
TYPE Original Research

PUBLISHED 14 September 2023

DOI 10.3389/fnbot.2023.1271607

OPEN ACCESS

EDITED BY

Alois C. Knoll,

Technical University of Munich, Germany

REVIEWED BY

Chen Chen,

Harbin University of Science and Technology,

China

Weida Li,

Soochow University, China

*CORRESPONDENCE

Fusheng Zha

zhafusheng@hit.edu.cn

Pengfei Wang

wangpengfei1007@163.com

RECEIVED 02 August 2023

ACCEPTED 31 August 2023

PUBLISHED 14 September 2023

CITATION

Wang S, Sun L, Zha F, Guo W and Wang P

(2023) Learning adaptive reaching and pushing

skills using contact information.

Front. Neurorobot. 17:1271607.

doi: 10.3389/fnbot.2023.1271607

COPYRIGHT

© 2023 Wang, Sun, Zha, Guo and Wang. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Learning adaptive reaching and
pushing skills using contact
information

Shuaijun Wang, Lining Sun, Fusheng Zha*, Wei Guo and

Pengfei Wang*

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China

In this paper, we propose a deep reinforcement learning-based framework that

enables adaptive and continuous control of a robot to push unseen objects from

random positions to the target position. Our approach takes into account contact

information in the design of the reward function, resulting in improved success

rates, generalization for unseen objects, and task e�ciency compared to policies

that do not consider contact information. Through reinforcement learning using

only one object in simulation, we obtain a learned policy for manipulating a single

object, which demonstrates good generalization when applied to the task of

pushing unseen objects. Finally, we validate the e�ectiveness of our approach in

real-world scenarios.
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1. Introduction

Robotic Pushing is a fundamental manipulation skill in the field of robotics, finding
utility in various scenarios such as scene rearrangement (Zeng et al., 2018), object
manipulation, and environmental interaction. Efficient and adaptive object pushing skills are
crucial for autonomous robotic systems to interact with their surroundings effectively (Bauza
et al., 2018). To achieve successful object pushing, two main approaches have been explored
in past research (Stüber et al., 2020): analytical-based methods and data-driven methods.
While analytical methods rely on explicit knowledge of the forward and inverse kinematics
and dynamics models of manipulation, data-driven approaches leverage machine learning
techniques to acquire pushing skills through experience.

Analytical-based methods (Yoshikawa and Kurisu, 1991; Howe and Cutkosky, 1996;
Dogar and Srinivasa, 2010; Zhu et al., 2017) require a clear understanding of the
object’s physical properties, including mass, center of mass, friction coefficients, and
other contact parameters. Zhou et al. (2019) demonstrates the differentially flat nature
of quasi-static pushing with sticking contact and an ellipsoid approximation of the limit
surface. The pusher-slider system is effectively reducible to the Dubins car problem with
bounded curvature, enabling easy trajectory planning and time-optimality. The paper
proposes closed-loop control with dynamic feedback linearization or open-loop control
using mechanical feedback from two contact points for trajectory stabilization. Lynch
(1993)proposes a method for a robot to plan object manipulation through pushing.
The approach involves estimating the geometry and friction properties of the object by
conducting experimental pushes and observing the resultingmotion. Additionally, the paper
explores object recognition based on their distinctive friction parameters. The focus is on
developing a practical framework for the robot to understand and interact with objects in
its environment by learning their friction-related characteristics. Lynch and Mason (1996)
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addresses the problem of planning stable pushing paths for
robots to position and orient objects in the plane, especially
when grasping and lifting are not feasible due to the objects’
size or weight. The study focuses on stable pushing directions
and the controllability issues arising from non-holonomic velocity
constraints, presenting a planner for finding such paths amidst
obstacles, with practical demonstrations on various manipulation
tasks. In Lloyd and Lepora (2021) researchers propose a reactive
and adaptive method for robotic pushing using high-resolution
optical tactile feedback instead of analytical or data-driven models.
The method demonstrates accurate and robust performance on
planar surfaces, and highlights the need to explore explicit models
and test on non-planar surfaces for improved generalization. By
explicitly modeling these characteristics, analytical methods can
achieve precise control andmanipulation of specific objects (Hogan
et al., 2018). However, these methods often lack the adaptability
to handle novel objects whose properties are not known a priori.
Consequently, they struggle to generalize their pushing skills to
diverse and previously unseen objects.

On the other hand, data-driven approaches (Bauza and
Rodriguez, 2017; Eitel et al., 2020; Song and Boularias, 2020;
Yu et al., 2023) have achieved significant attention in recent
years, primarily due to their ability to adapt to different
objects without prior knowledge of their physical properties.
These approaches utilize machine learning algorithms, such as
supervised learning (Li et al., 2018) and reinforcement learning
(Raffin et al., 2021; Cong et al., 2022), to acquire pushing skills
from experience. Supervised learning techniques can estimate
unknown object properties (Mavrakis et al., 2020), such as
the center of mass, while reinforcement learning enables the
learning of continuous control policies for pushing actions (Xu
et al., 2021). A novel neural network architecture for learning
accurate pushing dynamics models in tabletop object manipulation
tasks is proposed in Kim et al. (2023). The proposed model
possesses the desirable SE(2)-equivariance property, ensuring that
the predicted object motions remain invariant under planar
rigid-body transformations of object poses and pushing actions.
Extensive empirical validations demonstrate that this new approach
outperforms existing data-driven methods, leading to significantly
improved learning performances. In Kumar et al. (2023), Inverse
Reinforcement Learning (IRL) is explored to learn the reward
instead of designing it by humans, achieving better performance
in the pushing tasks. Chai et al. (2022) introduces a novel large
planar pushing dataset encompassing various simulated objects
and a new representation for pushing primitives, facilitating
data-driven prediction models. Additionally, it proposes an
efficient planning method with a heuristic approach to minimize
sliding contact between the pusher and the object, addressing
challenges in reasoning due to complex contact conditions and
unknown object properties. Paus et al. (2020) proposes an
approach for parameterizing pushing actions in robotic tasks using
internal prediction models. The method involves representing
scenes as object-centric graphs, training the internal model on
synthetic data, and evaluating it on real robot data to achieve
high prediction accuracy and generalization to scenes with
varying numbers of objects. Data-driven approaches have shown
promising results in handling a wide range of objects, exhibiting

better generalization and adaptability compared to analytical
methods.

Reinforcement learning (RL) methods have recently gained
popularity in low-level robot control tasks (Singh et al., 2022;
Elguea-Aguinaco et al., 2023), as they enable the learning of task
controllers using low-dimensional data as inputs, which are often
easier to learn policies from compared to high-dimensional data,
such as images. These pieces of information can be incorporated
into RL as observations and can also be utilized in the design of
RL reward functions. In this paper, we present a novel approach for
object pushing based on deep reinforcement learning. Our method
aims to efficiently push unknown objects from random initial poses
to predetermined target positions using the contact information in
the design of the reward function. The robot experiment system is
shown in Figure 1.

We leverage contact force information between the pusher and
the object to design an effective reward function that guides the
learning process. Contact force information plays a critical role in
pushing tasks, as it provides valuable cues about the interaction
dynamics and the effectiveness of the applied forces. Surprisingly,
contact force information has been underutilized in previous
reinforcement learning-based pushing tasks (Dengler et al., 2022),
especially in the reward design phase.

To address this limitation, we introduce appropriate
observations and continuous action outputs that enable the
agent to perform continuous and adaptive pushing control (Shahid
et al., 2020). Our reward function design encourages the alignment
between the direction of the contact force and the line connecting
the object and the target. Furthermore, we incentivize minimizing
the distance between the object’s center of mass and the contact
point where the force is applied. By doing so, we effectively
encourage pushing actions that generate zero rotational torque,
resulting in pure translation.

In our evaluation, we conducted extensive experiments in
a simulated environment. Remarkably, our approach achieved
higher task success rates, improved task completion efficiency,
and demonstrated superior generalization capabilities compared to
previous methods that did not consider contact force information.
Notably, our training process utilized only one object, yet the
learned policy successfully generalized to other unseen objects
without prior knowledge of their physical characteristics. These
findings demonstrate the effectiveness and potential of our
method for real-world applications involving diverse objects and
environments.

By leveraging contact force information and employing deep
reinforcement learning, our proposed method contributes to
improving adaptive reaching and pushing skills in robotics. The
integration of contact force information in the reward function
design provides valuable insights into the physical interactions
involved in object pushing, leading to more precision and adaptive
pushing policy.

In summary, our work highlights the importance of contact
force information in object pushing tasks and presents a
novel approach that effectively utilizes this information in the
reward design. By combining deep reinforcement learning (DRL)
and contact force guidance, we achieve improved task success
rates, task completion efficiency, and generalization capabilities.
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FIGURE 1

The robot pushing system: the object pose is detected by Apriltag techniques, and the pusher is the end e�ector of the franka robot. The objective of

the task is for the pusher to move the object to the target position through pushing.

Our research contributes to the ongoing efforts in enhancing
robotic manipulation skills and lays the foundation for future
advancements in autonomous systems interacting with diverse
objects and environments.

The contributions of this paper are listed as follows:

• We introduce a RL-based reaching and pushing framework
that uses only one object during training, allowing the trained
policy to adapt effectively to unseen objects;

• We consider contact information in the design of the reward
function to enhance task performance;

• We demonstrate that the learned policy, developed with
our proposed approach, achieves higher success rates, task
efficiency, and adaptability compared to policies that do not
consider contact information.

2. Preliminaries

Wemodel the object pushing task as a Markov decision process
(MDP), which is defined by the tuple (S ,A,T ,R, γ ), where:

S is the set of states, A is the set of actions, T is the transition
function that specifies the probability of moving to a new state s′

given the current state s and action a taken, i.e.,

T (s, a, s′) = Pr(St+1 = s′ | St = s,At = a) (1)

R is the reward function that maps a state-action pair (s, a) to
a scalar reward r ∈ R, and γ is the discount factor that determines
the importance of future rewards. The goal of our learning system is
to find a policy π :S → A that maximizes the expected cumulative

discounted reward:

∞
∑

t=0

γ tRt+1 (2)

where Rt+1 is the reward obtained at time t + 1, and γ t is the
discount factor applied to future rewards at time t.

In this work, the SAC reinforcement learning method is
applied. Soft Actor-Critic (SAC) Haarnoja et al. (2018) is a
reinforcement learning algorithm that can be used to solve Markov
decision processes (MDPs), which are mathematical models for
decision-making problems. The goal of an agent in an MDP is to
maximize its expected cumulative reward by taking actions in an
environment.

SAC is based on the actor-critic architecture, which consists
of an actor network that selects actions and a critic network that
estimates the value of a state or state-action pair. However, SAC
introduces several improvements over the traditional actor-critic
algorithm, such as the use of a soft value function and entropy
regularization.

The soft value function is defined as the expected sum of
rewards plus a temperature-scaled entropy term. The entropy term
encourages exploration and prevents premature convergence by
penalizing deterministic policies. The temperature parameter can
be learned during training or set manually.

The entropy regularization term is added to the actor objective
to encourage exploration and to prevent the policy from becoming
too confident. The overall objective of SAC can be written as:

L(θ) = Eτ∼πθ

[

T
∑

t=0

rt + αH(πθ (·|st))

]

− Est∼D

[

Vφ(st)
]

(3)
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where θ and φ are the parameters of the actor and critic
networks, respectively, τ is a trajectory sampled from the policy πθ ,
rt is the reward at time step t, α is the temperature parameter, H
is the entropy function, and D is the replay buffer containing past
experiences.

The first term in the objective is the expected cumulative reward
with entropy regularization, and the second term is the value
function approximation error. The parameters are updated using
gradient descent on the objective.

3. Methods

3.1. Proposed method framework

In this work, we propose a manipulation framework namely
“pusher”, which is an RL-based method to achieve objects reaching
and pushing manipulation skills. The framework can be seen in
Figure 2.

Our approach involves training a deep neural network policy
using the Soft Actor-Critic algorithm (SAC) to learn continous
pushing behaviors from sensory input. Specifically, we consider
the contact information in the procedures of interaction with the
environment in the reward design part.

Our framework involves three parts: actor-network, robot
simulation environment and critic-network. In the training phase,
we use a physics simulator to generate a dataset of pushing
movements for a single object. We then use data collected in the
progress to train a neural network policy (actor-network). During
training, the policy learns to map raw sensory input to pushing
actions that achieve the desired goal. The actor-network and critic
network parameters are updated with the interaction with the
environment.

The control framework can be seen in Figure 3. The robot state
and object state includes the end-effector position, object position,
distance from object to target, and distance from end-effector to
object. They are treated as input of the learned policy which is
represented by the actor-network. The output of the policy is the
action of the SAC algorithm. Robot pose is updated in frequency of
20 Hz. Inverse kinematics is applied to update the joint positions
which are sent to the real robot in the real world or simulation.

3.2. State and action space

The observation space includes the position of the target object,
the position and orientation of the end effector of the robot arm,
as well as the distance between the target object and the end
effector, and the distance between the target object and the target
location. The action space is defined by the increments in the
position and orientation of the end effector. Specifically, in this
paper it is constrained to the planar space, specifically in the x and
y directions, as well as the angle of rotation around the z-axis.

The observation space and action space of pushing can be
formulated as follows:

Opush = [d1, d2, θ , px, py, ex, ey] (4)

where d1 represents the distance of target object and end
effector of the manipulator, d2 represents the distance of target
object and target position. θ is rotation degree in z-aisx, px, py is
the position of target object, and ex, ey is the position of the end
effector of the manipulator.

The action space of pushing can be formulated as follows, which
is an incremental action:

A = [1x,1y,1θ] (5)

where 1x, 1y represents the position increment of the end
effector, and 1θ represents the orientation increment of the end
effector. Once we obtain the incremental output from our policy,
we add them to current robot position and rotation to update the
control signals of the end effector in cartesian space.

3.3. Reward design

In reinforcement learning-based frameworks, the reward
function plays a crucial role as it guides the learning policy
toward desired states. In the context of manipulation tasks in this
paper, which involves extensive interaction with the environment,
considering contact information in the reward function becomes
essential. Surprisingly, this aspect has received limited attention in
previous reinforcement learning-based approaches.

Firstly, let us introduce the contact model employed in
our work. The contact model for pushing is represented in a
straightforward manner, as depicted in Figure 4. It comprises the
Center of Mass (CoM) of the target objects, their radius, and the
orientation of the contact force. Notably, in this paper, we do not
explicitly consider the magnitude of the contact force; Only the
force direction is utilized.

In contrast to merely observing the state of the center of
mass before and after the robot’s interaction, incorporating contact
geometric information at the time of contact can provide more
precise and valuable insights. These geometric parameters offer
advantages beyond determining the proximity of the target object
to the desired position. They also contribute to a more accurate
prediction of the potential closeness or distance of the target object
to the desired state.

The mathematical representation of the reward functions for
pushing in our work can be expressed as:

Reward =

{

−θ − λ× d3, if contact

e−d3 − 2, otherwise
(6)

In the formula, θ represents the angle between the contact force
direction and the line connecting the object’s center of mass to the
target position. d3 refers to the distance from the object’s center
of mass to the contact force direction, which can be considered
as the lever arm. λ is set to 30 in this work. As evident from
this design, when there is no contact, we encourage the pusher
and the object to make contact. Conversely, when there is contact,
we incentivize the contact force to act through the object’s center
of mass, aligned with the line connecting the object to the target
position, effectively encouraging the generation of zero rotational

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1271607
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2023.1271607

FIGURE 2

Framework of deep reinforcement learning for adaptive pushing using contact information.

FIGURE 3

The control framework in the simulation, real-world, and joint-level control.

torque. This preference leads to the most direct path to push the
object toward the target point.

3.4. Domain randomization and training
procedures

In our study, we employed domain randomization to enhance
the generalization of the trained reinforcement learning (RL)

models. Specifically, we randomized the object’s mass, friction
coefficient, and initial position and orientation.

The reinforcement learning training process was conducted
using the Soft Actor-Critic (SAC) algorithm. The hyperparameters
used in the training were set as follows: a batch size of 100,
a learning rate of 0.001, replay buffer is 1e6, discount factor is
0.99, interpolation factor in polyak averaging for target networks
is 0.995, entropy regularization coefficient is 0.2. The PyBullet
physics engine (Coumans and Bai, 2016) as the simulator, PyTorch
as the learning framework, and Python as the programming
language.
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FIGURE 4

Contact model of interaction between object and pusher.

TABLE 1 Domain randomization parameters for pushing tasks.

Task Parameter Range

Pushing Object mass (0.2, 0.5) kg

Object friction (0.5, 1.0)

Object position [(0.1, 0.2), (0.45, 0.55)] m

Object orientation (−0.15, 0.15) rad

The Table 1 shows the range of values used for domain
randomization.

We adopt the soft actor-critic (SAC) algorithm to learn
the pushing tasks under the domain randomization framework.
The training process involves the following steps as shown in
the pseudocode implementation of the training procedure in
Algorithm 1.

4. Experimental results and analysis

4.1. Experiments setup

The simulation and real experiments are conducted in this
part to demonstrate the proposed method’s performance. For
simulation, we randomized several parameters of the objects to
create a diverse training environment. Specifically, we randomized
the mass, friction coefficient, and initial position of the objects.
The mass and friction coefficient were randomly sampled from
predefined ranges, and the initial position of the objects was
randomly set within a specified region. This randomization process
helps to introduce variability in the objects’ properties, making
the training environment more challenging and realistic. The use

Input: environment E, policy π, replay buffer D

Output: optimized policy π∗

1 while not converged do

2 sample mini-batch of transitions B from D

3 for i← 1 to n do

4 sample action ai ∼ π(·|si)

5 calculate target yi = ri + γQθ− (si+1,πφ− (si+1))

6 update critic parameters θ with respect to

mean-squared Bellman error:

7 L = 1
|B|

∑|B|
i=1(yi − Qθ (si, ai))2

8 update actor parameters φ using the sampled

policy gradient:

9 ∇φ J ≈
1
|B|

∑|B|
i=1 ∇aQθ (si, a)|a=πφ (si)∇φπφ (si)

10 update target network parameters:

θ− ← τθ + (1− τ )θ−

11 φ− ← τφ + (1− τ )φ−

12 end

13 end

Algorithm 1. Soft actor-critic (SAC) training algorithm.

of randomized parameters allows the policy to learn to adapt to
different object configurations, which can improve the policy’s
generalization performance.

As can be seen in Figure 1, in real experiments, an external
camera is applied to obtain the pose of the target object. This is
completed by the hand-eye calibration method (Tsai et al., 1989),
transferring the target object pose in the camera coordination to the
world coordinate.We use the Apriltag (Olson, 2011) attached to the
target object to detect the pose of objects. For real experiments, we
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selected three representative objects to illustrate the effectiveness of
our approach, as depicted in Figure 5.

4.2. Baseline

To highlight our proposed contact-aware based method,
we compare it with a previous state-based method, which

serves as the baseline approach. The state-based method and
our proposed contact-aware-based method share the same
observation but have different reward design manners. In the
state-based method, it does not consider any contact interaction
information in the reward design, in other words, the baseline
method only takes state changement before and after the action
is executed. Specifically, the baseline reward is designed as
Equation (7):

FIGURE 5

Real-world experiments setup and test objects with di�erent mass, shape, and coe�cient of friction.

FIGURE 6

Task success rate completing 50 times tasks. The result is the average of three runs with di�erent random seeds.
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Reward =

{

1, if dcurrent − dlast < 0

e−d3 − 2, otherwise
(7)

In Equation (7), dcurrent and dlast refer to the distance before
and after action execution. d3 refers to the distance from the
object’s center of mass to the contact force direction as the same
in Equation (6).

4.3. Performance analysis and discussion

4.3.1. Success rate
We conducted experiments in the Pybullet simulation to

showcase the performance of our proposed contact-aware method
in achieving a higher task success rate by considering the contact
information during interactions with the environment. We trained
the model for 150 epochs, with 20,000 steps per epoch for both

FIGURE 7

Reward curve in the training progress. The result is the average of three runs with di�erent random seeds.

FIGURE 8

Average test length of the trajectory. The result is the average of three runs with di�erent random seeds.
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FIGURE 9

The distance from the target pose. The result is the average of three runs with di�erent random seeds.

FIGURE 10

Generalization test in the simulation of four unseen objects: triangle, circle, hexagon, square. Label (A) is the training object and labels (B–E) are

unseen objects.

tasks. The environment is terminated once the task goal is satisfied,
the object is out of the workspace, or the maximum number of steps
per episode is reached. To evaluate the performance of our method,
we used the task success rate, which is calculated by evaluating the
learned policy 50 times at the end of each epoch.

In this section, we employed the task success rate as one of
the evaluation metrics. The task success rate is defined as the
percentage of episodes in which the robot successfully completed
the task, based on the predefined criteria: a successful completion

is recorded when the object is positioned within 2 cm of the target
location. By measuring the task success rate, we were able to assess
the effectiveness of our contact-aware method in improving the
performance of the pushing task.

As shown in Figure 6, we compared the success rates of our
proposed method and the baseline approach when pushing a block
object. It can be observed from the figure that our proposedmethod
(depicted by the blue curve) achieves a success rate approaching
100%. Furthermore, after interacting with the environment for one
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and a half million steps, the success rate of our proposed method
stabilizes with minimal fluctuations. In contrast, the baseline
method (represented by the yellow curve) exhibits success rates
fluctuating around 80%, with a large variance, indicating poor
strategy stability. This point also can be seen in the reward curve
from Figure 7.

4.3.2. Task e�ciency and precision
Our proposed method not only demonstrates advantages over

the baseline approach in terms of task success rate but also exhibits
superiority in task efficiency and precision.

The efficiency of task execution in this study is quantified
by measuring the total number of steps taken during the
implementation of the learned strategy. The number of steps
required to complete the pushing task is recorded during the testing
phases, and the statistical results are presented in Figure 8.

As shown in Figure 9, our proposed method requires
significantly fewer steps to accomplish the task compared to
the baseline approach, indicating higher task efficiency. This can
be attributed to the reward function designed based on contact

TABLE 2 Comparison of success rates in 50 times experiments for

di�erent objects.

Object Ours Baseline

Triangle 1.00 0.30

Circle 1.00 0.30

Hexagon 1.00 0.00

Square 1.00 0.40

information, which encourages the strategy to interact with the
object’s center of mass and push it directly toward the target
direction, resulting in fewer required steps. Additionally, from the
graph, it can be observed that this design also contributes to an
improvement in precision.

4.3.3. Adaptivity performance
Although we only trained ourmethod with a single object in the

simulation, it demonstrates adaptability to multiple unseen objects.
We specifically compared this aspect with the baseline method.

For the adaptability experiment, we utilized four objects other
than those used during training, as shown in Figure 10. Each object
took 50 task trials, and the success rate was recorded. The results
are presented in the table.

From the Table 2, it is evident that our proposed method
exhibits excellent adaptability to previously unseen objects,
showcasing robust strategy generalization. In comparison, the
baseline method demonstrates relatively poorer adaptability or
strategy generalization. In terms of the success rate metric, our
method consistently outperforms or performs on par with the
baseline method.

4.3.4. Real experiments
We conducted real robot task validation for our proposed

method, as illustrated in Figure 11. Our objective was to push three
representative objects from random positions to the target location,
which was set at the edge of the platform. This particular setup was
chosen to demonstrate the role of pushing, as in our laboratory,
the selected objects’ dimensions exceeded the gripper’s maximum

FIGURE 11

Snaps of pushing three representative objects with di�erent mass, shape, and coe�cient of friction in the real world. Labels (A–C) is for pushing an

irregular-shaped electrical component, labels (D–F) is for pushing a circular tape, and labels (G–I) is for pushing a plastic square box.
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FIGURE 12

Observation and action data of pushing an object in the real world.

width. Thus, pushing the objects to the platform’s edge allowed for
grasping from the thinner side.

As seen in Figure 11, our reinforcement learning strategy
successfully transferred to the real-world setting, even with unseen
different objects from the simulation. Nevertheless, our method
accomplished the task, demonstrating its effectiveness in real-world
scenarios.

We further showcase the real robot’s data, as depicted in
Figure 12. The observation space’s d2 represents the distance of
the object from the target position, gradually decreasing from an
initial distant position to reaching the target position. The action
space outputs increments, and it can be observed that the position
increment is adjusted around zero in the y-direction, while in the
x-direction, the position increment maintains a constant value,
allowing the robot to push the object to the target position.

5. Conclusion and future work

In this study, we introduced a novel Reinforcement Learning
(RL)-based approach to address the task of object pushing in both
simulated and real-world environments. Specifically, we utilized the
Soft Actor-Critic (SAC) algorithm for training the RL policy while
incorporating essential contact information between the robot
and the environment through a specialized reward function. As
a result, the learned policy demonstrated significantly higher task
success rates in comparison to the baseline method, showcasing
enhanced stability, generalization, and adaptability of the strategy.
Furthermore, the successful transfer of the learned policy from
simulation to real-world settings validated the efficacy of our
proposed method.

In future endeavors, we aim to further enhance the policy’s
perceptual and decision-making capabilities by integrating
additional sensory inputs, such as vision or tactile feedback.

To conclude, our study presents a promising and pragmatic
approach for addressing object pushing tasks using RL,
incorporating domain randomization and the SAC algorithm.
The proposed method exhibits the potential for generalizing to
novel objects and sets the stage for advancing research in RL-based
manipulation tasks.
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