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Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide 
chains in proteins. Endopeptidases are a type of protease that hydrolyze the 
internal peptide bonds of proteins, forming shorter peptides; exopeptidases 
hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, 
forming free amino acids. Microbial proteases are a popular instrument in many 
industrial applications. In this review, the classification, detection, identification, 
and sources of microbial proteases are systematically introduced, as well as their 
applications in food, detergents, waste treatment, and biotechnology processes 
in the industry fields. In addition, recent studies on techniques used to express 
heterologous microbial proteases are summarized to describe the process of 
studying proteases. Finally, future developmental trends for microbial proteases 
are discussed.
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1. Introduction

As recently highlighted by research and academic papers on enzymes, proteases constitute 
the largest product segment in the global industrial market for enzymes because they are 
extensively used in detergent and food industries (Acrofan, 2021; FOC Group, 2022). 
Additionally, with the development of science and technology, the use of protease enzymes in 
several bioremediation processes and leather treatments is increasing (Research and Markets, 
2021). Moreover, protease enzymes are being extensively used in the production of medicines, 
as protease enzymes treat multiple diseases, such as lung, heart, eye, digestive tract, and skin 
ulcer diseases as well as soreness (Shrivastava et al., 2019). Thus, the demand for protease 
enzymes should continue to increase in the future.

The main sources of proteases are animals (e.g., calf stomach), plants (e.g., pineapple, fig, and 
papaya), microbes (e.g., Bacillus spp., Pseudomonas spp.; Jisha et al., 2013; Sun et al., 2016, 2019; 
Chitte and Chaphalkar, 2017). The production of enzymes from animal and plant sources, however, 
has been limited due to ethical issues, environmental reasons, and low-efficiency production 
processes. Commercially, microbial enzymes are popular due to their scientific and economic 
advantages as well as their broad biochemical diversity (Jisha et al., 2013).

In this paper, a detailed studies were reviewed on the classification, identification, testing, 
application and preparation of microbial protease due to their many advantages, including their 
rich variety (microbial proteases include acid, neutral, and alkaline proteases); ability to function 
under various industrial and even extreme conditions (such as high temperatures); and wide 
application potential and large market in various industry fields, including food, beverage, 
detergents, leather, animal feed, waste treatment, microbial fermentation and biotechnology 
industries. In addition, the number of potential proteases is very large (the main bioinformatics 
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databases contains tens of millions of protease genes without 
functional verification).

2. Classification of microbial proteases

Microbial proteases can be  categorized into the following 
categories: (1) proteases that can hydrolyze specific proteins (e.g., 
collagenase, elastase, and keratinase); (2) proteases that exhibit 
likeness to well-characterized proteolytic enzymes (e.g., chymotrypsin, 
trypsin, and pepsin); (3) proteases with an active pH range (e.g., 
alkaline, acid, or neutral); (4) proteases that exhibit mechanism of 
catalytic behavior (i.e., the amino acid residues are involved in the 
active site or center of the enzymes, such as aspartic proteases, cysteine 
proteases, metalloproteases, and serine proteases; Rao et al., 1998); 
and (5) proteases with hydrolysis sites specificity (endopeptidases and 
exopeptidases, which act internally in polypeptide chains and near the 
terminus of a polypeptide chain, respectively). The Enzyme 
Commission (EC) has denoted various endopeptidase and 
exopeptidase subtypes (see Table 1).

Proteases are categorized in subgroup 4 of group 3 (hydrolase), 
per the Nomenclature Committee of the International Union of 
Biochemistry and Molecular Biology (International Union of 
Biochemistry, 1992).

A detailed system of classification has resulted from increased 
knowledge on the catalytic mechanism and structure. Depending on 
the evolutionary relationships and amino acid sequences of proteases, 
they are categorized into different clans and families (Rawlings et al., 
2017). A clan (i.e., a group of families) does not exhibit significant 
similarities in sequence but does possess an evolutionary relationship. 
Clans can also include families from different catalytic classes because 
their catalytic-site residues follow an identical order and show similar 
tertiary folds. A family contains proteolytic enzymes that are 
homologous, which is revealed by a significant similarity in their 
amino acid sequence. They can be identified according to the family’s 
enzyme type or a homologous protein to the enzyme type, which thus 
is a family member. Based on this classification, the MEROPS database 
provides comprehensive details about different proteases. According 
to these phylogenetic relationships and mechanisms of action, all 
proteases in clans and families can be  grouped into asparagine 
proteases, aspartic proteases, cysteine proteases, glutamic proteases, 
mixed proteases, metalloproteases, threonine proteases, serine 
proteases, and unknown proteases (Rawlings et al., 2017).

3. Detection of microbial proteases

3.1. Endopeptidase detection

3.1.1. Observation of halos
Protease production is indicated by the formation of clear 

halos around colonies that have grown on protein substrates in 
agar plates. This occurs when extracellular endopeptidases are 
produced by microorganisms in solid media. Growth media 
supplement the protein substrates, which were then poured into 
Petri plates. Commonly used substrates include skim milk agar 
(Masi et al., 2021; Shaikh et al., 2023), casein agar (Yokota et al., 
1988; Rathod and Pathak, 2014), bovine serum albumin (BSA) agar 

(De Azeredo et al., 2001), gelatin agar (Mortezaei et al., 2021), 
keratin agar (Pereira et al., 2014; Nnolim et al., 2020), fibrin agar 
(Prabhu et al., 2021; Anis Ahamed et al., 2022), and elastin agar 
(Zins et al., 2001). When protease was produced in liquid media, 
the supernatant of fermentation broth (for extracellular proteases) 
or cell lysate (intracellular proteases) containing protease was 
collected. The same agar plates (containing protein substrates) as 
described for solid media were prepared, a well was created in the 
plate was made or an Oxford cup was placed on the plate for the 
enzyme liquid container to observe the halo (Wang et al., 2015; 
Yang et al., 2021).

The observation halo is the most intuitive and simple method 
used to identify proteases, but it is only suitable for endopeptidases 
and proteases that exhibit sufficiently strong activity to form clear 
halos. The activity of proteases is commonly detected by measuring 
the hydrolysate or the reduction in substrate caused by protease 
hydrolysis. There are many kinds of proteases that exhibit different 
activities, utilize different hydrolysis modes, and generate hydrolysis 
products with different characteristics; thus, different substrates and 
methods are needed to detect these proteases. To date, the substrates 
used to detect proteases are roughly divided into native substrates and 

TABLE 1 Classification and nomenclature of peptidases.

Subclasses EC code Activity

Exopeptidases 3.4.11–19 Cleave near a terminus of 

peptides or proteins

Aminopeptidases 3.4.11 Remove a single amino acid 

from the free N-terminus

Dipeptidases 3.4.13 Exopeptidases specific for 

dipeptides

Dipeptidyl peptidases 3.4.14 Remove a dipeptide from the 

free N-terminus

Tripeptidyl peptidases 3.4.14 Remove a tripeptide from the 

free N-terminus

Peptidyldipeptidases 3.4.15 Release of free C-terminus 

liberates a dipeptide

Carboxypeptidases 3.4.16–18 Remove a single amino acid 

from the C-terminus

Serine proteases 3.4.16 Active sites contain serine

Metalloproteases 3.4.17 Active sites contain metal ions

Cysteine proteases 3.4.18 Active sites contain cysteine

Omega peptidases 3.4.19 Remove terminal residues that 

are substituted, cyclized or 

linked by isopeptide bonds

Endopeptidases 3.4.21–24 Cleave internally in peptides or 

proteins

Serine proteases 3.4.21 Active sites contain serine

Cysteine proteases 3.4.22 Active sites contain cysteine

Aspartic proteases 3.4.23 Active sites contain aspartate

Metalloproteases 3.4.24 Active sites contain metal ions

Threonine endopeptidases 3.4.25 Active sites contain threonine

Endopeptidases of unknown 

catalytic mechanism

3.4.99 Acting on peptide bonds
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modified substrates. The modified substrates are further mainly 
divided into chromogenic substrates and fluorescent substrates. 
Different substrates are detected with different methods.

3.1.2. Detection by natural protein substrates
Natural protein substrates are those that occur in nature (plant 

protein, animal protein, microbial protein, etc.). The most commonly 
used substrate for testing protease activity is casein. Protease 
hydrolyzes casein under certain temperature and pH conditions to 
produce peptides or amino acids that are soluble in an acidic solution. 
After undergoing acid deposition, the newly formed product dissolves 
in the upper acid solution, while the unhydrolyzed protein forms a 
precipitate (Yokota et  al., 1988; Rathod and Pathak, 2014). The 
supernatant is collected by centrifugation, and the activity of the 
protease is determined by testing the resulting peptides or amino acids 
using Folin reagent, ninhydrin, TNBS or OPA, which each exhibit 
advantages and disadvantages (Table 2).

3.1.3. Detection by modified protein substrates

3.1.3.1. Detection by chromogenic substrates
To increase substrate solubility and detection sensitivity, modified 

protein substrate is used in some methods to detect protease activity, 
and this substrate should generate a colored end product after 
proteolysis or a product that can be converted into a colored complex. 
One example is azocasein, a casein dyed with p-aminobenzenesulfonic 
acid, which produces a colored complex that is soluble in 
trichloroacetic acid and shows absorption at 440 nm after digestion by 
proteases (Cejudo-Bastante et al., 2022; de Matos et al., 2022; Marson 
et al., 2022). Succinyl casein, which possesses chemically succinlyated 
amino groups (Hatakeyama et al., 1992), easily dissolves at pH values 
greater than 4, unlike casein.

According to substrate specificity, the synthetic substrate can 
be identified by the type of protease screened, such as Tosyl-Gly-Pro-
Arg-pNA for trypsin (Sandholt et al., 2018), Suc-Ala-Ala-Pro-Phe-
pNA for chymotrypsin (Siigur et al., 2011; Németh et al., 2022) and 
Suc-Ala-Ala-Pro-Val-pNA for elastase (Ferreira et al., 2009). However, 
N-Cbz-Ala-Ala-Leu-pNA and N-Cbz-Gly-Gly-Leu-pNA are good 
substrates for subtilisins (Burchacka et  al., 2022). The principle 
underlying the assay is that proteases hydrolyze the amide bond 
connecting p-nitroaniline (pNA) to the neighboring amino acid 
residue, and released pNA exhibits specific absorption at a 405 nm 
wavelength (enzyme activity is proportional to fluorescence intensity).

3.1.3.2. Detection by fluorogenic substrates
More sensitive methods are needed when the quantity or activity 

of protease enzymes are low, and sensitive fluorescent peptide 
substrates are available, through which the limit of detection reaches 
the ng level (Austin et al., 2022).

Fluorescent labeling applied to protease substrate modification 
can be divided into the following categories: 1, single fluorescence-
based labeling, in which one kind of fluorescent dye labels the 
substrate protein after binding so that the substrate protein obtains 
fluorescent labeling. 2, Double fluorescence labeling, in which two 
different fluorescent dyes label the peptides. One dye is an energy 
acceptor and the other is an energy donor; the labeled peptide, which 
is activated by protease hydrolysis, does not show fluorescence. 3, 
Homotransfer fluorescence labeling, in which there is one kind of 

fluorescence labeling substrate protein, and fluorescence resonance 
energy transfer (FRET) occurs between the labeled fluorescent 
molecules, which do not show fluorescence but are hydrolyzed by 
proteases to activate fluorescence.

3.1.3.2.1. Single fluorescence-based labeling
Single fluorescence dye labeling involves introducing fluorophores 

attached to side chain amino acids, such as the N-terminus, 
C-terminus, Glu, Lys or Cys of a peptide. Nearly 30 types of 
fluorescence dyes have been developed thus far (Díaz-García and 
Badía-Laíño, 2018). The more widely used dyes are carboxyfluorescein 
(FAM; Feng et al., 2022), fluorescein isothiocyanate (FITC; Taylor 
et  al., 2022), dansyl chloride (DNS-Cl; Yoo and Han, 2021), 
2,4-dinitrophenylhydrazine (Dnp; Oliveira et al., 2001), 7-amino-4-
methylcoumarin (AMC), 7-amino-4-trifluoromethyl coumarin (AFC; 
Breidenbach et  al., 2020), carboxyrhodamine 110 (CR110; Lorey, 
2002), Texas Red (Lorey, 2002), pentamethine cyanine (Cy5) and 
heptamethine cyanine (Cy7) dyes (Chin and Kim, 2018). Protease 
activity is measured as an enhanced emission generated after a peptide 
is cleaved by an enzyme and is released from the fluorophore. The 
detection limits of single fluorescence-based labeling for proteases can 
reach the ng level (Kasana et al., 2011). However, when detection is 
performed using a single fluorescently labeled protease substrate, the 
product and substrate must be  separated, and the pH needs to 
be  adjusted to enhance the detection signal. The detection steps 
remain relatively complex (Twining, 1984; Austin et al., 2022).

3.1.3.2.2. Fluorescence dye double labeling
In contrast to single fluorescence-based labeling, such as the 

commonly used FTC-casein assay, double fluorescence labeling 
provides a more convenient and precise method, which is based on 
the FRET concept (Clapp et al., 2004; Goulet et al., 2020). The kinetics 
of exo- and endopeptidases can be measured over a wide pH range 
using assay procedures that do not involve separation steps (Legare 
et al., 2022). The total substrate turnover can be measured at a fixed 
time after an enzyme is added (Elston et  al., 2007). Decreased 
fluorescence quenching (i.e., increased total fluorescence), which 
occurs as peptides (labeled proteins) are digested into smaller 
fluorescein-labeled fragments, can be identified using FRET-based 
measurement. In classical FRET, electron energy transfer occurs 
between two fluorophores, an energy acceptor and energy donor. 
Table 3 lists common combinations of acceptors and donors.

3.1.3.2.3. Homotransfer fluorescence labeling
As mentioned above, classical FRET involves electron energy 

transfer between two different fluorophores; however, FRET events 
can also occur as a result of fluorescence homotransfer in which 
fluorescein acts both as the energy “donor” and energy “acceptor” 
(Runnels and Scarlata, 1995; Chen et al., 2000; Thompson et al., 2000; 
Figure  1), which is called homotransfer fluorescence labeling. 
Compared to the FTC-casein assay, these assays are also easier to 
perform, and they are 100-fold more sensitive (Jones et al., 1997).

A typical single-fluorescence dye used in FRET is the BODIPY 
dye (Jones et al., 1997): BODIPY dye molecules are attached to casein 
to prepare casein conjugates of BODIPY dyes. The dyes in these 
conjugates are labeled to achieve efficient quenching in the protein. 
This process yields nonfluorescent substrate molecules. These 
fluorogenic substrates release highly fluorescent BODIPY dye-labeled 
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peptides during proteolysis and increase the fluorescence as it relates 
to enzymatic activity. Using standard fluorometers, filter fluorometers, 
or fluorescence microplate readers, this activity can be measured. 
Fluorescein excitation and emission wavelengths can be  used to 
measure BODIPY casein hydrolysis. EnzChek™ Protease Assay kits 
from ThermoFisher Scientific contain a heavily labeled casein 
derivative. Green-fluorescent BODIPY FL dye and red-fluorescent 
BODIPY TR-X dye are commonly used for this application.

3.2. Exopeptidase detection

Endopeptidases hydrolyze proteins and mainly release peptides, 
and exopeptidases hydrolyze proteins and release free amino acids, so 

the methods used to detect endo−/exopeptidases must be different, 
and the method used to detect endopeptidases is not very sensitive 
to exopeptidases.

The assay used to measure exopeptidase activity usually involves 
synthetic peptide as the substrate; for the aminopeptidase assay, a 
peptide with two and three amino acid residues is synthesized to 
detect aminopeptidases (Mathew et al., 2000; Gu and Walling, 2002). 
For more sensitive detection, p-nitroaniline (pNA; Cahan et  al., 
2001; Schulze et  al., 2018) or 7-methoxycoumarin-4-acetic acid 
(MCA; Chen et al., 2011, 2012; Schulze et al., 2018) are connected to 
the carboxyl terminus of peptides; after hydrolysis, a free pNA or 
MCA molecule is released in the reaction solution. This method can 
detect the specific absorbance value to determine the 
aminopeptidases activity.

TABLE 2 Detection of protease activity using a natural substrate.

Test method/
reagent

Detection principle Advantages and disadvantages References

Folin reagent Proteases hydrolyze protein substrates to produces amino 

acids with phenolic groups (tyrosine, tryptophan) or 

peptides containing amino acids with phenolic groups, 

which can be reduced by the Folin reagent (Folin) under 

alkaline conditions to produce molybdenum blue and 

tungsten blue, the color of which is proportional to the 

content of amino acids with phenolic groups. The number 

of amino acids with phenolic groups produced by 

enzymatic digestion is obtained by detecting the 

absorbance at 680 nm, and thus calculating the protease 

activity

This method is easy to operate and the quantitative range 

is 5–100 μg amino acids; the color reaction of Folin 

reagent is caused by tyrosine, tryptophan and cysteine, so 

if the sample contains phenols, citric acid and sulfhydryl 

compounds, they will interfere with the detection; This 

method is affected by the type of protein substrate, and 

the color intensity of different proteins is slightly different 

due to the different content of tyrosine and tryptophan

Mcdonald and Chen 

(1965), Chen et al. (2022)

Ninhydrin Amino acids and peptides with free α-amino and 

α-carboxyl groups react with ninhydrin to produce a 

blue–purple substance (proline and hydroxyproline react 

with ninhydrin to produce a (bright) yellow substance). 

The color shade of this compound is proportional to the 

amino acid content and the amino acid content is 

determined by measuring the absorbance at 570 nm 

(440 nm for proline and hydroxyproline)

A commonly used and sensitive method for the detection 

of proteases with a detection limit of 0.5 μg amino acids; 

however, the color developer has low stability and cannot 

be stored for a long time; different amino acids and 

ninhydrin develop color differently, resulting in partial 

deviation of the measurement results

Moore and Stein (1948), 

Zhang et al. (2013), 

Hamed et al. (2020)

Trinitrobenzene 

sulfonate (TNBS)

TNBS reacted with amino acids under alkaline conditions 

for 1 h at 37°C and cooled at room temperature for 30 min, 

followed by the detection of absorbance values at 420 nm, 

which were proportional to the amino acid content

The sensitivity of this method is reasonable, and the 

detection range is 0.05–0.4 μmol amino acids; the 

shortcomings are that the assay is time-consuming, the 

ε-amino group of leucine can also react with TNBS, which 

affects the accuracy of the determination results, and the 

lack of correlation between the proline and 

hydroxyproline contents and the absorbance values, which 

can easily produce bias

Adler-Nissen (1979), 

Spellman et al. (2003), 

Fathi et al. (2021), Han 

et al. (2021), Cermeño 

et al. (2022)

o-phthaldialdehyde 

(OPA)

Proteases release a free amino group for each peptide 

bond hydrolyzed. The free amino group reacts with OPA 

to form a yellow complex, the absorbance of which can 

be measured spectrophotometrically at 340 nm

The OPA method is a rapid and simple method to 

determine the hydrolysis of protein hydrolysates, and is 

5–10 times more sensitive than the ninhydrin method; 

OPA determination of hydrolysis relies on a weak and 

unstable reaction between OPA and cysteine in the 

hydrolyzed substrate; this method is not suitable for 

cysteine-rich substrates, and proline and OPA do not react 

and cannot be detected; in addition, the detection process 

requires strict time control, because the detection value 

changes with time, and it is relatively difficult to obtain 

accurate measurement values

Church et al. (1983), 

Spellman et al. (2003), 

Hong et al. (2022), 

Alblooshi et al. (2023)
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For the carboxypeptidase assay, a peptide with an amino terminus 
blocked by benzyloxycarbonyl (CBZ; Fu et al., 2011; Song et al., 2021a) 
or benzoyl (BZ; Ramirez Zavala et al., 2004; Heylen et al., 2010) is 
most commonly used as a substrate. Only carboxypeptidase can 
release amino acids from the carboxyl terminus. After hydrolysis, free 
amino acids are released from the synthetic peptide and detected by 
ninhydrin or OPA reagent.

Fluorescent substrates can also be used to detect exopeptidases, 
including aminopeptidases (Chen, 2020; Liu S. Y. et al., 2022; Ma et al., 
2023) and carboxypeptidases (Xiong et al., 2018; Yoo and Han, 2021), 
because of their extreme sensitivity.

Some protease detection methods, such as ELISAs or ultrasonic 
resolver technology assays, are also available. These methods are not 
widely used due to their limitations and are only used in special cases. 
For example, prior information on the structure of the enzyme is 
needed to perform ELISA-based assays (Blair and McDowell, 1995). 
For ultrasonic resolver technology, a different analytical method is 
needed and must be first correlated to the corresponding ultrasonic 
velocity signals in advance (Born et al., 2010). These methods will not 
be introduced in detail here. For details, please refer to related reviews 
(Kasana et al., 2011).

Among microbial resources, potential proteases are extremely 
abundant, and proteases detection methods are crucial for developing 
novel proteases. In the future, detection methods will be developed 

that are sensitive, fast, inexpensive, and suitable for high-throughput 
screening of proteases.

4. Application of microbial proteases

Microbial proteases have wide ranging applications in several 
fields, including baking, brewing, detergents, leather making, 
pharmaceuticals, meat tenderizing, cosmetics, medical diagnosis and 
so on (Christensen et al., 2022; Reddy et al., 2022; Akram et al., 2023; 
Mubeen et al., 2023). In addition, with the rapid development of new 
fields, applications of microbial proteases are expanding to new areas, 
such feed industries (Bernardeau et  al., 2022; Cupi et  al., 2022), 
hydrolysis applications to prepare active peptides (Christensen et al., 
2022), and environmental protection applications, such as waste 
treatment and reuse (Ariaeenejad et al., 2022; Asitok et al., 2022; Zhai 
et al., 2022). These applications illustrate the diversity and importance 
of proteases. The applications of proteases and their respective 
microbial sources by examining acid protease, neutral protease and 
alkaline proteases and their classification were discussed and briefly 
summarized in Figure 2.

4.1. Alkaline proteases

Among the different proteases, alkaline proteases exhibit the 
highest activity in the pH range of 8 to 13. Alkaline proteases are 
commonly used in the following industries:

4.1.1. Detergent industry
Alkaline proteases represent the largest share of the enzyme 

market, are a commercially important group of enzymes and are used 
primarily as detergent additives (Sharma et  al., 2017). By adding 
alkaline proteases to laundry detergents, proteinaceous material can 
be released from stains (Matkawala et al., 2019; Tanwar et al., 2022). 
Unlike traditional detergents, the addition of protease saves energy 
and improves washing efficiency. After soaking, shorter periods of 

TABLE 3 Double fluorescence labeled donor-acceptor pair.

Acceptors Donors Wavelength (nm)

Excitation Emission

Dnp (2,4-Dinitrophenyl) Trp (Tryptophan) 280 nm 360 nm

4-Nitro-Z (4-Nitro-benzyloxycarbonyl) Trp (Tryptophan) 280 nm 360 nm

Dnp (2,4-Dinitrophenyl) Mca (7-Methoxycoumarin-4-acetyl) 325 nm 392 nm

pNA (para-Nitroaniline) Abz (2-Aminobenzoyl) 320 nm 420 nm

3-Nitro-Tyr (3-Nitro-tyrosine) Abz (2-Aminobenzoyl) 320 nm 420 nm

4-Nitro-Phe (4-Nitro-phenylalanine) Abz (2-Aminobenzoyl) 320 nm 420 nm

Dabcyl ((4-(4-Dimethylamino)phenyl)azo)benzoyl EDANS (5-[(2-Aminoethyl)ami-no]-1-naphthalenesulfo-nic acid) 340 nm 490 nm

Dabsyl (4-(4-Diethylaminophenylazo)-

benzenesulfonyl)

Lucifer Yellow 430 nm 520 nm

Dnp (2,4-Dinitrophenyl) FITC (Fluorescein isothiocyanate) 490 nm 520 nm

4-Nitro-Phe (4-Nitro-phenylalanine) Dansyl (5-(Dimethylamino) naphthalene-1-sulfonyl) 342 nm 562 nm

QSY7 5-TAMRA (Carboxytetramethyl rhodamine) 547 nm 573 nm

QSY-7 Eu (III) Chelate 340 nm 613 nm

FIGURE 1

Principle of protease detection by fluorescence homotransfer.
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agitation and lower wash temperatures can be used with the addition 
of proteases (Mubeen et al., 2023). Commercial alkaline proteases are 
effective at low levels (0.4–0.8%) and are compatible with various 
detergent components that contain oxidizing and sequestering agents. 
These proteases also exhibit high activity and stability over a broad 
range of pH values and temperatures as well as a long shelf life (Vojcic 
et al., 2015). Proteases are environmentally friendly, nonphosphate 
detergents, and washing powders containing proteases can be used in 
dry cleaning applications as stain and spot removers (Kumar 
et al., 2016).

4.1.2. Leather industry
Leathers are usually processed using an alkaline reagent. Because 

alkaline proteases exhibit keratinolytic and elastolytic activities, they 
can effectively biotreat leather, particularly the bating and dehairing 
of hides and skins (Tian et al., 2019; Srivastava et al., 2020). These 
methods are better choices than conventional methods, which use 
harsh chemicals, create disposal problems, exhibit increase safety 
risks, and cause chemical pollution (Hassan et al., 2020). Subsequent 
studies have successfully used alkaline proteases from Aspergillus, 
Streptomyces, and Bacillus in leather tanning (Ogino et al., 2008; Paul 
et al., 2016; El-Ghonemy and Ali, 2021; Hasan et al., 2022; Zhang 
et al., 2022).

4.1.3. Food industry
The most extensive application of alkaline protease is in the 

food industry.

4.1.3.1. Meat tenderization
Alkaline proteases can hydrolyze muscle fiber proteins and 

connective tissue proteins. Meat tenderization is achieved by 
immersing meat in a protease solution or sprinkling it with a 
powdered enzyme (Bureros et  al., 2020). The vascular systems of 
animals are often injected with protease solutions 10–30 min before 
slaughter (Kalisz, 1988), including alkaline elastase (Qihe et al., 2006) 
and thermophilic alkaline protease (Wilson et al., 1992).

4.1.3.2. Meat solubilization
Soluble meat hydrolysates and meat-flavored hydrolysates are 

byproducts of the leather industry. These potential sources of protein 
are bone, offal (raw lung), and bone residues after mechanical 
deboning. The most beneficial enzyme in terms of solubilization, cost, 
and other factors is alcalase (Anzani et al., 2017), which can be used 
to produce fish protein hydrolysates (Noman et al., 2022).

4.1.3.3. Blood decolorization
Because of its intense color, blood is an underutilized source of 

food protein. Although the red cell fraction contains 75% of the 
protein in the blood, alcalase is preferred because it thoroughly and 
rapidly hydrolyzes red cells.

The red cell fraction contains 75% of the protein in the blood, of 
which more than 92% is hemoglobin. Hemoglobin is composed of heme 
and globin, and heme causes blood products to eventually appear black 
red and exhibits a strong bloody smell. Alcalase is the preferred blood 
decolorization protease because it thoroughly and rapidly hydrolyzes 
hemoglobin and releases polypeptides. After enzymatic cleavage, the 
remaining hydrophobic core formed by wrapping heme with 
hydrophobic peptide fragments forms precipitates under appropriate pH 
conditions. The supernatant is dried by spray to produce hemoglobin 
powder, which can remove the ugly black purple color and the bloody 
smell of blood products; furthermore, the powder can be used as feed 
additive, colorants in the food industry and pharmaceutical raw materials 
in the pharmaceutical industry (Pérez-Gálvez et al., 2011).

4.1.3.4. Soy products
In Asia, fungal proteases have long been used to prepare soy sauce 

and soy products (Devanthi and Gkatzionis, 2019). The alkaline and 
neutral proteases of Aspergillus are essential in the digestion of 
soybean protein and provide the rich flavor of true soy sauce (Zhao 
et al., 2020). They also play an important role in improving the quality 
of soy products during processing (Xu et al., 2013).

Members of the genus Bacillus have been screened for use in 
various industrial applications and have been identified as the 

FIGURE 2

The applications of proteases.
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predominant alkalophilic microorganism. They are a prolific 
source of alkaline proteases, including Bacillus amyloliquefaciens, 
Bacillus licheniformis, and some Bacillus sp. Many fungi produce 
extracellular alkaline proteases, most notably Aspergillus sp. 
(Table 4).

4.2. Neutral proteases

Neutral proteases exhibit the highest activity at neutral, weakly 
alkaline or weakly acidic pH values. Neutral proteases are used in the 
following applications.

4.2.1. Bakers’ dough
To help in bread production, neutral proteases and amylases 

can be added to wheat or flour. Protease increases bread volume, 
improves dough elasticity, and improves crust texture (Zadeike 
et al., 2018; Gu et al., 2022; Xu et al., 2022; Li J. et al., 2023; Sun 
et  al., 2023). In the process of making crackers, biscuits, and 

cookies, neutral proteases are used to improve the extensibility and 
strength of the dough and prevent dough from tearing when rolled 
thin. To prevent biscuits from bending and wrinkling in the oven, 
the dough must be soft (Borrelli et al., 2003; Sumantha et al., 2006; 
Mokashe et al., 2018; Nikinmaa et al., 2019). A soft and pliable 
dough is also necessary for the precise letters and decoration on 
biscuits. Bacterial neutral proteases are often used to achieve this 
(Ehren et  al., 2009) because the enzymes’ highly specific 
endopeptidases are ideal for high protein flours.

4.2.2. Meat tenderization
Fresh meat pH is neutral, and therefore neutral proteases are best 

suited for hydrolysis; tenderization of meat is achieved by the action 
of endogenous proteases, especially neutral lysosomal cathepsins and 
neutral metalloprotease/cysteine endopeptidase (Prates et al., 2001; 
Thomas et al., 2004; Mikołajczak et al., 2019).

Neutral proteases are widely distributed among the Bacillus and 
Aspergillus species (Ward et al., 2009). Thermolysin [EC 3.4.24.27], 
which is produced by Bacillus thermoproteolyticus, is probably the 
best-known neutral protease (Inouye et al., 2007). Thermolysin was 
originally identified in the culture broth of Bacillus thermoproteolyticus 
Rokko and is an attractive target in protein engineering. Since its 
discovery in 1962, Thermolysin, which is a thermostable neutral zinc 
metalloprotease, has undergone extensive structural and mechanistic 
studies due to its halophilicity, catalytic mechanism, and 
thermostability. The Bacillus genera that produce neutral proteases 
include Bacillus subtilis, Bacillus licheniformis, Bacillus 
stearothermophilus, Bacillus nakamurai, and Bacillus tropicus, and the 
Aspergillus genera include Aspergillus oryzae, Aspergillus niger, 
Aspergillus sojae, Aspergillus nidulans, and Aspergillus tamarii 
(Table 5).

4.3. Acid proteases

The proteases described here are active between pH 2 and 6. Acid 
proteases of microbial origin are mostly found in the food and 
beverage industries.

4.3.1. Food industry
Acid proteases are primarily used in the food industry for the 

clotting of milk during the manufacturing of cheese. When the milk 
proteins coagulate, they form solid masses or curds. Then, the whey is 
removed to generate cheese (Tsuchiya et al., 1993; Hellmuth, 2006; 
Theron and Divol, 2014). In addition to their application in the dairy 
industry, acid proteases are also used for baking. Similar to neutral 
proteases, acid proteases from Aspergillus oryzae can limit the 
proteolysis of wheat gluten and increase loaf volume. Fungal-derived 
acid proteases have also been extensively applied to create food 
seasonings and improve protein-rich foods (e.g., bread and related 
foodstuffs; Hamada et al., 2013; Purushothaman et al., 2019; Wu et al., 
2022; Li X. et al., 2023; Niu et al., 2023).

4.3.2. Beverage industry
Acid proteases can degrade proteins in fruit juices and certain 

alcoholic beverages that cause turbidity (Espejo, 2021; Pati and 
Samantaray, 2022; Rasaq et al., 2023), including black currant (Landbo 
et al., 2006); cherry (Pinelo et al., 2010); pomegranate (Cerreti et al., 

TABLE 4 Representative alkaline proteases originated from microbial 
sources.

Microbial 
sources

Proteases References

Bacillus 

amyloliquefaciens

An extracellular alkaline 

protease

Chen W. et al. (2022)

An alkaline proteases AprM Xie et al. (2022)

An alkaline serine-protease 

APR68

Cho (2019)

Bacillus licheniformis An alkaline protease AprE Zhou et al. (2021)

A detergent stable 

thermophilic alkaline protease

Emran et al. (2020)

Asubtilisin protease Cupi et al. (2022)

Bacillus sp. An Alkaline protease with 

special reference to contact 

lens cleansing

Rejisha and Murugan 

(2021)

A novel alkaline serine 

protease

Ariyaei et al. (2019)

A H2O2-tolerant alkaline 

protease

Yu et al. (2019)

Deep-sea fungi An alkaline and cold-tolerant 

proteases

Damare et al. (2006)

Aspergillus oryzae, 

Penicillium roquefortii 

and Aspergillus flavipes

Several alkaline proteases Novelli et al. (2016)

Aspergillus sp. An activator-dependent 

protease

Zhu X. et al. (2021)

An alkaline protease Salihi et al. (2017)

An alkaline serine protease Yadav et al. (2015)

An extracellular keratinolytic 

protease

Anitha and 

Palanivelu (2013)

A solvent, salt and alkali-

tolerant alkaline protease

Abdel Wahab and 

Ahmed (2018)
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TABLE 6 Representative acid proteases originated from microbial 
sources.

Microbial 
sources

Proteases References

Aspergillus oryzae An aspartate protease Vishwanatha et al. (2009)

An acid protease as 

starter culture in 

doubanjiang fermentation

Niu et al. (2023)

A valuable food acid 

protease

Murthy and Kusumoto 

(2015)

An acid protease de Castro and Sato (2014)

An aspartate protease Shu et al. (2020)

A salt-tolerant acid 

protease

Lee et al. (2010)

Aspergillus niger Acid proteinase A Takahashi et al. (1998)

Extracellular acid 

proteases

Aalbæk et al. (2002)

Acid proteinases Yang and Lin (1998)

Aspartic proteases Purushothaman et al. (2019)

Acid proteinases Li et al. (2020)

Aspergillus foetidus An aspartic protease Souza et al. (2017)

A thermostable 

extracellular acid protease

Souza et al. (2015)

Aspergillus saitoi An acid carboxypeptidase Chiba et al. (1993)

Aspergillus clavatus An extracellular acid 

protease

Sampaio Silva et al. (2011)

Rhizomucor miehei Acid proteinases Aljammas et al. (2022a,b)

Rennet Celebi et al. (2016)

Rennet Soltani et al. (2019)

Mucor miehei Acid proteases Ayhan et al. (2001)

Acid proteases Escobar and Barnett (1995)

Rennet Seker et al. (1999)

Rhizopus 

rhizopodiformis

Extracellular acid 

proteases

Schindler et al. (1983), Sun 

et al. (2014)

2017); and apple, orange, grape, and kiwi fruit juices (Guo et al., 2019). 
By adding acid proteases, the immediate turbidity is significantly 
reduced. Adding proline-specific proteases from Aspergillus niger 
(Lopez and Edens, 2005) or Aspergillus oryzae (Kang et al., 2014) 
when brewing beer can prevent chill-haze formation. This result 
indicates that proline-rich proteins perform hydrolysis due to a 
peptide fraction that cannot interact with polyphenols. Protein haze 
is also a problem that occurs during the production of white wine. 
Early research has found that by using acid proteases in wine, protein 
haze formation can be  reduced without damaging wine quality 
(Marangon et al., 2012; Van Sluyter et al., 2013; Theron et al., 2018). 
Apart from preventing protein haze, acid proteases also increase the 
α-amino nitrogen concentration necessary for microbial growth and 
generate better flavor during beer brewing (Bell and Henschke, 2005; 
Lei et  al., 2013; Wang et  al., 2013; Serna-Saldivar and Rubio-
Flores, 2017).

Acid proteases are mainly aspartic proteases and are distributed 
across all forms of life, including vertebrates, plants, fungi, bacteria 
and viruses (Theron and Divol, 2014). However, fungus-derived acid 
proteases, such as Aspergillopepsins I and II from Aspergillus niger are 
most commonly used in the food and beverage industries (Ichishima, 
2004; Takahashi, 2004). They are the first and most commonly used 
acid proteases in the food industry. Recent reports on fungi-derived 
acid proteases have been used for various purposes, and the proteases 
mainly originate from Aspergillus oryzae, Aspergillus niger, Aspergillus 
foetidus, Aspergillus saitoi, Aspergillus clavatus, Rhizomucor miehei, 
Mucor miehei, and Rhizopus rhizopodiformis (Table 6).

4.4. Expanding specific applications

Protease applications are still expanding as specific applications 
develop, and new areas of interest in recent years are described in the 
following section.

4.4.1. Protein hydrolysates that improve flavors 
and decrease bitterness

Due to their amino acid sequence and length, oligopeptides 
exhibit different flavors, including sweet, bitter, umami, sour, or salty 
taste. Twenty common amino acids also present different flavors, such 
as umami, sweetness and bitterness; glutamic acid presents an umami 
flavor; arginine, proline, leucine, isoleucine, phenylalanine, and 
tryptophan present a bitter taste for humans; and L-alanine and 
L-serine provide a sweet taste. Proteases (mainly endopeptidases) can 
hydrolyze proteins to produce oligopeptides, thus enhancing the flavor 
of protein-based food (Wang H. et al., 2022; Yan et al., 2022), and 
exopeptidases (mainly aminopeptidases and carboxypeptidases) can 
hydrolyze peptides to produce free amino acids, also enhancing 
(enriching) the flavor of protein-based food (Cheung et al., 2015; Fu 
et al., 2020; Ding et al., 2022). For example, Alcalase and Flavorzymes 
were used to prepare defatted flaxseed meal protein hydrolysates (Wei 
et al., 2018). After processing optimization, peptides with molecular 

TABLE 5 Representative neutral proteases originated from microbial 
sources.

Microbial sources Proteases References

Bacillus subtilis A neutral protease Albillos et al. (2007)

Bacillus licheniformis Neutral proteases Reddy et al. (2022)

Bacillus stearothermophilus A neutral protease Mansfeld et al. (2005)

A neutral protease Eijsink et al. (1991)

Bacillus nakamurai An Extracellular 

protease

Shaikh et al. (2023)

Bacillus tropicus Keratinolytic proteases Liya et al. (2023)

Aspergillus oryzae A thermolysin-like 

protease, neutral 

protease I

Ma et al. (2016)

Neutral proteases Belmessikh et al. (2013)

Aspergillus niger Neutral proteases Reddy et al. (2022)

Aspergillus sojae Neutral proteases Li et al. (2023)

Aspergillus nidulans Neutral proteases Campbell and Peberdy 

(1983)

Aspergillus tamarii Neutral proteases Silva et al. (2018)
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weights above 1,000 Da enhanced the texture of food, while peptides 
with molecular weights ranging from 128 to 1,000 Da provided meat-
like flavors and influenced other sensory features.

Aminopeptidases from Lactobacillus casei, Lactobacillus curvatus, 
and Lactobacillus sake were used to improve the sensory quality of dry 
fermented sausages (Nandan and Nampoothiri, 2020). Neutrase, 
which is a neutral bacterial protease, can modify flavor in dairy 
applications (Sumantha et al., 2006). During the fermenting of fish 
sauce, taste formation is affected by protease activity because it alters 
the content of Ala, Asp, Glu, Leu, Lys, TCA-soluble peptides, and 
succinic acid (Zhu W. et al., 2021).

Bitterness is inevitably produced when oligopeptides undergo 
protein hydrolysis, and the intensity of bitterness of hydrolysis 
products is mainly related to the content and position of hydrophobic 
amino acids (or more accurately, amino acid residues with Q values 
above 1,500 cal/mol, such as Leu, Ile, Phe, Tyr, Trp, Pro, Val, and Lys 
(Nishiwaki et al., 2002) in the peptide segment). Matoba and Hata 
(1972) described in detail that the bitterness of protein hydrolysate is 
great when hydrophobic amino acids are internal in the oligopeptides, 
the bitterness is comparatively weaker when the hydrophobic amino 
acid(s) are located at either the N- or C-terminus and the weakest 
occurs when the hydrophobic amino acids are in the free state. 
Therefore, specific endopeptidases and exopeptidases can reduce the 
bitterness of protein hydrolysate (FitzGerald and O'Cuinn, 2006; 
Soeryapranata et  al., 2007). Endopeptidases can hydrolyze the 
hydrophobic amino acids forming bonds of oligopeptides and reduce 
bitterness (Capiralla et al., 2002; Edens et al., 2005; Zhang M. et al., 
2021). Aminopeptidases (Lin et al., 2020; Nandan and Nampoothiri, 
2020; Song et al., 2020a; Nakamura et al., 2023; Wang et al., 2023) and 
carboxypeptidase (Ding et al., 2022) from many different sources can 
continue to hydrolyze end hydrophobic amino acids and then 
reduce bitterness.

4.4.2. Protein modification
Microbial proteases are used to modify proteins. Protease-limited 

enzymatic hydrolysis of soybean protein can improve its solubility, 
emulsification, foaming and digestibility. Hydrolysis of peanut protein 
concentrates with Aspergillus oryzae crude protease extract resulted in 
their higher water- and oil-binding capacity as well as improved 
solubility, foam stability, and foaming capacity (Yadav et al., 2022). 
When soybean protein isolate (SPI) was treated with alkaline protease 
accompanied by high-speed shearing homogenization, it significantly 
improved the emulsion stability of the SPI hydrolysates. As a result, 
the foaming properties of SPI were improved significantly (Hao et al., 
2022). Recent studies have examined methods to use microbial 
proteases from a variety of sources to improve the chemical and 
physical properties of animal (Ai et al., 2019; Du et al., 2022) and plant 
proteins (Zhang Q. et al., 2021; Lin et al., 2022; Liu Y. Q. et al., 2022; 
Ren and Li, 2022; Wang T. et al., 2022; Hariharan et al., 2023; Lv et al., 
2023; Vogelsang-O’Dwyer et al., 2023).

4.4.3. Microbial fermentation
Proteases can hydrolyze the protein substrate in the fermentation 

medium into small peptides, making it easier for microorganisms to 
quickly absorb and utilize these substrates, improving fermentation 
efficiency. Other studies have found that during synergistic 
fermentation of bean dregs and soybean meal, adding multiple strains 
and protease promotes strain growth, organic acid secretion and 

amylase secretion and reduces sugar metabolism (Heng et al., 2022). 
Producing ethanol by microbial fermentation will cause hydrolysis 
by endogenous proteases and as a result will generate amino acids 
and peptides. Amino acids and peptides can support the growth of 
microorganisms, which subsequently increases ethanol production. 
To improve ethanol yield and reduce fermentation time, exogenous 
proteases can be used to hydrolyze protein sources available in the 
raw materials in feedstock used for ethanol production (Thomas and 
Ingledew, 1990). During high-gravity ethanol production from rice, 
proteases increased ethanol yield and decreased fermentation time 
during no-cook processes. Proteases have a significant impact on the 
size and growth of yeast and were found to enhance ethanol content 
by 2.4% v/v and shorten fermentation time by 48 h. External nitrogen 
addition was not needed for the SLSF-VHG process of rice (Tien 
et al., 2022).

4.4.4. Production of active peptides (or functional 
oligopeptides)

Active peptides are oligopeptides with specific compositions and 
sequences of amino acids. They are found in plant and animal 
proteins, and proteases can specifically hydrolyze proteins and release 
active peptides. Antioxidative, antidiabetic, antihypertensive, 
antimicrobial, antitumor, hypocholesterolemic, and many other 
biological properties may benefit from bioactive peptide structures 
(Karami and Akbari-adergani, 2019; Mada et al., 2019).

Microbial proteases have been used to produce high-value protein 
hydrolysates (Tacias-Pascacio et al., 2020; Mirzapour-Kouhdasht et al., 
2021), especially antioxidant peptides (Mukhia et al., 2021; Noman 
et al., 2022; Pan et al., 2022). These proteases can be used in health 
food and cosmetic fields and show great application potential.

4.4.5. Animal feed
Processing feed ingredients and applying exogenous proteases are 

the primary uses of exogenous proteases in animal feed. These 
proteases can be  used to maintain high performance and reduce 
dietary protein levels. Enzymatic hydrolysis is the best method when 
processing animal byproducts or plant-source feedstuffs. Interesting 
activities from peptides from plant or animal sources include 
antihypertensive, antimicrobial, antioxidant, and immunomodulatory 
activities. The environment also benefits from proteases by improving 
the utilization of protein materials and reducing nitrogen and 
ammonia excretions (Philipps-Wiemann, 2018; Hejdysz et al., 2020).

Proteases are used in the following applications:

4.4.5.1. Livestock feed
Adding Bacillus licheniformis to nursery diets that contain a low 

protein level can significantly improve nutrient digestibility, growth 
performance, and intestinal morphology of weaned pigs (Park et al., 
2020). Keratinolytic proteases can also use low-energy consumption 
to convert poultry feathers to a nutritionally upgraded protein-rich 
feedstuff for livestock from a potent pollutant (Onifade et al., 1998).

4.4.5.2. Poultry feed
Protease supplementation can improve the growth performance 

of broilers. HuPro protease can be supplemented under low-protein 
conditions to achieve a breeding effect that is similar to a positive 
control (antibiotic). Proteases can alter the bacterial diversity in the 
cecum, which has a positive effect on broilers (Wang Y. et al., 2022).
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4.4.5.3. Aquafeed
To improve the juiciness, flavor, tenderness, healthiness, and 

antioxidant capacity of grass carp meat, soy protein hydrolyzed by 
proteases has been added to a low-protein diet (Song et al., 2020b).

4.4.6. Waste recycling/environmental protection
To process various forms of protein-rich waste, proteases can 

be used for liquid, solid, and hazardous waste.
Tannery wastewater microbiota was screened for metagenome-

derived PersiProtease1. The novel PersiProtease1 was extracted from 
the microbiota and was applied to biodegrade tannery wastewater 
protein, dehairing sheepskins, whey protein, chicken feathers, and 
waste X-ray films (Ariaeenejad et al., 2022).

Several studies have found that proteases exhibit excellent 
deproteinization for chitin processing of shrimp waste (Jellouli et al., 
2011; Mhamdi et al., 2017a,b; Doan et al., 2019).

Another promising pathway for economic benefits and reduced 
carbon emissions in waste-activated sludge management is the recovery 
of short-chain fatty acids through anaerobic fermentation. Through 
alkaline protease–based pretreatment, waste-activated sludge flocs can 
be disintegrated following cell lysis, which releases biodegradable organic 
matter. This approach increased the α-glucosidase activities and 
endogenous protease, facilitated the biodegradation of dissolved organic 
matter, and encouraged short-chain fatty acid production. This is a 
promising method for disposing waste-activated sludge and recovering 
carbon. Short-chain fatty acids might meet 60% of the carbon gap in 
wastewater, making it a cost-effective and carbon-beneficial technology 
to manage (Pang et al., 2020, 2022).

Efficient waste-activated sludge dewatering can be  achieved 
through neutral protease. Waste-activated sludge treatment and 
disposal in wastewater treatment plants require sludge dewaterability. 
After enzyme conditioning, the sludge supernatant of 
polysaccharides, proteins, and SCOD content increased, which 
demonstrated the excellent performance of neutral protease. The 
capillary suction time increased, and the sludge water content 
decreased (Kang et al., 2023).

Skatole, the main source of foul odor from feces, is released from 
the cecum and colon of pigs and is the main source of air pollution in 
the pig farming environment. A new protease from Lactobacillus 
brevis has been used to remove odor from pig manure (Meng 
et al., 2013).

Approximately 5–7% of the total weight of chicken originates 
from features, which are a major pollutant because of their recalcitrant 
nature. Feathers are composed of 90% keratin and thus are used as an 
organic fertilizer because they are good sources of amino acids, 
peptides, and minerals. Bacteria can degrade keratin through 
keratinase enzymes. These serine-type proteases have been used as 
alternatives to develop cost-effective, readily available, and 
eco-friendly nitrogen- and mineral-rich sources as organic fertilizers 
(Mazotto et al., 2010; Tamreihao et al., 2018).

Protease and protease-containing formulations can be used to 
clean hairs from clogged pipes and drains and can be  used for 
depilation (Naveed et al., 2021).

Major contaminants in food bioprocessing sectors (e.g., milk and 
meat processing activities) result from protein-based residues. 
Alkaline protease has been used for waste management in different 
food-processing businesses as well as for activities at in residential 
areas (Majumder et al., 2015).

To minimize cleaning expenses, reduce environmental dangers, 
and increase equipment lifetime, various cleaning procedures have 
used protease alternatives. Because proteases are biodegradable, they 
will not cause environmental damage after they are used. Unlike other 
remediation approaches, biomass and chemicals cannot be removed 
to prevent accumulation. One disadvantage of using proteases for 
bioremediation is that the enzymes are expensive.

4.5. Special applications

4.5.1. Contact lens cleaning
Cleaning solutions for contact lenses are often prepared using 

animal (e.g., pancreatin, trypsin, and chymotrypsin) and plant (e.g., 
papain) proteases. Most of these solutions cause the cleansing bath to 
exhibit an unpleasant smell or develop an odor after use for a few 
hours (Liu et al., 2018). Reportedly, however, some microbial proteases 
can clean the debris off of contact lenses and tear film, making these 
cleaning compositions odorless and safe. For example, proteases from 
Bacillus species, Streptomyces sp., and Aspergillus sp. do not cause 
allergic reactions or eye irritation (Singh and Bajaj, 2017; Razzaq et al., 
2019; Rejisha and Murugan, 2021).

4.5.2. Biotechnology processes
Some proteases are used for cleavage of various fusion tags after 

protein fusion expression in biotechnology protocols.

4.5.2.1. SUMO Protease
Small ubiquitin-related modifier (SUMO) is a kind of ubiquitin-

related protein that can be fused with the target protein to promote its 
solubility and enhance its soluble expression. After expression, SUMO 
protease can specifically recognize and cut the SUMO sequence from 
the target protein.

4.5.2.2. Recombinant Kex2 protease
Kex2 protease, a yeast-derived precursor processing protease, is a 

calcium-dependent serine protease that specifically recognizes and 
cleaves the carboxy-terminal peptide bond of Arg-Arg, Lys-Arg, 
Pro-Arg and other bibasic amino acids. Kex2 protease was used for 
the cleavage of secreted peptides in yeast exogenous protein expression.

4.5.2.3. TEV Protease
TEV protease is a cysteine protease of tobacco etch virus that 

specifically recognizes the heptapeptide sequence Glu-Asn-Leu-Tyr-
Phe-Gln-Gly/Ser and cleaves between Gln and Gly/Ser amino acid 
residues and is commonly used as a protease to remove GST, HIS or 
other tags from fusion proteins.

4.5.2.4. Proteinase K
This protease is used in genomic DNA extraction, enzyme 

digestion and removal in various common molecular biology 
experiments and cell biology experiments.

4.5.2.5. Recombinant trypsin
This protease is an endopeptidase that can be  used for the 

hydrolysis of C-terminal peptide bonds of lysine and arginine to split 
macromolecular proteins into small peptides. Trypsin is widely used 
in various biotechnological processes, such as cell separation of 

https://doi.org/10.3389/fmicb.2023.1236368
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Song et al. 10.3389/fmicb.2023.1236368

Frontiers in Microbiology 11 frontiersin.org

various tissues in cell culture experiments, degradation of denatured 
protein, enzymatic hydrolysis and sequencing of proteins, stem cell 
therapy, and cell therapy of tumors.

The sources of microbial proteases are extensive and may originate 
from any type of microorganism. Fungal proteases have been used in 
the food industry due to their safety and enzymatic characteristics. 
Acid proteases, among other functions, may be used as a substitute for 
activities associated with renin, papain, and pepsin. Species of 
Aspergillus and Mucor are important acid protease sources. Acid 
proteases from Aspergillus flavus, Aspergillus oryzae, Aspergillus niger, 
Rhizomucor pusillus, Rhizomucor miehei, and Rhizopus species are all 
used to prepare oriental foods, such as tempeh and koji, and to 
produce cheese as a substitute for rennet. Important milk clotting 
enzymes are found in Rhizomucor pusillus, Rhizomucor miehei, 
Penicillium roqueforti, Penicillium camemberti, and Endothia parasitica 
(Mandujano-González et  al., 2016; Aleksandrina, 2021; Ha et  al., 
2022). Mesophilic fungi have been used to release proteolytic enzymes. 
Thermophilic fungi with good protease activity include Achaetomium, 
Chaetomium, Humicola, Rhizomucor, Malbranchea, Penicillium, 
Rhizopus, Sporotrichum, Torula, and Talaromyces (Johri et al., 1985). 
Many of these species produce sufficient levels of acid, neutral, alkaline 
proteases and milk-clotting enzymes. Thermophilic fungi offer low 
fermenter contamination at high growth temperatures, which is a 
selective advantage. Thermophilic molds exhibit better enzymatic 
abilities because of their greater production and higher thermostability, 
resulting in their widespread commercial applications. Their 
enzymatic reactions have specificity, rapid speed, and efficiency even 
in small quantities. The possibility of commercial isolation of some of 
these thermophilic fungal species has received increased attention 
(Macchione et al., 2007). Proteases are ideal candidates for laundry 
detergent because of their thermostability and activity at high pH 
(Gupta et  al., 2002). Proteases from the genus Bacillus meet this 
requirement most often, so proteases used in laundry detergent mostly 
originate from the genus Bacillus (David et al., 2018; Rekik et al., 2019; 
Akram et al., 2020; Emran et al., 2020). Some proteases derived from 
extreme environmental microorganisms also frequently appear in this 
field (Abdullah et al., 2022).

In the past few decades, the application field of microbial proteases 
has rapidly expanded and has played an indispensable role in the food 
and detergent industries. With the continuous discovery of new 
microbial proteases, the application fields of microbial proteases will 
continue to expand, and their application methods will develop 
toward green and energy-saving directions.

5. Heterologous expression of 
proteases

Almost all microorganisms can generate proteases, but the 
amount of protease naturally generated by microorganisms may 
be very low, and isolating proteases is difficult. To obtain a certain 
number of proteases for conducting further research or application, 
heterologous expression of proteases is an important method; 
furthermore, with the development of bioinformatics, tens of millions 
of genes have been predicted as proteases, which is a very large 
potential resource pool of proteases. To obtain valuable proteases, only 
heterologous expression method can be  used to produce enzyme 
proteins and then perform functional verification. In addition, some 

characteristics of natural proteases may not meet the requirements of 
industrial application, so it is necessary to perform modifications, and 
performing modification on the original enzyme through the 
heterologous expression system is convenient.

Heterologous expression systems can be divided into prokaryotic 
expression systems and eukaryotic expression systems. The most 
representative prokaryotic expression systems are the Escherichia coli 
expression system and Bacillus subtilis expression system. Eukaryotic 
expression systems are representative of Pichia pastoris expression 
systems, and they are the most commonly selected expression systems 
for protease heterologous expression. The above heterologous 
expression systems have the characteristics of high expression of target 
proteins, low expression of background proteins, high expression 
efficiency and easy operation (Demain and Vaishnav, 2009).

A steady stream of protease-encoding genes has been cloned and 
expressed in new hosts, and the three major organisms of choice for 
cloning and overexpression are Escherichia coli, B. subtilis and the 
Pichia pastoris expression system (Table 7).

From the above table, we can find that proteases from animals, 
plants, microorganisms or viruses can be successfully expressed in the 
three heterologous expression systems (E. coli, B. subtilis and 
P. pastoris). Another important feature of proteases is that a significant 
part is found in nature as a protein precursor (or zymogen). These 
proteases can be  synthesized as inactive or less active precursor 
molecules, which have developed after evolution. These principal 
mechanisms can control the activity of proteases. The propeptide 
sequence of a protein precursor is connected to the C- or N-terminus 
of the material protein. The propeptides within protease precursors 
likely perform the following physiological functions: (1) help fold the 
mature enzyme; (2) provide the protease interaction with the bacterial 
cell surveillance mechanisms, including protease translocation 
through the cell wall; and (3) inhibit the proteases to protect the host 
cells from proteolytic damage (Baker et al., 1992; Baardsnes et al., 
1998; Serkina et al., 2001; Varón et al., 2006).

For a protease to function, the propeptide must be removed, and the 
zymogen must be activated to produce a functional mature protease, so 
activation of the zymogen is important for proteases. Regulation of 
proteolytic enzyme activity is necessary for cells and tissues because 
proteolysis at the wrong time and location may be lethal.

The mechanisms by which zymogens activate proteolytic enzymes 
are diverse and naturally occurring. They are activated, in some cases, 
upon enzymatic or nonenzymatic cofactor triggering, an appropriate 
signal such as acidification, Ca++-binding or, in other cases, by limited 
intra- or intermolecular proteolysis cleaving off an inhibitory peptide 
(Khan and James, 1998; Marie-Claire et al., 1998; Takagi et al., 2001; 
Wiederanders et al., 2003).

However, regarding the heterologous expression of some proteases, 
their activation mechanism or whether the activation mechanism of 
zymogens occurs in the heterologous host are unable to predict in 
advance; whether the propeptide is retained is unknown? Some relevant 
reports were summarized and the result showed that most of the 
successfully expressed proteases were expressed with the retention of the 
propeptide, but some of them were successful in removing the leading 
peptide and expressing the mature peptide directly (Table 8).

For the heterologous expression of a novel protease, the precursor 
sequence should be  cloned, and if there is no functional enzyme 
expression, then in turn clone the mature peptide sequence. The 
identification of the propeptide sequence of a protease can be performed 
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TABLE 7 Heterologous expression of proteases.

Host strains for cloning 
and overexpression

Proteases or encoding genes Plasmid vectors References

B. subtilis

B. subtilis Glutamyl endopeptidase from Bacillus intermedius (gseBi) pV Shagimardanova et al. (2007)

B. subtilis DB104 A thermophilic neutral protease from Bacillus 

stearothermophilus

Shuttle vector pHP13 Zhang M. et al. (2008)

B. subtilis An alkaline serine protease gene (GsProS8) from Geobacillus 

stearothermophilus

pWB980 Chang et al. (2021)

B. subtilis WB800 A gene coding for the nattokinase (Nk) from B. subtilis strain 

VTCC-DVN-12-01

pAC7 Nguyen et al. (2013)

B. subtilis WB800 A subtilisin-like alkaline serine protease (ASP) from Bacillus 

halodurans C-125

pMA0911 Tekin et al. (2020)

B. subtilis WB600 Keratinase (kerT) gene pLY Cao et al. (2019)

B. subtilis WB600 Alkaline serine protease (BcaPRO) from B. clausii pWBPRO1 constructed based 

on pWB980

Liu et al. (2019)

B. subtilis SCK6 A novel streptomyces trypsin pWB980 Wang et al. (2019)

A recombinant B. subtilis Extracellular thermostable alkaline halophilic protease pSaltExSePR5 Promchai et al. (2018)

B. subtilis Alanine aminopeptidase from Bacillus licheniformis E7 pMA0911 Chen Y. et al. (2022)

B. subtilis SCK6 An extracellular keratinase pMA0911 Tian et al. (2019)

A recombinant B. subtilis Serine protease from Bacillus intermedius pCB22 Sharipova et al. (2008)

B. subtilis A fibrinolytic enzyme (subtilisin DFE) gene pSUGV4 Peng et al. (2004)

B. subtilis WB600 Fibrinolytic protease of Bacillus licheniformis CH 3–17 pHY300PLK Jo et al. (2011)

E. coli

E. coli An intracellular serine protease from isolated salt-tolerant 

Bacillus sp. LCB10

pET-30a Hou et al. (2019)

E. coli Transetta (DE3) Subtilisin-like protease from a thermophilic Thermus 

thermophilus HB8

pET-22b (+) Xie et al. (2019)

E. coli strain BL21 Serine alkaline protease pET-15b Suberu et al. (2019)

E. coli BL21-Gold (Stratagene), E. coli 

ORIGAMI B and E. coli Rosetta2

Extracellular serine proteases from Stenotrophomonas 

maltophilia

pMS470Δ8 Ribitsch et al. (2012)

E. coli BL21(DE3) pLysS and E. coli 

BL21-AI™

Serine alkaline protease (SAPN) from Melghiribacillus genus. pUT57 and pTrc99A, 

Gateway™ pDEST™ 17

Mechri et al. (2021)

E. coli BL21 A novel alkaline serine protease gene from native Iranian 

Bacillus sp.

pET-28 a (+) Ariyaei et al. (2019)

E. coli Serine protease from Nocardiopsis sp. pET-39b (+) and pET-22b (+) Rohamare et al. (2015)

E. coli BL21 (DE3) A thermo- and surfactant-stable protease from 

Thermomonospora curvata

pET-25b (+) Sittipol et al. (2019)

E. coli BL21 (DE3) Serine proteases from Oceanobacillus iheyensis O.M.A18 and 

Haloalkaliphilic bacterium O.M.E12

pET-21a (+) Purohit and Singh (2014)

E. coli BL21 (DE3) Subtilisin-like Protease Myroicolsin pET-22b (+) Ran et al. (2014)

E. coli BL21 An alkaline protease from Bacillus licheniformis pET–28b (+) Lin et al. (2015)

E. coli BL21(DE3) A fibrinolytic protease gene from the polychaeta, Periserrula 

leucophryna

pT7-7 Joo et al. (2013)

E. coli BL21(DE3) A novel fibrinolytic serine protease from Arenicola cristata pET-21a (+) Zhao and Ju (2014)

E. coli BL21(DE3) A novel aspartic protease gene from marine-derived 

Metschnikowia reukaufii

pET-24a (+) Li et al. (2008)

E. coli BL21(DE3) A novel extracellular subtilisin-like protease from the 

hyperthermophile Aeropyrum pernix K1

pGEX Catara et al. (2003)

(Continued)
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TABLE 7 (Continued)

Host strains for cloning 
and overexpression

Proteases or encoding genes Plasmid vectors References

E. coli BL21(DE3) A new thiol-dependent, alkaline serine protease pET-28a (+) Masilamani and Natarajan 

(2015)

E. coli BL21(DE3) pLysS A serine protease-like protein from silkworm (Bombyx mori) pGEX-5X-1 Kim et al. (2009)

E. coli BL21 Lon protease from rice (Oryza sativa) pET-32a Su et al. (2006)

E. coli Rosetta-gami (DE3) Serine protease aprv2 from virulent isolate Dichelobacter 

nodosus

pET-22b (+) Wani et al. (2016)

E. coli BL21 (DE3) A novel extracellular cold-adapted alkaline protease gene of 

the marine bacterium strain YS-80-122

pET-28a Wang et al. (2010)

E. coli Shuffle®T7. Three main serine carboxypeptidases (SCP3, SCP20, and 

SCP47) from Nepenthes mirabilis

pET-28a-SUMO Porfírio et al. (2022)

E. coli BL21(DE3) Carboxypeptidases genes (dacA, dacB, dacC, and dacF) in 

Bacillus subtilis CW14

pET-28a (+) Xu et al. (2021)

E. coli A collagenolytic aspartic protease from Thermomucor indicae-

seudaticae

pET-28a (+) Pereira et al. (2020)

E. coli BL21(DE3) pLysS Novel protease from Bacillus licheniformis strain K7A pGEM-T Easy Hadjidj et al. (2018)

E. coli BL21 (DE3) A low salt-adapted extracellular protease from the extremely 

halophilic archaeon Halococcus salifodinae

pET-28a Hou et al. (2021)

E. coli BL21 Avihepatovirus 3C protease pET-32a Sun et al. (2019)

E. coli BL21 (DE3) pLysS Site-2 protease pHEN6 Schacherl et al. (2017)

E. coli BL21 (DE3) A dual-functional aminopeptidase from Streptomyces canus 

T20

pET-24a (+) Qin et al. (2021)

P. pastoris

P. pastoris SMD1168 and X33 Serine alkaline protease from Melghiribacillus genus pPICZαC Mechri et al. (2021)

P. pastoris GS115 Serine protease from thermophilic fungus Thermoascus 

aurantiacus var. levisporus

pPIC9K Li et al. (2011)

Saccharomyces cerevisiae W3124 An aspartic protease pYES 2.0 Bang et al. (1999)

P. pastoris Proteinase K pPink-HC Skowron et al. (2020)

P. pastoris KM71 Protease from Aspergillus niger pPIC9K Ke et al. (2019)

P. pastoris A plant aspartic protease (preprogaline B) pGAPZα A Feijoo-Siota et al. (2018)

P. pastoris A novel serine protease A self-construct plasmid Shu et al. (2016)

P. pastoris X-33 and GS115 (his4) Streptokinase pPICZαA and pGAPZαA Adivitiya Dagar et al. (2016)

P. pastoris Bacillus pumilus 3–19 protease pPINK-HC Pudova et al. (2021)

P. pastoris A zinc-dependent proteases of the metzincin superfamily of 

metalloproteases

pPIC9K Schlenzig and Schilling (2017)

P. pastoris GS115 Recombinant protease MarP from Mycobacterium tuberculosis pPICZα García-González et al. (2021)

P. pastoris A collagenolytic aspartic protease from Thermomucor indicae-

seudaticae

pPICZαA Pereira et al. (2020)

P. pastoris A novel aminopeptidase B from Aspergillus niger pPIC9K Song and Feng (2021)

P. pastoris X-33 and SMD1168 strains A Mucor circinelloides aspartic protease pGAM1 Kangwa et al. (2018)

P. pastoris A new serine protease from Crotalus durissus collilineatus 

venom

PICZαA Boldrini-França et al. (2015)

P. pastoris Keratinolytic serine protease gene sfp2 from Streptomyces 

fradiae var. k11

pPIC9K Li et al. (2007)

P. pastoris KM71 Subtilisin Pr1A gene from a strain of locust specific fungus, 

Metarhizium anisopliae

pPIC9K Zhang W. et al. (2008)

(Continued)
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by referring to the literature or using prediction software of the peptide 
clearance sites: https://services.healthtech.dtu.dk/service.php?ProP-1.0. 
Notably, the propeptide sequence of a protease may be at the N-terminal 
end or the C-terminal end of the protein sequence.

Heterologous expression is an important method for detecting 
novel microbial proteases and will continue to play a crucial role. 
Moreover, as an optimization of this approach, some new technologies, 
such as CRISPR and directed evolution, will continue to be applied to 
optimize this approach and improve the method’s efficiency. As 
representatives of prokaryotic expression systems, E. coli expression 
systems and B. subtilis expression systems, as well as eukaryotic 
expression systems, P. pastoris expression systems can now meet the 
heterologous expression of proteases from prokaryotic and eukaryotic 
microorganisms. Expression levels could be  increased and more 
functional protease expression could be obtained to further improve 
heterologous expression.

6. Conclusion and future prospects

Because enzymes are environmentally friendly chemicals, they 
could completely replace or reduce the use of hazardous chemicals in 

industrial processes. As a result, enzymes show promising applications 
for sustainable manufacturing and production. Proteases are superior 
to many industrial enzymes because of their varied application in 
many different bioindustries, such as detergent, leather, textiles, and 
food, as well as pharmaceutical, biotechnology, and waste treatment 
processes. Among proteases from diverse sources, microbial proteases 
have been the preferred source for applications owing to their fast 
growth, efficient production, wide diversity, longer shelf life, and 
potential for genetic manipulation of microorganisms compared to 
plant or animal sources.

It is certain that microbial protease, as a green, efficient tool, will 
be  continuously applied in various industry applications with the 
development of biological technology, and it will lead the development 
of the abovementioned fields or promote the development of each 
field. To increase our fundamental knowledge on microbial ecology 
(e.g., enzymes, their evolution, and their relevance in industrial 
sectors), “omics” and biological technologies should continue to 
be used for molecular characterization, crystallography, and enzymatic 
modulation by applying algorithms, bioinformatics tools, and genetic 
engineering. Genetic engineering and immobilization techniques 
should be  further developed to discover new proteases, enzyme 
systems that are more effective and efficient should be developed, the 

TABLE 7 (Continued)

Host strains for cloning 
and overexpression

Proteases or encoding genes Plasmid vectors References

P. pastoris GS115 Subtilisin QK pPICZα Zhou et al. (2017)

P. pastoris SMD1168 and X33 A serine alkaline protease from Melghiribacillus 

thermohalophilus

pPICZαC Mechri et al. (2021)

P. pastoris KM71 Aspergillus sojae alkaline protease pPIC9K Ke et al. (2018)

P. pastoris GS115 Recombinant Aspergillus oryzae alkaline protease pPIC9K Guo and Ma (2008)

P. pastoris Keratinase (kerA) gene from Bacillus licheniformis pPICZαA Porres et al. (2002)

P. pastoris A thermostable serine protease (TfpA) from 

Thermomonospora fusca YX

pPICZαA Kim and Lei (2005)

P. pastoris GS115 The Bacillus subtilis subsp. subtilis str. BSP1 YwaD 

aminopeptidase

pHBM905A Tang et al. (2016)

P. pastoris GS115 Carboxypeptidase Y from Saccharomyces cerevisiae pHBM905A Yu et al. (2014)

P. pastoris X-33 Prolyl aminopeptidase pPIC9K Yang et al. (2016)

P. pastoris X-33 X-Prolyl-dipeptidyl aminopeptidase from Basidiomycete 

ustilago maydis

pPICZαB Juárez-Montiel et al. (2014)

P. pastoris X33 or SMD1168H A metalloprotease pPICZαC Schlenzig et al. (2015)

P. pastoris GS 115 A new dipeptidyl-peptidase isolated from Aspergillus 

fumigatus

pHIL-S1 Beauvais et al. (1997)

P. pastoris GS115 A metalloprotease pPIC9K Song et al. (2021b)

P. pastoris GS115 A new carboxypeptidase from Aspergillus niger pPIC9K Song et al. (2021a)

P. pastoris GS115 Two new Aspergillus niger aspartic proteases pPIC9K Song Y. et al. (2020)

Pichia pastoris KM71H Serine protease from Bothrops pauloensis snake venom pPICZαA Isabel et al. (2016)

P. pastoris GS115 A thermolysin-like protease, neutral protease I, from 

Aspergillus oryzae

pHBM905BDM Ma et al. (2016)

P. pastoris GS115 First fibrinolytic enzyme from mushroom (Cordyceps 

militaris)

pPIC9K Katrolia et al. (2019)

P. pastoris GS115 Thrombolytic enzyme (lumbrokinase) from earthworm pPICZα-B Ge et al. (2005)
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functions of existing proteases should be  optimized, and fewer 
resources and energy should be consumed while achieving maximum 
product yields.

In the next decade or few decades, research should be conducted 
on proteases regarding enzyme preparation methods and usage 
methods to improve efficiency, such as developing immobilized 
enzyme technology, enzyme modification technology, and protease 

fusion application with chemical approaches and developing faster 
and more efficient methods for detecting and analyzing proteases to 
facilitate the development of new proteases. De novo design of new 
proteases using artificial intelligence and various algorithms should 
also be applied. It is also necessary to develop general methods for 
long-term preservation of proteases to mitigate inactivation caused by 
self-hydrolysis; greater accuracy and control during the production 

TABLE 8 Heterologously expressed proteases with (without) the retention of the propeptide.

Proteases Protease gene 
sources

Expression 
host

Expression with 
propreptide 
(Y/N)

Remarks Reference

A keratinolytic serine 

protease

Streptomyces fradiae 

var.k11

E. coli Y Recombinants expressing the proenzyme exhibited 

markedly higher activity than that recombinant 

expressing mature enzyme

Meng et al. (2007)

Keratinase Bacillus licheniformis Pichia pastoris Y Expressing the pro-mature structure was reported 

to increase the production of the keratinases gene 

(kerA)

Carlsson et al. (2001)

A thermolysin-like 

neutral protease

Bacillus 

stearothermophilus

E. coli N A much more effective access to active mature 

protease was found when TLP-ste (devoid of its 

prosequence) was expressed this confirming that 

the propeptide is not essential for proper folding of 

the enzyme or its stabilization during the folding 

process

Mansfeld et al. 

(2005)

A novel extracellular 

serine protease

Aeropyrum pernix K1 E. coli N / Catara et al. (2003)

Subtilisin Thermus thermophilus 

HB8

E. coli Y Expression of the mature-subtilisin gene was 

found to produce inactive inclusion bodies, 

expression of the pro-subtilisin gene resulted in 

active mature-subtilisin

Xie et al. (2019)

Subtilisin E Bacillus subtilis 168 E. coli Y When the entire coding region for pre-pro-

subtilisin E was cloned into an Escherichia coli 

expression vector, active mature subtilisin E was 

secreted into the periplasmic space; When the 

propeptide was absence to the mature subtilisin 

sequence, no protease activity was detected

Ikemura et al. (1987)

Candida secreted 

aspartic proteases

Candida albicans Pichia patoris N Expression of the C. albicans SAP1 gene lacking 

the propeptide-coding region in the Pichia pastoris 

does not lead to the secretion of the enzyme into 

the culture supernatant, but results in an 

accumulation of recombinant protein in the cell. 

Co-expression in this system of the unattached 

propeptide from Sap1p, as well as from other Saps, 

restored Sap1p secretion

Beggah et al. (2000)

Keratinase Bacillus licheniformis 

BBE11-1

E. coli Y Optimizing the C-terminus of propeptide will 

affect the cleavage efficiency of propeptide. The 

primary structure of C-terminus propeptide is 

crucial for the mature keratinase production.

Liu et al. (2014)

Leucyl 

aminopeptidase A

Aspergillus oryzae 

RIB40

E. coli and 

Pichia pastoris

Y / Baltulionis et al. 

(2021)

Subtilisin-like serine 

proteases

Tomato E. coli Y / Meyer et al. (2016)

Nattokinase Bacillus subtilis 

VTCC-DVN-12-01

Bacillus subtilis 

WB800

Y / Nguyen et al. (2013)
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process is critical in terms of improving product value or expanded 
substrate extensiveness of proteases with a goal of obtaining better 
hydrolysis efficiency. Biochemical attributes of microbial proteases, 
such as thermostable, cold-active, and halophilic extreme 
environmental properties, should be  further studied to determine 
significant applications in bioprocesses, as proteases and even enzymes 
are always of research interest.
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