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CONVERGENT SUBSERIES OF DIVERGENT SERIES

MAREK BALCERZAK AND PAOLO LEONETTI

Abstract. Let X be the set of positive real sequences x = (xn) such that the series
∑

n xn is divergent. For each x ∈ X , let Ix be the collection of all A ⊆ N such that the
subseries

∑

n∈A xn is convergent. Moreover, let A be the set of sequences x ∈ X such that
limn xn = 0 and Ix 6= Iy for all sequences y = (yn) ∈ X with lim infn yn+1/yn > 0. We
show that A is comeager and that contains uncountably many sequences x which generate
pairwise nonisomorphic ideals Ix. This answers, in particular, an open question recently
posed by M. Filipczak and G. Horbaczewska.

1. Introduction

Let X be the set of positive real sequences x = (xn) with divergent series
∑

n xn. For
each x ∈ X , let Ix the collection of sets of positive integers A such that the (possibly finite)
subseries indexed by A is convergent, that is,

Ix :=

{

A ⊆ N :
∑

n∈A

xn < ∞

}

. (1)

Note that each Ix is closed under finite unions and subsets, i.e., it is an ideal. Moreover,
it contains the collection Fin of finite sets A ⊆ N, and and it is different from the power
set P(N). Following [4], a collection of sets of the type (1) is called summable ideal. It is
not difficult to see that every infinite set of N contains an infinite subset in Ix if and only if
limn xn = 0. Accordingly, define

Z := X ∩ c0 = {x ∈ X : lim
n→∞

xn = 0}.

It is known that the families Ix defined in (1) are “small”, both in the measure-theoretic
sense and the categorical sense, meaning that “almost all” subseries diverge, see [3, 6, 13, 16].
Related results in the context of filter convergence have been given in [1, 2, 10]. The set of
limits of convergent subseries of a given series

∑

n xn, which is usually called “achievement
set”, has been studied in [7, 9, 12]. Of special interest have been specific subseries of the
harmonic series

∑

n
1
n
; see, e.g., [11, 14, 15, 17].

Roughly, the question that we are going to answer is the following: Is it true that for each
x ∈ Z there exists y ∈ X such that Ix = Iy and yn “does not oscillates too much”?

Hoping for a characterization of the class of summable ideals Ix with x ∈ Z , M. Filipczak
and G. Horbaczewska asked recently in [5] the following:
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Question 1.1. Is it true that for each x ∈ Z there exists y ∈ X such that Ix = Iy and

∀n ∈ N,
yn+1

yn
≥

n

n+ 2
?

We show in Theorem 1.3 below that the answer is negative in a strong sense. To this aim,
define

Y :=

{

y ∈ X : lim inf
n→∞

yn+1

yn
> 0

}

,

and let ∼ be the equivalence relation on X so that two sequences are identified if they
generate the same ideal, so that

∀x, y ∈ X , x ∼ y ⇐⇒

(

∀A ⊆ N,
∑

n∈A

xn < ∞ ⇐⇒
∑

n∈A

yn < ∞

)

.

First, we show that the set of pairs (x, y) ∈ X 2 such that x is ∼-equivalent to y is
topologically well behaved:

Proposition 1.2. ∼ is a coanalytic relation on X .

Then, we answer Question 1.1 by showing that:

Theorem 1.3. There exists x ∈ Z such that x 6∼ y for all y ∈ Y .

In light of the explicit example which will be given in the proof of Theorem 1.3, one may
ask about the topological largeness of the set of such sequences. To be precise, is it true that

A := {x ∈ Z : ∀y ∈ Y , x 6∼ y}

is a set of second Baire category, i.e., not topologically small? Note that the question is really
meaningful since Z is completely metrizable (hence by Baire’s category theorem Z is not
meager in itself): this follows by Alexandrov’s theorem [8, Theorem 3.11] and the fact that

Z =
⋂

n≥1

{x ∈ c0 : xn > 0} ∩
⋂

m≥1

⋃

k≥1

{x ∈ c0 : x1 + · · ·+ xk > m}

is a Gδ-subset of the Polish space c0. With the premises, we show that A is comeager, that
is, Z \ A is a set of first Baire category:

Theorem 1.4. A is comeager in Z . In particular, A is uncountable.

We remark that Theorem 1.4 gives an additional information on relation ∼. Since it is
a coanalytic equivalence relation by Proposition 1.2, we can appeal to the deep theorem by
Silver [8, Theorem 35.20] which states that every coanalytic equivalence relation on a Polish
space either has countably many equivalence classes or there is a perfect set consisting of
non-equivalent pairs. Thanks to Theorem 1.4, the latter holds for the relation ∼ in a strong
form. Indeed, every pair in A × Y does not belong to ∼, where A is comeager (hence it
contains a Gδ-comeager subset) and Y is an uncountable Fσ-set. Therefore A ×Y contains
a product of two perfect sets by [8, Theorem 13.6].

Lastly, on a similar direction, we strenghten the fact that A is uncountable by proving
that exist uncountably many sequences in A which generate pairwise nonisomorphic ideals
(here, recall that two ideals I,J are isomorphic if there exists a bijection f : N → N such
that f [A] ∈ I if and only if A ∈ J for all A ⊆ N).
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Theorem 1.5. There are c sequences in A which generate pairwise nonisomorphic ideals.

Hereafter, we use the convention that
∑

n≥1 an ≪
∑

n≥1 bn, with each an, bn > 0, is a
shorthand for the existence of C > 0 such that

∑

n≤k an ≤ C
∑

n≤k bn for all k ∈ N.

2. Proof of Proposition 1.2

Equiavalently, we have to show that the set E := {(x, y) ∈ X 2 : x 6∼ y} is analytic in X 2.
For, note that E is the projection on X 2 of E1 ∪ E2, where

E1 :=
{

(A, x, y) ∈ P(N)× X
2 : A ∈ Ix \ Iy

}

and, similarly,
E2 :=

{

(A, x, y) ∈ P(N)× X
2 : A ∈ Iy \ Ix

}

.

Now, for each n ∈ N, define the functions αn, βn : P(N)× X 2 → R by αn(A, x, y) =
∑

xk

and βn(A, x, y) =
∑

yk, where each sum is extended over all k ∈ A such that k ≤ n. Since
they are continuous, the set (αn ≤ k) := {(A, x, y) ∈ P(N)×X 2 : αn(A, x, y) ≤ k} is closed
and (βn > k) is open for all n, k ∈ N. Therefore

E1 =

(

⋃

k≥1

⋂

n≥1

(αn ≤ k)

)

∩

(

⋂

k≥1

⋃

n≥1

(βn > k)

)

is the intersection of an Fσ-set and a Gδ-set, hence it is Borel. Analogously, E2 is Borel. This
proves that E is analytic subset of X 2.

3. Proof of Theorem 1.3

Define the sequence x = (xn) so that xn = 1
n

if n is even and xn = 1
n log(n+1)

if n is odd.

Note that limn xn = 0 and that
∑

n xn = ∞, hence x ∈ Z . At this point, fix y ∈ Y such
that κ := lim infn yn+1/yn > 0 and let us show that Ix 6= Iy.

Let P be the set of prime numbers, with increasing enumeration (pn). By the prime number
theorem we have pn is asymptotically equal to n log(n) as n → ∞, hence

∑

n∈P

xn =
∑

n≥1

xpn ≪
∑

n≥1

1

pn log(pn)
≪
∑

n≥2

1

n log2(n)
< ∞,

with the consequence that P ∈ Ix. In addition, P− 1 /∈ Ix because
∑

n∈P−1

xn =
∑

n≥1

xpn−1 ≫
∑

n≥1

1

pn
≫
∑

n≥2

1

n log(n)
= ∞.

Lastly, suppose for the sake of contradiction that Ix = Iy. Then we should have that
P ∈ Iy and, at the same time, P− 1 /∈ Iy. The latter means that

∑

n≥1

ypn−1 = ∞.

However, this implies that
∑

n≥1

ypn ≫
∑

n≥1

κ ypn−1 = ∞, (2)

contradicting that P ∈ Iy.
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4. Proof of Theorem 1.4

Consider the Banach–Mazur game defined as follows: Players I and II choose alternatively
nonempty open subsets of Z as a nonincreasing chain U1 ⊇ V1 ⊇ U2 ⊇ V2 ⊇ · · · , where
Player I chooses the sets Um. Player II has a winning strategy if

⋂

m Vm ⊆ A . Thanks to
[8, Theorem 8.33], Player II has a winning strategy if and only if A is comeager. Hence, the
rest of the proof consists in showing that Player II has a winning strategy.

Note that the open neighborhood of a sequence x ∈ Z with radius ε > 0 satisfies

Bε(x) := {y ∈ Z : ‖x− y‖ < ε} ⊇ {y ∈ Z : ∀n ∈ N, |xn − yn| < ε/2} .

Since x ∈ Z ⊆ c0, there exists k0 = k0(x, ε) ∈ N such that xn < ε/2 for all n ≥ k0. Hence

Bε(x) ⊇ Wε(x) := {y ∈ Z : ∀n ≥ k0(x, ε), yn < ε/2 and ∀n < k0(x, ε), |xn − yn| < ε/2} . (3)

For each m ∈ N, suppose that the nonempty open set Um has been fixed by Player I. Hence,
Um contains an open ball Bεm(x

(m)), for some x(m) ∈ Z and εm > 0. In particular, thanks
to (3), there exists a sufficiently large integer k0 = k0(x

(m), εm) ∈ N such that yn < ε/2 for all
y ∈ Wεm(x

(m)) and n ≥ k0. Without loss of generality, let us suppose that k0 is even.
At this point, let x⋆ be the sequence in A defined in the proof of Theorem 1.3. Then, for

each m ∈ N, let tm be an integer such that max{x⋆
pm , x

⋆
pm−1} < tm · εm

2
(we recall that pm

stands for the mth prime number), and define the positive real

δm := min

{

1

m2tm
,
εm
2

−
max{x⋆

pm , x
⋆
pm−1}

tm

}

.

Note that limm δm = 0. Now, define the set Im = N ∩ [k0(x
(m), εm), k0(x

(m), εm) + 2tm) and
let z(m) be the sequence such that

∀n ∈ N z(m)
n =











x⋆
pm−1/tm if n ∈ Im and n even,

x⋆
pm/tm if n ∈ Im and n odd,

x
(m)
n if n /∈ Im.

Lastly, set Vm := Bδm(z
(m)) and note that by construction

∀m ∈ N, Vm ⊆ Wεm(x
(m)) ⊆ Bεm(x

(m)) ⊆ Um,

hence Vm is a nonempty open set contained in Um. In addition, the sequence of centers (z(m))
is a Cauchy sequence in the complete metric space Z . Hence it is convergent to some z ∈ Z

and it is straighforward to see that {z} =
⋂

m Vm.
To complete the proof, we need to show that z ∈ A . Set A := (

⋃

m Im) \ 2N. Proceeding
as in the proof of Theorem 1.3, we see that

∑

n∈A

zn =
∑

m≥1

∑

n∈Im\2N

zn ≤
∑

m≥1

∑

n∈Im\2N

(z(m)
n + δm) ≤

∑

m≥1

|Im|

(

x⋆
pm

tm
+

1

m2tm

)

< ∞,

hence A ∈ Iz. Similarly, A− 1 /∈ Iz since

∑

n∈A−1

zn ≥
∑

m≥1

∑

n∈Im∩2N

(z(m)
n − δm) ≫

∑

m≥1

|Im|

(

x⋆
pm−1

tm
−

1

m2tm

)

= ∞.
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Now, fix y ∈ Y such that κ := lim infn yn+1/yn > 0 and suppose that Iz = Iy. Then we
would have that A ∈ Iy and A− 1 /∈ Iy, which is impossible reasoning as in (2).

5. Proof of Theorem 1.5

Let x⋆ be the sequence defined in the proof of Theorem 1.3. For each r ∈ (0, 1], let x(r)

be the sequence defined by x
(r)
n = (x⋆

n)
r for all n ∈ N. Replacing the set of primes P with

{⌊p
1/r
n ⌋ : n ∈ N} and reasoning as in the proof of Theorem 1.3, we obtain that x(r) ∈ A .

To complete the proof, fix reals r, s such that 0 < r < s ≤ 1. Then, it is sufficient to show
that the ideals generated by x(r) and x(s) are not isomorphic. To this aim, let f : N → N be
a bijection and assume for the sake contradiction that

∀A ⊆ N,
∑

n∈A

x
(r)
f(n) < ∞ if and only if

∑

n∈A

x(s)
n < ∞. (4)

Fix t ∈ (1, s/r) and define S := {n ∈ N : f(n) > nt} and T := N \ S. We have
∑

n∈S
1

f(n)
≤

∑

n∈S
1
nt < ∞. Considering that f is a bijection and the harmonic series is divergent, we

obtain that
∑

n∈T
1

f(n)
= ∞ (in particular, T is infinite). In addition, since r < 1 and

1

f(n)
≪

1

(f(n) log(f(n) + 1))r
≤ x

(r)
f(n) ≤

1

f r(n)
,

we get that
∑

n∈T x
(r)
f(n) = ∞ and, thanks to (4), also that

∑

n∈T x
(s)
n = ∞. Note that, if

n ∈ T , then f(n) ≤ nt, which implies that

∀n ∈ T,
x
(s)
n

x
(r)
f(n)

≤
1/ns

1/(f(n) log(f(n) + 1))r
≪

(log n)r

ns−tr
,

which has limit 0 if n → ∞ (and belongs to T ). In particular, for each k ∈ N, there

exists nk ∈ N such that x
(s)
n /x

(r)
f(n) ≤ 1/k2 for all n ≥ nk. Let (Ak) be a sequence of finite

subsets of T defined recursively as follows: for each k ∈ N, let Ak be a finite subset of

T such that minAk ≥ nk + maxAk−1 and
∑

n∈Ak
x
(r)
f(n) ∈ (1

2
, 1) where, by convention, we

assume maxA0 := 0 (note that it is really possible to define such sequence). Finally, define
A :=

⋃

k Ak so that we obtain

∑

n∈A

x
(r)
f(n) =

∑

k≥1

∑

n∈Ak

x
(r)
f(n) = ∞ and

∑

n∈A

x(s)
n ≤

∑

k≥1

∑

n∈Ak

x
(r)
f(n)

k2
≤
∑

k≥1

1

k2
< ∞.

This contradicts (4), concluding the proof.

6. Concluding Remarks

We remark that the ideal Ix defined in the proof above is just (an isomorphic copy of) the
Fubini sum Is⊕It, where s, t ∈ Z are sequences defined by sn = 1

n
and tn = 1

n log(n+1)
for all

n ∈ N. Here, we recall that the Fubini sum of two ideals I and J on N is the ideal I ⊕ J
on {0, 1}×N of all sets A such that {n ∈ N : (0, n) ∈ A} ∈ I and {n ∈ N : (1, n) ∈ A} ∈ J ,
cf. e.g. [4, p. 8]
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Also, some comments are in order about the simplifications. The assumption that the se-
quence x has positive elements (instead of nonnegative elements) is rather innocuous. Indeed,
in the opposite, if xn = 0 for infinitely many n, then the summable ideal Ix would be (iso-
morphic to) the Fubini sum P(N)⊕ Iy, for some y ∈ X . Lastly, also the hypothesis x ∈ Z

in Question 1.1 (instead of x ∈ X ) has a similar justification. Indeed, if x ∈ X \ Z , then
Ix would be the Fubini sum Fin⊕ Iy, for some y ∈ Z .

We conclude with two open questions:

Question 6.1. Is it true that for each x ∈ Z there are (possibly infinite) sequences
y1, y2, . . . ∈ Y such that Ix = ⊕iIyi?

Question 6.2. Is it true that A is an analytic subset of Z ?
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