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Solving fully fuzzy linear programming problems
by controlling the variation range of variables

This paper deals with a fully fuzzy linear programming problem (FFLP) in which the coefficients of deci-
sion variables, the right-hand coefficients and variables are characterized by fuzzy numbers. A method of
obtaining optimal fuzzy solutions is proposed by controlling the left and right sides of the fuzzy variables
according to the fuzzy parameters. By using fuzzy controlled solutions, we avoid unexpected answers. Fi-
nally, two numerical examples are solved to demonstrate how the proposed model can provide a better
optimal solution than that of other methods using several ranking functions.
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Introduction

The general idea about fuzzy set theory was introduced by Zadeh [1]. Bellman and Zadeh [2] postulated the
very idea of decision making in fuzzy environment. The aforementioned concept has been utilized by Tanaka et
al. [3] as a solution for mathematical programming problems. Fuzzy linear programming was first generated and
suggested by Zimmerman [4] . Using the parametric programming method, Chanas [5] suggested the contingency
of the identification of a complete fuzzy decision in fuzzy linear programming. Programming models with crisp or
fuzzy constraints as well as crisp or fuzzy goals can be solved using interactive system proposed by Werners [6].

Using a technique introduced by Fang et al. [7], linear programming problems with fuzzy coefficients in
constraints could be solved. In an attempt to find solution for fully fuzzified linear programming problems
with fuzzy numbers in place of all the parameters and variables, Buckley and Feuring [8] proposed substitution
of the objective function for multiobjective fuzzy linear programming problem. Maleki et al. [9] solved linear
programming problems by comparing fuzzy numbers as decision parameters.

The ranking function used and suggested by Maleki [10] is a technique in solving linear programming
that has vague and uncertain constraints. By transforming fuzzy linear programming problems into multi-
objective linear programming problems, Nehi et al. [11] proposed and defined the concept of optimality for linear
programming problems. Ganesan and Veeramani [12] proposed and advocated an approach in which fuzzy linear
programming cannot be converted into crisp linear programming in solving a fuzzy linear programming problem
using symmetric trapezoidal fuzzy numbers. Hashemi et al. [13] suggested a two-phase method in which fuzzy
numbers replace decision parameters and the variables determine the optimal solutions of FFLP problems.
Rommelfanger [14] also introduced a new approach in solving stochastic linear programming problems with
fuzzy parameters.

Allahviranloo [15] suggested a new method in solving FFLP problems using ranking function. Nasseri [16]
proposed a method for solving fuzzy linear programming problems using a classical linear programming model.
Lotfi et al. [17] discussed FFLP problems by identifying all parameters and variables as triangular fuzzy numbers.
Ebrahimnejad and Nasseri [18] attempted to solve fuzzy linear programming problem with fuzzy parameters
by applying the complementary slackness theorem without necessitating the use of the simplex tableau. Kumar
et al. [19] proposed a new method in finding the fuzzy optimal solution of FFLP problems with inequality
constraints.

In this paper a new method is proposed to find the fuzzy optimal solutions of an FFLP problem with
equality and inequality constraints, as well as with triangular and trapezoidal fuzzy numbers, by solving one
linear programming problem only. Moreover, by controlling the left and the right sides of the fuzzy variables,
this model prevents the generation of broad fuzzy solutions that do not conform to other fuzzy parameters.

*Corresponding author.
E-mail: smd1376@gmail.comr

Mathematics series. № 3(103)/2021 13



S.M. Davoodi, N.A. Abdul Rahman

One of the problems exhibited by a number of models for FFLP problems is their incapability to si-
multaneously solve equality and inequality constraints. Buckley and Feuring [8], Hosseinzadeh et al. [17], and
Kumar et al. [19] proposed three different models in solving FFLP problems. The model, proposed by Buckley
and Feuring, can only be used to solve FFLP problems with inequality constraints, whereas the models proposed
by Hosseinzadeh et al. and Kumar et al. can only be used to solve FFLP problems with equality constraints.
Another problem is the inability of some models to control the left and the right sides of fuzzy numbers, thus
generating broad answers and causing difficulties in the decision-making process. Therefore, this paper attempts
to overcome the shortcomings of previous approaches and to provide further insight.

In general, the narrow fuzzy parameters in an FFLP application indicate that these parameters have a
low range of variation. Thus, the fuzzy parameters of FFLP in this case have slight flexibility. Based on this
approach, a new model is proposed in solving FFLP problems, with equality and inequality constraints being
handled simultaneously by identifying the maximum and the minimum. Fuzzy solutions can also be determined
by this model, specifically when a number or all parameters and variables are triangular and trapezoidal fuzzy
numbers.

Preliminary Concepts

In this section we begin by recalling some basic definitions from fuzzy set theory and introduce the main
concepts needed in this paper.

Definition 1. Let X be a collection of objects denoted generically by x. The fuzzy set Ã in the set of real
numbers is called a fuzzy set in X if Ã is a set of ordered pairs:

Ã =
{(
x, µÃ(x)

)
| x ∈ X

}
where µÃ(x) is membership function of x in µÃ such that µÃ(x) : X → [0, 1].

Definition 2. A fuzzy set Ã is called normal if there is a real number x such that µÃ(x) = 1.
Definition 3. Let Ã =

(
ml,mu, α, β

)
LR

denote the LR-fuzzy number if its membership function is defined
as

µÃ(x) =



L

(
ml − x
α

)
, x < ml,

1, ml ≤ x ≤ mu,

R

(
x−mu

β

)
, x > mu,

0, otherwise,

where L and R are reference functions, i.e., L,R : [0,+∞) → [0, 1] are non-increasing that L(0) = R(0) = 1
and L(1) = R(1) = 0 and α, β ≥ 0. The membership function of a LR-type triangular fuzzy number,
Ã = (m,α, β)LR, can be also defined as

µÃ(x) =


L

(
m− x
α

)
, x ≤ m.

R

(
x−m
β

)
, x > m.

0, otherwise.

Definition 4. A fuzzy number Ã =
(
ml,mu, α, β

)
is a trapezoidal fuzzy number if (see Figure 1(a))

µÃ(x) =



x− (ml − α)

α
, ml − α ≤ x < ml.

1, ml ≤ x ≤ mu.

(mu + β)− x
β

, mu < x ≤ mu + β.

0, otherwise.
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Definition 5. A fuzzy number Ã = (m,α, β) is a triangular fuzzy number if (see Figure 1(b))

µÃ(x) =


x− (m− α)

α
, m− α ≤ x < m.

(m+ β)− x
β

, m < x ≤ m+ β.

0, otherwise.

(a) Triangular fuzzy number (b) Trapezoidal fuzzy number

Figure 1. The LR-fuzzy numbers.

Definition 6. Let Ã =
(
ml,mu, α, β

)
be trapezoidal fuzzy number, then

Ã � 0 if ml − α > 0

Ã ≺ 0 if mu + β < 0.

Definition 7. Let Ã1 =
(
ml

1,m
u
1 , α1, β1

)
and Ã2 =

(
ml

2,m
u
2 , α2, β2

)
be trapezoidal fuzzy numbers, then we

define arithmetic on fuzzy numbers:

Ã1 + Ã2 =
(
ml

1 +ml
2,m

u
1 +mu

2 , α1 + α2, β1 + β2

)
Ã1 − Ã2 =

(
ml

1 −mu
2 ,m

u
1 −ml

2, α1 + β2, β1 + α2

)

Ã1.Ã2 =



(
ml

1m
l
2,m

u
1m

u
2 ,m

l
1α2 +ml

2α1,m
u
1β2 +mu

2β1

)
, Ã1 � 0, Ã2 � 0.(

mu
1m

l
2,m

l
1m

u
2 ,m

u
1α2 +ml

2β1,m
l
1β2 +mu

2α1

)
, Ã1 � 0, Ã2 ≺ 0.(

mu
1m

u
2 ,m

l
1m

l
2,−mu

1β2 −mu
2β1,−ml

1α2 −ml
2α1

)
, Ã1 ≺ 0, Ã2 ≺ 0.

Remark 1. We denote the set of all LR-fuzzy numbers by F(R).
Definition 8. [20] A linear ranking function is a function R : F(R) → R, which maps each fuzzy number

into a real line, where there is a natural order

R
(
Ã
)

=
1

2

∫ 1

0

(Lα(x) +Rα(x))dx

such that

R
(
k Ã + B̃

)
= kR

(
Ã
)

+ R
(
B̃
)
.

Let Ã =
(
ml,mu, α, β

)
be a trapezoidal fuzzy number, then

R
(
Ã
)

=
1

2

(
ml +mu

)
+

1

4
(β − α).
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If Ã = (a, α, β) is a triangular fuzzy number, then

R
(
Ã
)

= a+
1

4
(β − α).

Definition 9. [21] Let m̃, ñ ∈ F(R) be fuzzy numbers then
• Ã � B̃ if and only if R

(
Ã
)
≥ R

(
B̃
)
;

• Ã � B̃ if and only if R
(
Ã
)
≤ R

(
B̃
)
;

• Ã = B̃ if and only if R
(
Ã
)

= R
(
B̃
)
.

Definition 10. A fully fuzzy linear programming (FFLP) is defined as follows:

Z̃∗ = Min c̃ x̃,

s.t. Ã x̃ � b̃,
x̃ � 0,

(1)

where c̃ = (c̃1, . . . , c̃n) , Ã = (ãij)(m×n) , b̃ =
(
b̃1, . . . , b̃m

)t
, x̃ = (x̃1, . . . , x̃n)

t and ãij , b̃i, c̃j , x̃j ∈ F(R) for
i = 1, . . . ,m, j = 1, . . . , n.

The decision variables are fuzzy numbers while the coefficients of decision variables and the right hand
coefficients are characterized by uncertainties.

Definition 11. The fuzzy vector x̃ ∈ (F(R))
n is a fuzzy feasible solution to (1) if

Ã x̃ � b̃ and x̃ � 0;

as a result x̃ is a fuzzy feasible solution to (1) if

R
(
Ã x̃

)
≥ R

(
b̃
)

and R ( x̃ ) ≥ 0.

Hence, S be a set of fuzzy numbers which satisfies the set of constraints are defined as follows:

S =
{
x̃
∣∣∣R( Ã x̃

)
≥ R

(
b̃
)

and R ( x̃ ) ≥ 0
}
.

Definition 12. A fuzzy feasible solution x̃∗ ∈ S is a fuzzy optimal solution for (1) if for all fuzzy feasible
solution x̃ ∈ S we have

c̃ x̃∗ � c̃ x̃;

as a result x̃∗ is a optimal fuzzy optimal feasible solution to (1) if

R ( c̃ x̃∗ ) ≤ R ( c̃ x̃ ) .

Solving Fully Fuzzy Linear Programming

In this section a new method in finding the fuzzy optimal solution of the FFLP model (1) is proposed.
This method can be used to solve FFLP problems with equality and inequality constraints by identifying the
maximum and the minimum. This method can also be used in solving FFLP problems with triangular and
trapezoidal fuzzy parameters. Furthermore, by controlling the left and the right side values of fuzzy parameters
to make them proportional with other fuzzy parameters, the generation of broad fuzzy variables is prevented.

For this purpose we obtained an upper bound for the left (αxj ) and the right (βxj ) sides of the fuzzy values.
The upper bound is prevented from exceeding αxj and βxj . Consequently, the obtained fuzzy solutions are not
considerably broad but are controlled and thinner fuzzy solutions. In this paper, the upper bounds for αxj and
βxj are proportional to the ratio of the left and the right side values to the central value of fuzzy parameters.
Thus, we calculated the values of αxj , βxj and mxj , such that the maximum value of the ratio of αxj and βxj
to mxj is equal to M . By adding the following constraints to the problem fuzzy variables can be prevented from
becoming exceedingly broad:

αxj∣∣mxj

∣∣ ≤M,
βxj∣∣mxj

∣∣ ≤M, j = 1, 2, · · · , n. (2)
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Two solutions for the calculation ofM are proposed. Firstly,M is calculated by acquiring the maximum amount
of the ratio of α and β to m for all fuzzy parameters of FFLP. Secondly, M is calculated by their mean.

The fully fuzzy linear programming (1) can be rewritten as follows:

Min

n∑
j=1

c̃j x̃j ,

s.t.

n∑
j=1

ãij x̃j � b̃i , i = 1, 2, · · · ,m,

x̃j � 0 , j = 1, 2, · · · , n,

(3)

where c̃j =
(
mcj , αcj , βcj

)
, ãij =

(
maij , αaij , βaij

)
, b̃i = (mbi , αbi , βbi) , x̃j =

(
mxj , αxj , βxj

)
are triangular

fuzzy numbers and ãij , b̃i, c̃j , x̃j ∈ F(R) for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
We use the ranking function that was defined in Definition 8 for the defuzzification of the fully fuzzy linear

programming (3) and by adding constraints (2) then we have

Min R

 n∑
j=1

c̃j x̃j


s.t. R

 n∑
j=1

ãij x̃j

 ≥ R
(
b̃i

)
, i = 1, 2, · · · ,m,

αxj∣∣mxj

∣∣ ≤M , j = 1, 2, · · · , n,

βxj∣∣mxj

∣∣ ≤M , j = 1, 2, · · · , n,

R (x̃j) ≥ 0 , j = 1, 2, · · · , n,

(4)

where

M = max
i=1,2,...,m
j=1,2,...,n

{
αaij∣∣maij

∣∣ , βaij∣∣maij

∣∣ , αbi|mbi |
,
βbi
|mbi |

,
αcj∣∣mcj

∣∣ , βcj∣∣mcj

∣∣
∣∣∣∣∣maij 6= 0 , mbi 6= 0 , mcj 6= 0

}
(5)

or

M = mean
i=1,2,...,m
j=1,2,...,n

{
αaij∣∣maij

∣∣ , βaij∣∣maij

∣∣ , αbi|mbi |
,
βbi
|mbi |

,
αcj∣∣mcj

∣∣ , βcj∣∣mcj

∣∣
∣∣∣∣∣maij 6= 0 , mbi 6= 0 , mcj 6= 0

}
. (6)

According to x̃j � 0 we have

αxj
mxj

≤M and
βxj
mxj

≤M, j = 1, 2, · · · , n.

Then

Mmxj − αxj ≥ 0 and Mmxj − βxj ≥ 0, j = 1, 2, · · · , n.

Thus, we can write model (4) as follows:

Min

n∑
j=1

R (c̃j x̃j)

s.t.

n∑
j=1

R (ãij x̃j) ≥ R
(
b̃i

)
, i = 1, 2, · · · ,m,

Mmxj − αxj ≥ 0 , j = 1, 2, · · · , n,
Mmxj − βxj ≥ 0 , j = 1, 2, · · · , n,
mxj − αxj , αxj , βxj ≥ 0 , j = 1, 2, · · · , n.

(7)
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A standard form on a fully fuzzy linear programming (FFLP) is also defined as follows:

Z̃∗ = Min c̃ x̃;

s.t. Ã x̃ = b̃;

x̃ � 0;

then we have

Min

n∑
j=1

R (c̃j x̃j)

s.t.

n∑
j=1

R (ãij x̃j) = R
(
b̃i

)
, i = 1, 2, · · · ,m,

Mmxj − αxj ≥ 0 , j = 1, 2, · · · , n,
Mmxj − βxj ≥ 0 , j = 1, 2, · · · , n,
mxj − αxj , αxj , βxj ≥ 0 , j = 1, 2, · · · , n.

(8)

Numerical Examples

In this section, two numerical examples are presented to describe the proposed method. The first application
is the standard diet problem formulated by Buckley and Feuring [8]. The first example presents FFLP with
triangular fuzzy numbers and inequality constraints, while in the second example FFLP with triangular fuzzy
numbers is also considered, but with equality constraints. We compared the proposed fuzzy objective optimal
solution with that from other models by Fortemps and Roubens [22], Chang [23] and Liou and Wang [24] that
use ranking function.

Example 1. Let us start by considering the following fully fuzzy linear program problem.
A farmer has three products P1, P2 and P3 to mix together to feed his pigs. He knows that the pigs need

a certain amount of foods F1 and F2 per day. Table 1 illustrates the units of F1 and F2 that are available per
gram of P1, P2 and P3. Also, each pig should have at least (54, 4, 4) units of F1 and at least (60, 4, 4) units
of F2 per day. The costs of P1, P2 and P3 vary slightly from day to day but the average costs are (8, 1, 1) c|
per gram of P1, P2 is (9, 1, 1) c| per gram, and (10, 1, 1) c| gram for P3. The farmer therefore wants to know how
many grams of P1, P2 and P3 he should mix together each day, so that his pigs could get the approximate
minimum requirement and his costs reduce.

T a b l e 1

Approximate units of food Fj and product Pi Example 1

Foods
Products F1 F2 Average costs
P1 (2.5, 0.5, 0.5) ( 5, 0.5, 0.5) ( 8, 1, 1)
P2 (4.5, 0.5, 0.5) ( 3, 0.5, 0.5) ( 9, 1, 1)
P3 (5 , 0.5, 0.5) (10, 1.0, 1.0) (10, 1, 1)

Buckley and Feuring [8] have formulated a standard diet problem as follows:

Min (8, 1, 1)x̃1 + (9, 1, 1)x̃2 + (10, 1, 1)x̃3

s.t. (2.5, 0.5, 0.5)x̃1 + (4.5, 0.5, 0.5)x̃2 + ( 5, 0.5, 0.5)x̃3 � (54, 4, 4)

(5 , 0.5, 0.5)x̃1 + (3 , 0.5, 0.5)x̃2 + (10, 1 , 1 )x̃3 � (60, 4, 4)

x̃1, x̃2, x̃3 � 0,

(9)

where x̃j is triangular fuzzy numbers as follows:

x̃j = (mxj , αxj , βxj ) , j = 1, 2, 3.
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In this example, we used formula (6) to calculate M for control the left and the right side of fuzzy variables
proportional to other fuzzy parameters.

M = mean
i=1,2
j=1,2,3

{
αaij∣∣maij

∣∣ , βaij∣∣maij

∣∣ , αbi|mbi |
,
βbi
|mbi |

,
αcj∣∣mcj

∣∣ , βcj∣∣mcj

∣∣
∣∣∣∣∣maij 6= 0 , mbi 6= 0 , mcj 6= 0

}

= mean

{
0.5

|2.5|
,

0.5

|2.5|
,

0.5

|4.5|
,

0.5

|4.5|
,

0.5

|5|
,

0.5

|5|
,

0.5

|5|
,

0.5

|5|
,

0.5

|3|
,

0.5

|3|
,

1

|10|
,

1

|10|
,

4

|54|
,

4

|54|
,

4

|60|
,

4

|60|
,

1

|8|
,

1

|8|
,

1

|9|
,

1

|9|
,

1

|10|
,

1

|10|

}
= 0.11.

By using the model (7) we convert the FFLP (9) to following model:

Min 8mx1 + 9mx2 + 10mx3 − 2αx1 − 2.25αx2 − 2.5αx3 + 2βx1 + 2.25βx2 + 2.5βx3

s.t. 2.5mx1 + 4.5mx2 + 5mx3 − 0.625αx1 − 1.125αx2 − 1.25αx3 + 0.625βx1 + 1.125βx2 + 1.25βx3 ≥ 54

5mx1 + 3mx2 + 10mx3 − 1.25αx1 − 0.75αx2 − 2.5αx3 + 1.25βx1 + 0.75βx2 + 2.5βx3 ≥ 60

0.11mxj − αxj ≥ 0, j = 1, 2, 3

0.11mxj − βxj ≥ 0, j = 1, 2, 3

mxj − αxj ≥ 0, αxj ≥ 0, βxj ≥ 0, j = 1, 2, 3.

As a result, the fuzzy optimal solutions obtained are as follows:

x̃ ∗1 = (0, 0, 0), x̃ ∗2 = (0, 0, 0), x̃ ∗3 = (10.5, 0, 1.2), Z̃ ∗ = (105, 10.5, 22.5).

The following is the fuzzy optimal solution obtained from Buckley and Feuring [8]:

x̃B∗1 = (6.4, 6.4, 0), x̃B∗2 = (11.5, 11.5, 0), x̃B∗3 = (2, 2, 0), Z̃ B∗ = (173, 173, 20).

The solutions of the method by Buckley were considerably broad, whereas all fuzzy parameters in this
example are narrow. In addition, the range of variation in these parameters is low, implying that the solutions
obtained by the method by Buckley are not homogeneous with the fuzzy parameters. Comparison between
the obtained optimal fuzzy variable solutions by the proposed method and those by the method of Buckley
revealed that the optimal fuzzy variable solutions ( x̃ ∗j ) by the former are narrower than those ( x̃B∗j ) by the
latter (Figures 2(d), 2(e) and 2(f)). Specifically, x̃B∗1 and x̃B∗2 were wider than x̃ ∗1 and x̃ ∗2 . Thus, the fuzzy
solutions acquired by the proposed method are homogeneous with the fuzzy parameters of the fuzzy problem.
We subsequently compared the fuzzy objective optimal solutions obtained by both methods by performing
several methods of comparison of fuzzy numbers, and the results are shown in Table 2. All ranking functions
indicated that the fuzzy objective optimal solution by the proposed method is better than that by the method
of Buckley, except for the Liou and Wang ranking function with λ = 0 that exhibits the fuzzy objective optimal
solution by the method of Buckley as much broader than that by the proposed method. Therefore, a farmer can
produce food for his pigs at a reduced price, given that all conditions are satisfied. With regards to decisions
related to the narrow fuzzy variable, the farmer must best speculate the amounts of P1, P2, and P3 products
to be mixed together.

T a b l e 2

Comparison of our optimal solution with optimal solution
of Buckley on the FFLP in Example 1

Ranking Functions Z̃ ∗ Z̃ B∗ Ranking results

Fortemps and Roubens 108 134.8 Z̃ ∗ � Z̃ B∗

Chang 1797 11773 Z̃ ∗ � Z̃ B∗

Liou and Wang λ = 0 99.7 86.5 Z̃ ∗ � Z̃ B∗

Liou and Wang λ = 0.5 108 134.8 Z̃ ∗ � Z̃ B∗

Liou and Wang λ = 1 116.2 183 Z̃ ∗ � Z̃ B∗
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Figure 2. The graphical comparison of the results obtained from this study
with the results represented by Buckley and Feuring [8] in Example 1

Example 2. Consider the following fuzzy linear program [17].

Max (15, 5, 2)x̃1 + (16, 6, 4)x̃2 + (14, 4, 3)x̃3 + (12, 2, 2)x̃4

s.t. (10, 2, 3)x̃1 + (11, 1, 2)x̃2 + (12, 3, 1)x̃3 + (15, 4, 2)x̃4 = (411.75, 140, 162)

(14, 2, 2)x̃1 + (18, 4, 1)x̃2 + (17, 3, 3)x̃3 + (14, 1, 4)x̃4 = (539.5, 154, 220)

x̃1, x̃2, x̃3, x̃4 � 0,

(10)

where x̃j is triangular fuzzy numbers as follows:

x̃j = (mxj , αxj , βxj ), j = 1, 2, 3 and 4.

In this example, we used Formula (5) in order to calculate M and control the left and the right side of fuzzy
variable proportional to other fuzzy parameters.

M = max
i=1,2

j=1,2,3,4

{
αaij∣∣maij

∣∣ , βaij∣∣maij

∣∣ , αbi|mbi |
,
βbi
|mbi |

,
αcj∣∣mcj

∣∣ , βcj∣∣mcj

∣∣
∣∣∣∣∣maij 6= 0 , mbi 6= 0 , mcj 6= 0

}

= max

{
2

|10|
,

3

|10|
,

1

|11|
,

2

|11|
,

3

|12|
,

1

|12|
,

4

|15|
,

2

|15|
,

2

|14|
,

2

|14|
,

4

|18|
,

1

|18|
,

3

|17|
,

3

|17|
,

1

|14|
,

4

|14|
,

140

|411.75|
,

162

|411.75|
,

154

|539.5|
,

220

|539.5|
,

5

|15|
,

2

|15|
,

6

|16|
,

4

|16|
,

4

|14|
,

3

|14|
,

2

|12|
,

2

|12|

}
= 0.408.

By using Model (8) for maximization form of fully fuzzy linear programming, we convert the FFLP (10) to the
following model:
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Max 15mx1 + 16mx2 + 14mx3 + 12mx4 +
1

4
(−3mx1 − 2mx2 −mx3

−15αx1
− 16αx2

− 14αx3
− 12αx4

+ 15βx1
+ 16βx2

+ 14βx3
+ 12βx4

)

s.t. 10mx1
+ 11mx2

+ 12mx3
+ 15mx4

+
1

4
(mx1

+mx2
− 2mx3

− 2mx4

−10αx1 − 11αx2 − 12αx3 − 15αx4 + 10βx1 + 11βx2 + 12βx3 + 15βx4) = 417.25

14mx1
+ 18mx2

+ 17mx3
+ 14mx4

+
1

4
(−3mx2

+ 3mx4

−14αx1 − 18αx2 − 17αx3 − 14αx4 + 14βx1 + 18βx2 + 17βx3 + 14βx4) = 556

0.408mxj − αxj ≥ 0, j = 1, 2, 3, 4

0.408mxj − βxj ≥ 0, j = 1, 2, 3, 4

mxj − αxj ≥ 0, αxj ≥ 0, βxj ≥ 0, j = 1, 2, 3, 4.

As a result, the fuzzy optimal solutions are as follows:

x̃ ∗1 = (33.23, 0, 13.57), x̃ ∗2 = (0, 0, 0), x̃ ∗3 = (0, 0, 0), x̃ ∗4 = (2.63, 0, 1.07)

Z̃ ∗ = (531, 172, 228)

This example has been solved by Lotfi et al. [17]. They have solved this example by solving two linear
programming problem. The fuzzy solutions of first and second linear programming problem are x̃H1∗

j and
x̃H2∗
j (j = 1, 2, 3, 4), respectively (Figure 3). Then, fuzzy objective solution has been obtained by using the

fuzzy solutions of these linear programming problem. The following results have been obtained:

x̃H1∗
1 = (38.14, 10.25, 0), x̃H1∗

2 = (0, 0, 3.31), x̃H1∗
3 = (0, 0, 0), x̃H1∗

4 = (2.65, 0, 0)

x̃H2∗
1 = (37.47, 8.33, 0), x̃H2∗

2 = (0, 0, 3.82), x̃H2∗
3 = (0, 0, 0), x̃H2∗

4 = (2.97, 1.18, 0)

Z̃ H∗ = (560, 226.3, 226.3)

In this example, we show that the proposed method can also solve FFLP problems with equality constraints
by focusing on one linear programming problem only. Comparison of the optimal fuzzy variable solutions of
the proposed method and those of the method by Lofti et al. revealed that x̃H1∗

2 and x̃H2∗
2 are wider than x̃∗2.

(Figure 3(i)) Moreover, x̃H1∗
3 = x̃H2∗

3 = x̃∗3 and the widths of x̃H1∗
1 (or x̃H2∗

1 ) and x̃H2∗
4 are almost identical to

that of x̃∗1 and x̃∗4 , respectively (Figures 3(h) and 3(j)). Furthermore, Lotfi et al. obtained two fuzzy solutions
corresponding to each fuzzy variable. However, the fuzzy solutions were difficult to determine. Table 3 displays
the comparison between the obtained fuzzy objective optimal solutions of the proposed method and those of
Lotfi et al. who employed various methods in comparing fuzzy numbers. The obtained solutions by the proposed
methods are narrower and more controlled than those of Lotfi et al. All ranking functions indicated that the
obtained fuzzy objective optimal solution of the proposed method is better than that of Lotfi et al.

T a b l e 3

Comparison of our optimal solution with optimal solution
of F. H. Lotfi [17] on the FFLP in Example 2

Ranking Functions Z̃ ∗ Z̃ H∗ Ranking results

Fortemps and Roubens 560 560 Z̃ ∗ � Z̃ H∗

Chang 130997 126728 Z̃ ∗ � Z̃ H∗

Liou and Wang λ = 0 444.95 444.85 Z̃ ∗ � Z̃ H∗

Liou and Wang λ = 0.5 560 560 Z̃ ∗ � Z̃ H∗

Liou and Wang λ = 1 674.9 673.1 Z̃ ∗ � Z̃ H∗
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Figure 3. The graphical comparison of the results obtained from this
study with the results represented by Lotfi et al. [17] in Example 2

Conclusion

In this paper a new method of solving fuzzy linear programming problems is proposed. The suggested
method can solve fuzzy linear programming models with equality and inequality constraints by maximiza-
tion and minimization, and by solving one linear programming problem only. By considering the constraints
Mmxj − αxj ≥ 0 and Mmxj − βxj ≥ 0, the proposed model was able to control the left and the right sides
of fuzzy variables with respect to other fuzzy parameters of the problem. Therefore, the homogeneity among
fuzzy solutions and other fuzzy parameters of the problem can be achieved. In addition, this model prevents the
generation of broad fuzzy solutions, therefore, making the appropriate decision-making process easier and more
convenient. Moreover, the fuzzy objective optimal solutions obtained by the proposed method are better than
those by other methods, whereas the fuzzy solutions obtained by the proposed method are also more limited
and narrower.
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С.М. Давуди, Н.А. Абдул Рахман

Математика ғылымдары мектебi, Малайзия ғылыми университетi, Пенанг, Малайзия

Айнымалылардың өзгеру диапазонын басқару
арқылы сызықтық бағдарламалаудың толық

анық емес мәселелерiн шешу
Мақалада шешiм айнымалыларының коэффициенттерi, оң коэффициенттер және айнымалыла-
ры анық емес сандармен сипатталатын толық анық емес сызықтық бағдарламалау (FFLP) мәсе-
лесi қарастырылған. Анық емес параметрлерге сәйкес анық емес айнымалылардың сол және оң
бөлiктерiн басқару арқылы оңтайлы анық емес шешiмдердi алу әдiсi ұсынылған. Анық емес
басқарылатын шешiмдердi қолданса, авторлар күтпеген жауаптардан аулақ болады. Соңында,
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ұсынылған модель бiрнеше саралау функцияларын қолданатын басқа әдiстерге қарағанда жақсы
оңтайлы шешiм бере алатындығын көрсететiн екi сандық мысал келтiрiлдi.

Кiлт сөздер: толық анық емес сызықтық бағдарламалау, анық емес сызықтық бағдарламалау,
анық емес сан, саралау функциясы.

С.М. Давуди, Н.А. Абдул Рахман

Школа математических наук; Научный университет Малайзии, Пенанг, Малайзия

Решение полностью нечетких задач линейного
программирования путем управления
диапазоном изменения переменных

В статье рассмотрена задача полностью нечеткого линейного программирования (FFLP), в кото-
рой коэффициенты переменных решения, правые коэффициенты и переменные характеризуются
нечеткими числами. Предложен метод получения оптимальных нечетких решений путем управ-
ления левой и правой частями нечетких переменных в соответствии с нечеткими параметрами.
Используя нечеткие контролируемые решения, авторы избежали неожиданных ответов. Таким
образом, приведены решения двух численных примеров, демонстрирующих как предлагаемая
модель может обеспечить лучшее оптимальное решение, чем другие методы, использующие не-
сколько функций ранжирования.

Ключевые слова: полностью нечеткое линейное программирование, нечеткое линейное програм-
мирование, нечеткое число, функция ранжирования.
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