof is in appendix B.

5. Mather’s theory on graphs

Mather theory is about the minimization of the action functional

µ 7−→
ˆ

Lω dµ

on suitable subsets of closed probability measures. Results and definitions of this section are
inspired by the corresponding ones in the classical Mather theory, see [10], [30]. We provide
full details to make the text self–contained.

5.1. Existence of minimizers

We recall the main compactness criterion in the Wasserstein space P (see, for example, [32]).

• A subsetK⊂ P is relatively compact if and only for any ε> 0 there exists a compact subset
Kε of TΓ such thatˆ

Kcε

qdµ < ε for any µ ∈K,

where Kcε stands for the complement of Kε in TΓ.
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From the superlinearity property of L, we derive the following property.

Proposition 5.1. Given a ∈ R, the set

Ka :=

{
µ ∈M |

ˆ
Ldµ⩽ a

}
is compact inM.

Proof. Assume thatKa 6= ∅, otherwise there is nothing to prove. According to the compactness
criterion in the Wasserstein spaceM and the definition of TΓ, it is enough to prove that, given
ε> 0, there exists Mε > 0 such that

ˆ
R+
e ∩(Mε,+∞)

qdµ < ε for any e ∈ E,µ ∈Ka.

If this is not the case, we find ε> 0, e0 ∈ E, a sequence of numbersMn →+∞ and a sequence
of measures

µ(n) =
∑
e∈E

λ(n)
e µ(n)

e ∈Ka

such that

ˆ +∞

Mn

qdµ(n)
e0 ⩾ ε for any n.

Taking into account that L(e0, ·) is superlinear, we find another positively diverging sequence
hn satisfying

L(e0,q)⩾ hn q for q⩾Mn.

Since edges are finitely many, we can find a constant b such that

a⩾
ˆ

L(e,q)dµ(n) ⩾
ˆ +∞

Mn

L(e0,q)dµ(n)
e0 + b

⩾ hn

ˆ +∞

Mn

qdµ(n)
e0 + b⩾ hn ε+ b,

which, as n goes to +∞, leads to a contradiction.

As a consequence:

Corollary 5.2. The action functional µ 7−→
´
Ldµ is lower semicontinuous onM.

This in turn implies:

Theorem 5.3. (i) The action functional admits minimum inM;
(ii) Given h ∈ H1(Γ,R), the action functional admits minimum in ρ−1(h).
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Proof. Recall that a lower-semicontinuous function admits minimum on compact sets.
Therefore, (i) follows from proposition 5.1 and corollary 5.2. Similarly, (ii) follows from pro-
position 5.1, corollary 5.2, and the fact that ρ−1(h) is closed inM (the map ρ :M→ H1(Γ,R)
is continuous in force of proposition 4.10).

5.2. Mather’s minimal average actions and Mather measures

We define Mather’s β–function as:

β : H1(Γ,R)−→ R

h 7−→ min
µ∈ρ−1(h)

ˆ
Ldµ. (16)

The above minimum does exist in force of theorem 5.3 (ii).

Definition 5.4. We say that ameasureµ ∈M is aMathermeasure with homology h if
´
L dµ=

β(h). We denote the subset of these measures by Mh.
We define the Mather set of homology h as

M̃h :=
⋃

µ∈Mh

suppµ⊂ TΓ, (17)

where supp µ denotes the support of µ in TΓ. This set is closed3.

Properties of β:

• β is convex. In fact, let h1,h2 ∈ H1(Γ,R), λ ∈ [0,1] and let us consider µi ∈Mhi for i = 1,2.
If follows from proposition 4.10 that

ρ(λµ1 +(1−λ)µ2) = λh1 +(1−λ)h2.

Moreover, using the linearity of the integral and the definition of β, we obtain:

β(λh1 +(1−λ)h2)⩽
ˆ

L d(λµ1 +(1−λ)µ2)

= λ

ˆ
L dµ1 +(1−λ)

ˆ
L dµ2

= λβ(h1)+ (1−λ)β(h2).

• β is superlinear. This could be proved directly by using the superlinearity of L; however, we
deduce it from the finiteness of its convex conjugate α (see (18) and remark 5.5).

We consider the convex conjugate of β, that we shall call Mather’s α-function:

α : H1(Γ,R)−→ R
c 7−→ max

h∈H1(Γ,R)
(〈c,h〉−β(h)) ,

where 〈c,h〉 denotes the pairing between H1(Γ,R) and H1(Γ,R) defined in section 2.4.

3 Classically, one defines this set as the closure of the union of the supports of Mather measures; however, it is easy
to check that it is already closed, see [30, remark 3.1.11 (i)]. In this setting, it is even easier to prove this, since, as it
will follow from theorem 6.1 and the graph property (corollary 6.4), this set is a finite union of closed sets.
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One can also characterize α in a variational way, which shows that it is finite everywhere:

α(c) = max
h∈H1(Γ,R)

(〈c,h〉−β(h)) (18)

= max
h∈H1(Γ,R)

(
〈c,h〉− min

µ∈ρ−1(h)

ˆ
Ldµ

)
=− min

h∈H1(Γ,R)

(
min

µ∈ρ−1(h)

(ˆ
L dµ−〈c,ρ(µ)〉

))
=−min

µ∈M

ˆ
Lω dµ,

where ω ∈ C1(Γ,R) has cohomology class c. Due to the superlinearity of Lω, we see, arguing
as in proposition 5.1, that the sublevels of Lω are compact in the Wasserstein topology, and
consequently by proposition 4.9 the minimum in the above formula does exist. Therefore α is
finite, convex with convex conjugate equal to β.

Remark 5.5. The fact that α is finite, convex with convex conjugate equal to β, implies that β
has superlinear growth. In fact, a convex function on finite dimensional vector spaces possesses
a finite convex conjugate if and only if it has superlinear growth, see [26].

Definition 5.6. Given c in H1(Γ,R) and ω in the class c, we say that a measure µ ∈M is a
Mather measure with cohomology c if

´
Lω dµ=−α(c) (observe that being µ closed, this

notion does not depend on the choice of the representative ω, but only on its cohomology
class). We denote the subset of these measures by Mc.

We define the Mather set of cohomology c as

M̃c :=
⋃

µ∈Mc

suppµ⊂ TΓ, (19)

where suppµ denotes the support of µ in TΓ. This set is also closed.

As a consequence of proposition 5.1, we have

Proposition 5.7. For any h ∈ H1(Γ,R), c ∈ H1(Γ,R), the sets of Mather measures Mh, Mc

are compact, convex subsets ofM.

Next proposition will help clarify the relation between the two notions of Mather meas-
ures in definitions 5.4 and 5.6. To state it, recall that, like any convex function on a finite-
dimensional space, β admits a subdifferential at each point h ∈ H1(Γ,R), i.e. we can find
c ∈ H1(Γ,R) such that β(h ′)−β(h)⩾ 〈c,h ′ − h〉 for any h ∈ H1(Γ,R). We will denote by
∂β(h) the set of c ∈ H1(Γ,R) that are subdifferentials of β at h. Similarly, we will denote by
∂α(c) the set of subdifferentials of α at c.

Fenchel’s duality implies an easy characterization of subdifferentials (see for example [30,
proposition 3.3.3]):

c ∈ ∂β(h) ⇐⇒ h ∈ ∂α(c) ⇐⇒ 〈c,h〉= α(c)+β(h). (20)

The next proposition can be proven as the corresponding ones in the classicalMather theory,
with obvious adaptations (we omit the proof, see for example [30, proposition 3.3.4]).

Proposition 5.8.

(i) µ ∈M is a Mather measure with homology h if and only if
µ ∈Mc for any c ∈ ∂β(h).
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(ii) For every c ∈ H1(Γ,R)
∂α(c) = {ρ(µ) | µ ∈Mc}.

Corollary 5.9. If c ∈ ∂β(h), then M̃h ⊆ M̃c. In particular:

M̃c =
⋃

h∈∂α(c)

M̃h.

Remark 5.10. We will say that µ is a Mather measure tout court, if it is a Mather measure for
some cohomology c, or equivalently it is a Mather measure of homology ρ(µ).

6. Properties of Mather measures

6.1. Structural properties and Mather’s graph property

Exploiting the strict convexity of L(e, ·), we can derive this first property of Mather measures,
namely that they consist of a finite convex combinations of Dirac deltas, in particular each
edge appears at most once.

Theorem 6.1. The restriction of any Mather measure to an edge of its support is concentrated
on a point.

Proof. Let µ=
∑

e∈Eλeµe be a Mather measure. We set

ν :=
∑
e∈E

λe δ

(
e,
ˆ +∞

0
qdµe

)
.

Thanks to the convexity of L(e, ·) for each e ∈ E, we can apply Jensen inequality to µe
and get

ˆ
L(e,q)dµ=

∑
e∈E

λe

ˆ +∞

0
L(e,q)dµe ⩾

∑
e∈E

λeL
(
e,
ˆ +∞

0
qdµe

)
=

ˆ
L(e,q)dν.

Observe that ρ(µ) = ρ(ν); hence, due to the strict convexity of L(e, ·) for each e ∈ E and the
fact that µ is a Mather measure, we conclude that equality must prevail in the above formula,
and this is possible if and only if µ= ν.

Proposition 6.2. Let c ∈ H1(Γ,R) and h ∈ H1(Γ,R).

(i) If ( f,q1),( f,q2) ∈ M̃c (resp. M̃h) for some f ∈ E, then q1 = q2.
(ii) If ( f,q1),(−f,q2) ∈ M̃c (resp. M̃h) for some f ∈ E, then q1 = q2 = 0 and α(c) =minα.

Proof. Since, by corollary 5.9, M̃h is contained in some M̃c, then it suffices to prove the
property for the latter.

Let ( f,q1), ( f,q2) ∈ M̃c; then, by theorem 6.1 there are two Mather measures µ=∑
e∈Eλeµe, ν =

∑
e∈E τeνe in Mc such that

λf > 0, τf > 0 and µf = δ( f,q1), νf = δ( f,q2).
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Due to the convexity of Mc (see proposition 5.7), we have that 1
2 µ+ 1

2 ν is in Mc, and the
restriction of it on f is a convex combination with positive coefficients of δ( f,q1) and δ( f,q2).
We then derive, again from theorem 6.1, that q1 = q2, which concludes the proof of item (i).

We proceed by proving (ii). Let ( f,q1), (−f,q2) ∈ M̃c; then, there exists µ ∈Mc such that
f,−f ∈ suppEµ; in fact, by definition 5.6, there exist µ1,µ2 ∈Mc such that ( f,q1) ∈ suppµ1

and (−f,q2) ∈ suppµ2, hence it suffices to consider µ= 1
2µ1 +

1
2µ2, which still belongs toMc

(due to convexity, see proposition 5.7).
Let us define

µ̃ :=
1

1− (λ1 +λ2)
(µ−λ1δ( f,q1)−λ2δ(−f,q2))

with λ1,λ2 ∈ (0,1), q1,q2 ⩾ 0, so that µ can be written as

µ= λ1δ( f,q1)+λ2δ(−f,q2)+ (1−λ1 −λ2)µ̃.

Note that ±f 6∈ suppEµ̃ because of theorem 6.1.
Assume, without any loss of generality, that λ1q1 ⩾ λ2q2 (otherwise, invert the roles of f

and −f ) and define

q :=
λ1q1 −λ2q2
λ1 +λ2

=
λ1

λ1 +λ2
q1 +

λ2

λ1 +λ2
(−q2)⩾ 0. (21)

Consider the new measure

ν := (λ1 +λ2) δ( f,q)+ (1− (λ1 +λ2))µ̃.

Clearly, ν is a probability measure and it is also closed; in fact:

ρ((λ1 +λ2) δ( f,q)) = (λ1 +λ2)qf = (λ1q1 −λ2q2) f

= ρ(λ1δ( f,q1)+λ2δ(−f,q2)) ,

hence, ρ(ν) = ρ(µ) is a 1-cycle, which implies that ν is closed (see remark 4.8 (i)).
In order to get a contradiction, we want to prove that the action of ν is less than the action

of µ, thus contradicting minimality of µ. In fact:
ˆ

Ldν−
ˆ

Ldµ= (λ1 +λ2)L( f,q)−λ1L( f,q1)−λ2L(−f,q2)

= (λ1 +λ2)

(
L( f,q)− λ1

λ1 +λ2
L( f,q1)−

λ1

λ1 +λ2
L(f,−q2)

)
⩽ 0, (22)

where in the last inequality we have used the convexity of L( f, ·); taking into account that
L( f, ·) is in addition strictly convex, we see that a strict inequality prevails in (22), leading to
a contradiction, unless

q= q1 =−q2 ⇐⇒ q1 = q2 = 0.

The property that α(c) =minα follows from the fact that δ( f,0) belongs to Mc, hence 0 ∈
∂α(c) (see proposition 5.8 (ii)). Being α convex implies that α(c) is the minimum of α.
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We can now derive a central property that can be read as an instance of the celebrated
Mather’s graph theorem (see [22, theorem 2]) in the graph setting4.

To state it more precisely, let us introduce the projection πE : TΓ→ E defined as

πE(e,q) :=

{
e if q> 0

{e,−e} if q= 0.

Remark 6.3. Observe that the projectionπE that we have defined ismultivalued at some points:
this is needed in order to cope with the fact that the elements (e,0), (−e,0) are identified in
TΓ, for any e ∈ E.

Alternatively, one could consider πE+ : TΓ→ E+, denoting the projection on a given ori-
entation E+ of the graph (namely, πE+(±e,q) = e for any e ∈ E+). In the light of proposition
6.2, the graph property in corollary 6.4 continues to hold with such a projection and all related
results can be suitably restated.

Corollary 6.4 (Mather graph property). The restriction of πE to M̃c and M̃h is injective for
every c ∈ H1(Γ,R), h ∈ H1(Γ,R).

Proof. Since, by corollary 5.9, M̃h is contained in some M̃c, then it suffices to prove the
property for the latter. The result then follows from proposition 6.2 (i).

Remark 6.5. It follows from corollary 6.4 that for any c ∈ H1(Γ,R)(
πE|M̃c

)−1
: πE

(
M̃c

)
−→M̃c

is a well-defined map. In section 8 we will describe this function more explicitly (see theorem
8.5).

Next result is an important step in our analysis. It puts in relation, via theorem 6.1, Mather
and occupation measures.

Theorem 6.6. A closed probability measure, whose restriction on any edge is concentrated
on a point, is a convex combination of occupation measures based on circuits.

Proof. Let

µ=
∑
e∈E

λe δ(e,qe) (23)

withλe ⩾ 0 and
∑

λe = 1, be ameasure as indicated in the statement.We first assume that qe 6=
0 for any e. We argue by finite induction on the cardinality of suppEµ indicated by |suppEµ|.
By taking the function which is equal to 1 at a given vertex x and 0 elsewhere, and exploiting
that µ is closed, we deduce that the relation∑

e∈Ex

λe qe =
∑
e∈−Ex

λe qe ∀ x ∈ V. (24)

If |suppEµ|= 2, set suppEµ= {e, f}. By applying (24) to x= o(e), x= t(e), we realize that
(e, f ) makes up a circuit and

λqe = (1−λ)qf for some λ ∈ (0,1).

4 Ironically, the term graph appearing twice in this sentence, is used with two completely distinct meanings.

5837



Nonlinearity 36 (2023) 5819 A Siconolfi and A Sorrentino

This implies that

λ=
qf

qe+ qf
=

1
qe

qe qf
qe+ qf

=
1/qe
1
qe
+ 1

qf

and 1−λ=
1/qf
1
qe
+ 1

qf

.

This implies that µ is the occupation measure corresponding to the parametrized circuit
((e,qe,1/qe),( f,qf, ,1/qf)).

Let us now assume the assertion true for measures with support of cardinality less than a
given M, and assume |suppEµ|=M⩾ 3. Starting by any edge e ∈ suppEµ, we choose one of
the edges f ∈ suppEµ with

t(e) = o(f)

and we call it π1(e). This choice is possible, for any initial e, because of (24). We iterate the
procedure starting from π1(e) to define π2(e). Taking again into account (24), we see that we
can go on until we reach πk(e) with

t(πk(e)) = o(πh(e)) for some h⩽ k.

The edges

{πh(e), πh+1(e), . . . , πk(e)}

make up a circuit contained in suppEµ. We set M ′ = k+ 1− h,

ei = πh+i−1(e), λi = λei qi = qei for i = 1, . . . ,M′

and consider the parametrized circuit ξ = (ei,qi,1/qi )
M ′

i=1. The associated occupation
measure is

µξ =
1
Tξ

M ′∑
i=1

1
qi
δ(ei,qi), (25)

where Tξ =
(∑M ′

i=1
1
qi

)
. We distinguish two cases:

• IfM=M ′ we show that µ= µξ, which proves the claim. In fact, in this case for any vertex
x of the graph there is an alternative: either no edge in suppEµ is incident on it or there are
exactly two incident edges, one with x as initial point and the other with x as terminal point.
By applying (24) we deduce

λi qi = λj qj =: A for any i, j ∈ {1, . . . ,M ′}. (26)

This implies that λi = A
qi
for any i, and, since

∑
i λi = 1 we obtain

A=

(∑
i

1
qi

)−1

=
1
T ξ

.

By exploiting the above relation plus (23), (25), (26) we obtain

µξ =
1
Tξ

M∑
i=1

1
qi
δ(ei,qi) =

M∑
i=1

1
Tξ qi

δ(ei,qi)

=
M∑
i=1

A
qi
δ(ei,qi) =

M∑
i=1

λi δ(ei,qi) =
∑

e∈suppEµ

λeδ(e,qe) = µ.
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• Let us assume now that M ′ <M and define

λ= Tmin
i
qi λi.

Observe that
λ

Tqi
⩽ λi for any i ∈ {1, . . . ,M′}

and consequently

λ= λ
∑
i

1
Tqi

⩽
∑
i

λi < 1,

where the rightmost strict inequality comes from the fact that M ′ <M. Let us define the
following probability measure

ν =
1

1−λ

 M′∑
i=1

(
λi −λ

1
Tqi

)
δ(ei,qi)+

∑
e̸∈suppEµξ

λe δ(e,qe)

 .
This is actually a probability measure since∑

i

(
λi −λ

1
Tqi

)
+

∑
e ̸∈suppEµξ

λe =
∑

e∈suppEµ

λe−λ
1
T

∑
i

1
qi

= 1−λ.

Moreover

λµξ +(1−λ)ν

= λ

[
1
T

∑
i

1
qi
δ(ei,qi)

]
+
∑
i

(
λi −λ

1
Tqi

)
δ(ei,qi)+

∑
e̸∈suppEµξ

λe δ(e,qe)

=
∑

e∈suppEµ

λe δ(e,qe) = µ. (27)

We see from (27) that ν is closed since both µ and µξ are closed. In addition, some of
the coefficients λi −λ 1

Tqi
must vanish by the very definition of λ. The support of ν has

then cardinality less than M, and by inductive assumption ν is the convex combination of
occupation measures based on circuits. The same holds true for µ in force of (27).

Let us now discuss the case in which some of the qe’s vanish. Let µ be as in (23) and define

E= {e ∈ suppEµ | qe > 0}, F= {f ∈ suppEµ | qf = 0}, λF =
∑
f∈F

λf.

If E= ∅, then µ= δ(e,0) for a suitable e ∈ E and this measure is supported by the equilibrium
circuit based on e, so that the assertion is proved. We then assume that both E and F are
nonempty. We consider the probability measure

ν =
∑
e∈E

λe
1−λF

δ(e,qe)

and derive

µ= (1−λF)ν+
∑
f∈F

λf δ( f,0).
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By the first part of the proof there exist occupation measures µξi corresponding to circuits ξi
with

ν =
∑
i

σi µξi σi > 0,
∑
i

σi = 1.

Summing, up we have

µ= (1−λF)
∑
i

σi νi +
∑
f∈F

λf δ( f,0).

This concludes the proof.

Remark 6.7. In case Γ contains loops, the proof of theorem 6.6 should include also the case
µ= δ(e,qe) with qe 6= 0; in this case, µ is closed if and only if e is a loop, and it follows easily
that µ is an occupation measure on the trivial circuit e.

6.2. Irreducible Mather measures

A point in a convex set is called extremal if it cannot be obtained as convex combination of
two distinct elements of the set.

A closed probability measure is said to be irreducible if it is extremal in M.

Proposition 6.8. A Mather measure is irreducible if and only if it is an occupation measure
corresponding to a parametrized circuit.

Proof. Let µ be a Mather measure. If it is not an occupation measure supported by a para-
metrized circuit, then by theorems 6.6 and 6.1 it must be the convex combination of distinct
occupation measures supported on parametrized circuits. This proves that it is not irreducible.

Conversely, assume for the purpose of contradiction that µ is an occupation measure sup-
ported on a parametrized circuit and that it is not irreducible. Hence, there exist µ1 6= µ2 inM,
λ ∈ (0,1) such that

µ= (1−λ)µ1 +λµ2.

This implies by proposition 4.10 that

ρ(µ) = (1−λ)ρ(µ1)+λρ(µ2).

We thus have

β(ρ(µ)) =

ˆ
Ldµ= (1−λ)

ˆ
Ldµ1 +λ

ˆ
Ldµ2

⩾ (1−λ)β(ρ(µ1))+λβ(ρ(µ2),

due to the convex character of β, equality must prevail in the above formula, so that both µ1 and
µ2 areMathermeasures. Taking again into account theorems 6.6 and 6.1, we find an occupation
measure ν supported on a parametrized circuit with suppEν proper subset of suppEµ. This is
in contrast with µ being supported on a circuit.

Remark 6.9. It follows from remark 4.14 and proposition 6.8, that the rotation vector of an
irreducible occupation measure µ must have a special form:

λ
∑
e∈E+

τe e, (28)
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where λ> 0, τe ∈ {0,±1}, and E+ denotes an orientation of the graph. This fact does not hold
in the classical setting and it is very peculiar of the theory on graphs. This depends on the fact
that irreducibile measures are supported on circuits, hence for each vertex in the support of the
circuit, there is only one edge in the circuit that has it as its origin and only one that has it as its
terminal point. In order to be a cycle, then, all weights on the edges must be the same (the sign
only specifies the orientation of the edge, with respect to the chosen orientation of the graph).

Theorem 6.10. For any c ∈ H1(Γ,R), the set of Mather measuresMc is the convex hull of the
irreducible Mather measures with cohomology c, which are finitely many.

Proof. We know from proposition 5.7 that Mc is a convex set. We claim that µ ∈Mc is irre-
ducible if and only if it is an extremal point ofMc. It is trivial that if it is irreducible then it is
extremal inMc. Conversely, let µ be extremal inMc, and assume that there exist µ1, µ2 inM,
λ ∈ (0,1) with

µ= (1−λ)µ1 +λµ2.

If ω ∈ C1(Γ,R) is of cohomology c, we have

−α(c) =
ˆ

Lω dµ= (1−λ)

ˆ
Lω dµ1 +λ

ˆ
Lω dµ2

which implies, by the minimality property of α(·) that both µ1 and µ2 are Mather measures of
cohomology c, which is impossible. This proves the claim.

Let µ ∈Mc then by theorem 6.6 it is convex combination of occupation measures supported
on parametrized circuits. Arguing as in the first part of the proof, we see that all the measures
forming the convex combination are inMc, and consequently by proposition 6.8 they are irre-
ducible Mather measures in Mc. This shows that Mc is the convex hull of its extremal points.
These extremal measures are finitely many since—by the graph property in corollary 6.4—a
circuit identifies the Mather measures supported on it, if any, and the set of circuits in Γ is
finite.

As shown in the previous result, anyMc, for c ∈ H1(Γ,R), contains some irreducible meas-
ure. The situation is rather different for the sets Mh. In fact, we know remark 6.9 that if Mh

contains irreducible Mather measures, then h must be as in (28); hence, not all Mh do con-
tain them. We can get some information on which Mh’s contain irreducible Mather measures
by looking at the extremal points of the epigraph of β. We recall that the epigraph of β is
given by

epi(β) := {(h, t) ∈ H1(Γ,R)×R : t⩾ β(h)}.

As in the classical ergodic theory, we have:

Proposition 6.11. Let h ∈ H1(Γ,R). If (h,β(h)) is an extremal point of epi(β), then there exist
irreducible Mather measures of rotation vector h.

Proof. Let µ be a Mather measure with rotation vector h; then, according to theorem 6.6

µ=
M∑
i=1

λiµi

with λ> 0,
∑

i λi = 1 and µi occupation measures supported on parametrized circuits. Let us
define

hi = ρ(µi) for any i = 1, . . . ,M.
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We have

β

(
M∑
i=1

hi

)
= β(h) =

ˆ
Ldµ

=
M∑
i=1

λi

ˆ
Ldµi ⩾

M∑
i=1

λiβ(hi).

Due to the convex character of β, we see that equality must prevail in the above sequence of
inequalities, so that all the µi’s must be Mather measures. In addition, thanks to proposition
6.8, they are irreducible Mather measures. We in addition have that

(h,β(h)) =
M∑
i=1

λi (hi,β(hi)).

Since (h,β(h)) is an extremal point of epi(β), we must necessarily have hi = h for any i.
Hence, all the µi’s are irreducible Mather measures with rotation vector h.

7. Weak KAM facts

We pause the exposition of Aubry-Mather theory on graphs, to recall some basic results of
weak KAM theory that we will use in the following section. Note that coercivity and convexity
of the Hamiltonian are sufficient for these results to hold true. All the material is taken from
[29], which contains a comprehensive treatment of the topic.

We consider a 1–cochain ω with cohomology class c, and the family of discrete Hamilton–
Jacobi equations on Γ

max
−e∈Ex

Hω(e,〈du,e〉) = a for x ∈ V,a ∈ R (HJωa)

which can be equivalently written as

u(x) = min
−e∈Ex

(u(o(e))+σω(e,a)) .

A function u : V→ R is called solution if equality in (HJωa ) holds for every vertex x. If instead
the left-hand side is less than or equal to a, we say that u is a subsolution of (HJωa ).

We set

a0 :=max
e∈E

ae.

Remark 7.1. If Γ contains loops, the definition of a0 is more involved and it could happen that
a0 >maxe∈E ae; we refer to [29, formula (7)].

Remark 7.2. It is clear that equation (HJωa ) does not even make sense if a< a0, because in this
case the a–sublevels of H(e, ·) are empty for some edge e.

Given a path ξ = (ei)Mi=1 in Γ, we define for a⩾ a0 (see (10))

σω(ξ,a) :=
M∑
i=1

σω(ei,a).

Note that this definition only depends on the concatenated edges making up ξ, no parametriz-
ation is involved. We sometimes refer to σω(ξ,a) as the intrinsic length of the path ξ related
to the HamiltonianHω and the level a.
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Proposition 7.3.

(i) Equation (HJωa ) admits subsolutions if and only if

σω(ξ,a)⩾ 0 for any closed path ξ.

(ii) A function u : V→ R is a subsolution of (HJωa ) if and only if

u(x)− u(y)⩽ σω(ξ,a) for any path ξwith o(ξ) = y, t(ξ) = x.

(iii) There is one and only one value of a, called critical value of Hω, for which the corres-
ponding equation has solutions on the whole Γ. It is given by

min{a ∈ R : (HJωa )admits subsolutions}. (29)

For a proof of these claims see [29, propositions 6.5, 6.8 and theorem 6.16]
Clearly the HamiltonianHω is not invariant by change of representative in the class c, how-

ever its critical value does not depend on the chosen representative, but only on the cohomo-
logy class c. If, in fact, we replace ω by ω ′ = ω+ dw, for some w ∈ C0(Γ,R), then, given any
(sub)solution u to the equation associated toHω, the function u−w will be a (sub)solution to
the equation associated to Hω ′

.
We can therefore define a function

α̃ : H1(Γ,R)→ R

associating to any cohomology class the critical value ofHω, as defined in (29) (it only depends
on the cohomology class of ω). We call critical the equation

max
e∈−Ex

Hω(e,〈du,e〉) = α̃(c)

and qualify as critical its (sub)solutions. According to remarks 3.3 and 7.2

α̃(c)⩾ a0 for any c ∈ H1(Γ,R).

Proposition 7.4. Given c ∈ H1(Γ,R) and ω of cohomology class c, the critical value α̃(c) is
characterized by the following properties:

(i) σω(ξ, α̃(c))⩾ 0 for all cycles ξ in Γ;
(ii) there exists a cycle ζ with σω(ζ, α̃(c)) = 0.

For a proof of these claims see [29, lemma 6.7, corollary 6.9, proposition 6.15 and theorem
6.16].

We define the Aubry sets as follows:

Ac := {e ∈ E | belonging to some cycle with σω(ξ, α̃(c)) = 0}. (30)

Remark 7.5. Given an arbitrary path ξ, the intrinsic length σω(ξ, α̃(c)) is not invariant for the
change of representative, however invariance is valid if ξ is a cycle. This is the reason why the
Aubry set only depends on c and not on the representative ω.

We state in the next proposition a relevant property of the Aubry sets (see [29, lemma 7.3]).

Proposition 7.6. Let c ∈ H1(Γ,R) and ω ∈ C1(Γ,R) be of cohomology class c. Then, any sub-
solution u ofHω = α̃(c) satisfies

〈du,e〉= σω(e, α̃(c)) and Hω(e,〈du,e〉) = α̃(c) for e ∈ Ac.

Consequently, the differentials of all such subsolutions coincide on e ∈ Ac.
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The value of du on the Aubry set Ac is clearly not invariant for change of representative in
c, however the element ∂

∂pH
ω(e,〈du,e〉), namely the element characterized by the equality

∂

∂p
Hω(e,〈du,e〉)〈du,e〉= Lω(e,

∂

∂p
Hω(e,〈du,e〉))+Hω (e,〈du,e〉) ∀ e ∈ Ac (31)

possesses such an invariance, as made precise by the following result.

Lemma 7.7. Let ω,ω ′ ∈ C1(Γ,R) be in the same cohomology class c, and let u, v be subsolu-
tions to (HJωα̃(c)) and (HJ

ω ′

α̃(c)), respectively; then

∂

∂p
Hω(e,〈du,e〉) = ∂

∂p
Hω ′

(e,〈dv,e〉) for any e ∈ Ac. (32)

Proof. We set

qe :=
∂

∂p
Hω(e,〈du,e〉) for e ∈ Ac.

We have that ω ′ = ω+ dw for some w ∈ C0(Γ.R), and consequently

dv= du− dw.

Let e ∈ Ac, then keeping in mind (31) we have

qe 〈dv,e〉= qe 〈du,e〉− qe 〈dw,e〉
= Lω(e,qe)+Hω(e,〈du,e〉)− qe 〈dw,e〉
= L(e,qe)− qe〈ω,e〉+H(e,〈du− dw+ dw+ω,e〉)− qe 〈dw,e〉
= Lω′

(e,qe)+Hω′
(e,dv).

This proves (32).

We denote by Qc :Ac → R the function

e 7−→ ∂

∂p
Hω(e,〈du,e〉). (33)

by the monotonicity properties ofHω(e, ·), Qc(e) is non–negative for any e ∈ Ac.

8. Weak KAM and Aubry–Mather theories

In this section we put in relation weak KAM theory and Aubry-Mather theory on graphs.

8.1. Mather’s α function and critical value

Theorem 8.1. Given c ∈ H1(Γ,R) and ω ∈ C1(Γ,R) of cohomology class c, we have:

(i) α̃(c) and α(c) coincide, i.e. the critical value of Hω and the minimal action of Mather
measures of cohomology class c are the same;

(ii) if an irreducible measure belongs to Mc, then it is supported on a circuit ζ such that
σω(ζ,α(c)) = 0;

(iii) if ζ = (ei)Ni=1 is a circuit such that σ
ω(ζ,α(c)) = 0 and Qc(ei) 6= 0 for all i = 1, . . . ,N,

then there exists an irreducible Mather measure supported on a parametrization of ζ.
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We remark that Item (iii) in proposition 8.1 might not hold if Qc vanishes on some of the
edges forming the circuit ζ of vanishing intrinsic length; see also remark 8.4.

Proof. We denote by u a subsolution to (HJωα̃(c)). Taking into account the definition of
Lagrangian, we get for any closed probability measure µ

ˆ
Lω(e,q)dµ⩾

ˆ
[q〈du,e〉−Hω(e,〈du,e〉)] dµ=−α̃(c),

which shows that

−α(c)⩾−α̃(c). (34)

Let ξ = (ei)Mi=1 be a circuit with

σω(ξ, α̃(c)) =
∑
i

σω(ei, α̃(c)) = 0

so that ξ is contained in Ac. We have by proposition 7.6 and (31) that

α̃(c) =Hω(ei,〈du,ei〉) = σω(ei, α̃(c))Qc(ei)−Lω(ei,Qc(ei)).

We first assume that Qc(ei) 6= 0 for every i, then we get

σω(ei, α̃(c)) =
1

Qc(ei)
(α̃(c)+Lω(ei,Qc(ei))) .

By summing over i, we further obtain

0=
M∑
i=1

1
Qc(ei)

Lω(ei,Qc(ei))+

(
M∑
i=1

1
Qc(ei)

)
α̃(c). (35)

We denote by µξ the occupation measure associated with the parametrized circuit
(ei,Qc(ei),1/Qc(ei))Mi=1, and deduce from (35)

ˆ
Lω dµξ =−α̃(c)

which together with (34) proves the item (i), in the case Qc(ei) 6= 0 for every i; in particular,
this also proves (iii).

If someQc(ei) vanishes, then according to proposition 4.3, ξ is an equilibrium circuit based
on some edge e, namely ξ = ((e,0,T),(−e,0,S)) for some T,S> 0. In this case we have

α̃(c) = a0 = ae

and

Lω(e,0) = Lω(−e,0) =−ae =−α̃(c).

The occupation measure related to ξ is δ(e,0), and we get
ˆ

Lω dδ(e,0) = Lω(e,0) =−α̃(c).

This ends the proof of item (i). Let µ ∈Mc be an irreducible Mather measure. Then, we dis-
tinguish two cases (see proposition 6.8):
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• µ is the occupation measure supported on a parametrized cycle (ei,qi,1/qi)Mi=1, with qi 6= 0
for all i = 1, . . . ,M. Denoting by T :=

∑M
i=1

1
qi
and ζ := (ei)Mi=1, we get:

−α(c) =
ˆ

Lω dµ=
1
T

M∑
i=1

1
qi
Lω(ei,qi)

⩾ 1
T
[σω(ζ,α(c))−Tα(c)]⩾−α(c), (36)

which implies σω(ζ,α(c)) = 0.
• Otherwise, µ= δ(e,0), for some e ∈ E; in this case we must have α(c) = ae and

σω(e,α(c))+σω(−e,α(c)) = 0,

hence the thesis follows with ζ = (e,−e).

This concludes the proof of (ii).

We deduce:

Corollary 8.2. Let c ∈ H1(Γ,R), for any (e,q) ∈ M̃c we have

Lω(e,q) = σω(e,α(c))q−α(c).

Recalling the definition of the Aubry set Ac ⊂ E, we further derive:

Corollary 8.3. Given c ∈ H1(Γ,R), we have

πE

(
M̃c

)
=:Mc ⊆Ac.

In particular, equality holds if c is such that α(c)>minα.

Remark 8.4. Note that in general Mc might be a strict subset of Ac, however, this could
happen only for c’s corresponding to the minimum of α. In fact, the reason is that there could
be circuits with vanishing intrinsic length not admitting a suitable admissible parametrization,
so that we do not find an occupation measure supported on it; this phenomenon is related to
the presence of minimizing measures of the form δ(e,0) for some e ∈ E.

An example is given by a graph with two vertices, say x and y, and two edges e, f connecting
them. We assume that e 6=−f and that o(e) = t( f) = x and t(e) = o( f) = y. We consider the
Hamiltonian defined as follows:

H(e,p) =H(−e,p) = p2, H( f,p) = (p+ 1)2 − 1, H(−f,p) = (−p+ 1)2 − 1.

It is easy to check that 0 is the critical value and the vanishing function is a solution of the
corresponding critical equation. We moreover have

σ(e,0) = σ(−e,0) = 0, σ( f,0) = 0, σ(−f,0) = 2.

We therefore see that (e,−e) is an equilibrium circuit so that δ(e,0) is a Mather measure and
e, −e belong to theMather set.We also have that the circuit (e, f ) has vanishing intrinsic length,
so that f belongs to the Aubry set, however, according to the definition of parametrized path,
(e, f ) does not admit any admissible parametrization with vanishing speed on e, and f does not
belong to the Mather set.

Notice that in this example the sets of vertices corresponding to edges in the Mather and
Aubry sets coincide. However, this is not necessarily the case. A counterexample could be
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given by a graph consisting of three vertices, and three distinct edges e, f, g forming a cycle (in
this order); the Hamiltonians on ±e and ±f are as above, and the Hamiltonians on ±g are as
the ones on ±f. Proceeding as above, one can check that the Mather set equals {e,−e}, while
the Aubry set is {e, f,g}. Hence, the vertex t( f) = o(g) belongs to the Aubry set, but not to the
Mather set.

Next theorem refines the information provided in corollary 6.4 and remark 6.5.

Theorem 8.5. Given c ∈ H1(Γ,R),

M̃c = {(e,Qc(e)) | e ∈Mc}.

Proof. Let ω be of cohomology c. We know from proposition 7.6 that the differentials of all
subsolutions u to (HJωα(c)) coincide on Ac and satisfy

〈du,e〉= σω(e,α(c)), Hω(e,〈du,e〉) = α(c). (37)

Let µ be an irreducible occupation measure in Mc, and assume that it corresponds to a para-
metrized circuit ξ = (ei,qi,Ti)Mi=1. We derive from corollary 8.2 that

Lω(ei,qi) = σω(ei,α(c))qi −α(c) for i = 1, . . . ,M.

This implies by (37)

Lω(ei,qi)+Hω(e,〈du,e〉) = 〈du,e〉qi,

which yields qi =Qc(ei), for i = 1, . . . ,M, in view of (31).

8.2. Minimizers of Mather’s α function

Remark 8.6. If Γ contains loops, the material in this section must be adapted to include the
case in which a0 >maxe∈E ae.

Proposition 8.7. The minimum of the function α is equal to a0.

Proof. The function α admits minimum because of its coercive character. Assume c to be
a minimizer of α and denote by ω ∈ C1(Γ,R) a representative of the cohomology class c.
Then there exists µ ∈Mc with ρ(µ) = 0 in view of proposition 5.8 (ii). Taking into account
the definition of rotation vector, we derive that for some edge f, both f and −f belong to
suppEµ. This implies by proposition 6.2 (ii) thatQc( f) =Qc(−f) = 0 andα(c) =minα. Since
Qc( f) = 0, then:

∂

∂p
Hω( f,〈du, f〉) =Qc(f) = 0,

where u is a subsolution to (HJωα(c)). We deduce that 〈du, f〉 is a minimizer of Hω( f, ·) and
consequently

α(c) =Hω( f,〈du, f〉) = af ⩽ a0 ⩽minα,

which implies that α(c) =minα= a0.

Corollary 8.8. An element c ∈ H1(Γ,R) is a minimizer of α if and only if the function Qc

vanishes at some e ∈Mc.
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Proof. The fact that ifQc(e) = 0 for some e ∈Mc then c is a minimizer of α, has been proved
in proposition 8.7.

Conversely, if c is a minimizer of α, then α(c) = af for some f ∈ E, by proposition 8.7. This
implies that f ∈Mc, moreover, if u is a subsolution to (HJωaf), where ω is a representative of c,
we get

Hω( f,〈du, f〉) = af.

Taking into account that af is the minimum ofHω( f, ·), we finally have

Qc(f) =
∂

∂p
Hω( f,〈du, f〉) = 0.
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Appendix A. From networks to graphs

In this appendix, we describe how it is possible to develop Aubry-Mather theory on networks,
by means of the discrete theory that we have developed on graphs.

Let us start by recalling the definition of network, as given in [29]. We consider a finite
collection E of regular simple oriented curves in RN parametrized over [0,1]. If γ ∈ E , we
denote by −γ ∈ E the curve

−γ(s) = γ(1− s) for s ∈ [0,1],

with the same support of γ and opposite orientation. We further assume

γ((0,1))∩ γ ′((0,1)) = ∅ whenever γ 6=±γ ′. (38)

A network G is a subset of RN of the form

G =
⋃
γ∈E

γ([0,1])⊂ RN,

the curves in E are called arcs of the network.
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We call vertices the initial and terminal points of the arcs, and denote by V the sets of all
such vertices. We assume that the network is finite and connected, namely the number of arcs
and vertices is finite and there is a finite concatenation of arcs linking any pair of vertices.

Remark A.1. This setting can be naturally extended to the case in which G is embedded in a
Riemannian manifold (M, g) (for example by means of Nash embedding theorem [24]).

We can associate to any network G a finite and connected abstract graphΓ = (V,E)with the
same vertices of the network and edges corresponding to the arcs. More precisely, we consider
an abstract set E with a bijection

Ψ : E−→ E . (39)

This induces maps o : E−→ V, − : E−→ E via

o(e) = Ψ(e)(0) and − e=Ψ−1(−Ψ(e)),

satisfying the properties in the definition of the graph, see section 2.

A.1. Hamiltonians and Lagrangians on networks

A Hamiltonian on G is a collection of Hamiltonians

Hγ : [0,1]×R→ R; (s,p) 7→ Hγ(s,p)

labeled by the arcs. We assume the compatibility conditions

H−γ(s,p) = Hγ(1− s,−p) for any γ ∈ E . (40)

As we will discuss with more detail hereafter, we can associate to the familyHγ a Hamiltonian
H(e, ·) on Γ. Exploiting the results of [29], we see that the corresponding Hamilton–Jacobi
equations

Hγ(s,(u ◦ γ)′) = a on (0,1) for γ ∈ E ,

and

max
−e∈Ex

H(e,〈du,e〉) = a for x ∈ V,a ∈ R

are equivalent, in the sense that if u : G → R is a (sub)solution of the former then its trace onV
solves the latter, and, conversely, any function w : V→ R solution of the latter can be uniquely
extended on G in such a way that the extended function is solution of the former equation. In
addition, in [29] we developed in parallel weak KAM results for the two equations, proved
that the two critical values coincide, define the corresponding Aubry sets, etc. . ..

The aim of this appendix to determine a set of rather natural assumptions on the Hγ’s such
that the corresponding Hamiltonian on the graph Γ satisfies (H1), (H2). This will allow to take
advantage of the output of this paper to provide an Aubry–Mather theory on networks.

We require the Hγ’s to satisfy the following properties:

(H1
′
) Hγ is continuous in (s, p), differentiable in p for any fixed s, and such that the function

(s,p) 7→ ∂

∂p
Hγ(s,p)

is continuous;
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(H1
′
) Hγ is superlinear in p, uniformly in [0,1], namely

lim
r→+∞

min

{
Hγ(s,p)

p
| p> r, s ∈ [0,1]

}
=+∞; (41)

(H3
′
) Hγ is strictly convex in p;

(H4
′
) the map s 7−→minp∈RHγ(s,p) is constant in [0,1], for any given γ ∈ E .

We define aγ = a−γ as the value of the constant function appearing in the assumption (H4’),
in other terms the sublevel of the Hamiltonian Hγ corresponding to aγ is a singleton for any
s; we further denote by pγs the minimizer of Hγ(s, ·). Therefore (H4’) reads

Hγ(s,p
γ
s ) = aγ for any s ∈ [0,1].

Remark A.2. Actually condition (H4’) is required only for γ ∈ E such that aγ =max{aλ :
λ ∈ E}. We refer to [29, remark 3.3] for an explanation of the role of this condition.

We fix γ ∈ E , e ∈ E with γ =Ψ(e). The procedure to pass from Hγ to H(e, ·) consists in
the following three steps:

• consider, for any s, the inverse, with respect to the composition, of Hγ(s, ·) in [pγs ,+∞),
denoted by σ+

γ (s, ·);
• for any fixed a⩾ aγ , integrate σ+

γ (·,a) in [0,1] obtaining σ(e,a), where

σ+
γ (s,a) :=max{p | Hγ(s,p) = a}

σ(e,a) :=
ˆ 1

0
σ+
γ (s,a)ds;

• define

H(e,p) :=

{
σ−1(e,p) for p⩾ σ(e,aγ)

σ−1(−e,−p) for p⩽ σ(e,aγ)
, (42)

where the inverse is with respect the composition.

It is easy to see that if Hγ is independent of s, then Hγ(·) and H(e, ·) coincide.

Proposition A.3. If assumptions (H1
′
)–(H4

′
) hold, thenH(e, ·) : R→ R satisfies (H1)–(H2).

Moreover, ae = aγ and pe = σ(e,aγ), as defined in (5).

We need a preliminary result.

Lemma A.4. The function a 7−→ σ(e,a) from [aγ ,+∞) to R is:

(i) continuous and strictly increasing;
(ii) strictly concave with lima→+∞

σ(e,a)
a = 0;

(iii) differentiable in (aγ ,+∞) with lima→aγ
∂
∂aσ(e,a) = +∞.

Proof. The claimed continuity and monotonicity properties in item (i) have been already
proved in [29, lemma 5.15]. Exploiting the strict convexity assumption on Hγ , we deduce
that, for any s ∈ [0,1], λ ∈ (0,1), a, b in [aγ ,+∞)
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Hγ

(
s,σ+

γ (s,(1−λ)a+λb)
)
= (1−λ)a+λb

= (1−λ)Hγ(s,σ
+
γ (s,a))+λHγ(s,σ

+
γ (s,b))

> Hγ(s,(1−λ)σ+
γ (s,a)+λσ+

γ (s,b)). (43)

Since Hγ(s, ·) is increasing in the interval (ps,+∞), the inequality in (43) yields

σ+
γ (s,(1−λ)a+λb)> (1−λ)σ+

γ (s,a)+λσ+
γ (s,b).

By integrating the above relation over [0,1], we finally get

σ(e,(1−λ)a+λb)> (1−λ)σ(e,a)+λσ(e,b),

which shows the strictly concave character of σ(e, ·).
To prove the limit relation in (ii), we exploit the uniform superlinearity assumption (H2

′
)

on Hγ . Assume by contradiction that there is a sequence an →∞ and a positiveM such that

lim
n→+∞

σ(e,an)
an

>M.

It follows from the definition of σ(e,an) that there exist, for any n, sn ∈ [0,1], pn ∈ R such that

Hγ(sn,pn) = an and
pn
an

>M.

Hence, we derive

pn →+∞ and
Hγ(sn,pn)

pn
<

1
M
,

which is in contrast with (41). We deduce from (H1
′
) that the inverse function a 7→ σ+

γ (s,a)
is differentiable in (aγ ,+∞). By differentiating under the integral sign, we further get that
a 7→ σ(e,a) is differentiable in (aγ ,+∞) and

∂

∂a
σ(e,a) =

ˆ 1

0

∂

∂a
σ+
γ (s,a)ds.

We denote by ω(·) a uniform continuity modulus of (s,a) 7→ σ+
γ (s,a) in [0,1]× [aγ ,aγ + 1]

and of (s,p) 7→ ∂
∂pHγ(s,p) in K (see assumption (H1

′
)), where

K= {(s,p) | s ∈ [0,1], p ∈ [ps,+∞), Hγ(s,p)⩽ aγ + 1}

is compact by the superlinearity assumption (H2
′
). Then

0⩽ ∂

∂p
Hγ(s,p)⩽ ω(p− ps) for (s,p) ∈ K. (44)

Observe that

a= Hγ(s,σ
+
a (s,a)) =⇒ 1=

∂

∂p
Hγ(s,σ

+
a (s,a))

∂

∂a
σ+
a (s,a).

This and (44) imply that for a ∈ (ae,ae+ 1) we have
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∂

∂a
σ(e,a) =

ˆ 1

0

1
∂
∂pHγ(s,σ

+
γ (s,a))

ds

⩾
ˆ 1

0

1

ω(σ+
γ (s,a)− ps)

ds⩾ 1
ω ◦ω(a− aγ)

.

From this we derive item (iii), and conclude the proof.

Proof of proposition A.3. We derive from (43) and lemma A.4 that H(e, ·) is continuous in
R and differentiable in R \ {σ(e,aγ)}. Taking into account that

∂

∂p
H(e,p) =

1
∂
∂aσ(e,σ

−1(e,p))
for p> σ(e,aγ)

∂

∂p
H(e,p) =− 1

∂
∂aσ(−e,σ−1(−e,p))

for p< σ(e,aγ)

we derive from lemma A.4 (iii) that

lim
p→σ(e,aγ)

∂

∂p
H(e,p) = 0,

which implies that H(e, ·) is differentiable in σ(e,aγ) with vanishing derivative. Strict con-
vexity is straightforward from the previous discussion. Let us prove (H2), namely that
limp→±∞

H(e,p)
|p| =+∞.

Recalling (43) and using (ii) in lemma A.4:

lim
p→+∞

H(e,p)
p

= lim
p→+∞

σ−1(e,p)
p

= lim
a→+∞

a
σ(e,a)

= +∞. (45)

Similarly for p→−∞, considering σ(−e,a).
Easily follows that ae = aγ and pe = σ(e,aγ) (see (5)).

For every γ ∈ E , consider the Lagrangian associated to Hγ , namely its convex conjugate
Lγ : [0,1]×R−→ R defined as

Lγ(s,q) := sup
p∈R

(pq−Hγ(s,p)) , (46)

where equality is achieved for p such that ∂Hγ

∂p (s,p) = q.

SinceHγ satisfies (H1
′
)–(H3

′
), then it follows (see for example [26]) that Lγ is continuous

in (s, q), differentiable, superlinear and strictly convex in q.
Using (40) we see that the Lγ’s satisfy the following compatibility condition:

L−γ(s,q) = Lγ(1− s,−q) ∀ s ∈ [0,1], q ∈ R.

A.2. How to develop Aubry-Mather theory on networks

In this section we look, from the point of view of networks, at some of the notions that we
have introduced in the previous sections. This will help clarify and validate the setting that we
have proposed, and it will outline the ideas and the tools that are needed in order to transfer
the previous construction to the network setting.
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In this section we assume the Hamiltonian {Hγ}γ∈E to be Tonelli, namely, besides (H1
′
)–

(H4
′
), we further require that for any γ ∈ E

(H5
′
) Lγ(s,q) is of class C2 in (s, q) and ∂2

∂q2 Lγ is positive definite.

We consider the network G and its corresponding abstract graph Γ. We fix an arc γ and an
edge e with Ψ(e) = γ.

Given a parametrization (qe,Te) of the edge e ∈ E, we provide an interpretation of it on the
corresponding arc γ. We first assume q> 0, so that, according to the definition of parametrized
path, Te = 1

qe
. Then, due to the strict convexity of L(e, ·), there exists a unique pqe ⩾ pe such

that

L(e,q) = pqe qe−H(e,pqe) = qσ(e,aqe)− aqe , (47)

where aqe > ae is such that pqe = σ(e,aqe) (it is uniquely defined because of the continuity and
strict monotonicity of σ(e, ·) stated in lemma A.4). This also implies the relation

qe =
∂

∂p
H(e,pqe) =

∂

∂p
H(e,σ(e,aqe)).

We consider the solution to Hγ(s,w ′(s)) = aqe in (0,1) given by

w(s) =
ˆ s

0
σ+
γ (t,aqe)dt,

and the orbit of the Hamiltonian flow related to Hγ in [0,1]×R with initial datum
(0,σ+

γ (0,aqe)) = (0,w ′(0)), contained in the energy level aqe . This orbit has as first component
the curve ξqe with ξqe(0) = 0 and

ξ̇qe =
∂

∂p
Hγ(ξqe(t),w

′(ξqe(t))),

while the second component is given by w ′(ξqe(t)). We have in fact

0=
d
dt
Hγ(ξqe(t),w

′(ξqe(t)))

=
∂

∂s
Hγ(ξqe(t),w

′(ξqe(t))) ξ̇qe(t)+ ξ̇qe(t)
d
dt
w′(ξqe(t)),

and accordingly

d
dt
w′(ξqe(t)) =− ∂

∂s
Hγ(ξqe(t),w

′(ξqe(t))).

The orbit is defined in [0,Tqe ], where Tqe is the time in which ξqe reaches the boundary point
s= 1.

Proposition A.5. Let qe > 0 and let ξqe and Tqe be defined as above. Then:

(i) The time Tqe is equal to
1
qe
;

(ii) qe is the average speed of ξqe in the time interval [0,Tqe ];
(iii) L(e,qe) = 1

Tqe

´ Tqe
0 Lγ(ξqe , ξ̇qe)dt;

(iv) L(e,qe) = 1
Tqe

min
{´ Tqe

0 Lγ(ζ(t), ζ̇(t))dt
}
, where the minimum is taken in the family of

absolutely continuous curves ζ : [0,Tqe ]−→ [0,1] with ζ(0) = 0, ζ(Tqe) = 1.

5853



Nonlinearity 36 (2023) 5819 A Siconolfi and A Sorrentino

Proof. We have that ξ̇qe(t) and w
′(ξqe(t)) are conjugate in [0,Tqe ], in the sense that

ξ̇qe(t)w
′(ξqe(t)) = Lγ(ξqe(t), ξ̇qe(t))+Hγ(ξqe(t),w

′(ξqe(t))).

which implies

Lγ(ξqe(t), ξ̇qe(t)) = ξ̇qe(t)σ
+
γ (ξqe(t),aqe)− aqe . (48)

In addition, it follows from the definition of Lγ that

Lγ(ξqe(t), ξ̇qe(t))⩾ ξ̇qe(t))σ
+
γ (ξqe(t),b)− b for any b⩾ ae. (49)

By integrating (48), (49) over [0,Tqe ] we further get

ˆ Tqe

0
Lγ(ξqe(t), ξ̇qe(t)) = σ(e,aqe)−Tqe aqe

ˆ Tqe

0
Lγ(ξqe(t), ξ̇qe(t))⩾ σ(e,b)−Tqe b for any b⩾ ae. (50)

Taking into account (9), we derive

L(e,1/Tqe) =
1
Tqe

σ(e,aqe)− aqe . (51)

This implies by (47) and the strict convexity of L(e, ·)

Tqe =
1
qe

and qe =
1
Tqe

ˆ Tqe

0
ξ̇qe(t)dt,

showing items (i) and (ii). By combining (50) and (51), we get (iii).
Finally, to obtain item (iv), it is enough to observe that for any absolutely continuous curve

ζ in [0,1] with ζ(0) = 0 and ζ(Tqe) = 1, one has

ˆ Tqe

0
Lγ(ζ(t), ζ̇(t))⩾ σ(e,b)−Tqe b.

Remark A.6. The equality in item (iii) of proposition A.5 can be interpreted by saying that the
action functional on the graph computed in δ(e,q) equals the action functional on the network
computed in the occupationmeasure corresponding to the speed curve (ξqe(t), ξ̇qe(t)) in [0,Tqe ].
The latter measure is obtained by pushing forward through (ξqe(t), ξ̇qe(t)) the 1–dimensional
Lebesgue measure restricted to [0,Tqe ] and normalize it.

In particular, item (iv) of proposition A.5 reads that the curve ξqe defined on [0,Tqe ] is action
minimizing for Lγ . This sheds light on the reason why Mather measures on the graph consist
of convex combinations of Dirac deltas (see theorem 6.1), in analogy with what happens in
the classical theory, in whichMather measures are supported on action-minimizing curves (see
[22, 30]).

RemarkA.7. In the casewhere e ∈M0 and qe =Q0(e)> 0—we have chosen the cohomology
class 0 just for simplicity –, the above construction acquires a global significance, in the sense
that σ+

γ (s,α(0)) is not just the derivative of a local (in (0,1)) solution of Hγ = α(0), but we
also have that
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σ+
γ (s,α(0)) =

d
ds
u ◦ γ(s)

for any critical subsolution u of the Hamilton–Jacobi equation on the network, see [29].

Remark A.8. To discuss the case when the speed qe vanishes for some e ∈ E, the equilibrium
circuit (e,−e) with the parametrization ((e,0,T1),(−e,0,T2)), with T1, T2 positive constants.
We set γ =Ψ(e) and consequently −γ =Ψ(−e). We have

L(e,0) = L(−e,0) =−H(e,pe) =H(−e,p−e) =−ae = a−e.

In addition we have by assumption (H4
′
)

Lγ(s,0) = L−γ(s,0) = ae = a−e for every s ∈ [0,1]

so that

0=
∂

∂s
Lγ(s,0) =− ∂

∂s
Hγ(s,σ

+
γ (s,ae))

0=
∂

∂s
L−γ(s,0) =− ∂

∂s
H−γ(s,σ

+
−γ(s,a−e)).

This implies that all the points (s,σ+
ae (γ,s)), (s,σ

+
a−e

(−γ,s)) are equilibria of the Hamiltonian
flows related to Hγ , H−γ , respectively. We can put in relation the measures δ(e,0) = δ(−e,0)
with the Dirac measures concentrated at all points of the arcs γ,−γ, which—in analogy with
what we did in the graph—can be identified.

Appendix B. Proof of theorem 4.15

We need a preliminary result, see [3, proposition 42]. We refer to (12) for a precise definition
of having linear growth.

Lemma B.1. Let K be a closed convex subset of P, we set

C+ =

{
F : TΓ→ R continuous with linear growth |

ˆ
Fdµ⩾ 0 ∀µ ∈K

}
.

Then:

K=

{
ν ∈ P |

ˆ
Fdν ⩾ 0 ∀F ∈ C+

}
.

The proof of this lemma is based on a separation result in Wasserstein spaces that we take
from [19]. We state it below with slight changes to adapt it to our notation and setting.

Lemma B.2 ([19, theorem 2.9]). LetK be a closed convex subset of P, and ν 6∈K. Then, there
exists F : TΓ→ R with linear growth such that

ˆ
Fdµ >

ˆ
Fdν for any µ ∈K.

Proof of lemma B.1. Given ν 6∈K, we fix µ0 ∈K and define

νλ = (1−λ)ν+λµ0 for λ ∈ [0,1].
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Since K is closed, there exists λ0 ∈ (0,1) with νλ0 6∈K. We denote by F a function satisfying
the statement of lemma B.2 with respect to νλ0 ; we can in addition assume, without losing
generality, thatˆ

Fdνλ0 = 0. (52)

Therefore F ∈ C+ andˆ
Fdµ > 0 for any µ ∈K (53)

It follows from the definition of νλ0 , (52), (53) thatˆ
Fdν < 0.

Summing up, we have found that for any ν 6∈K, there exists F ∈ C+ whose integral with
respect to ν is strictly negative. This proves the assertion.

Lemma B.3. The closure in P of the space of closed occupation measures is convex.

The fact that the closure of the space of closed occupation measures is convex, stems from
the property that a closed occupation measure stays unchanged under any finite repetition of
the corresponding cycle. Therefore, we can connect a finite number of cycles through simple
paths in order to make a unique cycle. We can then repeat n times the cycles leaving unaf-
fected the connecting paths and obtain a sequence of closed occupation measures indexed by
n converging, as n→+∞, to a measure which does not ‘see’ the connecting simple paths
and is a convex combination of the occupation measures corresponding to the cycles with
repetitions.

A formal argument can be found [3, lemma 30] for measures on the tangent bundle of a
compact manifold. It can be adapted with minor modifications to our setting.

We can now prove the main result of this appendix.

Proof of theorem 4.15. In view of lemma B.1, it is enough to show that if a continuous func-
tion F with linear growth in TΓ satisfiesˆ

Fdµ⩾ 0 for any closed occupation measure µ, (54)

then it also satisfiesˆ
Fdν ⩾ 0 for any measure ν ∈M. (55)

Let F satisfy (54). By integration with respect to the closed occupation measures δ(e,0), for
any e ∈ E, we get

F(e,0)⩾ 0 for any e ∈ E.

Thanks to the above inequality, we can modify F in [0,1/n]∪ [n,+∞)⊂ R+
e , for any e ∈ E,

constructing a sequence of continuous functions Fn defined on TΓ such that

Fn(e,0)> 0, Fn(e, ·) has superlinear growth at +∞ for any e ∈ E (56)

and in such a way that for any n, for each e ∈ E, q⩾ 0

Fn+1(e,q)⩽ Fn(e,q) (57)
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Fn(e,q)⩾ F(e,q) (58)

Fn(e,q)→ F(e,q) as n→+∞. (59)

We define

Gn(e,p) :=max
q⩾0

(pq−Fn(e,q)) ;

the function Gn(e, ·) is finite by the superlinear growth of Fn, convex and superlinear at +∞;
in addition Gn(e, ·) is increasing in p and by (56)

inf
p∈R

Gn(e,p) = lim
p→−∞

Gn(e,p) =−Fn(e,0)< 0.

Therefore, the value 0 is attained by Gn(e, ·) and is above the infimum. We denote by φne , for
any e ∈ E, the unique element such that

Gn(e,φ
n
e) = 0.

The quantity φne must be understood as an intrinsic length of the edge e related to the
Hamiltonian Gn and the value 0. We have

φne q⩽ Fn(e,q) for any q⩾ 0 (60)

and there exists qe > 0 with

0= Gn(e,φe) = φne qe−Fn(e,qe). (61)

We consider the discrete Hamilton–Jacobi equation on Γ

max
−e∈Ex

Gn(e,〈du,e〉) = 0 for x ∈ V. (62)

We know from proposition 7.3 (i) that in order (62) to have subsolutions it is necessary and
sufficient that for any cycle ξ = (ei)Mi=1 in Γ the intrinsic length

φn(ξ) :=
M∑
i=1

φnei ⩾ 0.

We deduce from (61) that

φnei =
1
qi
Fn(ei,qi), (63)

where qi := qei (see (60), (61)). We consider the parametrized version of ξ given by
(ei,qi,1/qi)Mi=1 and denote by µξ the corresponding closed occupation measure. We have
by (58) and the assumption that

0⩽
ˆ
Fn dµξ =

1∑M
i=1

1
qi

M∑
i=1

1
qi
Fn(ei,qi),

which finally implies, using (63), that φn(ξ)⩾ 0. If u : V→ R is a subsolution of (62), we
have

〈du,e〉⩽ φne for any e ∈ E. (64)
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Let ν =
∑

e∈Eλe νe be a closed measure on TΓ, then by (60), (64)

0=
∑
e∈E

λe

ˆ
q〈du,e〉dνe

⩽
∑
e∈E

λe

ˆ
φne qdνe

⩽
∑
e∈E

λe

ˆ
Fn(e,q)dνe =

ˆ
Fn dν.

Taking into account (57), (59) and passing to the limit as n→+∞ in the above inequality, we
obtain ˆ

Fdν ⩾ 0,

which shows that F satisfies (55). This concludes the proof.
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