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Introduction: Lactose intolerance is a widespread problem that affects people 
of many different races all over the world. The following pharmacological 
supplements can improve the lives of those who suffer from this issue.

Methods: This work focused on lactase producer isolation and statistical 
design (Plackett–Burman, and BOX–Behnken) to maximize the effectiveness 
of environmental factors. A lactase-producing bacterium was chosen from 
a discovery of 100 strains in soil that had previously been polluted with dairy 
products. Plackett-Burman investigated fifteen variables.

Results: The most critical variables that lead to increased lactase synthesis are 
glucose, peptone, and magnesium sulfate (MgSO4). The ideal process conditions 
for the creation of lactase yield among the stated variables were then determined 
using a BOX-Benken design. To establish a polynomial quadratic relationship 
between the three variables and lactase activity, the Box–Behnken design level 
was used. The EXCEL-solver nonlinear optimization technique was used to 
predict the best form for lactase production. The ideal temperature and pH levels 
have been determined, both before and after the lactase purification process, to 
achieve the highest performance of isolated lactase.

Conclusion: According to this study, Bacillus licheniformis is a perfect supply of 
the lactase enzyme (β -Galactosidase), It can be used as a product to assist people 
who have health issues due to lactose intolerance.
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1. Introduction

Enzymes are active proteins that function as biochemical catalysts (Piumetti and Illanes, 
2022). These are biomolecules that are required for both the synthesis and breakdown reactions 
of living organisms (Aggarwal et  al., 2021). The enzymes known as β-galactosidases (EC 
3.2.1.23), sometimes known as lactases, hydrolyze lactose (the most prevalent milk sugar) into 
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glucose and galactose (Liburdi and Marco, 2022). Although these 
enzymes are accessible in a range of biological systems, such as plants 
or microorganisms, they are currently only available commercially 
from yeasts, molds, and bacteria (Saqib et al., 2017; Martarello et al., 
2019). Although these enzymes from various bacteria have varied 
features, their specificity is fundamentally the same (Ramos and 
Malcata, 2011; Kocabaş et  al., 2021). Each chain of the four 
polypeptides in the tetramer of β-galactosidase has 1,023 amino acids, 
and together they form five different structural domains (Sedzro et al., 
2018; Swentowsky, 2021). One of these domains is the jellyroll barrel, 
while the others are fibronectin, b-sandwich, and a central domain 
with a TIM-type barrel that also serves as the active site. Tetramer 
subunits make up the core domain, which is catalytically active (Wang 
et al., 2021). The catalytic site is disabled when a tetramer is broken up 
into dimers. Those enzymes are active proteins and their function as 
biocatalysts were discovered by Cao et  al. (2021). Similarly, the 
β-galactosidase amino acid sequence was done by Poch et al. (1992) 
and the structure was determined by Jacobson et  al. (1994). This 
enzyme’s amino-terminal sequence contains a-peptide that engages in 
a-complementation and aids in the formation of the subunit 
interaction (Aydin and Coin, 2021; Xu et  al., 2021). Numerous 
organisms, including fungi, plants, yeast, and bacteria, may produce 
lactase (Shaima'a and Rashid, 2017). In the industrial sector, bacterial 
strains offer a lot of promise for large-scale manufacturing. Lactase 
generated by bacteria was frequently used to hydrolyze lactose because 
of its ease of fermentation, high activity, and good stability 
(Movahedpour et al., 2022). β-Galactosidase is used in a variety of 
industries (Ureta et al., 2021). β-galactosidase is utilized to handle 
whey disposal concerns on a commercial scale in addition to 
manufacturing lactose-free goods for lactose-intolerant patients 
(Paulo, 2018). To avoid the problem of hygroscopic lactose 
crystallizing in food, β -galactosidase is employed to hydrolyze the 
lactose in frozen, concentrated sweets (Portnoy and Barbano, 2021). 
This treatment lowers the lactose level of milk so that lactose-
intolerant people can drink it. Lack of lactase, a digestive enzyme that 
prevents the body from hydrolyzing lactose in meals, is the primary 
cause of lactose intolerance. About 75% of people worldwide have 
lactose intolerance, which significantly lowers their quality of life 
(Venkateswarulu et al., 2017; Peele et al., 2018). Probiotic supplements 
may be beneficial for those with lactase deficiency. The dairy industry 
used lactase-producing bacterial strains to cure milk-based products 
(Venkateswarulu et  al., 2017). Stomach pain and abdominal 
distension, abdominal colic, diarrhea, and nausea are all signs of 
lactose intolerance (Shrestha et  al., 2021). Lactase deficiency can 
be classified as primary, congenital, or secondary. Primary lactase 
insufficiency affects adults aged 2 to 20. A more prevalent variety is 
primary lactase deficiency, which is caused by a decrease in 
β-galactosidase production along the small intestine’s brush 
boundaries (lactase). The second kind of lactase deficit is a birth defect 
in lactase production, which is brought on by a genetic defect and is 
defined by patients having either little or nonexistent lactase enzyme 
at all. The third kind, sometimes referred to as secondary lactase 
deficit, is when there are inadequate levels of this enzyme as a result 
of a GI tract issue (Paulo, 2018; Szilagyi et  al., 2019; Muzaffar 
et al., 2021).

The current study’s major purpose is to develop exploitation 
tactics for the eventual advantage of extracellular bacterial lactase 
production. The goal of this study was to uncover a novel approach 

to lactase manufacturing in a newly discovered lactase producer. 
Furthermore, the utilization of mathematical models was the main 
emphasis of the current investigation to optimize the growth 
conditions that result in the best lactase productivity from a newly 
discovered Bacillus licheniformis ALSZ2. To our knowledge, lag phase 
bacterial lactase production has not yet been documented in the 
literature; the current study’s findings are the first report of Egyptian 
lactase manufacturing that is significantly cost-effective.

2. Materials and method

2.1. Isolation and screening of lactase 
producers

Samples of diverse dairy products (12) (milk, Romy cheese, and 
karish cheese) were collected in a sterile dry container. For bacterial 
isolation and colony purification, an LB medium that was diluted to 
one-tenth of medium strength was used. For lactase production, 100 
purified bacterial isolates were screened. Isolation of lactase-producing 
bacteria was achieved using an LB broth medium fortified with lactose 
substrate (5%) and 1% X-gal. Blue color after growth refers to 
lactase production.

2.1.1. Rapid plate assay method
Qualitative identification of lactase producers was achieved using 

an LB agar medium containing 1 mM of IPTG (substrate of lactase) 
and X-gal (1%). The solidified agar plates were incubated in an 
inverted position at 37°C for 24 h. Isolated colonies that are blue 
(positive lactase producer) were subcultured in nutrient broth and 
incubated at 37°C and preserved for further studies (Petassi 
et al., 2020).

2.2. Molecular identification of the most 
potent producer

Fresh bacterial cells are used for DNA extraction using GeneJET 
Genomic DNA Purification Kit. Using standard primers (F: AGA 
GTTTGATCMTGGCTCAG and R: TACGGYACCTTGTTACGACTT) 
(Alkhafaje et al., 2019) intended to magnify a 1,500 base pair portion 
of the 16S rDNA region (Kim and Chun, 2014; Soliman et al., 2018), 
the 16S rDNA was amplified using PCR (polymerase chain reaction). 
The condition of the cyclical reaction was 4 min at 95°C and 
then 40 cycles of 40 s at 94°C, 50 s at 55°C, and 50 s at 72°C, monitored 
by an additional 10 min at 72°C. PCR reactions were run on an 
agarose gel, and the remaining mixture was purified for sequence 
(Alkhafaje et al., 2022).

2.2.1. Phylogenetic analysis
To evaluate the DNA similarity of the obtained 16SrDNA 

sequence [by using a 3,130 X DNA Sequencer (Genetic Analyzer, 
Applied Biosystems, Hitachi, Japan)], phylogenetic analysis was 
conducted using the BLAST tool.1 Mega7 software was used to 

1 www.ncbi.nlm.gov/blast
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accomplish molecular phylogeny and multiple sequence alignment 
present in the database (NCBI). A neighbor-joining (NJ) tree and a 
maximum parsimony (MP) tree using bootstrapping were made 
using this alignment (Hassan et al., 2018; Shaaban et al., 2022).

2.3. Enzyme assay

The culture media were prepared, inoculated with lactase 
producers, and incubated for 24 h at 37°C. At the end of the 
incubation period, the fermented culture was centrifuged at 
5000 rpm for 10 min at room temperature (at 25°C). 0.8 mL of the 
cell-free extract (crude enzyme) was incubated with 1.2 mL of 5% 
lactose at 37°C for 30 min. Enzyme lactase hydrolyses lactose into 
glucose and galactose, and this reaction was terminated by boiling 
the crude enzyme extract for 10 min. Glucose was then measured 
using a Glucose kit (Biosystem) at 540 nm (Amamcharla and 
Metzger, 2011). The quantity of enzyme necessary to yield 1 μg of 
glucose every minute under typical test circumstances was 
considered to be a single lactase unit.

2.4. Optimization of lactase producer using 
experimental design

2.4.1. Plackett-Burman screening design
Using the Plackett-Burman experimental design, the effects of 

various medium compositions on the production of the lactase 
enzyme were investigated. Constructed using a Plackett-Burman 
matrix (Supplementary Table S1) (Ali et al., 2013; Sorour et al., 2020), 
a two-level factorial design was used to examine fifteen variables at 
two levels, −1 for the low value and + 1 for the high value. This permits 
the analysis of n − 1 variables with the fewest number of tests. To 
determine the relative significance of 15 elements or variables (MgSO4, 
Glucose, NaNO3, CaCl2, CuSO4, MnSO4, ZnSO4, FeSO4, KCL, 
NaHPO4.12H2O, KH2PO4, K2HPO4, yeast extract (YE), Beef extract, 
and Peptone), an experimental design which includes a set of 20 
experiments (trials) was used. The first-order model served as the 
basis for the Plackett-Burman design: Y = o + iXi, where Y represents 
the response (enzyme activity), o represents the model intercept, 
I represents the linear coefficient, and Xi represents the degree of an 
independent variable. Developing the free Essential Experimental 
Design program, data analysis, coefficient determination, and 
polynomial model reduction was performed on the lactase 
enzyme statistics.

2.4.2. Box-Benken design
To discover the kind of response surface in the experiment and 

to decide the greatest circumstances for enzyme synthesis, a 
Box-Benken design (Ali et al., 2013; Sorour et al., 2020; Tamer et al., 
2021) was adopted. The factorial design, which includes thirteen 
trials, was constructed to look into the most critical parameters that 
influence enzyme synthesis. Each variable was examined at three 
different levels, with low, moderate, and high values, respectively, 
denoted by −1, 0, and + 1 (Supplementary Table S2). A second-
order polynomial equation was developed to determine the 
appropriate location and to connect the relationship between the 
independent components and the response for three parameters. 
The equation was:

 

Y 0 1X1 2X2 3X3 12X12 13X13
23X23 11X12 22X22 33X32

= β + β + β + β + β + β
+ β + β + β + β

Where Y is the expected response, 0 is the design constant, X1, 
X2, and X3 are the independent factors, 12–13 and 23 are cross-
product constants, 11–22 and 33 are quadratic constants, and 12–13 
and 23 are coefficients of the cross product, respectively, and 11–22 
and 33 are quadratic coefficients, and 12–13 and 23 are cross product 
coefficients, respectively. The experimental data were subjected to a 
regression analysis using Microsoft Excel 2010. The constant of 
determination, R2, was employed to explain the polynomial model 
equation’s grade of fit (Ali et al., 2013; Sorour et al., 2020). The tests 
were repeated three times, with the average results presented.

2.5. Purification of lactase enzyme

The crude enzyme was purified using the column chromatography 
(gel filtration) technique. Multiple columns with different pour sizes 
were applied to detect the molecular weight and extract the target 
enzyme (Amicon system). The system combines downstream sample 
concentration and buffer exchange with affinity-based spin column 
purification. The tool eliminates the requirement for numerous 
centrifugation processes and has a large reservoir that can hold a 
variety of sample quantities. For simultaneous elution, concentration, 
and extremely effective diafiltration (>99%) in a single spin, the 
included Amicon® Ultra filter (Philippines - Merck Millipore Division, 
an affiliate of Merck KGaA, Darmstadt, Germany) was attached. 
According to the protein cut-off different filters were used (UFC8010, 
UFC8020, UFC8030, UFC8050, UFC8070, and UFC8100 for 10, 20, 
30, 50, 70, and 100 KD respectively). The concentrated protein fraction 
was very carefully layered on top of the pre-equilibrated and stabilized 
falcon tubes. The tubes were then centrifuged under cooling (4°C) for 
20 min at 8000 rpm, and the upper layer was transferred to the tube 
with the cut-off (10, 20, 30, 50, 70, and 100 KD) as presented in the 
supplementary file. Protein content was estimated in each of the filter 
cut-offs, using the bovine serum albumin (BSA) standard curve The 
enzyme activity of each of the resulting various molecular weight 
proteins was then determined (Patel et al., 2017).

2.5.1. Characterization of purified and crude 
lactase

2.5.1.1. Determination of optimum temperature
At pH 7, temperatures between 30–60°C were found to be the 

ideal temperature for the crude and purified enzyme activity.

2.5.1.2. Obtaining the ideal pH for enzyme activity
In a trial to test the effect of pH level on crude and purified enzyme 

activities one at a time, different buffers, namely sodium phosphate 
buffer, Tris–HCl buffer, and potassium phosphate buffer with varied 
pH ranges (5.8–8), (6–8.5), and (5.8–8) respectively, were used.

2.6. The antibiotics sensitivity of ALSZ2

Seventeen antibiotic disks were tested, namely amikacin (AMK, 
30 μg), amoxicillin-clavulanic acid (AMC, 20 μg/10 μg), ampicillin 
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(AMP, 10 μg), aztreonam (ATM, 30 μg), cefepime (FEP, 30 μg), 
ceftazidime (CAZ, 30 μg), chloramphenicol (CHL, 30 μg), 
ciprofloxacin (CIP, 5 μg), clindamycin (CLI, 2 μg), clotrimazole (CC, 
10 μg), erythromycin (ERY, 15 μg), gentamicin (GEN, 10 μg), 
imipenem (IPM, 10 μg), kanamycin (KAN, 30 μg), ticarcillin-
clavulanic acid (TIM, 75 μg/10 μg), trimethoprim (TMP, 5 μg) and 
vancomycin (VAN, 30 μg). The prepared plates were incubated for 24 h 
at 37°C. The inhibition zone for each antibiotic was measured with a 
ruler. The indicator of antibiotic sensitivity has traditionally been the 
existence of a clear zone surrounding the disk. The diameter of the 
inhibitory zone was used to calculate the results of antibiotic 
sensitivity tests.

3. Results

In the beginning, many bacteria were isolated from different 
sources of dairy products, and then the isolates were compared to 
produce the required enzyme and determine the best one in terms 
of productivity.

3.1. Isolation and screening of lactase 
(β-galactosidase) producers

In a screening process for lactase enzyme-producing bacteria, 100 
isolates were collected from dairy product samples and examined for 
enzyme production. Lactase-producing bacteria were screened 
qualitatively on X-Gal agar plates (Figure 1A) and nutrient broth 
media containing X-Gal (Figure 1B) at 37°C. Thirteen out of 100 
bacterial isolates showed a variance in enzyme activity. Isolate ALSZ2 
was the most promising lactase producer and was related for 
further work.

3.2. Identification of the selected bacterial 
isolates

The most promising isolate with the code ALSZ2 was 
identified using PCR-amplified 16S rDNA genes. Molecular 
identification and gene bank sequence isolate (ALSZ2) was 
Bacillus genus, with a 96.66 present similarity to B. licheniformis, 
according to the findings. The Mega 7 program was used to 
generate a phylogenetic tree, showing that isolate (ALSZ2) is 
more strongly related to B. licheniformis bacterium (acc.: 
MW148439.1), shown in Figure 1.

3.3. The antibiotic sensitivity of the 
selected bacterial isolates

The antibiotics amikacin, amoxicillin-clavulanic acid, 
ampicillin, aztreonam, cefepime, ceftazidime, chloramphenicol, 
ciprofloxacin, clindamycin, clotrimazole, erythromycin, 
gentamicin, imipenem, kanamycin, ticarcillin-clavulanic acid, 
trimethoprim, and vancomycin were all very sensitive to 
B. licheniformis ALSZ2. The strain was resistant to ampicillin 
and cefepime.

3.4. Improving the nutritive necessities 
upsetting Bacillus licheniformis ALSZ2 
lactase production using multifactorial 
statistical design: Plackett-Burman and 
Box–Behnken designs

3.4.1. Selection of important variables upsetting 
lactase production using a Plackett-Burman 
design

The “two-phase” optimization strategy was used to apply the 
statistical design. The initial stage was to determine the relative 
relevance of the various components in the culture media, as well as 
the levels of variables that have a major impact on lactase synthesis. 
The trials were then verified to validate the results under precise, 
optimal experimental settings.

Plackett-Burman design for twenty trials with two concentration 
levels for fifteen different variables (Supplementary Table S1) was 
conducted based on the experimental matrix shown in Table 1. The 
corresponding results were summarized in Table  2. The Plackett-
Burman design studies’ results revealed a wide range of variations. To 
assess variables that affect lactase production, the Plackett-Burman 
statistical design was employed (B. licheniformis ALSZ2). Calculations 
and graphical representations of the primary impacts of the 
investigated factors on lactase activity are shown in Figure 2. A major 
effect value with a positive sign suggests that a variable’s high 
concentration is close to its optimal level, whereas the main effect 
value with a negative sign indicates that a variable’s low concentration 
is close to its optimal level (Figure 2 and Table 3). It was found that 
Peptone, MgSO4, and Glucose have the greatest positive effect on the 
production, followed by ZnSO4, Beef extract, KCl, FeSO4, MnSO4, and 
CaCl2. Whereas, NaHPO4 has the most negative effect, followed by 
K2HPO4, CuSO4, yeast extract, KH2PO4, and NaNO3 in order.

3.4.1.1. Verification of the model
Variables with negative main effect values were used as (−1) 

coded values, while variables with positive main effect values were 
used as (+1) coded values. Supplementary Table S3 shows the lactase 
activity variations X1, X2, X3, X4, X5, X6, X10, and X19. Considering 
the data gathered from the outcomes of the Plackett-Burman 
experiment, the following composition (g/L) is expected to be near to 
the optimal: Beef extract, 1; MgSO4, 10; Glucose, 75; NaNO3, 30; Yeast 
extract, 100; CaCl2, 1; CuSO4, 0; MnSO4, 10; ZnSO4, 15; FeSO4, 20; 
KCl, 1; NaHPO4.12H2O, 10; KH2PO4,10; K2HPO4, 0; Peptone, 25. The 
medium was reformed to a pH of 7 and the flasks were incubated at 
37°C for 24 and 48 h, respectively. A verification experiment was done 
to estimate the reliability of the Plackett-Burman screening test.

3.4.2. Optimization of medium composition by 
Box–Behnken design

To validate the precision of the variables identified by the Plackett-
Burman design using the Box–Behnken design experimental strategy, 
Response Surface Methodology was used. The following three tiers of 
the three crucial factors were looked into: −1, 0, and + 1.

3.4.2.1. Box–Behnken design for Bacillus licheniformis 
ALSZ2

According to the Box–Behnken design, Supplementary Table S2 
shows alternative combinations of the three essential variables. All 
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assemblies had the same concentration of the remaining components 
as the Plackett-Burman pre-optimized medium. The Box–Behnken 
experimental design’s results are summarized in Table  3 and the 
output of the surface plots formula is in (Figure  3). The optimal 
condition was determined by examining the connection between the 
individual variables and the lactase activity response. Table 3 shows 
the design matrix. The design indicated the optimum environmental 
factors as predictable lactase activity of 13.01754 U/mL, even though 
13 U/mL of activity existed under ideal circumstances. As a 
consequence, the accuracy grade of 99.8% was used to evaluate the 
power of the perfect matrix under the following ideal circumstances. 
The medium composition contained g/L: MgSO4, 10.5; Glucose, 
75.4491; NaNO3, 30; CaCl2, 1; CuSO4, 0; MnSO4, 10; ZnSO4, 15; FeSO4, 
20; KCl, 1; NaHPO4.12H2O, 10; KH2PO4,10; K2HPO4, 0; Yeast extract, 
100; Beef extract, 1; Peptone, 25.249 at pH 7, and the bacteria were 
grown in a rotatory shaker set to 37°C and 200 rpm, for 24 h.

3.5. Purification of lactase enzyme

The cell-free extract was subjected to purification using an 
Amicon system to achieve the best possible result of enzyme activity 

with different protein molecular weight (MW) cut-offs (100, 50, 30, 
and 10 kDa). Bacillus licheniformis ALSZ2 lactase was detected in a 
30–50 kDa cut-off filter.

3.6. Effect of temperature on lactase 
activity (crude and purified)

Bacillus licheniformis ALSZ2 lactase (crude & purified) was 
exposed to seven different temperatures to ascertain the enzyme’s 
optimum temperature (30, 35, 40, 45, 50, 55, and 60°C Figure 4). 
Results in Figure 4 revealed that the perfect temperature for maximum 
enzyme activities (crude & purified) was found to be 35°C with 49 and 
46.25 U/mL (30–50 kDa) respectively. Lactase synthesis reached a 
maximum of 90.05 IU at a temperature of 35°C.

3.7. Effect of hydrogen ion concentration 
on the enzyme activity (crude and purified)

To determine the ideal pH for enzyme activity, three different 
buffers have been used, namely sodium phosphate, potassium 

FIGURE 1

Phylogenetic tree of Bacillus licheniformis ALSZ2 based on 16S RNA sequence assessments. Detection of lactase production using colorimetric 
methods: (A) shows the negative control and positive lactase producer using solid media and (B) shows the negative control and positive lactase 
producer using liquid media.
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phosphate, and Tris–HCl, each with a distinct pH concentration. 
Sodium phosphate and potassium phosphate have a pH range of 
5.8–8, while Tris–HCl buffer has a pH range of 6–8.5. Results in 

Figures 5A–C indicated that the optimum enzyme (crude & purified) 
activities were 7 with all the detected buffers with enzyme activity 
ranging from 30 & 27.75, 36 & 29, and 20 & 18.25 U/mL, respectively.

TABLE 1 Plackett-Burman design matrix for fifteen variables with coded levels for Bacillus licheniformis ALSZ2 lactase optimization.

Trail 
no.

Variables Lactase 
activity 
(U/mL)x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1.75

2 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 0

3 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 6.125

4 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 4

5 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 −1 0

6 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 −1 1 5.25

7 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 0

8 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 0

9 1 −1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 0

10 −1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 2.5

11 1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 2.75

12 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 1 1.5

13 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 1 1 1.125

14 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 1.75

15 −1 1 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 1 0

16 1 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 0

17 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 2

18 −1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 0.125

19 −1 1 1 −1 −1 1 1 1 1 −1 1 −11 1 −1 −1 3.625

20 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 1.375

TABLE 2 Statistical analysis of Plackett–Burman design showing p-values, t stat, standard error, and coefficient values for each variable on B. 
licheniformis ALSZ2.

Intercept
Coefficients Standard error t Stat p-value

1.69375 0.331699 5.106285 0.006952

MgSO4 x1 0.775413 0.504984 1.535519 0.199455

Glucose x2 0.86785 0.414914 2.091639 0.104637

NaNO3 x3 −0.00385 0.410797 −0.00938 0.992968

CaCl2 x4 0.461644 0.407376 1.133214 0.320442

CuSO4 x5 −0.34818 0.412497 −0.84408 0.446148

MnSO4 x6 0.493331 0.406293 1.214225 0.291444

ZnSO4 x7 0.67716 0.459307 1.474306 0.214413

FeSO4 x8 0.516835 0.428567 1.20596 0.294286

KCL x9 0.519413 0.459307 1.130862 0.321323

NaHPO4・12H2O x10 −0.93466 0.406293 −2.30046 0.082897

KH2 PO4 x11 −0.04708 0.412497 −0.11414 0.914629

K2HPO4 x12 −0.48765 0.407376 −1.19706 0.297376

Yeast extract (YE) x13 −0.1281 0.410797 −0.31184 0.770739

Beef extract x14 0.593642 0.414914 1.43076 0.22574
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3.8. Economic comparison between 
produced lactase and international 
products

The need for lactase medical supplements is increasing every day 
worldwide. The frequency of usage differed significantly between 
countries. This study provides a promising lactase enzyme product as 
the initial stage for lactase medical supplements. Comparing AlSZ2 
lactase with other products available in the international market, it 
was found that AlSZ2 lactase is considerably more cost-effective. 
Many other products are expensive and often unavailable in the 
Egyptian market. The lactase products’ cost (1,000 U) range from 
5.5–8 $, due to the high cost of shipping rather than the real price of 
the lactase product, whereas 1,000 U of AlSZ2 lactase costs 1.2 $. 
Therefore, this study is of great importance to cheaply provide lactase, 

which leads to raising the economic value and aiding in the treatment 
of a prevalent digestive problem.

4. Discussion

The frequency of Middle Easterners who are lactose intolerant was 
70%, with 68 percent of Egyptians affected (Silanikove et al., 2015). 
Therefore, this study seeks to isolate bacteria capable of producing 
lactase that can be accessed cheaply.

The amount of carbon in the growth media is critical for bacteria 
to produce extracellular lactase. Lactase biosynthesis is regulated by 
carbon availability in various bacteria (Konsoula and Liakopoulou-
Kyriakides, 2007; Alazzeh et  al., 2009; Maischberger et  al., 2010; 
Akcan, 2018). Based on the experimental matrix, a Plackett-Burman 

FIGURE 2

The main effect of different variables on B. licheniformis ALSZ2 lactase production based on Plackett-Burman design results.

TABLE 3 Box–Behnken design matrix and results for the three most significant variables that affected B. licheniformis ALSZ2 lactase production.

Trail MgSO4 (x1) Glucose (x2) Peptone (x3)
Lactase activity 

(IU)
Predicted IU 

lactase

1 0 −1 −1 7 6

2 0 +1 −1 6 7

3 0 −1 +1 7.5 7.25

4 0 +1 +1 7.25 7.5

5 −1 −1 0 8 7.75

6 −1 +1 0 8.75 8

7 +1 −1 0 8 8

8 +1 +1 0 9 8

9 −1 0 −1 8 8.75

10 −1 0 +1 7.75 8.75

11 +1 0 −1 9.25 9

12 +1 0 +1 8.75 9.25

13 0 0 0 13 13
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design (Karlapudi et al., 2018; Sorour et al., 2020) was carried out for 
twenty trials with two concentration levels for fifteen distinct variables 
(Supplementary Table S1). When using response surface approaches, 
Plackett and Burman Design is a useful tool for assessing the effects 
of process factors on yield. It can significantly lower the number of 
trials that must be  repeated in later optimization investigations 
(Ekpenyong et al., 2017).

In previous research (Manera et al., 2008), lactose was found to 
be an excellent substrate when used in quantities more than 28.2 g per 

liter, while Anumukonda and Prabhakar (2010) discovered a 1.5 
percent improvement in lactase synthesis in the optimized medium. 
Another study using solid-state fermentation with Aspergillus terreus 
NFCCI 1840 found that supplementing the cultured medium with 
2.97, 2.88, and 2.67 g per liter of ammonium sulfate, lactose, and 
magnesium sulfate, respectively, increased lactase production by 2.8 
times when compared to the standard basal medium (Al-Jazairi 
et al., 2015).

Ca2+ and Mg2+ increased enzyme activity in Pediococcus acidilacti, 
Lactobacillus acidophilus, and Bacillus sp. (Ustok et al., 2010; Carevic 
et al., 2015; Chanalia et al., 2018). Magnesium is required for the 
catalytic activity and stability of β -galactosidase. MgSO4 at a 
concentration of 0.1 percent, Ahmed, et  al. (Ahmed et  al., 2016) 
found that Lactobacillus sp. KLSA 22 produced the highest amount 
of β -galactosidase. Nitrogen sources are the most essential secondary 
energy molecules for bacterial growth and metabolism. The type of 
these compounds and the amounts used can either promote or 
prevent the growth of enzymes (Sharma and Singh, 2014). Sources of 
nitrogen’s effect on L. caseiMB2’s ability to synthesize galactosidase is 
important. Peptone supplementation raised the enzyme activity of 
L. caseiMB2 enzyme production medium to 126.24 IU/mL (specific 
activity of 315.60 IU/mg). Conversely, urea, sodium chloride, sodium 
nitrate, ammonium nitrate, and beef extract all showed a reduction 
in enzyme activity (Heena and Nivedita, 2020).

Numerous separation methods, such as membrane-based 
separation, ion exchange membrane chromatography, gel permeation 
chromatography, zinc chloride, protamine sulfate, and ammonium 
sulfate precipitation, have been investigated for the purification of 
beta-galactosidase from crude extract (Najer et  al., 2022). β  - 
Galactosidases with a range of molecular weights have been discovered 
in plant sources using the Amicon membrane system with a 100 to 
30 kDa cut-off (Aulitto et al., 2021). Five enzymes with molecular 
weights of 87, 87, 87, 73, and 45 kDa have been recognized (Ajay 
et al., 2013).

The synthesis of enzymes grew continuously with increasing 
temperatures up to 35°C and then dropped (Ahmed et al., 2016). 
Natarajan et al. (2012) found that Bacillus thuringiensis produced the 
most enzymes at a temperature of 35°C. 37°C was the optimal degree 
of heating during fermentation, based on how temperature affects the 
activity of enzymes for the highest β -galactosidase yield (Husain, 
2010; Huang et al., 2021).

At pH 7, the greatest enzyme activity was observed (89.94 IU), 
which was also a good pH for Lactobacillus sp. KLSA 228 growth. 

FIGURE 3

Three-dimensional response surface representing B. licheniformis 
ALSZ2 lactase enzyme as affected by culture conditions.

FIGURE 4

Optimum temperature for crude and purified lactase (30–50 kDa) 
from B. licheniformis AlSZ2.
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However, L. amylophilus GV6 was shown to produce the most lactase 
when grown at pH 6.513. Lactase from L. delbrueckii spp. ATCC 
11842 was found to have the highest activity when pH was 6.8 (Ahmed 
et al., 2016; Venkateswarulu et al., 2020). Natarajan et al. (2012), on 
the other hand, found that lactase synthesis was best at a pH of 7.

5. Conclusion

Exploration of bacterial species with unique lactase capacities is 
critical. As a result, the current study aimed to isolate the most 
potent extracellular lactase-producing bacteria from various dairy 
products in various Alexandria locations, as well as increase lactase 
productivity by a local isolate Bacillus strain ASZ using low-cost 

materials via a sequential optimization strategy. The findings 
indicated that the chosen isolate is B. licheniformis ALSZ2, which is 
employed as a lactase-producing model. Through a two-level 
Plackett–Burman design, peptone, lactose, and MgSO4 were chosen 
as investigated variables because of their strong positive influence on 
lactase efficiency. The lactase yield increased with the initial basal 
medium, allowing a quadratic polynomial model to be developed 
that links the relationship between all three factors and lactase 
production. In comparison to the un-optimized medium, the 
estimated ideal lactase activity was 13 U/mL, which was four times 
higher. Following that, the purification of experimental bacterial 
lactase productivity was done. When compared to comparable 
lactase products on the worldwide market, AlSZ2 lactase is 
significantly less expensive.
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