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Background: Distal radius fractures are a common type of fracture. For patients 
treated with closed reduction with splinting, a period of rehabilitation is still 
required after the removal of the splint. However, there is a general lack of 
attention and low compliance to rehabilitation training during this period, so it 
is necessary to build a rehabilitation training monitoring system to improve the 
efficiency of patients’ rehabilitation.

Methods: A wearable rehabilitation training wristband was proposed, which 
could be used in the patient’s daily rehabilitation training scenario and could 
recognize four common wrist rehabilitation actions in real-time by using 
three thin film pressure sensors to detect the pressure change curve at three 
points on the wrist. An algorithmic framework for classifying rehabilitation 
training actions was proposed. In our framework, an action pre-detection 
strategy was designed to exclude false detections caused by switching 
initial gestures during rehabilitation training and wait for the arrival of the 
complete signal. To classify the action signals into four categories, firstly an 
autoencoder was used to downscale the original signal. Six SVMs were then 
used for evaluation and voting, and the final action with the highest number 
of votes would be used as the prediction result.

Results: Experimental results showed that the proposed algorithmic framework 
achieved an average recognition accuracy of 89.62%, an average recognition 
recall of 88.93%, and an f1 score of 89.27% on the four rehabilitation training 
actions.

Conclusion: The developed device has the advantages of being small size and 
easy to wear, which can quickly and accurately identify and classify four common 
rehabilitation training actions. It can easily be combined with peripheral devices 
and technologies (e.g., cell phones, computers, Internet) to build different 
rehabilitation training scenarios, making it worthwhile to use and promote in 
clinical settings.
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1. Introduction

Distal radius fractures are a common type of fracture in adults, 
accounting for approximately 17.5% of all fracture types (Ochen et al., 
2020). Fracture treatment is divided into surgical and non-surgical 
treatment (He et al., 2020). There is a significant difference in the 
recovery of physical skeletal indicators between the two different 
treatments, but there is no significant difference in the functional 
recovery of the wrist joint, so patients mostly consider non-surgical 
treatment modalities first (He et al., 2020). A period of rehabilitation 
after the removal of the cast or splint plays a major role in the recovery 
of joint function (Badwaik et al., 2021). However, there is a common 
phenomenon that patients do not pay attention to rehabilitation 
training, have poor compliance, and have irregular training 
movements (Bhan et al., 2021). Therefore, it is important to build a 
rehabilitation training assistance monitoring system so that the 
physician can supervise the patient promptly and increase the patient’s 
self-motivation for rehabilitation training.

Rehabilitation training assistance monitoring system for the 
patient’s terminal equipment puts forward the requirements of 
physiological signal acquisition, rehabilitation training action 
recognition and evaluation, of which rehabilitation training action 
recognition is the main research direction, because this technology is 
the key to build a bridge of joint supervision between doctor and 
patient for distal radius fracture, and a large number of researches 
have existed for this task. The means of rehabilitation training action 
recognition fall into two broad categories, namely computer vision 
(CV) based and sensor based approaches (Zhu et  al., 2019). The 
computer vision-based approach acquires raw image information 
through a vision-based sensor, then performs extraction of low-level 
features such as human joint positions, and after encoding and 
representing the feature data, it performs a number of tasks such as 
kinematic parameter comparisons, postural recognition, and clinical 
scoring (Debnath et al., 2022). Many image processing and machine 
learning techniques have been applied to these studies (Keskin et al., 
2012; Tang et al., 2014; Sinha et al., 2016; Wan et al., 2019; Francisco 
and Rodrigues, 2022; Shen and Lu, 2022; Sun et al., 2022), which 
typically use single or multiple RGB or depth cameras as image 
acquisition units and analyze the images or videos to identify static 
gestures or motion flows within them (Hellsten et al., 2021). Although 
CV-based systems have the advantages of simple equipment and low 
cost, vision algorithms are inevitably accompanied by the 
shortcomings of being highly influenced by occlusions and light. More 
critically, CV-based systems have a single source of data (only image 
pixel information) and therefore lack the means to robustly monitor 
the patient’s physiological parameters (e.g., pressure on the affected 
area), yet the tightness of the splints used for immobilization is an 
important influence on the outcome of fracture rehabilitation (Li et al., 
2021). Therefore, the lack of capability of CV-based systems in this 
area is the greatest drawback compared to sensor-based rehabilitation 
training systems.

Sensor-based rehabilitation training devices have unique 
advantages due to their ability to detect multimodal physiological 
parameters directly or indirectly. These systems place multiple types 
of sensors on different carriers, and the data is collected and analyzed 
by a central processor (Nascimento et al., 2020; Yadav et al., 2021). 
Common sensors used in wrist rehabilitation systems include pressure 
sensors (Zhang et al., 2019; Atitallah et al., 2020; Guo et al., 2021; 

Pierre Claver and Zhao, 2021; Xu et  al., 2021), surface 
electromyographic(sEMG) sensors (Prakash et al., 2019; Cheng et al., 
2021; Dong et al., 2021; Moin et al., 2021; Copaci et al., 2022; Jeong 
et al., 2022), inertial sensors (Kim et al., 2019; Weygers et al., 2020; 
Bilius et al., 2023), and specialized sensors (e.g., acoustic sensors (Xiao 
et al., 2022), strain sensors (Gao et al., 2023). Currently, the main 
researched rehabilitation training devices usually include multiple 
sensors to achieve multimodal and more accurate training movement 
analysis, and the main presentation of wrist movement recognition 
devices is the rehabilitation glove. For example, Copaci et al. proposed 
a gesture classification algorithm for rehabilitation training gloves 
based on surface EMG signals, which is based on Bayesian neural 
networks, pattern recognition networks, and hierarchical recurrent 
networks, and allows users to retrain the algorithm at any time with 
their own surface EMG gesture data, with a recognition accuracy of 
up to 98.7% for six types of gestures (Copaci et al., 2022). Li et al. 
(2023) developed a set of multimodal sensor gloves for hand 
kinematics learning in Parkinson’s patients, which used flexible 
bending sensors to detect finger curvature information, thin-film 
pressure sensors to measure changes in hand muscle strength, and an 
inertial navigation system to detect acceleration signals, and carried 
out a number of evaluations of finger dexterity, muscle strength, and 
other assessments based on multiple signal processing algorithm. 
Meng et  al. developed a personalized and safe soft glove for 
rehabilitation training, which uses a pneumatic actuator module to 
provide active rehabilitation training for patients and acquires finger 
bending information based on bending sensor and air-pressure sensor. 
The system they developed included three modes of rehabilitation 
training to meet the rehabilitation requirements of patients with 
multiple hand dysfunctions (Meng et al., 2023). Since the rehabilitation 
glove provides a stable platform for sensor placement, it is particularly 
suitable for multimodal hand movement analysis (and, of course, wrist 
rehabilitation). Moreover, due to the large number of sensors it can 
deploy, accurate acquisition of finger bending information and hand 
posture information can be easily realized, and thus hand movement 
recognition based on such information can be easily achieved with 
good results. Compared to vision-based approaches, sensor-based 
rehabilitation assistance devices have some significant advantages, 
such as the accuracy of physiological information acquisition and the 
minuteness to environmental interference. In addition to rehabilitation 
training gloves, some special and novel rehabilitation assistance 
devices were also presented. For example, Han et al. (2022) proposed 
a cylindrical device based on a passive sensing layer called smart skin, 
which estimates the grip force by the change in the shape of the 
colored liquid in the subtle channels during gripping. Wong et al. 
(2021) developed a finger-worn capacitive sensor system that utilizes 
capacitance changes due to different hand movements for gesture 
classification tasks.

However, the main applications of these studies on hand 
rehabilitation assistance systems are for stroke and Parkinson’s 
patients, and these application scenarios do not limit the pressure at 
the radius. In addition to proper rehabilitation, patients with distal 
radius fractures should also ensure that the pressure on the affected 
area of the radius is within the appropriate range, otherwise excessive 
splint pressure will likely bring about various syndromes as a result of 
vascular compression of the affected area, while too little pressure on 
the splint may result in secondary dislocation of the fracture. 
Therefore, rehabilitation equipment for patients with distal radius 
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fractures should have the ability to monitor skin pressure on the 
affected area in addition to supervised rehabilitation. At the same 
time, the variety and number of sensors deployed in rehabilitation 
training gloves [e.g., the data glove developed by Bin Fang et al. carries 
36 inertial measurement units (Fang et al., 2019)] inevitably brings 
about an increase in cost, which no doubt increases the burden of 
treatment for patients. To address these issues, we designed a wearable 
rehabilitation wristband that used only three thin-film pressure 
sensors as the components for skin pressure signal acquisition. The 
thin-film pressure sensors are inexpensive to produce and can 
be mounted non-invasively between the patient’s skin and the splint. 
The conversion of pressure data and the recognition of rehabilitation 
training actions are realized through the topmost control box, and the 
relevant information will be sent to the matching cell phone APP for 
display and storage. Compared to rehabilitation gloves, our devices are 
extremely low-cost and allow effective monitoring of splint tightness. 
The main contributions of this paper are as follows:

 1. We proposed a wearable rehabilitation training wristband for 
distal radius fractures, which provided rehabilitation training 
actions recognition and detection functions, and opened up a 
Bluetooth interface that allowed simple connection to 
computers, cell phones, and other upper computers and the 
development of a variety of rehabilitation training software.

 2. A rehabilitation training action classification algorithm based 
on an autoencoder and SVM classifier was designed, which 
could run on a microcontroller and classified action signals 
quickly and accurately.

 3. An action signal pre-detection strategy was proposed to 
determine whether the window signal was a complete action 
signal, which reduced the false detection rate of the algorithm.

2. Materials and methods

2.1. Materials

2.1.1. Thin film pressure sensor
Thin-film pressure sensors are used to detect three channels of 

pressure on the palmar, radial and dorsal sides of the wrist. Hua et al. 
(2018) performed a biomechanical finite element analysis of the stress 
distribution on the arm for three common types of splints, and their 
stress analysis results showed that all three types of splints produced 
the greatest stresses in the vicinity of the radial stem eminence at a 
one-week location, but the absolute values of the stresses were 
different. Therefore, we  followed the wrist force characteristics of 
splinting and chose the location of the radial collection point to 
be 1–2 cm from the malleolus on the lateral side of the radius, which 
is located near the distal radius fracture point and the maximal stress 
of the splint, so as to monitor the lateral force on the fracture point in 
an effective and obvious way. The dorsal and palmar collection points 
are centrally located on the dorsum and palm of the hand, respectively, 
and are on the same circumference as the radial collection point. The 
location of the collection points is shown schematically in Figure 1A.

A three-channel thin-film pressure sensor designed by our own 
structure is used as the detection element of the wristband, and 
presents a T-shaped structure. On the crossbeam of the T, three 

pressure-sensitive zones are distributed from left to right for the 
above-mentioned palmar, radial, and dorsal pressure detection. On 
the arm of the T, there are four copper wires leading out and connected 
to the control box through the MicroUSB interface, one of which is 

FIGURE 1

(A) Location of the collection points. (B) Design structure and object 
diagram of the thin film pressure sensor. (C) Structural schematic 
and object diagram of the inner bandage core. (D) Schematic of the 
bandage core after completion of wear. (E) Schematic of the entire 
system after wearing. (F) Rehabilitation training standardized actions 
including stretching-and-making-a-fist, separating-and-merging-
fingers, palm-flexion-and-dorsiflexion, and ulnar-deviation action.
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connected to one of the pins of the three pressure-sensitive zones to 
form a common terminal. The T-shaped structure design avoids the 
problem of cable stacking when wearing the wristband. The design 
structure and object diagram of the thin film pressure sensor are 
shown in Figure 1B.

2.1.2. Rehabilitation wristband
The rehabilitation wristband is composed of an inner bandage 

core and an outer magic stick layer. The inner bandage core consists 
of two layers of medical bandages and film sensors pressed together, 
with the upper layer of bandages for the elastic self-adhesive bandages, 
longer length, for wearing around the fixed, and the lower layer of 
bandages for inelastic bandages. Both sides of the thin-film sensor are 
in contact with the upper and lower bandages by circular silicone pads 
with a thickness of 1 mm. The structural schematic of the inner 
bandage core is shown in Figure 1C along with its object diagram. The 
outer layer of the magic stick has rigid fibers on one side to provide a 
stable force platform for the pressure sensor and a magic stick on the 
other side to hold the entire structure in place. Our circuit board is 
enclosed in a control box, which is fixed above the outer magic stick 
and connected to the thin film sensors through an electrical interface. 
When worn, the radial sensor in the inner bandage core is first 
positioned at the location of the radial collection point described 
above, followed by stroking the wristband both palmarly and dorsally 
so that the wristband is wrinkle-free and fits completely around this 
part of the wrist, and finally the self-adhesive bandage of the wristband 
is wrapped around the wrist for 1 week and compacted to hold it in 
place. The schematic of the bandage core after completion of wear is 
shown in Figure 1D. Subsequently, the rigid side of the Velcro was 
attached to the inner bandage core, wrapped around for a week and 
then secured by a carabiner, and finally, the sensor interface was 
plugged into the control box. The schematic of the entire system after 
wearing is shown in Figure 1E. As you can see, the system we designed 
is simple in structure and compact in size. It should be noted that the 
remaining portion of the outer magic stick layer can be  easily 
embedded in various splint systems (e.g., plaster splints, small splints, 
thermoplastic splints, etc.) as a splint pressure status monitoring 
terminal during the splint fixation period, which is an important use 
of this system beyond the description herein.

2.1.3. Control box circuit
The control box circuit is composed of four parts: a power supply 

circuit, STM32 microcontroller minimum system, pressure acquisition 
system, and BLE Bluetooth transmission circuit. The power supply 
circuit is used to charge the lithium battery and to regulate the input 
voltage of the lithium battery to the voltage required by other chips. It 
uses the PW5410A charge pump chip to regulate the input voltage of 
the lithium battery to 5 V, which is then stepped down to 3.3 V by the 
PW6566 LDO chip. 5 V is supplied to the operational amplifier in the 
system, and 3.3 V is supplied to the STM32 microcontroller, BLE 
Bluetooth transceiver module, and other chips. The STM32 
microcontroller minimal system is used to detect the analog signal 
output from the pressure acquisition system, detect the transceiver 
signal of the Bluetooth module and run the classification algorithm of 
the rehabilitation action signal, which uses its own ADC peripheral to 
convert the analog voltage to digital, and uses the BLE Bluetooth 
module to send the detected action signal or receive the control signal 
from the upper computer. The pressure acquisition system consists of 

three Wheatstone bridges cascaded with differential amplification 
circuits, each of which is used to detect the pressure sensor information 
of one channel, and the output voltage of the pressure acquisition 
system is 0–3.3 V, which is received by the STM32 microcontroller. The 
BLE Bluetooth transmission module serves as a wireless communication 
medium between the control box and the upper computer, automatically 
converting serial signals and Bluetooth RF signals to each other, which 
simplifies the system development difficulty. The circuit system 
structure and module circuits are shown in Supplementary Figure S1.

2.1.4. Rehabilitation training action specification
Although it is now clinically recognized that appropriate functional 

exercises have a positive effect on the rehabilitation of distal radius 
fractures, there is no uniform standard for the details of the actions of 
rehabilitation training (Østergaard et  al., 2021). Often hospitals in 
different areas will prescribe different rehabilitation exercises to 
patients. For example, in a clinical study of functional exercises based 
on cast immobilized patients conducted by Reid et al. (2020), patients 
were asked to perform palmar flexion and dorsiflexion and fist 
clenching for the wrist joint. Arora and Naqvi (2022) in a clinical 
validation trial of a leap motion tracking device had patients perform 
five movements: fingers flexion and extension, flexion and extension of 
the thumb, wrist radial and ulnar deviation, forearm pronation and 
supination and wrist flexion and extension. The results of the 
experiment verified the effectiveness of these rehabilitation exercises. 
Some other forms of rehabilitation training methods such as wrist 
rotation (Huang et al., 2019) and grip training (Quadlbauer et al., 2020) 
were also used by some organizations. We considered the available 
literature and selected the following four typical rehabilitation exercises 
by the chief physician of the author’s hospital unit (Li et al., 2020), 
namely, stretching-and-making-a-fist, separating-and-merging-fingers, 
palm-flexion-and-dorsiflexion, and ulnar-deviation action. For 
rehabilitation, place the elbow on a flat table and hold the forearm 
upright in a neutral position. When stretching and making a fist, the 
palm of the hand is relaxed as the initial state, then the fingers are 
stretched, followed by a fist clenching as hard as possible, and finally 
returning to the initial state, which is considered a complete action. 
When separating and merging fingers, the palm of the hand is initially 
held with the five fingers together and straightened, then the fingers are 
separated as far as possible and finally returned to the initial state, 
which is considered a complete action. When performing palm flexion 
and dorsiflexion, the palm first maintains the same initial state of 
separating and merging fingers movement, then the palm tilts forward 
as far as possible to the side of the palm, followed by the palm tilting 
backward as far as possible to the dorsal direction, and finally returns 
to the initial state, which is considered a complete action. When 
performing the ulnar deviation movement, the palm is first maintained 
in the same initial state as the separating and merging fingers movement 
and then tilted towards the ulna as far as possible, and finally returned 
to the initial state, which is regarded as a complete action. The 
rehabilitation training standardized action is shown in Figure 1F.

2.2. Methods

2.2.1. Thin film pressure sensor calibration
The thin-film pressure sensors we used are resistance-strain 

sensors, whose resistance decreases gradually as the applied 
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pressure increases. After conversion by the sensor data 
acquisition circuit, the change in applied pressure will be reflected 
as a change in the output analog voltage of the circuit, which is 
converted into a digital quantity by the analog-to-digital 
conversion module of the microcontroller (hereinafter referred 
to as the AD value). Since it is not possible to calculate the 
applied pressure directly from the AD value, we  conducted 
pressure calibration experiments of the sensor with the aim of 
finding the mapping between the pressure applied to the sensor 
and the corresponding output AD value.

We first placed the pressure sensor on the pressure calibration 
platform, which consisted of a push-pull force gauge with a 3 kg 
range and 1 g resolution and a hand-cranked fixture. The push-pull 
gauge was fixed on a stationary frame and different pressures were 
applied to the pressure sensors by turning the rocker, and the AD 
values of the corresponding channels of the pressure sensor and the 
pressure measurements of the push-pull gauge were simultaneously 
collected by our computer. A total of 10 rounds of raw data were 
collected, with each round collecting 300 sets of data at a frequency 
of 3 Hz, in which the applied pressure was gradually increased to 
500 gf during the first five rounds of collection, and gradually 
decreased to 30 gf during the last five rounds of collection (not 
reduced to 0 because the push-pull gauge had a 30 gf pressure dead 
zone). The acquisition results are shown in Figure 2A, where the red 
scatter plot represents gradually increasing pressure data and the 
blue scatter plot represents gradually decreasing pressure data. It 
can be  seen that the thin-film pressure sensor has a significant 
hysteresis error, which makes the two pressure data not exactly 
coincide. We used clusters of segmented linear functions to fit the 
raw data for pressure increase and decrease separately, a process 
based on the python library pwlf. Both the final curves were divided 
into 9 folded segments and the fitted curves are shown in 
Figure 2B. The top and bottom graphs show the fitted curves for the 
pressure increase and decrease processes, respectively, and the final 
pressure prediction deployed to the microcontroller was given by 
the average of the two fitted curves.

2.2.2. Dataset acquisition
We use our own QT-based software platform for rehabilitation 

action acquisition. Five subjects were recruited for training set data 
collection, with two rounds per subject, and 50 reps of each of the four 
rehabilitation training actions were collected in turn. The type of raw 
data collected is the AD value. The sampling frequency of the software 
platform is 15 Hz, and since the rehabilitation training action is 
basically completed within 2 s, the number of sample collections is set 
to 30 times for each group. Thus the data structure of each action 
sample is ch ji ( ), where i = 1, 2, 3 , j = 1, 2, 3,..., 30, and ch ji ( ) denotes 
the j  th AD value of the i th channel of the sample. An example of one 
of the samples we collected is shown in Figure 3.

The initial state pressure varied slightly from subject to subject 
because the tightness of the rehabilitation wristband was not exactly 
the same each time the subject was strapped in. We bind an initial 
reference AD value Re fi  for the same batch of rehabilitation training 
for each subject. Firstly, the subject sits at the front of the experimental 
table and maintains the initial state of stretching and making a fist as 
required by the rehabilitation training, and then maintains this resting 
relaxed state and collects a sample, which is called the subject’s resting 
sample. The resting sample has the same data structure as the action 
sample, and to distinguish it from the action sample representation, 
we use CH ji ( ) to denote its AD value of it. Re fi is precisely calculated 
by CH ji ( ) with the following equation

 
Re /f CH j ii

j
i= ( ) =( )

=
∑

1

30

30 1 2 3, ,

Subsequently, each action sample data collected by the subject will 
be transformed into a normalized value u ji ( ) , where i = 1, 2, 3 and  

FIGURE 2

(A) Raw data from pressure collection. Due to hysteresis errors, the 
curves do not coincide exactly during forward and reverse pressure 
applying. (B) Results of fitting forward and backward curves using a 
9-segmented linear function.
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j = 1, 2, 3,..., 30, which maintains the same data structure as the action 
sample and is calculated by the following equation

 
u j

ch j
fi

i

i
( ) = ( )

Re

As we can see, u ji ( ) is the ratio of the original three-channel AD 
value of this action sample to its bound initial reference AD value for 
each channel, which can reduce the impact of data variability caused 
by wearing rehabilitation wristbands with different tightness to a 
certain extent and improve the robustness and generalization ability 
of the system. These data are subsequently arranged in one dimension 
to form the final input data x k( ) of our designed classification 
algorithm, which is represented by the following equation

 x k u( ) = ( )α β

Where  α α β≡ =( ) = 




= …k k kmod , , , , , , .3 1 2 3
3

1 2 3 90, , ,      

2.2.3. Rehabilitation training movement 
classification algorithm

Since the input data is a 90-dimensional x k( ), this is too many 
features for an action sample. We  first perform dimensionality 
reduction and feature extraction on it using an autoencoder, which 
is a mature and effective algorithm for automatically finding 
features by training an adaptive encoder and decoder to match the 

original data, where the output of the encoder is the sample feature 
data we need. Then we classify the encoded data using six SVMs, 
which, as a binary classification algorithm with linearly divisible 
samples, improves model generalization by optimizing the 
hyperplane parameters so that the support vector has the maximum 
distance from it. Our six SVMs are denoted as 
S i j iij = = …( )1 2 3 4 4, , , ; ,  , , which denotes the SVM that classifies 
action i with action j (the four rehabilitation training action 
mentioned above are denoted as actions 1–4). The 6 SVMs are 
given their predicted categories for a sample, and the corresponding 
category votes are increased by one vote, and finally, the predicted 
action with the highest number of votes is identified as the final 
prediction given by the classification algorithm. The structure of 
the classification algorithm is shown in Supplementary Figure S2.

2.2.4. Action pre-detection strategy
The classification algorithm will be  deployed to the STM32 

microcontroller to run after the training is completed. According to 
the input data requirements of the classification algorithm, after the 
user finishes installing the wristband and prepares the posture for 
rehabilitation training, the user first keeps the hand relaxed and the 
upper computer sends initialization instructions to the 
microcontroller, which continuously acquires 30 sets of three-channel 
AD values at a frequency of 15 Hz and automatically calculates three 
average AD values as the initial reference AD value Re fi  for this 
round of rehabilitation training. A sliding detection window of size 30 
and step 1 is used for real-time detection of rehabilitation training 
actions. The window divides the current three-channel AD value with 

FIGURE 3

Examples of primary AD change curves for four rehabilitation training actions. (A) Stretching-and-making-a-fist. (B) Separating-and-merging-fingers. 
(C) Palm-flexion-and-dorsiflexion. (D) Ulnar-deviation action.
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Re fi  at each slide and places it at the end of the window queue, and 
removes the data at the head of the window queue. If the classification 
algorithm is propagated forward without discriminating the window 
data, the action data will be incorrectly classified as another action 
before it fully enters the window. In addition, the different initial hand 
postures for different rehabilitation training actions lead to different 
initial pressures for different actions, which can lead to an upward or 
downward slope in the data in the window when switching 
rehabilitation training actions, and if such window data is forward 
propagated by the classification algorithm, it may also lead to its being 
judged as one action and thus misclassified. Considering that all 
rehabilitation movements start and end with similar pressures (this is 
because all training actions end in the initial posture) and that the 
three-channel AD values remain essentially constant when the patient 
is not performing rehabilitation actions, we designed an action data 
detection strategy that is only window data that meet the following 
two conditions will be considered as a rehabilitation training action 
and input to the classification algorithm for recognition. (1) The 
maximum peak value of the first 10 data of the three channels of the 
window is greater than the thresholdT1, i.e., 

max max min
i j

i
j

ich j ch j T( ){ }− ( ){ }






> 1. (2) the minimum head-to-

tail AD distance of the three channels of the window is less than the 
threshold T2, i.e., min

i
i i||ch ch || T1 30 2( ) − ( ){ } < . Where the threshold 

values T1 and T2  are empirical values. The first rule ensures that 
window data is not classified when there is no action, and only 
window data with sufficiently forward action start points (which 
ensures that action data is not classified until it enters the window 
completely) will be classified. The second rule ensures that the window 
data with a strong change is indeed action data. The schematic of the 
action pre-detection strategy is shown in Figure 4.

3. Results

3.1. Pressure calibration results

We carried out two rounds of pressure calibration test 
experiments, each round of the first gradually increasing pressure 
on the sensor to reach the full range and then gradually reduce the 
pressure, the computer to store the process of pressure prediction 
of the microcontroller and the real readings of the push-pull 
gauge. The pressure error is calculated by f f ferror predict true= − , 
where f predict  and ftrue represent the predicted and true values of 
the pressure at the same moment in time, respectively, and the 
results of the two rounds of experiments are spliced together and 
shown in Figure 5A. The results show that overall the calibration 
curve seems to work well. The absolute value of ferror  becomes 
progressively larger as the pressure increases. This is due to the 
fact that the pressure calibration curve has a large absolute value 
of the derivative of the pressure value to the AD value at higher 
pressures, resulting in a slight disturbance of the AD at higher 
pressures causing a large change in the pressure prediction. At one 
point the absolute value of ferror  even exceeded 60gf at pressure 
values of 400gf or more, but under the range where our equipment 
is most often used (around 300gf), the absolute value of ferror  
basically stayed within 20gf. Figure 5B shows the value of ferror  
divided by ftrue at each moment in time. The results show that the 
pressure calibration error is basically between ±20% throughout 
the test, except for a very few spikes that reach more than 50%, 
and these singularities occur at low pressures, which may be due 
to minor voltage disturbances in the interval between the 
microcontroller and the push-pull meter data transmission during 
the data acquisition.

FIGURE 4

The schematic of the action pre-detection strategy. Only window data that meet the following two conditions will be considered as a rehabilitation 
training action and input to the classification algorithm for recognition. (1) The maximum peak value of the first 10 data of the three channels of the 

window is greater than the thresholdT1, i.e., max max min

i j
i

j
ich j ch j T( ){ } − ( ){ }












> 1. (2) The minimum head-to-tail AD distance of the three channels of 

the window is less than the thresholdT2, i.e., min

i
i i||ch ch || T1 30 2( ) − ( ){ } < . Where the threshold values T1  and T2 are empirical values.
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3.2. Effect of the number of neurons in the 
hidden layer and output layer on the 
verification error of the autoencoder

In order to find the most suitable autoencoder structure for 
accurate feature extraction of the input data, we tested the effect of 
different numbers of neurons in hidden layers and output neurons on 
the validation error of the autoencoder. k-fold cross-validation, as an 
efficient method to test the performance analysis of networks with 
different hyperparameters, randomly disturbs the sample set and 
divides it equally into k subsets. In k times of loops, a different subset is 
selected as the validation set and the remaining subsets are used as the 
training set, and the error of the network completed by this loop 
training on the validation set is evaluated. After k loops, the average of 
the k test errors is used as a measure of the generalization ability of the 
network at the current hyperparameter setting. We choose a 10-fold 
cross-validation approach and let the number of neurons in the hidden 
layer increase from 10 to 60 in step of 10 and the number of neurons in 
the output layer increase from 5 to 40 in step of 5. The test results for all 
combinations are shown in Figure 6A. From the results, it can be seen 
that with the same number of neurons in the output layer, the average 
validation error shows a decreasing trend as the number of neurons in 
the hidden layer decreases, and with the same number of hidden layer 
neurons, the average validation error shows an increasing trend as the 
number of output layer neurons increases. Particularly, the network 

even has difficulty converging when the number of output neurons is 
larger than the hidden layer. Therefore, with a larger number of hidden 
layer neurons and a smaller number of output layer neurons, the 
autoencoder can reduce the dimensionality of the raw data with better 
accuracy. However, a larger number of hidden layer neurons implies an 
increase in the number of autoencoder parameters, which increases the 
execution time for the final deployment of the algorithm to the 
microcontroller, which is not conducive to real-time processing, while 
A smaller number of output neurons may lead to a one-sided extraction 
of features specific to the raw data set by the encoder, which can lead to 
a reduction in the generalization ability of the algorithm and make it 
difficult to guarantee its linear differentiation in low-dimensional spaces.

3.3. Effect of the number of neurons in the 
hidden layer and output layer on SVM 
classification

To further determine the appropriate size of the hidden layer and 
output layer of the autoencoder, we tested the effect of the number of 
neurons in the hidden layer and output layer on the SVM classification 
results for the above combination. In this test, we also use 10-fold 
cross-validation, and for each autoencoder structure, we encode all 
the original data using the autoencoder after training, then train 6 
SVM classifiers using the encoded data, which do not use the kernel 
trick and have a C-value of 1. Finally, the final prediction of the 
algorithm is determined using the voting results of all SVMs on the 
encoded data. We use the prediction error rate as a measure of the 
algorithm’s classification performance, which is expressed as the 
proportion of samples with incorrect predictions for all samples. The 
test results are shown in Figure 6B.

The results show that the number of hidden layer neurons shows 
a negative correlation with the recognition error rate. When the 
hidden layer is 30 neurons or more, the recognition error rate 
decreases and then increases with the increase of output layer size, and 
as the output layer size continues to increase, the error rate tends to 
saturate. The algorithm performs better with a larger hidden layer and 
a smaller output layer. As can be seen, the scale of the hidden layer 
plays a key role in the final performance of the algorithm. At the same 
time, as we expected, too small or too large an output layer leads to a 
reduced degree of linear separability after encoding the raw data, 
which is not entirely determined by the encoding performance of the 
autoencoder; for example, the autoencoder exhibits a high validation 
error when the number of neurons in the hidden layer and output 
layer is 50 and 15, respectively, but performs well in the final 
classification, and the opposite is true at their number of 60 and 25, 
respectively, although overall it remains that the lower encoding error 
leads to better classification performance.

3.4. Autoencoder training results

Considering the computing power of the microcontroller and the 
generalization capability of the model, we choose a final autoencoder 
structure with a hidden layer size of 40, an output layer size of 10, the 
Tanh function as the hidden layer activation function, and no 
activation function for the output layer. With this parameter setting, 
we  randomly divide the original data into training and test sets 

FIGURE 5

(A) Results of pressure calibration tests. The larger error at higher 
applied pressures is due to the fact that at higher pressures, the 
larger absolute value of the derivative of the pressure to the AD value 
results in larger predicted pressure changes from slight AD 
perturbations. (B) The error is expressed as a percentage. Except for 
individual spikes, the error is basically between ±20%.
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according to 8:2, use Adam as the optimizer with each mini-batch size 
of 200, and select MSE as the loss function. The variation of the 
training set error and the test set error of the autoencoder with the 
training batch is shown in Figure 7A. It can be seen that during the 
training process, the test set and training set errors maintain the same 
downward trend and have very close values, characterizing the effective 
extraction of the raw data by the autoencoder. The raw data of the 
rehabilitation training actions and the corresponding fitted data of the 
autoencoder first encoded and then decoded are shown in Figure 7B.

3.5. Linear separability test after data 
encoding

After the autoencoder training is completed, we encode all the 
original data. According to our strategy, we are going to use six SVMs 
to vote on the categories of the encoded samples. Each SVM classifies 
two of the four classes of actions, such that the six classifiers are denoted 
as S i j iij = = …( )1 2 3 4 4, , , ; , , denoting the SVMs that classify class i 
with class j . Therefore, it is necessary to verify the degree of linear 
differentiability of the coded samples to justify our use of 
SVM. We propose a generalized k-fold cross-validation to assess the 
linear separability of the samples. The process is as follows: for the 

sample sets A and B to be classified, A is labeled as 1 and B is labeled as 
0. Each of A and B is randomly disrupted and divided into k  subsets as 
A A A A B B B Bk k= + +…+ = + +…+1 2 1 2,  . Unlike k-fold cross-

validation, we only take a pair of subsets Ai ,Bi as the training samples 
of SVM, and use the remaining samples A A B Bi i− −,   as the test set, 
and finally calculate the misclassification rate of the test set under each 
combination and their mean values as the quantified index of the linear 
separability of the samples. If two sample sets have a high degree of 
linear differentiability in the sample space, it means that they have a 
larger distance and indicates that our SVM evaluation made based on 
the overall sample has a larger confidence level. A two-dimensional 
schematic of the generalized k-fold cross-validation process is shown in 
Figure 8. The test results for the six SVM classifiers using the generalized 
5-fold cross-validation are shown in Figure  9. The stretching-and-
making-a-fist and the ulnar-deviation actions and the separating-and-
merging-fingers and the ulnar-deviation actions showed relatively high 
classification errors, indicating that they were close to each other in the 
sample space, especially between the separating-and-merging-fingers 
and the ulnar-deviation actions, which showed relatively high similarity 
in their pressure curves, leading to large classification errors, while the 
separating-and-merging-fingers and palm-flexion-and -dorsiflexion 
actions showed complete classification in all five subsets of the two 
sample sets, indicating that they were farthest apart in the sample space.

FIGURE 6

(A) Effect of the number of neurons in the hidden layer and output layer on the verification error of the autoencoder. (B) Effect of the number of 
neurons in the hidden layer and output layer on SVM classification.

https://doi.org/10.3389/fnins.2023.1238176
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zha et al. 10.3389/fnins.2023.1238176

Frontiers in Neuroscience 10 frontiersin.org

3.6. Measured performance of the 
algorithm after deployment on the 
microcontroller

We deployed the entire classification algorithm trained on a 
microcontroller and tested it in practice. In addition to the five 
persons involved in the training set collection, we called five additional 

subjects to participate in the actual test, with each subject performing 
one round of testing. After the subject has tied the wristband and 
placed the elbow on the table with the arm upright and keeping the 
palm facing inward, the microcontroller first asks the user to stay 
relaxed and follow the instructions from the phone for the data 
acquisition of resting state, followed by the average calculation of the 
three-channel AD values. Thereafter, the microcontroller determines 
whether a rehabilitation action is coming according to the above 
action pre-detection strategy, and if so, classifies the action category, 
and if it is recognized as a rehabilitation action, sends a response 
message to the phone. Each subject performed 100 sets of each of the 
four types of rehabilitation training, with a supervisor counting 
manually on the side, and finally counting the number of differences 
between the rehabilitation training actions detected by the 
microcontroller and the actual actions performed. The confusion 
matrix was plotted based on the experimental results of each subject, 
and finally, the accuracy and recall of each rehabilitation training 
action recognition for each subject were counted.

The confusion matrix of 10 subjects is shown in Figure 10A, where 
the top row shows the test results of subjects who participated in the 
training set acquisition, and the bottom row shows the test results of 
subjects who did not participate in the training set acquisition. 
We  counted the precision P, recall R, and f1 scores of each 
rehabilitation training action for each subject according to the 
confusion matrix, which was calculated by the following equations

 
P TP

TP FP
=

+
×100%

 
R TP

TP FN
=

+
×100%

 
f P C

P C1 2= ⋅
⋅
+

For the rehabilitation training action X, TP denotes the number 
of times the network correctly recognized X, FP denotes the number 
of times other actions were recognized as X, and FN denotes the 
number of times X was recognized as other actions or not recognized 
as any one action. The results show that the test results of the subjects 
who participated in the training set acquisition were generally good, 
indicating the effectiveness of the algorithm in classifying the four 
actions. Subjects who did not participate in the training set acquisition 
had slightly worse test results than the former but also showed 
sufficiently high generalization ability, indicating that the algorithm is 
generalized for feature extraction of the four actions.

The average precision and recall of the participants who 
participated in the training set acquisition and those who did not 
participate in the acquisition were counted separately on the four 
actions, and the results are shown in Figure  10B. On subjects 
participating in training set acquisition, the recognition accuracy and 
recall of the four rehabilitation actions were basically above 90% 
(except for palm-flexion-and-dorsiflexion action with 89.9% accuracy 
and extension grip with 88.4% recall), with extension grip having the 
highest accuracy of 98% and palmar dorsiflexion having the highest 
recall of 96%. On the subjects who were not involved in the training 

FIGURE 7

(A) The variation of the training set error and the test set error of the 
autoencoder with the training batch. (B) The raw data of the 
rehabilitation training actions and the corresponding fitted data of 
the autoencoder first encoded and then decoded.
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set acquisition, the recognition accuracy and recall rate of the four 
rehabilitation movements were above 82 and 84%, respectively, with 
the separating and merging fingers action having the highest accuracy 
of 90.24% and palm flexion and dorsiflexion action having the highest 
recall rate of 87.4%. And on all subjects, the average precision of the 
four rehabilitation movements recognition was 93.38, 91.22, 86.66, 
and 87.23%, and the average recall was 86.6, 89.9, 91.7, and 87.5%, 
respectively, and the total precision of the system’s recognition of the 
four rehabilitation training movements was 89.62%, the total recall 
was 88.93%, f1 score was 89.27%.

4. Discussion

With the development of computers and the Internet, the medical 
system is gradually showing the trend of intelligence and digitalization. 
With the support of the Internet and smart devices, rehabilitation 
treatment is gradually evolving from the previous face-to-face 
communication between doctors and patients to a new mode of 
remote monitoring and management. For example, mHealth 
(Birkmeyer et  al., 2021), defined as a medical and public health 
practice supported by mobile devices, has a large number of 
applications in clinical diagnosis or advice, improving patient 
compliance, parameterizing physiological parameters, and providing 
disease-related education (Rowland et al., 2020). mHealth, as a cell 
phone APP, can make full use of hardware resources and contains 
applications such as intelligent intervention, angle measurement 
(Pourahmadi et al., 2017; Modest et al., 2019; Ochen et al., 2020), 
intelligent monitoring, and rehabilitation games (Meijer et al., 2019, 
2021) in assisting the rehabilitation training of distal radius fractures 
(Chen et al., 2020). Therefore, it has the advantage of low cost, but its 
simple architecture dictates that it cannot measure too many 
physiological parameters, so various terminals are needed to extend 
its functionality. As a sign of artificial intelligence, virtual reality (VR) 
technology is also increasingly used in the field of rehabilitation 

engineering, including assisted rehabilitation training for diseases 
such as cognitive impairment (Lei et al., 2019), arthritis (Byra and 
Czernicki, 2020), and chronic obstructive pulmonary disease 
(Rutkowski et al., 2020), and also in distal radius fractures (Kulkarni 
and Naqvi, 2021). VR technology in rehabilitation training is basically 
presented in the form of a serious game, which allows patients to play 
in the process with less pain caused by the disease and at the same 
time to carry out effective rehabilitation training, which greatly 
promotes the enthusiasm of patients in rehabilitation treatment. But 
playing VR games usually requires an empty space as well as an 
expensive headset, which makes it seem more appropriate for 
applications in specialized, centralized retreats rather than for 
individual users. There are some specialized integrated devices for 
rehabilitation training, which use surface EMG signals, inertial 
sensing units, flexible pressure sensors, and other means for 
physiological information acquisition from the affected area, and 
based on them for applications in the direction of clinical parameter 
assessment, movement posture detection, etc. These devices tend to 
achieve very high accuracy of assessment due to multimodal signal 
processing and can bring a greater variety of rehabilitation training 
options to patients. However, their high cost and the inconvenience of 
wearing them are still the main factors that prevent their popularity.

Our developed wristband for rehabilitation training of distal radius 
fracture directly detects the force on the palmar side, radial side, and 
dorsal side of the affected limb by means of a three-channel thin film 
pressure sensor with tying a rigid magic stick band around the outside. 
After the sensor is connected to the circuit, the rehabilitation training 
movement detection of the distal radius fracture recovery period can 
be performed. The measured data showed that the system achieved an 
f1 score of 89.27% for the recognition of the four rehabilitation actions. 
The demands placed on splint tightness in patients with distal radius 
fractures necessitated the use of a pressure sensor to quantitatively assess 
splint tightness. Pressure sensors can be categorized into piezoresistive, 
capacitive, optical fiber, resonant, and piezoelectric types based on 
different principles (Song et al., 2020), and all of them can be fabricated 

FIGURE 8

The schematic diagram of generalized k-fold cross-validation.
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with very small dimensions in the medical field (Chau and Wise, 1988; 
Kalvesten et  al., 1998; Nemani et  al., 2013). Due to the need for 
miniaturization of the system, we have abandoned the use of bulky 
sensors such as weighing sensors, despite their high accuracy. There are 
devices known as intelligent splints that are effective in maintaining 
pressure on the affected area for immobilization. Most of them use 
airbags for pressure regulation and quantify the tightness based on air 
pressure sensors, and this type of research is mainly taking place in 
China. However, none of the sensor arrangements in these systems 
directly detect the pressure at the fracture point, so we rule out this 
option as well. Taking all factors into account, we decided that flexible 
thin-film pressure sensors were the sensors that best met our 
requirements, as they are small enough that can be easily placed between 
the skin and the splint without the negative effects of splint 
immobilization. Flexible pressure sensors have gained wide application 
in wearable smart devices due to their high flexibility, high sensitivity, 
and small size (Xu et al., 2018; Huang et al., 2019). We chose a thin-film 
pressure sensor with a well-established market, costing less than 3 
RMB. After the pressure calibration test, the results show that in our 
pressure acquisition circuit, the accuracy of the sensor is controlled at 
±20%, which meets the accuracy standard of the sensor itself, indicating 

that our acquisition circuit is effective. It should be  noted that the 
accuracy of our thin-film pressure sensor is far less than that of an 
accurate weighing sensor, but it is accurate enough to meet our splint 
pressure monitoring needs, and at the same time it is extremely low-cost, 
which makes it ideal for the Chinese market. The algorithm uses the 
average AD values of the initial relaxation state as the data benchmark, 
and the network input data of the training actions is the ratio of the 
original AD values relative to the data benchmark. Since each user wears 
the wristband with different degrees of looseness, this facilitates data 
normalization and thus improves system robustness and generalization. 
We  designed an action pre-detection strategy. Some rehabilitation 
actions are divided into multiple phases, for example, stretching-and-
making-a-fist action includes two phases, stretching and fisting. Since 
the data window uses sliding detection, in order to prevent data from the 
first stage from being passed into the classification algorithm once it 
enters the window, the strategy determines whether the beginning of the 
action data has moved close to the head of the window queue by judging 
the volatility of the data in the first third of the window. This strategy 
ensures that each window of data that enters the network is a complete 
rehabilitation training action. At the same time, switching between 
different rehabilitation actions can lead to strong changes in the pressure 

FIGURE 9

The test results for the six SVM classifiers using the generalized 5-fold cross-validation. The six subplots show the test results for each of the six SVM 
classifiers, including (A) between stretching-and-making-a-fist and seperating-and-merging-fingers, (B) between stretching-and-making-a-fist and 
palm-flexion-and-dorsiflexion, (C) between stretching-and-making-a-fist and ulnar-deviation action, (D) between seperating-and-merging-fingers 
and palm-flexion-and-dorsiflexion, (E) between seperating-and-merging-fingers and ulnar-deviation action, and (F) palm-flexion-and-dorsiflexion 
and ulnar-deviation action. The results show that there is a maximum linear separability between seperating-and-merging-fingers and palm-flexion-
and-dorsiflexion (D), however, there is a minimum between seperating-and-merging-fingers and ulnar-deviation action (E). This is due to the fact that 
the two actions in the latter have a relatively high similarity in the data change curves.
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data, for example, the initial hand gesture with a relaxed hand in the 
stretching-and-making-a-fist will result in a relatively low-pressure 
value, while the initial hand gesture with a tight hand in the separating-
and-merging-fingers action will result in a relatively high-pressure value. 
Switching between these two actions produces a rising or falling slope of 
the pressure value signal. To prevent passing this switching process into 
the classification algorithm, the action pre-detection strategy excludes 
this state switching process by calculating the difference between the 
start and end values of the window pressure data, so that a complete 
rehabilitation action signal can be initially filtered by this strategy. In the 
classification algorithm, we first obtain the feature information after 
dimensionality reduction from the original action data by an 
autoencoder and then use six SVM linear classifiers to vote on the 
samples two by two, and the final prediction with the highest number of 
votes is used as the final classification output. We  tested the linear 
separability of different action-coded data using a generalized k-fold 
cross-validation method, and the results show that the action-coded data 
of any two have good linear separability, proving the effectiveness of 
using the SVM linear classifier. In the actual test, the results showed that 
the system achieved a classification f1 score of 85.84% for subjects who 
did not participate in the training set acquisition, which shows the 
effectiveness of the system operation.

In addition, the rehabilitation wristband can be  used 
independently in a variety of splinting (small splints, casts, 

thermoplastic splints, etc.) immobilization situations in the early 
stages of fracture patients. Its pressure sensor can accurately assess the 
degree of splint tightness by direct contact with the affected limb, 
which can largely reduce the dependence of splint fixation on 
physician experience. This gives the wristband the flexibility of 
application as it can alert users to the loosening of the splint during 
fixation (Naqvi, 2022). Through the Bluetooth interface of the 
rehabilitation training wristband, a variety of rehabilitation training 
software can be developed based on it, such as a database for recording 
and managing patients’ daily rehabilitation training, and serious 
games for improving patients’ motivation in rehabilitation training.
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