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On a Hilfer Type Fractional Differential Equation with
Nonlinear Right-Hand Side

In this article we consider the questions of one-valued solvability and numerical realization of initial value
problem for a nonlinear Hilfer type fractional differential equation with maxima. By the aid of uncomplicated
integral transformation based on Dirichlet formula, this initial value problem is reduced to the nonlinear
Volterra type fractional integral equation. The theorem of existence and uniqueness of the solution of given
initial value problem in the segment under consideration is proved. For numerical realization of solution
the generalized Jacobi—Galerkin method is applied. Illustrative examples are provided.
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Introduction

Let (to; b) € R*T = [0; c0) be a finite interval on the set of positive real numbers, and let o > 0. The
Riemann-Liouville a-order fractional integral of a function 7)(t) is defined as follows:

t

I n(t) = ﬁ/(t—s)a’ln(s)ds, 0 >0, ¢ (ty: b),

to
where I'(e) is the Gamma function [1; 112].

Let n—1 < a <n, n € N. The Riemann-Liouville a-order fractional derivative of a function 7(¢) is defined
as follows [2, Vol. 1, p. 27]:

mn

@ d n—ao
D n(t) = wfto-s- n(t), te (to; b)~

The Caputo a-order fractional derivative of a function n(t) is defined [2, Vol. 1; 34| by

t
o n—a_(n 1 ™ (s)ds
Diyn(t) = 100 = s [ Gy € (t )
to

Both the derivatives are reduced to the n-th order derivatives for a« =n € N [2, Vol. 1; 27-34]:

D/ n(t) =« D n(t) = dTnn(t)’ t € (to; b).

The so-called generalized Riemann-Liouville fractional derivative (referred to as the Hilfer fractional derivative)
of order a, n — 1 < a < n,n € N and type 8, 0 < § < 1 is defined by the following composition of three
operators: [1; 113]:

o —a) A" (1—8)(n—
Dtofn(t) = ftf(f a)dTnItEﬁ e a)n(t), t € (to; b).
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For 8 = 0 this operator is reduced to the Riemann— L10uV1lle fractional derivative Dt + = D/}, and the case
8 = 1 corresponds to the Caputo fractional derivative D’ + = DS ..

Let vy =a+ 8n—apf. It is easy to see that a« <y < n. Then it is convenient to use another designation for
the operator Dti‘fn(t):

D*(t) = D5:In(t).

The generalized Riemann-Liouville operator was introduced in [1] by R. Hilfer on the basis of fractional
time evolutions that arise during the transition from the microscopic scale to the macroscopic time scale. Using
the integral transforms, he investigated the Cauchy problem for the generalized diffusion equation, the solution
of which is presented in the form of the Fox H-function. Note [3, 4], the generalized Riemann—Liouville operator
was used in studying dielectric relaxation in glass-forming liquids with different chemical compositions. In [5]
the properties of the generalized Riemann—Liouville operator were investigated in a special functional space,
and an operational method was developed for solving fractional differential equations with this operator. Based
on the results of the work [5], the authors of [6] have developed an operational method for solving fractional
differential equations containing a finite linear combination of the generalized Riemann-Liouville operators with
various parameters.

Fractional calculus plays an important role in the mathematical modelling of many scientific and engineering
disciplines (see more detailed information in [7]). In [8] problems of continuum and statistical mechanics are
considered. In [9] the mathematical problems of Ebola epidemic model are studied. In [10] and [11] the fractional
model for the dynamics of tuberculosis infection and novel coronavirus (COViD-2019), respectively are studied.
The construction of various models of theoretical physics by the aid of fractional calculus is described in |2, Vol. 4,
5], [12, 13]. A specific interpretation of the Hilfer fractional derivative, describing the random motion of a particle
moving on the real line at Poisson paced times with finite velocity is given in [14]. A detailed review of the
application of fractional calculus in solving problems of applied sciences is given in [2, Vol. 6-8], [15]. More
detailed information related to the theory of fractional integro-differentiation, including the Hilfer fractional
derivative one can find in the monograph [16]. In [17] the unique solvability of boundary value problem for weak
nonlinear partial differential equations of mixed type with fractional Hilfer operator is studied by analytical
method. In [18] the solvability of nonlocal problem for a mixed type fourth-order differential equation with Hilfer
fractional operator is studied. In [19] it is considered an inverse problem for a mixed type integro-differential
equation with fractional order Caputo operators (see also [20-22]).

In the modern scientific world information technologies are widely used in various fields of science and
engineering [23, 24]. In application of differential equations the numerical methods play an important role.
Different methods are used for the numerical solution of differential, integral and integro-differential equations
[25-34]. In particular, the book [28] is devoted to Chebyshev and Fourier spectral methods and [30] tells us
about polynomial approximations of solving differential equations. The work [35] is devoted to study of nonlinear
Volterra integral equations with weakly singular kernels by generalized Jacobi Spectral-Galerkin method.

In the present paper we consider the questions of one-valued solvability and numerical realization for a Hilfer
type fractional differential equation with nonlinear right-hand side and maxima. This equation we solve under
initial value condition. Differential equations with maxima play an important role in solving control problems
of the sale of goods and investment of manufacturing companies in a market economy [36]. In [37] it is justified
that the theoretical study of differential equations with maxima is relevant.

We consider the Hilfer type fractional differential equation on a interval (to; T):

D () +we (1) = (¢, @ (1), max{@ (0) |0 € [t 1]} ) (1)
under initial value condition

lim JL e () = xo, (t) = p (1), t ¢ (to, T), (2)

t—to

where f (¢, u, ¥) € C (), ¢ (t) € C ([0; to] U [T; o)), 0 < w is real parameter, zg = const, Q = [to; T] x X x X,
0 <tp, XCR = (—00; 00), X is closed set. Here

d
DO“"Y—JtOJr dtJt“’ 0<a<~y<1
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is Hilfer operator and Jg, is the Riemann-Liouville integral operator, which is defined by the formula

t
1 n(s)ds
JE () = , > 0.

to+77( ) I‘(a) / (t* 8)1704 o

to
We set 0 < ¢1 < g2 < oo and understand that there are possible cases: 1) 0 < 1 < g2 < 1;2) 0 < ¢ < 1,
1<@e<00;3)1<q <go <oo.
Fractional integral equation

Lemma. The solution of the differential equation (1) with initial value condition (2) is represented as follows

()= () =a0(t—t0) " Ea (—w(t—t0)*) +
¢
b [ 9 B (e (= 97 £ (5, 2 (5), maxc {2 (6) 0 € fns: ) ds 3)
to
where E, -(z) is Mittag-Leffler function and has the form [2, vol. 1, 269-295]

k

> z
E, 4(2) = —, z,a,y€ER>0.
“r kzzol"(ak—&—ﬂ

Proof. We rewrite the differential equation (1) in the form
Tit Dz (t) = —wa(®) + £ (¢, ),

where f (¢, ) = f (t, z (t), max{z (0) |0 € [1t; q2t]}).
Applying the operator J;* . to both sides of this equation, taking into account the linearity of this operator
and the formula [6]

1 _ _
T Dipaalt) =20) = 5 s 2Ol o (0= 00) 7
we obtain 2o
z(t) = ) (t—to) " HTE () —w I a(t). (4)

Using the lemma from [38], we represent the solution of equation (4) in the form

#(t) = oy (0= t0) T T T ()=

t

o [ 9" B (-9 |7

(s—to)7_1+Jg+f(s,-) ds. (5)

We rewrite the representation (5) as the sum of two expressions:

I (8) = 20 “‘Ft&);_ —Ffw /(t—s)“_lEa,a(—w(t—s)o‘)(s—to)"’_lds , (6)
L2(0) = Jiy (69 = [(6= 9% Baa (-wlt=5)") I £ () ds, (7)

to

We apply the following representations [2, vol. 1, 269-295]

1
Eary(z):erZEarHa(z)v a>0, v>0, (8)
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z

1
F(k)/(z —t) k-1 EOL,’Y (_wta) t’Y*l dt = Z’Y“Fk*l Ea,’y—‘,—k (—CL)ZQ)7 k> 07 v > 0. (9)

to

Then for the integral (6) we obtain the representation
Iit)=zo(t—t0)"  Ea, (—w(t—1t)?). (10)

The integral in (7) is easily transformed to the form

/(t—&)a—lEa,a (cw(t—€)%) I3, f (€ )dE =

(]t— ) B (— d&/ $)%1f (s, ) ds =
/

/t—g)a—l(g—s)a—lana(—w (t—€)?) d&. (11)

Taking (9) into account the second integral in the last equality of (11) can be written as
t
JE= 16 =) B (w0 (t = %) dE =T () (= €** Bz (-0t - )°).
Then, taking into account (8), we represent (7) in the following form
t

Iy(t) = / (t =€) B n(~w(t—6)%) [ (£ )dE. (12)

to

Substituting (10) and (12) into the sum z(t) = I1(t) + I2(¢), we obtain (3). The lemma is proved.
Exzxistence and uniqueness of solution

Theorem. Let the following two conditions be satisfied:

< —
1) Igtaé(\f(txyﬂ M = const < oo;

2) | f(tzr, 1) — f(t, @2, 92) | <L (Joy — 22|+ |41 —y2]), 0< L = const < oo.
Then there exists a unique solution of the initial value problem (1), (2) in the space of continuous functions
C (to; T'), which can be found by the method of successive approximations:

zo () = G(1),
{xZJrl(t):%(t;xk), k=0,1,2, ..., (13)

where G(t) =z (t — to)ﬁy_lEaﬂY (—w(t— to)a)
Proof. Mittag—Leffler function E,, (z) has the following property [39]: we assume that 0 < o < 2, 7y is real
constant and arg z = 7. Then there holds
A
1+ [z]

B~ (2)] <

where A is positive constant and does not dependent on z. Then it is not difficult to see that from the approxi-
mations (13) we obtain that there following estimate holds

’ (t—to) " "zo(t) \ <J@ol | B o (—w (tE—10) )| < 20| Co, (14)

where | Eq o (—w (t —5)%)| < Cp.
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By virtue of first condition of the theorem and estimate (14), from approximations (13) we obtain

|z1(t) —zo(t) | <

< / |(t = 8)* " Ba,a (—w (t = 5)") f (s, wo(s), max {zo(0) |0 € [q15; g25]})| ds <

to

¢
x
SM'Co|$0|/(t—S)aild8§ MM'CO'(t—tQ)a. (15)
!
to
We continue the Picard iteration process for the integral equation (3) according to the approximations (13).
Then, by virtue of conditions of the theorem and taking the estimate (15) into account, we derive

|22(t) — 21 (D) | < / ‘ (t =) Ba,o (~w(t—5)*) [f (s, 21(s), max {2 1(0) |0 € [g15; q25]}) —

—f (s, zo(s), max{xo(0) |0 € [q15; qas]})] | ds < L/ | (t =) Ea,a (—w (t = 5)%) [ [le1(s) — zo(s)| +
+ ‘ max {z1(0) |0 € [q15; g2s]} — max{zo(0) |0 € [q15; g25]} H ds <
< ZCOL/(t —8)* i (s) — zo(s)|ds < @M . CgL/(t —8)* (s —tg)ds.

By the changing the argument as s = tg + (t — tO)T, from the last estimate we obtain

t

|2a(t) — a1 (8) | < @M.ch/ (t—t0)" " (1 = 7)o (t — 1) O (¢ — to) dr <
20, )
< Sl M L Co - (¢ - 1)), (16)

Analogously, taking the estimate (16) into account, for the next difference we derive

| 23(t) — 22(t) | < L/I(t—S)a_lEa,a(—w (t=9))[[l2a(s) —21(s) |+

+ |max {z2(0) |0 € [q15; g25]} — max {x1(0) |6 € [g15; q25]}|] ds <

< QCOL/(t — )" Haa(s) —mi(s)|ds <

) r(an(i)M B /(t — )7 (s —10)*"ds <
3 «
- F(F304(+)1) Jwo| - M - (2L)7 - [Co - (t —19)*] . (17)

Continuing the estimation processes (14)—(17) for arbitrary difference we obtain

| 2a(t) = Zn1(t)] < F(fm(‘fl) Nao| - M- 2)" 7 [Co - (t—10)"] "
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(&)
For the absolute value of difference | x,,(t) — x,—1(t) | we show that > |2, (t) — 2,—1(t) | < oo in the space
n=1
C (to; T). So, we denote the right-hand side of (18) as

n

" (a)

tn = Fna+1)

-2L0)" 7 [Co - (t—to)"]
and we put
_ ]_'\nJrl(a)
T Pt at )

Then we consider the following limit

2L)" [Co- (t—10)"]"

. Ongl a . F(na+1)

1 =2L-T -Co- (t—1t 1 - 19
o0 an (a) - Co- (t—to)" Jlim_ T(n+1l)a+l) (19)
Taking known formula [40]

(a=Db)a—b—-1)
2z

+ O(z—Q)]

into account, we obtain

) Fna+1)
11m e E———
n— 00 F((na+a+ 1) n— 00

l-a-1)1-a-1-1)
2n «

+O0(n a)_Q] =

Consequently, for (19) we have

. Gnyl a . F'(na+1)
1 =2L-T(a) - Co- (t—to)" lim ——— "~ =
o () Co- (t—to)" - lim T((ntDatl)

a(l + a)

1
+ 2na

:2F(Oé)'L~C'0'(lf—if())a'L lim —

+O0(n a)_Ql =0.

Hence, according to d’Alembert’s convergence criterion of series, we have

S () — i ()] < F(l;;f‘fl) O Lt — 1) < oo (20)

for all t > to. Since we consider the solution of the integral equation (3) in the space of continuous functions
C (to; T), it follows from (20) that the sequence of functions {zx(t)} -, converges absolutely and uniformly to
solution of the integral equation (3) with respect to argument ¢. Hence implies the existence of a solution of
the problem (1), (2) on the interval (¢p; T'). Now we show the uniqueness of this solution. Assuming that the
integral equation (3) has two different solutions z(t) and y(t) on the interval (¢o; T'), we obtain the following
integral inequality

|z(t) —y(t) | < 2L/ | (t = 5)" " Ea,a (—w(t —)*) || 2(s) —y(s) | ds. (21)

Applying Gronwall-Bellman inequality to estimate (21), we obtain that |2 (t) —y (¢)| =0 for all t € (to; T).
Therefore, the Cauchy problem (1), (2) has a unique solution on the interval (¢o; T'). The theorem is proved.
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The generalized Jakobi—Galerkin method
Now, to the problem (1), (2) we apply the generalized Jacobi-Galerkin method as a numerical realization

of solution (3). This solution (3) is nonlinear Volterra type fractional integral equation. On the interval (—1; 1)

for the given numbers 31, B2 > —1 we consider standard Jacobi polynomial J {1 B2) (€) of degree n with weight
function A (B1:82)(¢) = (1 — €)P1(1 + €) 2. For the standard Jacobi polynomial the following relation is true

1
/ TP () T (€ AP P(€) A = i )b, (22)
-1

where 4, 5 is the Kronecker function and

2ﬁ1+ﬁ2+11—‘(,@1+1)1—‘(52+1) m_o
(51752)(5) — T (B1+B2+2) ’ -
Tm 221 HT (g By +1) T (mfa+1) >
CmAPtBa+l) miT (m+Bitpat2) 04

From (22) we note that the set of standard Jacobi polynomial J {Pr:h 2)(5) is a complete orthogonal system in
the space L3 5, 5,,(—1; 1) with weight function A B 82)(€). In particular, Jéﬁl’ﬂQ)(g) =1
The shifted Jacobi polynomial of variable ¢t and degree n is defined by the following formula

. 2 (t—to)
(B1,82) (4) — (B1,B2) _ .
J (Pr, B2 (t) J (P1: Bz < T 1 1) , t € (t07 T) (23)

We note that the set of shifted Jacobi polynomial .J P 2)(t) is a complete orthogonal system with weight

function A(Tﬂl’ﬁQ)(t) =(T-t+ to)ﬁl (t—to)  in the space L3 (4, 4,) (to; T) and by the aid of (23) we have the
analogue of the (22)

T

= = T+t
[ I A g ar = (S0

2

B14+PB2+1
) 8B ()6 . (24)

to

For any integer N > 0 we denote by {gfl’ﬁ"‘), nj(Bl 52)} the nodes and the corresponding Christoffel
j=0

numbers of the standard Jacobi-Gauss interpolation on the interval (—1; 1). By the Py (to; T) we denote the

set of polynomials of degree at most N on the interval (to; T) and by the tg-ﬁl’ﬁ 2) we denote the shifted
Jacobi-Gauss quadrature nodes on the interval (¢o; T')

T—t
t;ﬁ1152): 5 0 (5](&1”82)4-1)-1-1507 0<j<N.

By virtue of the property of the standard Jacobi-Gauss quadrature it’s implied that for any ¢ (t) € P, N+1(to; T)
we have
Bi+pB2+1 N
, T+ tg , ,
/¢ ﬁl 52) )dt _ ( 5 ) Z(b (tj(ﬁl ﬁz)) nj(ﬁl ﬁz). (25)
j=0

By virtue of (25) from (24), we have for any 0 < m +n < 2N + 1,

_ 77(51 ﬁ2)5m7n_

Mz

J (B1:82) (t§51752)) J (B 2) (tgﬂl,ﬂz)) n{Prfa) =
7=0
By the aid of shifted Jacobi polynomial J (P B 2)(t) we define the shifted generalized Jacobi function of degree

n as (see [41])
PPLB () = P2 JPr B (1) By By > 1, tE (to; T). (26)
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By virtue of (24) and (26), we see that
T

_ T+t
/P,sﬂl’ﬁz)(t)P,(nﬁl’ﬁz)(t)Ag?l’ ﬁ2)(t)dt: ( —g 0

B1+p2+1
) ,77(7631752)5771’”.

to

By virtue of (25), for any ¢ (t) = t272¢ (t) we have

L T+t B1+B2+1 N —28s
- 0 : : ,
/(p(t)A<Tﬁ1 5 (1) dt = ( : ) S (1) T (180 ), (27)

to Jj=0

By the aid of (27) we introduce the inner product in Li(ﬁl, oy (0; T) as
T

B1+B24+1 N B
oo = (F5°) () () o (1

2

We need also to introduce finite N-dimensional fractional polynomial space [41]
F g T) = {t52 Y(t): v (t) e PP (1 T) } = span {Pgﬁhﬁﬂ(t) L 0<n< N}.

Then we note that for any ¢, ¢ € F {*? (to; T') hold the equalities
(¢7 w)A(Tﬁl»—/iz) = <¢7 w>A(T317—/32) .

Now in integral equation (3) we make variable transformation s = %, T E (to; T). Then the we describe
integral equation (3) as

2 () =S(t2) =GO +Ve) =G+ (;)a/t(TT)alEa,a (w (;)a(TT)a> y

to
tT tT qQtT qtT
— — ; . 2
xf(T,x(T>,max{x(9)96[T, T}})dT (28)
For the Hilfer fractional operator’s order 0 < @ < 1 we denote o« — 1 = —p, where 0 < p = const Then for
U, pe F](vk”) (to; T') we apply the generalized Jacobi-Galerkin method to equation (28):
(U, @)Ahmu*l) = (G, @)A(*uw*l) + VU, W)Awwwl) . (29)
T T T
We set
N
Ut)=> am®) PG 9(1), @) =PI#H(), 0<m, n<N.
m=0

Then for (29) we have

A Al
Hence, we come to nonlinear system - o
Bz =G+9(z), (30)
after introducing designations:
7= (0, 21, .-, EN) ", B=(bnm)ocnmen
b = (PRI PERTI0) = ()T T
T

G=(Go, Gr, ..., GW)T, Gult) = (G 0), P,E*W*“)(t))A(_W_U :
(@) =W, V1, 0x) " D) = (VU @), PEH0)

Ag:“’ p—1) 7

where by (ug, 1, ..., un) T we denoted the transposition of the matrix (ug, u1, ..., un).
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We use the quadrature formula

B1+B2+1 N
T+t L Ba)\ 282 . . N
(£, 9)p o1 —02) :< 5 ) Z(tgﬁ /32>) f@ﬁ ﬁ2>) g(tgﬂ m)) i)

Jj=0

to obtain approximate formulas:

Galt) ~ <G(t), P,(L_”’l_”)(t)> —

A,(T—lt‘llr—l)
T \22n N IR o o
:( "2‘0> Z(t(j_#,l #)) G(t(j“’l “))P( u,lu)((#lu))n(j p, 1 H)7 (31)
§=0
—2p N (=p, 1=p) L=p (—p, 1—p) 1-n
C (T ) t L t -
T D 4 Ut s B e
xf (tij, U (i), max{U(0) [0 € [q1 - tij; g2 - tiz]}) X
s P (e 1=m) (tl(*u,lfu)) 771(#%17#)77](5#,0)7 (32)
p(mr =)y (=, 0)
where t;; = —J

In approx1mately solving the system (30) one can use the Newton iterative method.
[llustrarive examples

As an example, we consider the simple equation of the form

Dg:%u(t) = Au(t) + f(¢), t € (0;T)

with initial value condition

The solution of this problem has the form
t
() = wo 7 B (M%) + /(t — ) By o (Mt — 5)) f(s)ds, (33)
0

where y =a+ 8 — af.
Ezample 1. We consider cases o = 3 = %, ft)=1t°, o> —1. Since v = % + % —5°5= %, from (33) we
have

(t—s) B ()\(t - s)%) s7ds. (34)

£
—~
~
~—
I
g
o
i
=
=
=
i
/
>
=~
[N
N—
-+
O\ -

Taking into account
1
ﬁ/ (z—t)" " E, s (M) tP 7 dt = 2P LB, 50, (A2, v >0, B>0,
V)
0

we calculate the integral in (34):
¢
/ t — S %E;
3
0
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Substituting (35) into (34), we obtain

ult) = \[E%}% ()\\/i) +T(o + DIVIES 3, ()\\f) (36)
In particular case, when o = 0, from (36) yields
Ug
u(t) = HE) 4 (\WVE) + VB, 4 (\VE). (37)
Taking into account
1
Eo u(2) = == +2E, a+u(z), a>0, > 0,
we obtain X
VO ()\\/) fEl y (A\/) 5
Therefore (37) takes form
Ug 1
=25, ()« 35,0 (294

ult) = %E (W) + 5 [cosh <\/T\/E) - 1} .

Ezample 2. The case of Caputo operator: o = %, B=1, ft)=t", o0 > —1.
Since y =1 +1—1.1=1, from (33) we have

¢
u(t):uoE%,l )\t2 +/ (t—3s) %E%7% (/\(t—s)%) s%ds. (38)
0
Taking (35) into account, from (38) we obtain
w(t) = uoky (A\/E) +T(o + DI°VIE,s 3., (/\\/i> . (39)

We are looking for real solutions. Since E 1, 1(2) = cosh /z, then for A > 0 we present the solution (39) as

u (t) = ug cosh <\//\>\/E> +T(c+ 1)t"\/fE%7 4o (Aﬁ) .

For the cases 0 = 0 and A > 0 we have

u (t) = ug cosh (m) + \/iE%’% (A\/i) . (40)
Taking
Ey u(2) = ﬁ +2E4, atu(2), >0, p>0

into account, the last summand easily presents as

1
\[lé()\\[) *E11(>\\[> N
202 by

So, taking E1 4(z) = cosh \/Z into account, from representation (40) we obtain the simple form of solution

wi01= 2 o syt (VaE) 1]

Now we consider an example of a nonlinear differential equation.
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Ezample 3. The equation

oDy (t) = éI‘(a 1)t (yQ(t) + 4. max {y2(0) 10 ¢ [;’ b t] }) Ca> % (41)
on the interval (0; 1) has a solution
y(t) = 12 (42)
Indeed,
%F(a + 1)t 2 <y2(t) + 4 - max {yz(ﬁ) 16 € B t; t} }) = %I‘(a +1)t72 (5¢2) =T(a+1) (43)
and r 1 r 1
cDy(t) =c DG, (t*) = Mt“a = rm(jj—)a) =T(a+1). (44)

From (43) and (44) we come to the conclusion that function (42) is a solution of the Caputo fractional differential
equation (41) on the interval (0; 1).

Remark. The function (42) is not a solution of fractional differential equation (41) on the semiaxis (1; co).
If we consider the solvability of the differential equation (41) on the entire positive semiaxis RT = (0; o0), then
this equation suffers a discontinuity of the first kind at the point ¢t = 1.

Conclusion

In this paper we consider the questions of unique solvability of initial value problem for a nonlinear fractional
differential equation (1) with maxima on the given segment (¢; T'). We reduce this initial value problem to the
fractional order nonlinear integral equation of Volterra type. Then we used the method of successive approxi-
mation and proved the theorem on existence and uniqueness of solution of the problem under consideration. We
apply the generalized Jacobi—Galerkin method as a numerical realization of solution of the fractional order nonli-
near integral equation (3). We make a variable transformation in integral equation (3): s = %, TE (to; T).
Applying the generalized Jacobi-Galerkin method to equation (28), we come to the system (30). By using the
quadrature formula we obtain the necessary approximation formulas (31) and (32).
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T.K. FOnnames!, B.2K. Kagupxymnos?, A.P. Mapaxmmvos?

1 .
Osbexcman yammuok yrusepcumems, Tawxenm, ©3b6excman;
2 Tawwenm memaexemmir ITvevicmany Yrnusepcumemi, Tawwewm, O36excman;
3 Tepmes memaexemmir yrusepcumemi, Tepmes, Oz6excmarn

ChIBBIKTBIK, €MecC OH, >karbl 0ap Xmujibdep Tunrec 06JIIeK
anddepeHInaIabIK TeHJIEY TYPaJibl

Makasaza MakCUMaJsIIbl CHI3BIKTHIK eMec Oeostiek auddepeHnnaablk TeHaey YIIiH 6acTalnkel ecenti 6ip-
KeJIKI IIelITy YKoHe CaHIbIK ICKe aChIpy Macesesepi KapacTeIpblaanl. Jlupuxite (popmytackiHa HETi3Me/ITeH Ka-
pamnaifblM MWHTETrPAJIILIK TYPICHIIPY/Il KOIIaHa OTHIPHIN, KAPACTBIPBLIBIIT OTHIPFaH 6acTanKkbl MiHIeT BOsb-
Tepp THUIIHJEr] CHI3BIKTHI eMec 0OJIIIeK MHTerpasIabIK TeHIeyre eilin a3adanpl. KapacTeIpblral cerMeHTTe
Gepinren GacTamKbl €CerTi MmentyaiH 6ap 60ybl MeH Gipereiitiri Teopemach! goaeaaerai. [lerrimmai canabik
TypZie XKy3ere aceipy yuriH [amepkuu fkoOHIiH KaamblIaHFAH CHEKTPJIIK 9/aici Koamanbuiran. KepHeki
MBICAJIJIAD KEJITIPIJIreH.

Kiam cesdep: kapamaiibiM auddepeHInaablK TeHIey, MaKCUMYyMIApMEH TeHJIey, XUIb(Mep OMepaTophl,
6ip Monail menmiMaIK, latepkun AKoOuIiH KaJIIbLIAHFAH CIEKTPJIK dJIicCi.
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T.K. Oanames!, B.2K. Kagupxymnos?, A.P. Mapaxumos®

! Hayuoransnoi ynusepcumem Yabexucmana, Towxernm, Yabexucman;
2 Tawkenmexuiti zocydapemeenmolli yHueepcumem socmorosedenus, Tawxenm, Yabexucman;
8 Tepmescruti zocydapemeenmonti yrusepcumem, Tepmes, Yabexucman

O6 omHoM apobHOM amdpepeHITIaAIPHOM YPABHEHUN THUIIA
Xunbdepa ¢ HeJIMHETHO TpaBoil YacThbIO

B craThe paccMoTpeHbl BOPOCHI OIHO3HAYHOM PA3PEIIMMOCTH U IUCICHHON PeaTu3alny Ha9aIbHOM 324N
JUIsi HeJinHeiHoro npo6GHoro muddepennuaabHoro ypasHenus Tuna Xuiibdepa ¢ makcumymamu. C momo-
B0 HECJIOXKHOI'O HHTErPAJILHOTO IIpeobpa3oBaHust, OCHOBaHHOTO Ha (opmyste lupuxie, paccmarpuBaemast
HadJaJIbHAs 3a7[avda CBe/IeHA K HEJIMHEHHOMY JIPOOHO-MHTErpaJbHOMY ypaBHeHuIo Tuna Bosbreppa. lokaza-
Ha TeopeMa CyIIeCTBOBAHUS U eMHCTBEHHOCTHU PEIIeHNs 3a/JaHHOM HAYaJIbHOM 3a/1a491 Ha PACCMaTPUBAEMOM
orpeske. /s 9ucIeHHO pean3alii pelleHns MpUMeHeH 0600IEeHHbBIN ClIeKTpaIbHbIN MeTo [atepkuHa-
Axobu. Ilpuseiennbl HADISAIHBIE TTPUMEDPHI.

Kmouesvie crosa: 0bbIKHOBEHHOE A DEpeHITNATBHOE YPABHEHNE, YPABHEHNE C MAKCUMyMaMHU, OIIE€PATOP
Xuibdepa, oHO3HAYMHAsT PA3PEIINMOCTb, 000OINEHHbIN crieKTpa bHbIi MeToj 1 ['anepkuna- Axkobu.
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