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We numerically investigated the phenomenon of non-Gaussian normal diffusion of a Brownian
colloidal particle in a periodic array of planar counter-rotating convection rolls. At high Péclet
numbers, normal diffusion is observed to occur at all times with non-Gaussian transient statistics.
This effect vanishes with increasing the observation time. The displacement distributions decay
either slower or faster than a Gaussian function, depending on the flow parameters. The sign of
their excess kurtosis is related to the difference between two dynamical time scales, namely, the
mean exit time of the particle out of a convection roll and its circulation period inside it.

Key words: Brownian motion, Diffusion, Non-Gaussian distribution.

1. Introduction
Fick’s diffusion (Gardiner 2009) implies that the directed displacements of an overdamped

Brownian particle, say, in the x direction, ∆x(t) = x(t) − x(0), grow with time following the
Einstein law, 〈∆x2(t)〉 = 2Dt, and with Gaussian statistics. Accordingly, the probability density
function (pdf) of the rescaled observable, ∆x/

√
t, would be a stationary Gaussian distribution

with half-variance D.
Recent observations (Wang et al. 2009, 2012; Bhattacharya et al. 2013; Kim et al. 2013; Kwon

et al. 2014; Guan et al. 2014) of Brownian motion in fluctuating crowded environments led to
question the generality of such notion. Indeed, there are no a priori reasons why the diffusion of
a physical Brownian tracer should be of Fickian type. For instance, in real biophysical systems
displacement pdf’s often exhibit prominent exponential tails over wide intervals of the observation
time, t, well after the condition of normal diffusion has set in. Such a transient effect, termed
here non-Gaussian normal diffusion (NGND), is expected to disappear for asymptotically large
observation times (possibly inaccessible to real experiments (Wang et al. 2009)), as stipulated
by the central limit theorem. In that limit, the ∆x distributions turn eventually Gaussian, with
half-variance equal to 〈∆x2(t)〉. Persistent diffusive transients of this type have been detected in
diverse experimental setups (Wang et al. 2009, 2012; Bhattacharya et al. 2013; Weeks et al.
2000; Eaves et al. 2009; Leptos et al. 2009), and further confirmed by extensive numerical
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simulations (Kwon et al. 2014; Guan et al. 2014; Keqel et al. 2000; Chaudhuri et al. 2007; He
et al. 2016; Ghosh et al. 2016).
The current interpretation of this phenomenon postulates that diffusion occurs in a fluctuating

environment with finite relaxation time, τ (Wang et al. 2009). For observation times comparable
with τ, the tracer displacements are likely to obey a non-Gaussian statistics. The rescaled pdf’s,
p(∆x/

√
t), are typically Gaussian for either much shorter or much larger t values, though with

different half-variance: the free diffusion constant, D0, for t → 0 (no crowding effect) and the
asymptotic diffusion constant, D, defined above, for t → ∞ (central limit theorem). There is no
fundamental reason why non-Gaussian transients should necessarily lead to the emergence of
slowly decaying distribution tails (leptokurtic transients), as reported in the current literature; on
the contrary, one cannot rule out the possibility that, under certain conditions, their tails decay
faster than a Gaussian tail (platykurtic transients). Moreover, the NGND phenomenon can also
occur in low dimensional models, though restricted to relatively narrow t domains (Li et al.
2019).
We investigate here, both numerically and analytically, the Brownian diffusion of an over-

damped particle suspended in a periodic array of planar convection rolls, subjected to thermal
fluctuations of strength D0. This is an archetypal model with well-established applications to
physical systems of the most diverse length scale (Kirby 2010; Tabeling 2002; Chandrasekhar
1967). At high Péclet numbers, i.e., when the effects of thermal fluctuations are negligible with
respect to advection, the particle undergoes normal diffusion with asymptotic diffusion constant,
D, which depends on both D0 and the flow parameters (Rosenbluth 1987). The ensuing NGND
is characterized by a single transient time, τ, but, in contrast with other elementary models (Li et
al. 2019), τ is controlled by two competing microscopic mechanisms depending on D0. At low
thermal noise, the transient dynamics of the particle is governed by its isotropic random jumps
from roll to roll, a stochastic process quite insensitive to the details of the particle’s trajectory
inside each individual roll. On the contrary, upon raising the thermal noise (but still at high Péclet
numbers), roll jumping grows faster compared with the circulation inside the rolls. The diffusion
transient dynamics is then dominated by the advective drag. Accordingly, one defines two distinct
time scales, namely, the mean time for the particle to first exit the convection rolls and its average
revolution period inside a single roll. The peculiarity of this system is that, upon increasing the
noise strength, the NGND transients can change from lepto- to platykurtic, depending on which
of such two time scales is larger and, thus, plays the role of effective transient time, τ.
The problem we address is also of practical interest in view of its applications to microfluidics

(Kirby 2010), chemical engineering and combustion (Moffatt et al. 1992), and the modeling
of large-scale geodynamic processes (Tabeling 2002). Indeed, the experimental or numerical
determination of the asymptotic mean-square displacement of a tracer in a convective flow can
take exceedingly long times to allow it to jump repeatedly from convection roll to convection roll.
On the contrary, in a number of physical situations the observer only needs to determine how
long a trapped tracer will sojourn inside a single roll before crossing its flow boundary layer into
a neighboring one. This quantity is more easily accessible to direct observation and, as shown at
the end of this paper, influences the non-Gaussian properties of the tracer’s transient displacement
distributions. Stated otherwise, from displacement distributions obtained for finite observation
times, we cannot extract the asymptotic diffusion constant, D, with a high degree of confidence,
if the non-Gaussian transients of the underlying diffusive process is unpredictably long.
The present paper is organized as follows. In Sec. 2 we introduce the Langevin equations that

describe Brownian diffusion in a two-dimensional laminar flow patterned as a periodic array of
counter-rotating convection rolls. Following Ref. (Rosenbluth 1987), we distinguish between the
regime of high Péclet numbers, relevant to this work, where diffusion is governed by advection,
and the best known regime of thermal diffusion, dominated by equilibrium fluctuations. In Sec. 3
we investigate the two time scales controlling Brownian diffusion in a periodic array of convection
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Figure 1: Diffusion of a Brownian particle in a 2D periodic pattern of stationary
convection rolls. (a) Unit flow cell, Eq. (2.1), consisting of four counter-rotating subcells.
(b) Trajectory sample of length t=100, for D0 = 0.001. Flow parameters are: U0 = 1 and

L = 2π.

rolls, namely, the average period of fluid circulation inside a roll (Sec. 3.1) and the particle’s mean
first-exit time out of a single roll (Sec. 3.2). In Sec. 4 we present detailed numerical evidence of the
NGND phenomenon. Lepto- and platykurtic transients are qualitatively explained by time coarse-
graining the microscopic particle’s dynamics and quantified by fitting our numerical displacement
distributions by means of a phenomenological one-parameter function. Finally, in Sec. 5 we draw
some concluding remarks.

2. Model: Periodic Array of Counter-rotating Convection Rolls
To this purposewe investigated the diffusion of an overdamped particle of unitmass, coordinates

x and y, suspended in a 2D stationary laminar flowwith periodic center-symmetric stream function

ψ(x, y) = (U0L/2π) sin(2πx/L) sin(2πy/L), (2.1)

where U0 is the maximum advection speed and L the size of the flow unit cell. Following
the earlier literature (Chandrasekhar 1967; Rosenbluth 1987; Childress 1979; Soward
1987), we assumed that the particle is perfectly spherical and so small that it can be taken
as pointlike. Accordingly, away from confining boundaries or other particles (low particle density
approximation) hydrodynamic interactions and flow torques were ignored. Its dynamics can thus
be formulated by means of two translational Langevin equations,

Ûx = ux + ξx(t), Ûy = uy + ξy(t), (2.2)

where the vector ®u = (ux, uy) = (∂y,−∂x)ψ is the advection velocity. As illustrated in Fig.
1(a), ψ(x, y) defines four counter-rotating flow subcells, also termed convection rolls. The
translational noises, ξi(t) with i = x, y are stationary, independent, delta-correlated Gaussian
noises, 〈ξi(t)ξj(0)〉 = 2D0δi jδ(t). They can be regarded as modeling equilibrium thermal
fluctuations in a homogeneous, isotropic medium, with D0 proportional to its temperature. In
the present notation, D0 is the free particle diffusion constant in the absence of advection. In
our simulations, we used the flow parameters, U0 and L to set convenient length and time units,
respectively, L and L/2πU0. Therefore, the only tunable parameter left in our analysis is the
noise strength, D0. As we are interested in the diffusion properties under stationary conditions,
we assumed a uniform random distribution of the particle’s initial coordinates, x0 and y0. Indeed,
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Figure 2: Diffusion in the periodic convective flow pattern of Eq. (2.1): D vs. D0, both
rescaled by DL = U0L/2π. The analytical predictions for low-noise, Eq. (2.4), and
high-noise strength, Eq. (2.5), are represented by solid lines. Within our numerical

accuracy, the fitted value of κ is consistent with the predicted value, 1.06 (Rosenbluth
1987). The stream function parameters are U0 = 1 and L = 2π, so that DL = 1.

due to the incompressibility of the advection vector, (ux, uy), in the presence of thermal noise, a
particle’s trajectory is known to eventually fill up the x, y plane uniformly.
The amplitude of ψ(x, y) in Eq. (2.1) provides a natural diffusion scale of the convective flow,

DL = U0L/2π; accordingly the Péclet number of the advected Brownian particle is defined here
as Pe ≡ DL/D0 > 1.
The stochastic differential Eqs. (2.2) were numerically integrated by means of a standard

Mil’shtein scheme (Kloeden et al. 1992). Particular caution was exerted when computing the
values of the asymptotic diffusion constant

D = lim
t→∞
〈∆x2(t)〉/2t . (2.3)

Indeed, upon lowering the noise strength, D0, the roll jumping of the advected particle gets
suppressed; accordingly, the transient time, τ, grows exceedingly long. Even if during such
transients instances of anomalous diffusion may become detectable (Young et al. 1989), in this
paper we focus on the normal diffusion limit in Eq. (2.3).
Particle transport in such a flow pattern has been studied under diverse physical conditions and

a rich phenomenology has emerged (Shraiman 1987; Young et al. 1989; Solomon et al. 1988;
Solomon 2003; Young 2007; Manikantan 2013; Sarracino et al. 2016; Tornev et al. 2007; Li
et al. 2020). For instance, in the presence of external periodic perturbations the deterministic
dynamics of a noiseless particle exhibits remarkable chaotic properties (Solomon et al. 1988;
Solomon 2003). Especially relevant to the present work are the results for the diffusivity of a
pointlike Brownian tracer first reported in Ref. (Rosenbluth 1987). The problem of how a flow
field of stream functionψ(x, y) affects the diffusion of self-propelled particle has been investigated
in Refs. (Tornev et al. 2007; Li et al. 2020).
The Langevin Eqs. (2.2) model particle diffusion under the simultaneous action of translational

fluctuations and advective drag. An important property of this system is illustrated in Fig. 2, where
we plotted the asymptotic diffusion constant, D, as a function on the noise intensity (and free
diffusion constant), D0. The mean square displacement approaches asymptotically the Einstein
law for any choice of D0. However, on increasing D0, the asymptotic diffusion constant, D,
changes from

D = κ
√

DLD0, (2.4)
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Figure 3: Exit mechanism from a flow cell: (a) Spatial distribution of a particle injected at
the center of the top-left roll, (−L/2, L/2), in a box with absorbing boundaries

x, y = ±L/2, and subjected to noise of strength D0 = 0.01; the side-bar is the relevant
amplitude color-code on a natural logarithmic scale. Distribution computed over 107

trajectories with integration time-step of 10−5. (b) Distributions, P(T), of the particle’s
exit times, T , for different D0 (filled symbols, see legend). For a comparison (see text) the

P(T) curves for D0 = 3 · 10−3 and 10−2 have been “stretched” by rescaling T → 4T
(empty symbols). The stream function parameters are U0 = 1 and L = 2π. Power laws are
drawn to fit the T → 0 branches of the low- and high-noise distributions. Note that in

dimensionless units, simulation results for U0 = 0 correspond to taking the limit D0 →∞.

for D0 < DL (dispersive transport), to
D = D0 (2.5)

for D0 > DL (diffusive transport). The constant κ in Eq. (2.4) depends on the geometry of the
flow cells (Rosenbluth 1987; Young et al. 1989). For the 2D array of square counter-rotating
convection rolls of Eq. (2.1), κ ' 1.06 (Rosenbluth 1987), in close agreement with the numerical
results displayed in Fig. 2.
The crossover between the two diffusion regimes occurs at D0 ' DL and appears to be quite

sharp (Li et al. 2020). This property was explained (Rosenbluth 1987; Soward 1987; Young
et al. 1989) by noticing that for D < DL spatial diffusion occurs within the boundary flow
layers delimiting the four subcells of the stream function, ψ(x, y), as illustrated in Fig. 3(a).
Stated otherwise, the diffusion process is governed by the advection velocity field. Vice versa,
for D0 > DL the effects of advection on the particle’s diffusion grow negligible. In view of the
above, NGND is more likely to happen in the regime of advective transport; therefore we focus
our discussion on the high Péclet number domain.

3. Relevant Time Scales
The particle’s dynamics of Eqs. (2.1)-(2.2) results from the superposition of an advective drag

with velocity ®u and a free Brownian motion driven by thermal fluctuations. Advection pulls the
particle along closed orbits inside each ψ(x, y) subcell, either clock- or anticlockwise, whereas
thermal noise pushes the particle eventually over the subcell boundaries. Both mechanisms play a
key role in our discussion of the ensuing NGND phenomenon. Therefore, in the next subsections
we briefly derive their characteristic time scales.

3.1. Advection Period
To analyze roll circulation we consider the “positive” ψ(x, y) subcell centered at (L/4, L/4),

see Fig. 1(a), where the particle circulates anticlockwise. In the noiseless regime with D0 = 0, a
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simple time derivation of both sides of Eqs. (2.1) yields two decoupled equations,

Üx ′ = Ω2
L sin x ′, Üy′ = Ω2

L sin y′, (3.1)

for the rescaled coordinates x ′ = 2(2πx/L) and y′ = 2(2πy/L). Here the angular frequency
ΩL = 2πU0/L coincides with the maximum vorticity, ®∇ ∧ ®u = −∇2ψ, at the center of the
convection roll. Both Eqs. (3.1) describe a mathematical pendulum centered at (π, π) – the
subcell center. This implies that, due to the x ↔ y symmetry of ψ(x, y), the period of the
particle’s orbits, TL , depends on their maximum amplitude, a0, along either x or y direction
(orbits are not circular!) with a0 < π. The function TL(a0) can be expressed analytically as the
period of either physical pendulum in Eq. (3.1),

TL(a0) =
2T0

π
K(k), (3.2)

where T0 = 2π/ΩL , k = sin(a0/2), and K(k) is a complete elliptic integral of first kind (Cromer
1995). The logarithmic divergence of TL for a0 → π is best approximated by (Cromer 1995)

TL = (2T0/π) ln[4/cos(a0/2)]. This implies that, in the absence of thermal fluctuations, the
particle gets trapped in a convection roll. Despite its simple derivation, our result for TL is
consistent with earlier estimates (Weiss 1966).
Under stationary conditions, the particle’s spatial distribution is uniform, and so is the

distribution of a0. Therefore, in the limit of very high Péclet numbers, Pe � 1, a useful estimate
of the advection period can be obtained by averaging TL(a0) with respect to a0, namely,

TL = 〈TL(a0)〉 =
4T0

π

∫ 1

0

K(k)
k ′

dk, (3.3)

where k ′ =
√

1 − k2. An explicit integration finally yields (Gradshteyn et al. 2007),

TL =
T0

4π2 Γ
4 (1/4) ' 4.4 T0, (3.4)

with Γ denoting a gamma function (Gradshteyn et al. 2007). In view of our derivation, it’s clear
that Eq. (3.4) only holds in the limit D0 → 0+. We reiterate that for D0 ≡ 0 diffusion is completely
suppressed.

3.2. Mean First-Exit Time
To estimate the Mean First-Exit Time (MFET) of the particle out of the flow unit cell, we

calculate first the MFET of a free Brownian particle out of a square box of size L. In the absence
of advection, U0 = 0, this can be done analytically by standard stochastic methods – see Eq.
(5.4.37) of Ref. (Gardiner 2009), where a typo had to be corrected. For a particle starting at
(x0, y0) inside a box of vertices x = ±L/2 and y = ±L/2, the mean first-exit time is

T(x0, y0) =
1

D0

(
L
2π

)2 (
8
π

)2 (odd)∑
m,n

1
mn

1
m2 + n2 ×

× sin
[
πn

(
x0

L
−

1
2

)]
sin

[
πm

(
y0

L
−

1
2

)]
, (3.5)

where the summation is restricted to the odd values of m and n. Under stationary conditions, the
spatial distribution of the particle is uniform. Therefore, we average T(x0, y0) with respect the
particle’s initial position, (x0, y0), to obtain the spatially averaged MFET,
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Figure 4: Diffusion mechanisms in the periodic flow pattern of stream function ψ(x, y),
Eq. (2.1): (a) TD , vs. thermal noise, D0. The asymptotic solid lines on the left and right
are respectively 〈T(x0, y0)〉 and (1/4)〈T(x0, y0)〉, Eq. (3.6); the horizontal dashed lines
represent the minimum, T0, (lower line) and the average advection period TL of Eq. (3.4)
(upper line). Three D0 intervals with distinct ranges of the fitting parameter β of Eq. (4.1)
are delimited by the vertical lines D0 = D∗ and D0 = DL and shaded in different colors;

no NGND was detected for D0 > DL . D∗ was obtained by numerically solving the
equation TD = T0 (see txt). (b) 〈∆x2(t)〉 vs. t for different D0. Vertical arrows denote the

onset time of normal diffusion, t = TD . Convection flow parameters are U0 = 1 and
L = 2π.

〈T(x0, y0)〉 =
L2

D0

(
2
π

)6 (odd)∑
m,n

1
m2

1
n2

1
m2 + n2 . (3.6)

We next investigate the MFET for a Brownian tracer to escape from a unit cell of the stream
function ψ(x, y). Let TD denote the spatial average of such a MFET, with spatial average taken
over a unit flow cell. In the purely diffusive regime of Eq. (2.5), D0 � DL , the effect of advection
is negligible; hence TD = 〈T(x0, y0)〉. In the opposite limit of advective diffusion, D0 � DL , as
apparent from Figs. 1(b) and 3(a), the exit process consists of a slow activation mechanism, where
the particle thermally diffuses from the center of a subcell toward its boundaries, followed by a
relatively faster propagation driven by the laminar flow, which runs parallel to the separatrices
delimiting the adjacent counter-rotating subcells. This statement is based on the fact that, for
D0 → 0, TD diverges like 1/D0, Eq. (3.6), whereas TL diverges like TL ∼ (T0/π) ln(DL/D0). This
last result follows from the logarithmic divergence of TL in the limit a0 → π, which we derived
in Sec. 3.1. There, |π − a0 | was a measure of the particle’s distance from the roll separatrices,
which, in dimensional units, reads δ = (L/2π)|1 − a0/π |. In the presence of noise, the particle
mean square displacement over the advection period T0 gives a simple estimate of δ, δ2 = 2D0T0,
which one may interpret as the effective width of the rolls’ boundary flow layers (Rosenbluth
1987).
Consider now a particle trapped in a convection roll, say, in the top-left ψ(x, y) subcell of Fig.

3(a). To leave the simulation box, it first slowly free diffuses inside the trapping subcell; it is only
upon reaching the subcell boundary layer, that it gets swept away by the advection flow along the
square net formed by the roll separatrices, as illustrated in Fig. 1(b). In the limit D0/DL → 0, the
advection period TL grows negligible with respect to any exit diffusion time, so that the particle’s
MFET out of a unit ψ(x, y) cell, TD , tends to coincide with the particle’s free diffusion time out
of a single subcell. Such a latter time can be calculated by simply replacing L with L/2 in Eq.
(3.6). In conclusion, we expect that for Pe � 1, TD = (1/4)〈T(x0, y0)〉. Our analytical estimates
of TD are in good agreement with the numerical data displayed in Fig. 4, which well illustrates
the transition between the low- and high-noise regimes of TD .
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Figure 5: Rescaled displacement distributions for different transient times: (a) D0 = 0.001,
(b) D0 = 0.1, and (c) D0 = 0.6. The observation times, t, and the fitting parameters, β, are
reported in the legends; convection flow parameters are U0 = 1 and L = 2π. All transient

pdf’s were taken after normal diffusion was established, see Fig. 4(b).

Both limiting estimates for TD ignore advection and, therefore, differ by just a geometric factor
4, that is the ratio of the cell-to-subcell areas. The predominance of this geometric factor is
apparent also in Fig. 3(b), where first-exit time distributions, P(T), have been plotted for low
and high noise strengths. To numerically determine P(T), first we computed the first-exit times,
T , for a fixed starting point (x0, y0); then we averaged the relevant pdf’s by taking a uniform
distribution of (x0, y0) over a full unit flow cell. For the sake of a comparison, we also plotted
the distributions for the two lowest values of D0 on the dilated scale T → 4T . The high-noise
distributions, P(T), and such “stretched” low-noise distributions, P(4T), seemingly overlap, which
corroborates our estimates of TD in the limits D0 → 0 and D0 →∞. Another interesting feature
of the T distributions plotted in Fig. 3(b) is their behavior in the limit T → 0. Our numerical data
clearly show that for small T all distributions diverge according to a power law T−α, with α slowly
decreasing with increasing D0, from α = 0.75 to approximately α = 0.64. The divergence of P(T)
for T → 0 is dominated by the trajectories originating in the (sub)cell boundary layers; indeed,
this effect disappears if we set the starting point (x0, y0), say, at the center of the (sub)cells. At
large T , all distributions decay exponentially, consistently with the asymptotic normal diffusion
law of Eq. (2.3).

4. Results: Non-Gaussian Normal Diffusion
The Brownian particle diffuses in the x, y plane by jumping from convection roll to convection

roll, thanks to thermal fluctuations. Therefore, its motion can be coarse grained as a discrete
random walker with time constant TD (Gardiner 2009). Accordingly, for large observation times,
t & TD , the diffusive process is expected to be normal. This statement is confirmed by the
numerical data for 〈∆x2(t)〉 reported in Fig. 4(b), where the relevant TD is indicated by vertical
arrows. However, for Pe � 1 (very low thermal noise), we proved thatTL < TD , that is the particle
executes several orbits inside a single subcell before exiting it. Therefore, for short observation
times, t < TD , the particle is seen to travel distances of the order of the subcell half-width,
L/4, and then turn back toward its starting point, with period of the order of T0. Such particle’s
intra-roll dynamics qualitatively explains magnitude and position of the short-t bumps clearly
detectable in the 〈∆x2(t)〉 curves of Fig. 4(b) at low D0. We notice that for D0 → 0 such bumps
grow insensitive to D0, while the curve 〈∆x2(t)〉 flattens out, as the particle gets trapped longer
and longer inside a convection roll.
By contrast, for t & TD , 〈∆x2(t)〉 follows a normal diffusion lawwith D in close agreement with

the analytical prediction of Eq. (2.4). For the flow field parameters adopted in Fig. 5, the crossover
between low- and high-noise estimates ofTD , respectively (1/4)〈T(x0, y0)〉 and 〈T(x0, y0)〉, occurs
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within the advective transport regime, D0 < DL . By inspecting Fig. 4(a), it is also apparent that
at the crossover the two competing time scales introduced in Sec. 3 to characterize the particle
dynamics in a convective roll, tend to coincide. The equation TD = T0 defines a unique D0 value,
D∗, which splits the advective diffusion domain into the two distinct intervals D0 < D∗ and
D∗ < D0 < DL .
Similarly to other low-dimensional models (Li et al. 2020), numerical integration of Eqs. (2.1)-

(2.2) shows compelling evidence of the NGND phenomenon, with the non-Gaussian transients
of the displacement distributions gradually disappearing upon increasing the observation time.
Contrary to superstatistical (Wang et al. 2009) and diffusing diffusivity models (Chubynsky et
al. 2014), here the predicted transient rescaled distributions are not “universal” D functions over
large t intervals. Accordingly, to capture the t dependence of the numerical curves presented in
Fig. 5, one needs at least one additional fitting parameter. To this purpose, we introduced and
tested the following one-parameter fitting function,

pβ

(
∆x
√

t

)
=

β

Γ( 1β )
3
2

[
Γ( 3β )

2D

] 1
2

exp

−
(
∆x2

2Dt

Γ( 3β )

Γ( 1β )

) β
2
 . (4.1)

This function has been derived phenomenologically starting from the stretched exponential
distribution, pβ(∆x/

√
t) = A exp[−B(∆x/

√
t)β] (Kendall et al. 1976). The constants A and B

have then be determined by normalizing pβ(∆x/
√

t) to one and ensuring that its second moment
be 〈∆x2〉/t = 2D for any value of the free parameter β, which, instead, is allowed to vary with t.
β assumes values in the range 1 6 β 6 2 for leptokurtic distributions (positive excess kurtosis)
and β > 2 for platykurtic distributions (negative excess kurtosis).
The fits of the pdf’s drawn in Fig. 5 have been generated from Eq. (4.1) by setting D equal

to the diffusion constant that best fitted the corresponding diffusion data of Fig. 4(b) at large t
and, then, computing β to best fit the rescaled displacement distributions numerically obtained
for different t. For an easier comparison with the experimental data we used there the rescaled
observable ∆x/

√
tD0.

The range of the β values, fitted according to this procedure, is reported in Fig. 4(a) for
each D0 interval. As corroborated by the transient pdf’s displayed in Fig. 5, NGND transients are
leptokurtic for D0 < D∗ and platykurtic for D∗ < D0 < DL (Kendall et al. 1976). This interesting
property can be explained with the fact that in the present system the role of transient time, τ,
is played respectively by TD for D0 < D∗ and by TL for D0 > D∗. In particular, for D0 > D∗
the slowest time modulation of the particle’s dynamics is attributable to the advective circulation
inside the convection rolls, TL > TD , which explains the emergence of a platykurtic NGND
transient. Indeed, a microscopic rotational (random) dynamics suffices to determine sub-Gaussian
distributions, i.e., a negative excess kurtosis, of the unidirectional particle’s displacements (Zheng
et al. 2013).
As far as the quality of the proposed fitting procedure is concerned, we notice that it is quite

accurate in both limits, D0 � D∗ and D0 � D∗, where the effective transient time, τ, can be
positively identified respectively with TD and TL . For intermediate values of D0, D0 ∼ D∗, the
one-parameter function pβ(∆x/

√
t) seems to provide less accurate fits of the numerical data, see

Fig. 5(b).

5. Conclusions
The diffusivemodel investigated in this paper provides a suggestive example of low dimensional

system exhibiting NGND. As an additional peculiarity, its transient displacement distributions
can be either lepto- or platykurtic, depending on the choice of the model’s parameters. Variations
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of this system are plenty. For instance, one could design different convective roll patterns or
consider roll arrays in confined geometries (Shraiman 1987; Young et al. 1989). Also interesting
would be replacing the passive Brownian particle in Eqs. (2.1) with a self-propelling swimmer
(Li et al. 2020). All these systems are likely to manifest the NGND phenomenon. In view of the
growing attention to the diffusion of active particles, we will report on NGND of microswimmers
in convection rolls in a forthcoming publication. Finally, we remark that all these diffusive systems
are easily accessible to direct experimental observation (Solomon 2003; Young 2007; Li et al.
2020).
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